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Abstract 
 
 
 

This work presents the development of both weakly compressible and incompressible 

Smoothed Particle Hydrodynamics (SPH) models for simulating two-dimensional transient 

viscoelastic free surface flow which has extensive applications in polymer processing 

industries. As an illustration with industrial significance, we have chosen to model the 

extrudate swell of a second-order polymeric fluid. The extrudate or die swell is a phenomenon 

that takes place during the extrusion of polymeric fluids. When a polymeric fluid is forced 

through a die to give a polymer its desired shape, due to its viscoelastic non-Newtonian nature, 

it shows a tendency to swell or contract at the die exit depending on its rheological parameters. 

The die swell phenomenon is a typical example of a free surface problem where the free 

surface is formed at the die exit after the polymeric fluid has been extruded. The swelling 

process leads to an undesired increase in the dimensions of the extrudate. To be able to obtain 

a near-net shape product, the flow in the extrusion process should be well-understood to shed 

some light on the important process parameters behind the swelling phenomenon. To this end, 

a systematic study has been carried out to compare constitutive models proposed in literature 

for second-order fluids in terms of their ability to capture the physics behind the swelling 
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phenomenon. The effects of various process and rheological parameters on the die swell such 

as the extrusion velocity, normal stress coefficients, and Reynolds and Deborah numbers have 

also been investigated. The models developed here can predict both swelling and contraction 

of the extrudate successfully. The die swell problem was solved for a wide range of Deborah 

numbers and for two different Re numbers. The numerical model was validated through the 

solution of fully developed Newtonian and Non-Newtonian viscoelastic flows in a two-

dimensional channel, and the results of these two benchmark problems were compared with 

analytic solutions, and good agreements were obtained. 
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Özet 
 
 
 

Bu projede polimer imalatı endüstrisinde kapsamlı uygulamalara sahip iki boyutlu zamana 

bağımlı viskoelastik serbest yüzey akışı, sıkıştırılamaz ve kısmi sıkıştırılabilir düzleştirilmiş 

partikül hidrodinamiği yaklaşımı kullanılarak modellenmiştir . Endüstriyel açıdan önemi göz 

önünde bulundurularak ikinci dereceden polimerik akışkanların ekstrüzyon şişmesinin 

modellenmesine karar verilmiştir. Kalıp şişmesi (ekstrüde malzeme şişmesi) olayı polimerik 

akışkanın ekstrüzyonu esnasında gözlemlenmektedir. Polimerik akışkan istenilen boyutlarda 

şekillendirmek amacıyla kalıba basıldığında, akışkanın viskoelastik Newtonian olmayan 

yapısından dolayı akışkan kalıp çıkışı esnasında şişme yada büzülme eğilimi gösterir. Kalıp 

şişmesi olayı tipik bir serbest yüzey problemi örneğidir. Serbest yüzey polimerik akışkanın 

kalıptan çıkması sonucu oluşan yüzeydir. Bu şişme olayı ekstrüde malzemenin boyutlarında 

istenilmeyen artışlara yol açar. İstenilen boyutlara sahip bir ürün elde edebilmek için 

ekstrüzyon işlemi esnasındaki akışın iyi anlaşılması gerekmektedir. Böylelikle şişme olayının 

ardında olan önemli işlem parametrelerine ışık tutulacaktır. Bu bağlamda, literatüre ikinci 
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dereceden akışkanlar için kullanılan bünye denklemlerinin şişme olayının ardındaki fiziği 

yakalayıp yakalayamayacaklarını tespit etmek için sistematik bir araştırma gerçekleştirilmiştir. 

Ayrıca, kalıp şişmesi olayına ekstrüzyon hızının, normal stres katsayılarının, reolojik 

parametrelerin ve Reynolds ve Deborah sayılarının etkisi incelenmiştir.  Geliştirilen model 

esktrüde malzemenin şişme yada büzülme eğilimi başarılı bir şekilde tespit edebilmektedir. 

Kalıp şişmesi problemi  farklı Deborah sayıları ve iki farklı Reynold sayısı için çözülmüştür. 

Numerik model, iki boyutlu bir kanalda tam gelişmiş Newtonian ve Non-Newtonian 

viskoelastik akışların çözümlenmesi yapılarak doğrulamıştır. Bu iki test probleminin sonuçları 

analitik çözümler ile kıyaslanmış ve analitik çözümlerle iyi bir uyum elde edilmiştir. 
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CHAPTER 1 
 
 
 
 

1 INTRODUCTION 
 
 
 

1.1 Motivation 
 
 
 
Polymeric materials have long been used for a variety of applications in our daily lives in the 

forms of rods, tubes and sheets. Most of these products are manufactured by extruding molten 

polymers (hereafter also referred to as a polymeric fluid, or liquid) through a die. In general, 

there are many steps in the manufacturing of polymeric products with desired shape and 

dimensions. These fabrication steps play a very important role in determining the quality of 

final products. The fabrication process starts with the synthesis of raw materials and ends with 

the manufacturing of finished products. The last processing step includes the extrusion of a 

polymeric fluid through a die. The extruded polymeric fluid exhibits viscoelastic 

characteristics because of the existence of normal stresses that can distort the cross section of 

the extrudate. The deformation of the polymeric liquid outside the die is widely referred to as 

the extrudate or die swell. The die swell phenomenon leads to a change in product’s final 

shape, thereby hindering the effective control of the cross section of the final product. The 

extrudate swell is highly sensitive to rheological properties of polymers (whether being a 

Newtonian or a non-Newtonian) and also the processing variables such as flow rate and 

temperature. Die swell is defined as the ratio of the extrudate diameter to the die exit diameter 

[1]. 

 
To improve both the quality of the polymeric final products and the productivity of the 

fabrication process require a good understanding of rheological behavior of polymeric liquids, 
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especially understanding the die swell phenomenon for controlling or reducing its undesired 

effect. This highly non-linear and complex problem has been the subject of extensive research 

in the last few years. Towards this end, considerable effort has been dedicated towards 

predicting the behavior of the viscoelastic polymeric fluids using either experimental 

techniques [1, 2] or numerical approaches. Numerical approaches reported in literature to 

model the die swell behavior include the finite element method [3-6], and finite difference 

technique [7] based on the marker and the cell philosophy [8, 9]. Early works on the die swell 

can be classified into two- and three- dimensional models with various forms of die 

geometries such as two-dimensional convergent, divergent or half converging/ half tubular 

channels [3, 4, 6, 8-10], and three-dimensional circular, square or varied cross-section 

channels [5, 11]. These reported studies have shown that the die swell is influenced by the 

rheological characteristic of polymeric fluids such as the sign and the value of first and second 

normal stress coefficients [6], process parameters such as the extrusion velocity [9] and the 

geometry of the die [1].  

 
In all the previously reported computational studies, the die swell process has been modeled 

using mesh-dependent approaches. When tackling problems that involve complex free 

surfaces, splashing, and fluid-solid interactions, mesh dependent techniques, due to their 

Eulerian nature, require the solution of additional sets of equations for tracking free surface, 

and may necessitate the re-meshing of computational grid in regions where large mesh-

deformation and fracture may occur. Hence, modeling these types of flow problems with mesh 

dependent methods presents significant challenges in computational fluid dynamics. Within 

the last two decades, meshless methods have started appearing in the field of computational 

fluid mechanics field as complementary methods to deal specifically with problems as 

described above. Smoothed particle hydrodynamics (SPH) is one of the techniques in 

meshless Lagrangian particle methods used to solve partial differential equations. Although 

originally proposed to handle cosmological simulations [12], the SPH technique has become 

increasingly generalized to handle many types of fluid and solid mechanics problems such as 

heat transfer [13], multiphase flow [14], solidification [15], crystal growth [16], dynamic 

response of elasto-plastic materials [17], free surface flows [18-20], and low-Reynolds number 

viscous flows [21]. Owing to its Lagrangian nature, the SPH technique offers noticeable 

advantages for modeling such flows in comparison to mesh-dependent methods. SPH 
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advantages also include relatively ease of modeling complex material surface behavior, as 

well as relatively simple implementation of more complicated physics, such as non-Newtonian 

viscoelastic flows with and without free surface. 

 
The SPH method has recently been extended to modeling non-Newtonian viscoelastic flows. 

The first attempt came with the work of Ellero et.al. [22] in which a corotational Jaumann–

Maxwell model was employed for studying the viscoelastic relaxation in a two-dimensional 

channel. The same first author also studied the transient flow between the parallel plates for 

both Oldroyd- B and upper-convected-Maxwell fluids at low Reynolds numbers[23]. SPH 

method has also recently been used to model non-Newtonian flows with free surfaces. Shao et 

al. [18] simulated a dam breaking problem with a modified version of cross-model. Fang et al. 

[19] studied the impact of a drop of an Oldroyd-B fluid on a rigid plate using a weakly 

incompressible SPH approach. Rafiee et al. [24] has also recently modeled the impact of a 

drop and jet buckling of Maxwell and Oldroyd-B fluids with incompressible SPH approach.  

 
The motivation behind this work is to scrutinize the feasibility and effectiveness of the SPH 

method to capture the important physics behind the die swell phenomenon, which is a real 

industrial application of a free surface problem. In this work, the polymeric fluid is treated as a 

second-order viscoelastic non-Newtonian liquid. To our best knowledge, the extrudate swell 

problem has been solved neither using SPH nor using any other meshless methods. Therefore, 

this work is a novel contribution to the field.   

 
 
 

1.2 Thesis Outline 
 
 
 
The scope of this thesis work covers modeling studies in polymer processing with a new 

meshless computational approach that has been applied to the study of the extrudate swell 

phenomenon in an extrusion process. Following a brief introduction of the subject, we have 

introduced the balance of mass and linear momentum as governing equations of the problem 

in hand along with various viscoelastic constitutive models in Chapter 2.  In Chapter 3, the 

SPH method is presented together with the SPH discretization scheme for linearizing 
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governing equations and the solution algorithms for both WSPH, and ISPH approaches. In 

Chapter 4, the model problem together with its boundary conditions is outlined. Two 

benchmark problems are solved to validate the SPH model developed here. As well, we have 

discussed the outcomes of the modelling studies in detail referring to the effect of various 

process and rheological parameters on the die swell. The thesis work concludes with some 

remarks on the developed method and summarizes important findings of the current work as 

well as presents the future work in Chapter 5. 
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CHAPTER 2 
 
 
 
 

2 DIE SWELL 
 
 
 

2.1 Problem Definition 
 
 
 
In polymer industry, one of the processes used for shaping or forming a polymeric product is 

extrusion where a polymeric liquid is forced through a die to give the polymer its desired 

shape. Most of the polymeric fluids behave as a viscous elastic fluid that has the ability to 

swell outside from the die exit when extruded. The swelling phenomena occurring at the die 

exit leads to an increase in the dimensions of the extruded fluid. Therefore, the final size of the 

product becomes greater than the geometrical dimensions of the die as simulated in Figure 2-

1. The swelling phenomenon is a typical example for a free surface problem with boundaries 

moving and deforming in time. In the extrusion process, the free surface forms at the die exit 

after the polymeric fluid has been extruded through the die. For the sake of the readability of 

the thesis work, here we have introduced the die swell problem briefly. The more detailed 

problem description is provided in Chapter-4. 

 
 
 
 
 
 
 
 
 
 

Figure  2-1: Die swell phenomena. 

Free surface boundaries 

Inner fluid Wall boundaries 

Die channel inlet Die channel outlet 
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2.2 Governing Equations 
 
 
 
The polymeric fluid is assumed to be a viscous incompressible non-Newtonian second-order 

fluid with negligible thermal effects (i.e. isothermal flow). The governing equations used to 

solve the fluid problems in this work are the mass and linear momentum balance equations 

which are expressed in the Lagrangian form and given in direct notation as 

 
 

/D Dt    v
 ,   /v = σ f BD Dt  

       (2.1) 

 
 
The incompressibility condition requires that the divergence of the fluid velocity 0v 

  be 

zero. Here,   is the fluid density, v


 is the divergence-free fluid velocity, σ  is the total stress 

tensor, and f B


 is the body force term, respectively. The total stress is defined as σ I Tp   ,  

where p is the absolute pressure, I  is the identity tensor, T is the viscoelastic stress tensor. 

Finally, /D Dt  is the material time derivative operator defined as / / /l lD Dt t v x        

 
 
 

2.3 Constitutive Equations  
 
 
 
In the literature related to the die swell modelling or the second-order fluid in general, mainly 

two different forms of the constitutive equations have been used for the viscoelastic stress 

tensor; namely Rivlin-Ericksen [8, 25, 26] and Criminale–Ericksen–Filbey (CEF) [3-5, 27] 

constitutive relations, both of which can be written respectively in direct notation as 

 
 

1 2T A A A A    



         (2.2) 

 1 1 20.5 0.5      T A A A A



        (2.3) 
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These two forms of the constitutive equations for the stress tensor can be represented in the 

following general form as T τ ε  where τ A  and ε represent in the given order the 

viscous and elastic components of the viscoelastic stress tensor. In some relevant literatures, 

the viscoelastic stress tensor T  is also referred to as the extra stress tensor. Here, 

 A v+ v
T  

 
and /A A t


D D  are the deformation rate tensor and the kinematic tensor 

respectively where / tD D  is a convected time derivative operator,   is the dynamic fluid 

viscosity, 1 and 2 are the first and the second normal stress difference coefficients. All of 

 , 1 , and 2  are material constants that can be determined by viscometric flows for any real 

fluid. The irreversible thermodynamic analysis on the second grade fluids performed by Dunn 

and Fosdick [25, 28] requires the satisfaction of the following restrictions 0  , 1 0   and 

1 2 0    so that all motions of the fluid are said to fulfill the Clausius–Duhem inequality. 

On the other hand, the experimental values of 1 and 2  for many non-Newtonian fluids 

which are assumed to obey the constitutive relation given in Equation (2.2) did not comply 

with the above given restriction; rather they satisfy the following conditions; 0  , 1 0  , 

and 1 2 0   , which we have used in our simulations. The material parameters 1 and 

2 are functions of the magnitude of the deformation rate tensor. In what follows, the 

following definitions apply; 2
1 1 xyN A  , and 2

2 2 xyN A   where 1 xx yyN T T   and 

2 yy zzN T T  are referred to as the first and second normal stress differences [5]. The second 

normal stress difference coefficient is difficult to measure, and also considerably smaller than 

the first normal stress difference coefficient; hence, in many earlier studies, it is either 

approximated through 2 10.1 x    , or neglected [3, 8, 27]. In the extrusion process, the 

second grade polymeric fluid can either swell or contract depending on the sign of first normal 

stress difference coefficient.  

 
When the viscoelastic polymeric liquid is deformed under the action of either stretching or 

shearing, or the combination of these two processes, the polymer molecules get stretched and 

entangled. If the polymer melt is exposed to a deformation for a short period of time, polymer 

molecules do remember their initial configuration, thereby being able to recover their initial 
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shape. On the other hand, if the deformation is applied for an extended period of time, the 

polymer molecules tend to forget their initial positions, and in turn can not recover their 

original shape. This time dependent phenomenon is known as the viscoelastic memory effect 

or the stress relaxation effect. The viscoelastic memory of polymeric materials is scaled with a 

dimensionless number referred to as Deborah number, De= λ /t, which is defined as the ratio 

of the material relaxation time to the time scale of the flow (processing time). For die swell, 

the material relaxation time, defined as the time required for whole polymer molecules to relax 

and get used to its new state of deformation can be formulated as 1 /   . The characteristic 

process time / vt h  can be approximated as the ratio of the characteristic die diameter to the 

average speed of the flow through the die so that Deborah number can be reformulated as 

1v /De h  . Note that the polymeric liquid behaves as a viscous fluid if Deborah number 

goes to zero, while it acts as an elastic solid if De goes to infinity. 

 
 
 

2.4 Various Forms of Convected Time Derivatives 
 
 
 
Our literature review on the die swell of a second-order fluid has showed that there are 

different forms of convected time derivatives as given in Table  2-1. Convected time derivative 

is an operator that transforms a tensor from convected to fixed coordinates. There are no clear 

guidelines that can be followed to determine which form of time derivative might be the best 

or most appropriate for predicting the rheological behaviour of polymeric fluids. Therefore, 

one should determine the usefulness of a given convected derivative based on its ability to 

predict the experimentally observed rheological behaviour of polymeric fluids. In the 

following, for the sake of completeness, we present those that we used in our simulation work 

to study their ability for predicting the die swell phenomenon correctly. The origin and the 

detailed derivations of these various forms of convected time derivatives can be found in [29]. 
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Table  2-1: Various forms of convected time derivatives that transform a tensor from convected 
to fixed coordinates, given in both direct and component notations. 

 
Convected derivatives Formulation 

Covariant form  

[25, 26] 

   / /A A v A A v
T

t D Dt    
  D D   

, ,/ /ij ij k i kj k j ikA t DA Dt v A v A  D D  

Controvariant form  

[8, 9] 

   / /A A v A A v
T

t D Dt    
  D D  

, ,/ /ij ij i k kj j k ikA t DA Dt v A v A  D D  

Mixed covariant-

contravariant form [5] 

   / /A A v A A v
T

t D Dt    
  D D  

, ,/ /ij ij i k kj j k ikA t DA Dt v A v A  D D  

Corotational (Jaumann) 

derivative [10] 
 / /A A ω A ω A

T
t D Dt   D D , where ω  is called the 

vorticity tensor, and defined as   0.5ω v- v
T  

 
, or in 

component form as  , ,0.5ij i j j iv v   , 

/ /ij ij ik jk jk ikA t DA Dt A A   D D  

 
 
 
The physical interpretation of the right-hand side of covariant, contravariant, and mixed 

covariant and contravariant  convected time derivatives can be given such that the first term on 

the right hand side represents the material time derivative of a tensor in the fixed coordinate 

systems, while the second and third terms represent the deformation (stretching) and rotational 

motions of a material element referred to in a fixed coordinate system as the velocity gradient 

tensor ,i jv  (and ,j iv ) can be expressed by the sum of deformation rate tensor 

, ,0.5 ( ) ij i j j id v v   and the vorticity tensor , ,0.5 ( ) ij i j j iv v   . Jaumann convected time 

derivative  can be formed by adding covariant and contravariant convected time derivatives 

and then noting that ,i j ij ijv d   . The second and third terms on the right hand side of 

Jaumann derivative describe the rotational motion of the material element. 
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CHAPTER 3 
 
 
 
 

3 SMOOTHED PARTICLE HYDRODYNAMICS 
 
 
 
Smoothed particle hydrodynamics (SPH) is one of the members of meshless Lagrangian 

particle methods used to solve partial differential equations widely encountered in scientific 

and engineering problems. Unlike Eulerian (mesh-dependent) computational techniques such 

as finite difference, finite volume and finite element methods, SPH does not require a grid, as 

field derivatives are approximated analytically using a kernel function. In this technique, the 

continuum or the global computational domain is represented by a set of discrete particles 

instead of grids. Here, it should be noted that the term particle refers to a macroscopic part 

(geometrical position) in the continuum. Each particle carries mass, momentum, energy and 

other relevant hydrodynamic properties. These sets of particles are able to describe the 

physical behaviour of the continuum, also have the ability to move under the influence of the 

internal/external forces applied due to the Lagrangian nature of SPH [30, 31]. 

 
For clarity of the presentation, it is worthy of introducing notational conventions to be used 

throughout this work. All vector quantities are written either using the index notation with 

Latin indices denoting the components or direct notations with lowercase boldface letters. 

These components will be written either as subscripts (when particle identifiers are not used) 

or superscripts (when particle identifiers are used). As well, throughout this work the Einstein 

summation convention is employed, where any repeated component index is summed over the 

range of the index. These superscripts do not represent any covariant or contravariant nature. 

Latin boldface indices (i, j) will be used as particle identifiers to denote particles and will 

always be placed as subscripts that are not summed, unless indicated with a summation 
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symbol. For example, the position vector for particle i  is i ir ek
kx

 
 where kxi components of 

the position vector and ke


is a base vector. The distance vector between a pair of particles is 

indicated by  k k k
k kx x r  ij i j i j ijr r -r - e e

    
, and the magnitude of the distance vector ijr


 is 

denoted by ijr .  

 

The three-dimensional Dirac-delta function  3
ijr , also referred to as a unit pulse function, is 

the starting point of the SPH approximation technique. This function satisfies the identity  

 

     3 3
i j ij jr r rf f r d



 
  

         (3.1) 

 
where 3

jrd


 is a differential volume element and  represents the total bounded volume of the 

domain. 

 
 
 

3.1 Kernel Function 
 
 
 
The SPH approach assumes that fields of a given particle are affected by those of all other 

particles within the global domain. The interactions among the particles within the global 

domain are achieved through a compactly supported, normalized and even weighting function 

(smoothing kernel function)  hrW ,ij  with a smoothing radius h  (cut off distance, localized 

domain) beyond which the function is zero. Hence, in computations, a given particle interacts 

with only its nearest neighbors contained in this localized domain. Here, the length h  defines 

the support domain of the particle of interest and   is a coefficient associated with the 

particular kernel function, where ijr  is the magnitude of the distance between the particle of 

interest i and its neighbouring particles j. If the Dirac delta function in Equation (3.1) is 

replaced by a kernel function  ijW r ,h , the integral estimate or the kernel approximation to an 

arbitrary function  irf


 can be introduced as 
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        3
i i j ij jr r r rf f f W r ,h d



  
   

       (3.2) 

 
where the angle bracket  denotes the kernel approximation, and ir


 is the position vector 

defining the center point of the kernel function.  

 
Approximation to the Dirac-delta function by a smoothing kernel function is the origin of the 

smoothed particle hydrodynamics. The Dirac-delta function can be replaced by a smoothing 

kernel function provided that the smoothing kernel satisfies the following several conditions 

[32]; namely, (a) normalization condition: the area under the smoothing function must be 

unity over its support domain,   3 1ij jrW r ,h d





, (b) the Dirac-delta function property: as the 

smoothing length approaches to zero, the Dirac-delta function should be recovered 

   3

0
ij ij

h
limW r ,h r


 , (c) compactness or compact support which necessitates that the kernel 

function is zero beyond its compact support domain,   0ijW r ,h   when ijr h , and (d) the 

kernel function is to be spherically symmetric even function,    ij ijW r ,h W r ,h  , (e) the 

smoothing function should be positive within the support domain,   0ijW r ,h   when ijr h . 

Finally, the value of the smoothing function should decay with increasing distance away from 

the center particle. The smoothing function can be represented in a general form as 

     , 1/ /ij ij
dW r h h f r h  where d  is the dimension of the problem, and f  is a function. In 

literature, it is possible to find a wide variety of kernel functions which satisfy above-listed 

conditions, such as Gaussian, cubic or quintic kernel functions. The smoothing kernels can be 

considered as discretization schemes in mesh dependent techniques such as finite difference 

and volume. Stability, accuracy and the speed of SPH simulation heavily depend on the choice 

of the smoothing kernel distribution as well as the smoothing length.  

 
In Equation (3.3) is given the piecewise cubic smoothing function   
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   

2 3

3

dim

2 1
0 1

3 2
1

, 2 1 2
6
0 2

ij ij ij

ij i ij ij

ij

if

if

if

s s s

W r h a s s

s

    

   





       (3.3) 

 

where hrs /ijij  , and dim  is a dimension dependent constant which takes the values of 

1 1 h  , 2
2 15 / 7 h  , and 3

3 3 / 2 h   for one, two or three-dimensional space 

respectively. Our early experience showed that for fluid simulation at low Reynolds numbers 

(i.e., 1Re  ), the cubic spline kernel produces inaccurate velocity fields and in turn inaccurate 

density fields, while the high-order quintic spline kernel is stable. Instability problem due to 

the usage of cubic spline shows itself clearly in 2-D cavity problem simulation. On the other 

hand, no instability problem was observed in the simulation of the one-dimensional Couette 

and Poiseuille flow at 1Re  . Therefore, throughout this work, we have used the compactly 

supported two-dimensional quintic spline kernel which is given in Equation (3.4) and Figure 

 3-1. 
 

 

     
   
 























30

323

21263

10115263

478

7
,

5

55

555

2

ij

ijij

ijijij

ijijijij

ij

if

if

if

if

s

ss

sss

ssss

h
hrW


    (3.4) 

 
 

 
Figure  3-1: Quintic spline and cubic spline kernel function. 
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3.2 SPH Particle Interaction 
 
 
 
The spatial resolution of SPH is affected by the smoothing length. Hence, depending on the 

problem to be solved, each particle can be assigned to a different value of smoothing length. 

However, for a variable smoothing length, it is probable to violate Newton’s third law. For 

example, it might be possible for a particle j to exert a force on particle i, and not to 

experience an equal and opposite reaction force from particle i. To ensure that Newton’s third 

law is not violated and the pair wise interaction among particles moving close to each other is 

achieved, the smoothing length is substituted by its average, defined as  0.5ij i jh h h  . The 

averaged smoothing length ensures that particle i is within the influence domain of particle j 

and vice versa. 

 
 
 

3.3 SPH Neighbor Search Algorithm 
 
 
 
There are several known searching algorithms that will find and store neighboring particles. 

Recall that neighbour particles are those particles j that satisfy the condition ij ijr h for a 

given particle i. The most direct approach for finding particle neighbours is to cycle through 

all particles, and check whether the above given condition is satisfied or not, storing the 

results. However, this algorithm searches all N particles for each of the N particles i. 

Therefore, this type of search procedure is of the order N×N in terms of computation searching 

effort required. A more efficient approach is the “box-sorting” algorithm, which is known to 

be of order N logN. This algorithm divides the domain into an ordered number of boxes, with 

side dimensions equal to maxh  in length. Each of the N particles i is then catalogued by which 

box it is located in. Since the box side dimensions are chosen to be maxh , a neighbor j of 

particle i must be located in one of the adjacent boxes to the box containing particle i. 

Therefore, instead of searching all N particles, one must search a much smaller group of 
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particles. Due to the much smaller computational expense, all simulations in this work used 

the box-sorting procedure.  

 
 
 

3.4 Spatial Derivatives and Particle Approximation in SPH 
 
 
 
The SPH approximation for the gradient of an arbitrary function (i.e., scalar, vectorial, or 

tensorial) can be written through the substitution    j j jr r kf f / x 
 

 in Equation (3.2) to 

produce 

 

        3ji i
ij j

i i j

rr r
r

k k k

ff f
W r ,h d

x x x

 
 

  
 


       (3.5) 

 
Upon integrating the right hand side of Equation (3.5) by parts and then using the Green-

Gauss theorem, one can write 

 

       2 3ij

j ij j j j
j

r r r r
k

S

W r ,h
f W r ,h d f d

x




 
   

       (3.6) 

 
The gradient of the kernel function referencing particle i and j can be written as   

 

   , ,
k k

W r h W r h r

x r x

  


  
ij ij ij

i ij i

 and 
   , ,

k k

W r h W r h r

x r x

  


  
ij ij ij

j ij j

    (3.7) 

   

 
 

1/ 2

1/ 2

2

2

m m m mk k

k k m m

r rr r r

x x rr r


  

 
ij ijij ij ij

i i ijij ij

 and 
 

 

1/2

1/2

2

2

ij ijij ij ij

j j ijij ij

m m m mk k

k k m m

r rr r r

x x rr r


    

 
 (3.8) 

 
Combining Equations (3.7) and (3.8), one can show that    

 

   ij i ij j
k kW r ,h / x W r ,h / x             (3.9) 
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Here, the first term in Equation (3.6) is referred to a boundary residual integral. Upon using 

compactness property of the kernel function which requires that the boundary residual integral 

is zero and Equation (3.9), it can be shown that 

 

        3iji i
j j

i i i

r r
r r

k k k

W r ,hf f
f d

x x x

 
 

  
 

 
      (3.10) 

 
The SPH approximation used for the gradient of a vector-valued function  irpf


is an obvious 

extension of Equation (3.10) and is obtained by replacing    i ir rpf f
 

.  

 
In the following, we provide various forms of the SPH approximation of first-order derivative 

of a vector-valued function. The derivation is carried out in Cartesian coordinates. The SPH 

approximation for the gradient of a vectorial function starts with a Taylor series expansion of 

 jrpf


 so that 

 

         1

2

p p
p p l l k

l l k

f f
f f r r r h

x x x 

 
   

  j i j i

i i
j i ji r r ji ji r r

i i i

r r
r r    

 
 

O    (3.11) 

 

Upon multiplying Equation (3.11) by the term,  ij j
sW r ,h / x  , and then integrating over the 

whole space 3
jrd


,  one can write,  

 

          

   

3 3

3

0

, ,

,1

2

ij iji
j i j ji j

j i j

iji
ji ji j

i i j

r
r r r r

r
r

p
p p l

s l s

p
l k

l k s

ls

lks

I

I

W r h W r hf
f f d r d

x x x

W r hf
r r d

x x x

 





 
 

  




  

 




   








   (3.12) 

 
Note that the first and the second integrals on the right hand side of Equation (3.12) are, 

respectively, second- and third-rank tensors. The third-rank tensor lksI can be integrated by 

parts, which upon using the Green-Gauss theorem produces Equation (3.13) since the kernel 

function  ijW r ,h  vanishes beyond its support domain.  
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      3 3
ij ji ji j ij ji ji j

j

r rlks l k l sk k ls
s

I W r ,h r r d W r ,h r r d
r

 
 


    

 
 

   (3.13) 

 
Recalling that the kernel function is spherically symmetric even function and the 

multiplication of an even function by an odd function produces an odd function. Integration of 

an odd function over a symmetric domain leads to zero. 

 

   3 3

0 0

0ji ij j ji ij jr rlks sk l ls kI r W r ,h d r W r ,h d 
 

 

    
 

 
     (3.14) 

 
Following the above described procedure identically, the second rank tensor can be written as  

 

  3

1

ls ls lsI W r ,h d 




    ij jir



       (3.15) 

 
On combining Equation (3.12)  with Equations (3.14) and (3.15), we can write,  

 

         3
,p

p p
s s

W r hf
f f d

x x


 

 
iji

j i j
i i

r
r r r


  

      (3.16) 

 

Note that in Equation (3.16), the relationship    ij j ij i
s sW r ,h / x W r ,h / x      has been 

used. In the above equations, the SPH approximations are written for a continuous 

distribution. If, however, we recognize that these integrations will be carried out over all N 

discrete particles within the domain, the discrete SPH particle approximation can be obtained 

by replacing the integration with summation over particle j to produce the SPH approximation 

of a field property  irpf


 at particle i in terms of all other interacting particles j, and 

representing the particle volume as the ratio of a particle mass jm and particle density j .  

 
Replacing the integration in Equation (3.16) with SPH summation over particle “ j ” and 

setting jjjr /md 
3 , we can obtain the gradient of a vector-valued function in the form of 

SPH interpolation as. 
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        
1

p N
p p

s s

W r ,hmf
f f

x x


 

  ijji
j i

ji j i

r
r r


 

     (3.17) 

 
There are other alternative forms for the SPH gradient approximation of an arbitrary function. 

One that is also used within the context of this presentation can be formulated through using 

the product rule of differentiation on   i i irk sf / / x 


 in combination with Equation (3.10). 

In what follows, one can write,  

 

       
2 2

1

,1 j iji i
j

ji i i j i

rr r
kk kN

s s

f W r hf f
m

x x  

  
  
   


 

     (3.18) 

 
Here, we present an approximation to the second order spatial derivative of a vector-valued 

function. Consider a well-behaved (continuous) vector-valued function  r
pf  of the position 

vector r


. Since SPH approximates the continuum with the ensemble of discrete points 

(particles), these function will take different values at each particle, which will be indicated by 

notation  ir
pf  and  jr

pf . Here,  ir
pf  denotes the value of the field at particle ir


 (particle of 

interest for which field is to be computed), while  jr
pf  indicates the field value possessed by 

neighbor particles. In other words, both  ir
pf  and  jr

pf  are functions of the position vector 

r


, but they reference different particles. For the function  r
pf , we can approximate  jr

pf  

by Taylor expansion in the proximity of  ir


f  as, 

         1

2

p p
p p l l k

l l k

f f
f f r r r h

x x x

 
   

  
i i

j i ji ji ji
i i i

r r
r r

 
 

O     (3.19) 

 

On multiplying the Taylor expansion in Equation (3.19) by
 

m

s

x

hrW

r

r

i

ij

ij

ij



 ,
2 , and then integrating 

over the whole space jr
3d ,  one can write,  
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r x x r x
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d

x x r x

 



 
 

  




  

 



ij ijij ji jii
j i j j

ij i i ij j

ijji ji jii
j

i i ij j

r
r r r r

r
r


   




  (3.20) 

 

where the relationship    m mW r ,h / x W r ,h / x    ij j ij i  has been used.  

 
The first integral on the right-side of Equation (3.20) is a third rank tensor that vanishes due to 

spherical symmetry and isotropy. Therefore, Equation (3.20) reduces to  

 

        



 2
3 3

2 2

ˆ ˆ

, ,
2

l k

s l kp
p p s

m l k m

r r

W r h W r hr r rf
f f d r d

r x x x r x 

 
  

    
ji ji

ij ijij ji jii
i j j ji j

ij i i i ij j

r
r r r r


   

 (3.21) 

 
The integral on the right hand side of Equation (3.21) is a fourth-rank tensor and can be 

written in the following form by using integration by part as  

 

        3 3 3
,

ˆ ˆ ˆ ˆ ˆ ˆ, ,l k s l k s l k s
m m m

W r h
r r r d r r r W r h d W r h r r r d

x x x  

  
 

    
ij

ji ji ji j ji ji ji ij j ij ji ji ji j
j j j

r r r
  

 (3.22) 

 
 
Upon applying the Green-Gauss theorem on the first integral on the right hand side of 

Equation (3.22), we can write,  

 

    3 2ˆ ˆ ˆ ˆ, , 0l k s l k s
m

S

r r r W r h d r r r W r h d
x


 

 ji ji ji ij j ji ji ji ij j
j

r r
 

    (3.23) 

 
where we have a vanishing surface integral for all the interior particles since the kernel goes to 

zero at the boundaries. Therefore, Equation (3.22) reduces to,   

 

     3 3
,

ˆ ˆ ˆ ˆ,l k s l k s
m m

W r h
r r r d W r h r r r d

x x 

 
 

  
ij

ji ji ji j ij ji ji ji j
j j

r r
 

    (3.24) 

 
In the following is presented some mathematical manipulations required for the evaluation of 

the partial derivative on the right hand side of Equation (3.24).  
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  

  

    


   



ji ji ji ji ji ji ji ji ji ji ji ji

ji ji ji ji ji ji ji ji ji ji ji ji ji
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   (3.25) 

 
Casting Equations (3.24) and (3.25) into Equation (3.21), we can write 

 

      
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f f d
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f
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 



 
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
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i j j
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ij ji ji j ij ji ji ji ji j

i

i i ij ji ji j ij ji ji j

r r r

r r
r

r r

  

 


 

   (3.26) 

 
Upon contracting on indices m and s in Equation (3.26), one can obtain 

 

          
2

3 3
2

,
ˆ ˆ2 , 3

s p
p p l k

s l k

W r hr f
f f d W r h r r d

r x x x 

 
 

   
ijij i

i j j ij ji ji j
ij i i i

r
r r r r


   

  (3.27) 

 
The integral on the right hand side of Equation (3.27) is a second rank isotropic tensor since 

the spherically symmetric kernel function is multiplied by an even function. Recalling that 

Kronecker delta kl  are components of an isotropic tensor, an isotropic tensor might be 

expressed in terms of the Kronecker delta multiplied with a constant “c ”. Therefore, one can 

write  

 

  3ˆ ˆ, l k klW r h r r d c


 ij ji ji jr


        (3.28) 
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Taking the trace of Equation (3.28), we can show that c=1/3 where we have used the fact that 

1ˆˆ ll rr jiji  and   3, 1W r h d


 ij jr


 since the kernel used is properly normalized even function. 

Substituting Equation (3.28) into Equation (3.27), one can obtain an approximation to a 

Laplacian of a vector-valued function as  

 

        2
3

2

,
2

sp
p p

k k s

W r hrf
f f d

x x r x


 

  
ijiji

i j j
i i ij i

r
r r r


  

     (3.29) 

 
To be able to derive an equation for the SPH approximation to the second order spatial 

derivative of the vector-valued function, we start with Equation (3.26). The second and fourth-

rank tensors on the right hand side of Equation (3.26) are isotropic tensors due to the 

spherically symmetric kernel. It is easy to verify that the fourth-rank tensors with components 

of klsm , mlsk  and mksl  are also isotropic. Consequently, it follows that  

 

1 2 3
smkl sm kl sk ml sl mka c c c               (3.30) 

 
where 1c , 2c  and 3c  are scalar coefficients and smkla  are the components of a fourth rank 

tensor. Since the fourth rank tensor in Equation (3.26) is symmetric for all indices, it is easy to 

show that all the coefficients have to be equal to each other, namely 321 ccc  . In what 

follows, one can write the isotropic second and fourth rank tensors in Equation (3.26) as    
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    (3.31) 

 

Equation (3.31) can be arranged in the flowing form  
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           (3.32) 
 
Substituting Equation (3.32) into Equation (3.26), we can write   

 

          2 2
3

1 12

, 2 1
2 4 2

3 3

s p p
p p sm

m s m k k

W r hr f f
f f d c c

r x x x x x




                   
ijij i i

i j j
ij i i i i i

r r
r r r

 
  

 

           (3.33) 
 

Upon contracting on indices m and s in Equation (3.33), one can obtain the value of coefficient 

1c  as 1/24 and 1/15 for two and three dimensions, respectively. In what follows, Equation 

(3.33) is written in three dimensions as    
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  (3.34) 

 

Combining Equations (3.29) and (3.34) together with the relation
   

ij

ij

ij

ij

i

ij

r

hrW

r

r

x

hrW m

m 


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

 ,,
, 

one can write,  
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   (3.35) 

 
The discrete SPH particle approximation for the second-order derivative of a vector-valued 

function  2 p s mf / x x  i i ir


 can be written [33] as  
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   (3.36) 

 
The approximation for the Laplacian comes by contracting on indices s and m in Equation 

(3.36) to produce 
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3.5 SPH Solution Algorithms 
 
 
 
There are two common approaches utilized in the SPH literature for solving the balance of the 

linear momentum equation. The first one is widely referred to as the weakly compressible 

SPH (WSPH) where the pressure term in the momentum equation is determined through an 

artificial equation of state. In the second approach which is known as incompressible SPH 

(ISPH), the pressure is computed by means of solving a pressure Poisson equation. In this 

work, we have implemented both WSPH and ISPH approaches. The artificial equation of state 

used in the WSPH approach has the form of,  2
io op p c     , where o , op  and c  are the 

reference density (taken as  the real fluid density), reference pressure, and the speed of sound. 

This state equation enforces the incompressibility condition on the flow such that a small 

variation in density produces a relatively large change in pressure whereby preventing the 

dilatation of the fluid. The speed of sound ic for each particle must be chosen carefully to 

ensure that the fluid is very closely incompressible. It has been suggested by Morris et.al. [21] 

that the square of the sound speed be chosen such that  

 
2

2 max max
i     , ,

B
o

o o

v v F L
c max

L


   

  
      

      (3.38) 

 
where   is problem dependent coefficient, maxv  is the maximum value of the fluid velocity, 

oL  is a characteristic length, BF is a body force,  is the relative incompressibility or the 

density variation factor, which is defined as 2 2 2
max i/ /o v c M      , where M is the 

Mach number. Upon selecting the sound speed much larger than the fluid velocity (at least an 

order of magnitude) thereby resulting in a very small Mach number, the density variation can 

be limited to 1% ( 0.01  ), which is used in this work. Our own experience as well as recent 

reports in the literature has indicated that the rules of thumb given by Equation (3.38) are not 
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adequate for some problems. In this case, the problem dependent coefficient can be used to 

impose incompressibility condition for the simulated flow problems. In this presentation, we 

set 4  . The speed of sound chosen has a direct effect on the permissible time-step in a 

given simulation. The algorithm stability is controlled by the Courant-Friedrichs-Lewy (CFL) 

condition, where the recommended time-step [34] is  ,min max/CFLt C h c v  ij i  where 

 0 5ij i jh . h h  , ij,minh  is the minimum smoothing length among all i-j particle pairs, CFLC  is 

a constant satisfying 0 1CFLC  (in this work, 0.125CFLC  )  

 
In order to increment the time-steps in WSPH algorithm, we have used a leapfrog predictor 

corrector method. This technique is an explicit time integration scheme, and is relatively 

simple to implement. Particle positions, densities, and velocities are computed respectively as  

 

/i ir vD Dt 
 

, /i iD Dt k  , /i iv fD Dt 


      (3.39) 

 
The time integration scheme starts with the predictor step to compute the intermediate particle 

positions and densities as follow;      1/2 0.5i i ir r vn n n t   
  

and      1/2 0.5i i i
n n nk t     . Having 

computed the intermediate particle positions and densities during the first half time step, the 

pressure is computed using the previously introduced artificial equation of state, while the 

velocity is computed by      1 1/2
i i iv v fn n n t   

 
. In the next half time (the corrector step), the 

particle positions and densities are updated as      1 1/2 10.5i i ir r vn n n t    
  

, and 

     1 1/ 2 10.5i i i
n n nk t      , Figure  3-2 summarize the WSPH algorithm.   

 
ISPH approach is based on the projection method [35], which uses the principle of Hodge 

decomposition. Upon using Hodge decomposition, any vector field can be broken into a 

divergence-free part plus the gradient of an appropriate scalar potential. Hodge decomposition 

can be written for a velocity field as  * /v v+ t p  
 

, where *v


is the intermediate 

velocity, and v


is the divergence-free part of the velocity field. The projection method begins 

by ignoring the pressure gradient in the momentum balance equation in Equation (2.1)b. The 

solution of Equation (2.1)b without the pressure gradient produces the intermediate velocity 

*v


, which does not, in general, satisfy mass conservation. However, this incorrect velocity 



25 
 

field can be projected onto a divergence-free space after solving a pressure Poisson equation, 

from which the divergence-free part of the velocity field v


 can be extracted. The pressure 

Poisson equation is obtained by taking the divergence of  * /v v+ t p  
 

 as 

 * / /v t p     
   since the incompressibility condition requires 0v 

 . This equation 

is subjected to Neumann boundary conditions that can be obtained by using the divergence 

theorem on the pressure Poisson equation as *( )/ v n= nt p  
     where n


 is the unit normal 

vector. Having solved the pressure Poisson equation to obtain the pressure field and then 

computed the pressure gradient, we can use the Hodge decomposition equation to determine 

the correct, incompressible velocity field v


. One of the main advantage of using ISPH is the 

elimination of the speed of sound parameter in the time-step conditions. Much larger time 

steps can be used in this approach, at the computational expense of having to solve the 

pressure Poisson equation at each time step. The time-step requirement for ISPH is 

ijCFL ,min maxt C h / v   where in this work, 0.175CFLC  . Unlike WSPH, ISPH algorithm does 

not suffer as much from non-physical pressure fluctuations due to small density errors that 

may potentially induce numerical instability. 

 
For time marching of ISPH approach, we have used a first-order Euler time step scheme. The 

general form of the ISPH algorithm is as follow. The predictor step starts with determining an 

estimate *
ir


for all particle locations, given the previous particle positions  
ir n and the previous 

correct velocity field  
iv n as    *

i i ir r vn n t  
  

 where *
ir


is the intermediate particle position. 

The intermediate velocity field *
iv


 is computed on the temporary particle locations through the 

solution of the momentum balance equations with forward time integration by omitting the 

pressure gradient term as    *
i i iv v fn n t  

 
. The pressure Poisson equation is solved to obtain 

the pressure  1
i

np  which is required to enforce the incompressibility condition. The pressure 

Poisson equation is solved using a biconjugate gradient stabilized method. The Hodge 

decomposition principle is employed to solve for the actual velocity field  1
iv n

by using the 

computed pressure  1
i

np  . Finally, with the correct velocity field for time-step n+1, all fluid 

particles are advected to their new positions  1
ir n using an average of the previous and current 
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particle velocities as         1 10.5i i i ir r v vn n n n t    
   

, Figure  3-3 summarize the ISPH 

algorithm. 

 
 
 

3.6 SPH Particles Movement Technique “XSPH” 
 
 
 
It is to be noted that in the SPH method, the order of particles affects the accuracy of 

interpolations for gradient and Laplacian computations. Therefore, for computational stability 

and accuracy, it is preferable to move the particles in a more orderly fashion, which can be 

achieved through using XSPH technique suggested by Monaghan et.al [31]. The XSPH 

method includes the contribution from neighbouring particles, thereby forcing fluid particles 

to move with an average velocity defined as    
1 1

, / ,i i ij ij ij
j j

v v v
N N

xsph W r h W r h
 

     
, where 

 ij i jv v v 
  

 and   is a coefficient that varies between zero and 1. In this study, iv


 is 

replaced by the average velocity or XSPH velocity iv xsph
 for particle movement only, and 

0.5  . In all times for both WSPH, and ISPH algorithms, particles are moved with the iv xsph
 

velocity.



27 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure  3-2: Die swell WSPH algorithm solution procedure. 
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Figure  3-3: Die swell ISPH algorithm solution procedure. 
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CHAPTER 4 
 
 
 
 

4 DIE SWELL SIMULATION RESULTS BY SPH 
 
 
 

4.1 Problem Description for the Die Swell  
 
 
 
The simulation domain of the problem in hand is composed of die channel and the extrudate 

together with their Boundaries, all of which are represented by a set of particles as shown in  

Figure  4-1. The die channel length and width are 0.2 m. and 0.01 m. respectively as indicated 

in Figure  4-2. Initially, the simulation domain is represented by 5000 particles generated by 

using an array of 25 × 200 particles. Henceforth, particles representing solid walls, inlet, 

outlet, and free surface boundaries are referred to as solid wall boundary particles, die inlet 

and outlet boundary particles, and free surface boundary particles, respectively. Particles 

within the die channel as well as the extrudate are named as fluid particles. Particles posses all 

the essential modelling parameters and field variables such as particle position, velocity, 

density, viscosity and pressure. Except solid boundary particles, all particles due to the 

Lagrangian nature of the SPH approach can move and deform freely in accordance with the 

solution of the mass and linear momentum balance equations. 
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Figure  4-1: The simulation domain in particle representation. 
 
 

 

 
 

Figure  4-2: The particle distribution on the die channel. 
 
 
 

4.2 Die Swell Boundary Conditions 
 
 
 
The mass and momentum balance equations on the discontinuity surfaces (boundaries) can be 

formulated respectively [36] as   0 v u n=
   , and     2s     v v u σ n= + n

     . Here, 

the symbol indicates the jump of the enclosed quantities across the discontinuity surface; 

for instance,       where  and   are the values of   on the positive and negative 

sides of the discontinuity surface, u


 is the velocity of the discontinuity surface, n


 is the unit 

normal to the discontinuity surface,  s is the surface gradient operator,   is the surface 

tension,   is the mean curvature. Under the assumptions of no-slip and no-mass penetration 

boundary conditions for rigid solid walls, the interface mass balance requires that 0x yv v  . 

Also assuming no mass penetration across free surfaces as well as ignoring the effect of 

surface tension, one can reduce the jump condition of the linear momentum balance to 

Free surface boundaries 

Inner fluid particles Wall boundary particles 

Die channel inlet Die channel outlet 
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0σ n
  where p σ I+T . Since the problem in question is the flow of highly viscous fluid 

into a passive environment with comparatively low viscosity and zero pressure, the free 

surface boundary condition 0σ n
  is modified to 0T n

 , whereby implying zero pressure 

and the stress free boundary condition for the free surface .  

 
The domain boundaries truncate the kernel function of particles which are on or close to the 

boundaries. Hence, only interior particles will contribute to the SPH approximation for these 

particles due to the lack of interpolation points on the other side of the boundary. The standard 

SPH equations introduced in the preceding sections, being valid for all interior particles, are 

partially correct since the kernel function for these particles is no longer a normalized, 

compact and spherically symmetric even function. Therefore, the application of boundary 

conditions correctly and efficiently is quite challenging in the SPH method, and necessitates 

special treatments depending on the type of the boundary. Inaccurate implementation of 

boundary conditions for example results in the penetration of fluid particles into boundary 

walls, and may lead to spurious gradients of field variables whereby producing errors in the 

solution since the field variables within the computational domain evolve according to the 

boundary conditions. In this direction, over the last decade, several different approaches have 

been suggested to improve boundary treatments which are systematically summarized in 

various works [19, 21, 23, 33].  

 
Within the context of the SPH method, the solid wall boundaries can be represented by a set of 

particles. The no-slip boundary conditions on solid boundary walls can be easily implemented 

by fixing the positions of wall boundary particles and setting their velocities to zero 

throughout the simulation. In our simulations, we have observed that single layer of wall 

boundary particles is not sufficient to compute the field variables accurately such as stress, 

velocity, and pressure; hence, additional layers of solid dummy boundary particles are created 

parallel to the main wall boundary particles. The overall thickness of these dummy particle 

layers is set to be at least equal to the radius of the kernel smoothing function. The existence 

of dummy wall particles help reducing the error in computed fields due to the kernel 

truncation by boundaries. Dummy boundary particles are assigned to zero velocity as well. 

Both wall boundary and dummy particles behave similar to fluid particles such that their 
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density and extra stress tensors are computed using the discretization scheme in Equation 

(3.16).   

 
As for the implementation of boundary conditions for the free surface, firstly, the free surface 

particles should be identified to distinguish them from interior fluid particles. Since the kernel 

function of particles that are on or in the close vicinity of the free surface is truncated; the 

particle number density in for these particles will drop. Particles with the number densities 

below a preset threshold value are recognized as free surface particles: namely, 0.8i i, refn n , 

where the number density is computed as  
1

,i ij
j

N

n W r h


  and  maxi, irefn n . In SPH 

modelling, the stress free boundary condition 0T n
  is automatically satisfied since in 

evaluating the stress gradient in momentum equation, this term is represented in the residual 

boundary integration which is cancelled due to the fact that kernel function  ijW r ,h  vanishes 

beyond its support domain as shown in Equation (3.6). Due to the lack of interpolation points 

or particles outside the free surface, the pressure field computed for the free surface particles 

can be affected significantly by the spurious pressure gradient. To improve the accuracy of the 

computed pressure fields, pressure gradients for free surface particles are computed through 

assuming the existence of dummy fluid particles jd  outside the free surface, which are mirror 

images of associated interior fluid particles j f as shown in Figure  4-3. 

 
 
 
 
 
 
 
 
 

Figure  4-3: A schematic for enforcing zero pressure condition on the free surface. 
 
 
In what follows, one can write 

         
1 1 1

, , ,
2

ij ij ijj j j
i ij j j

j j ji j i j i j i

d f f

d f f

N N N

k k k k

W r h W r h W r hm m mP
P P P P P

x x x x    

  
    

        (4.1) 

j jd fP P 

0iP 

jd

j f

i

free surface
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where    , / , /i iij ijd f

k kW r h x W r h x     , 0iP  , and 
j jd fP P   which enforce zero pressure 

boundary condition. 
 
 
 

4.3 Periodic Channel Flow 
 
 
 
This section aims at validating the numerical results obtained by the SPH method presented. 

Therefore, we present two benchmark problems including both Newtonian and non-

Newtonian Poiseuille flows. Poiseuille flow consists of two infinitely long stationary plates, 

parallel to the x-axis, with a fluid in between them. These plates are separated by a distance H, 

where y = 0 is the position of the bottom plate, and y = H is the position of the top plate. At 

time t = 0, a body force B
xF is applied to the fluid acting in the x-direction, thereby putting the 

fluid in motion  ,x xv v y t . The no-slip boundary conditions are employed at the plate/fluid 

interfaces 0y   and y = H, so that    0, , 0x xv t v H t  . The initial condition for all interior 

particles is taken as  ,0 0xv y  .  

 
 
 
4.3.1 Newtonian Poiseuille Flow 
 
 
 
For Newtonian incompressible Poiseuille flow, the governing flow equation is the one-

dimensional balance of linear momentum equation,  , , ,
B

x x xx x yx y xv p F         , which 

can be reduced to , ,
B

x x x yy xv p v F       assuming no variation of xv in the x-direction and 

noting that 0xx  and ,yx x yv  . A body force B
xF  is used to model the hydrostatic part of 

the pressure gradient. To initiate the modelling process, a 30×70 array of particles distributed 

in x - and y -directions, respectively, were created in the domain, and the modelling 

parameters were taken as 310H m , 45x10L m , 42x10 /B
xF N kg , 31000 /kg m  and 

310  Pa s  . The smoothing length was set equal to 1.6 times the biggest initial particle 
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spacing. The periodic boundary condition is applied for inlet and outlet particles in the 

direction of the flow. In the WSPH simulation of a periodic channel flow in literature, the 

periodic boundary condition is in general imposed such that fluid particles crossing the outlet 

boundary are reinserted into flow domain at the same y-coordinate with the same velocity and 

density. However, for a relatively long channel, a noticeable pressure loss can be observed 

along the channel length. In WSPH, since the pressure field is computed from the density 

using an artificial equation of state, the outlet boundary pressure poisons the inlet boundary. 

To circumvent this, the outlet particles are inserted into the flow domain with the same density 

gradient as at the outlet using the Equation (4.2)  

 

   
1 1

, ,
 /

ij ijj ji
i j

j jj i i j i

N N

out

W r h W r hm m

x x x

 
  

   
        
       (4.2) 

 
An analytical solution to the transient velocity profile for the incompressible Poiseuille flow 

can be written as [21],  

 

 
 

     
2 22

33 2
0

2 1 2 14 1
, sin exp

22 1

B B
x x

x
k

k y k tF H F
v y t y y H

H Hk

  
  





    
    

     
  (4.3) 

 
which takes on a parabolic velocity profile as t  .  

Figure  4-4 illustrates the SPH and analytical transient solutions to the Poiseuille flow problem 

at various times. 

 

 
 

Figure  4-4: Newtonian incompressible Poiseuille flow velocity profile at the middle of the 
channel. 
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4.3.2 Non-Newtonian Poiseuille Flow 
 
 
 
The second test fluid flow problem involves a simulation of one-dimensional, steady state 

non-Newtonian incompressible Poiseuille flow. As a constitutive equation, we have used 

Rivlin-Ericksen tensor along with the contravariant form of the convected time derivative. The 

extra stress tensor of this form can be written in a component form as  

 

 
` ` 1 ` ` ` ` ` ` ` `

2 ` ` ` ` ` ` ` `

 2   
e e e e

j i i j j i i j i m j m i m m j m i j m

ij i j i j

m i j m m i m j i m j m i m m j

D
v v v v v v v v v v

DtT

v v v v v v v v

 



                  
     

   
 (4.4) 

 
Equation (4.4) can be further simplified to the following open forms after using the summation 

convention and imposing incompressibility condition as,  

 

 
 

2 2
, 1 , , , , ,

2 2 2
2 , , , , ,

2  2 / 4 2 2

4 2

xx x x x x x x x y x y y x

x x x y y x y x x y

T v Dv Dt v v v v

v v v v v

 



    

   
     (4.5) 

    , , 1 , , , , , , / 2 2xy y x x y y x x y x x y x x y y yT v v D v v Dt v v v v           (4.6) 

 
 

2 2
, 1 , , , , ,

2 2 2
2 , , , , ,

2  2 / 4 2 2

4 2

yy y y y y y y y x y x x y

y y y x x y x y y x

T v Dv Dt v v v v

v v v v v

 



    

   
     (4.7) 

 
Casting Equations (4.5), (4.6), and (4.7) into the momentum balance in Equation (2.1)b , the 

x - and y - components of the balance of linear momentum can be written as 

 

 
 

 

, , ,

, , , , , , , ,

1

, , , , , , , ,

2 , , , , , , , , , ,

/ 8 4 4

2 2 2 2

8 2 2 2 2

x x xx x yy

x xx x yy x x x xx x y x xy y x x xyx

x x y yx y y x yy x y y yy x y y xx

x x x xx x y y xx y x x xy x y x xy y x y xx

p v v

D v v Dt v v v v v vDv

Dt v v v v v v v v

v v v v v v v v v v



 



   
 
               

     

 B
xF


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  (4.8) 

 



36 
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  (4.9) 

 
The one-dimensional steady state governing equation can be obtained from Equation (4.8) as 

,  B
x yy xv F   where no variation of xv and p in the x-direction is assumed. Upon 

implementing the no slip boundary conditions at the plate/fluid interfaces, the fully developed 

velocity profile can be obtained as  2 2
max( ) 4v / /xv y y H y H    where maxv  is the 

centerline velocity, and defined to be 2
maxv / 8B

xF H   . The components of the extra stress 

tensor can be obtained as   2
2 1 ,2xx x yT v   , and  , xy x yT v  from Equations (4.5) and 

(4.6), respectively. The computational domain is formed by a 300×33 array of particles 

distributed in x - and y -directions, respectively. The smoothing length was set equal to 1.6 

times the initial particle spacing. The simulation is performed with the following input 

parameters; H=0.01 m, L=0.2 m, 3200 / B
xF N kg  31000 /kg m  , 10  Pa s  , 

3 2
1 2x10  Pa s   , and 2 10.1 x     which produces a center line velocity of 3.6 m/s, and 

Deborah number of 0.072 . In this test problem, we also used periodic boundary conditions at 

the inlet and outlet boundaries.  

 
Figure  4-5 presents the SPH and steady state analytical solutions for the velocity magnitude 

v , xxT , and xyT at the channel length of x=0.1 m. The comparison of SPH and analytical 

results shows good agreement, and one therefore can conclude that SPH method can capture 

the flow behaviour of a second order fluid very well. 
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(a) velocity profile (b) xyT profile (c) xxT profile 

 
Figure  4-5: Fully developed non-Newtonian second-order periodic flow. 

 
 
 

4.4 Simulation Results for the Extrudate Swell  
 
 
 
This section presents the simulation results of a two-dimensional transient die swell problem 

under several operating parameters and for various forms of discretization schemes as well as 

for different formulations of constitutive equations. The model domain and its geometrical 

parameters have been introduced previously in section  4.1. The fluid parameters ρ =1000 

kg/m3, 10  Pa s  are selected for whole simulations. As stated before, the die swell problem 

was studied using both the WSPH and the ISPH approaches. Nevertheless, the majority of the 

results presented here have been produced using the WSPH algorithm unless stated otherwise. 

The initial conditions for all interior fluid particles are taken as zero initial velocities. Fluid 

particles are accelerated from rest upon the application of a constant body force as described 

in the benchmark problems. Body force is applied only to fluid particles within the channel. 

Upon crossing the die channel outlet boundary, fluid particles start moving and deforming 

freely under the influence of upstream fluid particles. 

 
 
 
4.4.1 Different Forms of Momentum Balance Equation 
 
 
 



38 
 

As emphasized in Chapter  2 of the present study, the literature review has shown that there is 

not a well-established consensus or a guideline regarding the form of a constitutive equation 

that can be used to model the die swell behaviour of non-Newtonian visco-elastic second order 

fluid in extrusion process. In the relevant documented literature, mainly two different 

constitutive equations and four different forms of convected derivatives are reported, thereby 

producing eight possible forms of the momentum balance equation. In the following, we 

present the findings of a systematic study on the ability of each possible form to predict the die 

swell phenomenon in an extrusion process. To achieve one to one comparison among all 

simulation results, the same input parameters are used in each momentum equation. Input 

parameters are body force B
xF  = 18800.0 m/s2, first and second normal stresses coefficients, 

-3 2
1 4.0x10  Pa s    and, 2 10.1 x    . In Figure  4-6 is shown the SPH particle distribution 

both within the die and extrudate obtained through the solution of eight possible forms of the 

momentum balance equations. Colors indicate the values of the first normal stress difference 

1N within the channel and the extrudate. When results in Figure  4-6 are compared against each 

other, it turns out that the momentum balance equation constructed using the Rivlin-Erickson 

tensor together with the contravariant components of the convected derivative is able to 

capture the swelling phenomenon satisfactorily, whereas the remaining equations can not 

predict a correct trend. Hence, the momentum equation due to “Ab” combination was chosen 

to be a default momentum equation for the benchmark problem already introduced as well as 

for all other die swell simulations to be presented in coming sections. 

 
 
 

A) Rivlin-Ericksen constitutive equation B) CEF constitutive equation 

a) Covariant convected derivative. 
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b) Contravariant convected derivative. 

c) Mixed covariant-contravariant convected derivative. 

d) Corotational (Jaumann) derivative. 
 
Figure  4-6: SPH particle distribution for eight possible forms of momentum balance 
formulations. Note that in each figure, the particles distribution are coloured in accordance 
with the values of the first normal stress difference 1N , and the magnitude of the centerline 

velocity v  is given on each subfigures. 
 
 
 
4.4.2 Two Steps and One Step Solution Methodology 
 
 
 
In an attempt to find a correct methodology for solving the linear momentum balance equation 

of a second order fluid, we have tested four solution procedures which differ from each other 
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in terms of the discretization schemes used and whether the divergence of total stress tensor 

σ , extra stress tensor T , viscous stress tensor τ , or elastic stress tensor ε  are computed in a 

single-step (loop) or in two-steps. In all two-step methodologies, initially, the components of 

the velocity gradient are computed using Equation (3.16).  

 
 Case1: having computed the total stress tensor σ I τ εp     in the first step, the 

divergence of the total stress tensor is computed using Equation (3.18) in the second 

step. 

 
  Case2: after computing the extra stress tensor in the first step, the gradient of the 

hydrostatic part of the total stress tensor is obtained using Equation (3.16), while the 

divergence of the extra stress tensor T  is calculated by using Equation (3.18) in the 

second step.  

 
 Case3: all three parts of the total stress tensor evaluated individually, where p  is 

evaluated with Equation (3.16), τ  is evaluated as a Laplacian term using Equation 

(3.37) in a single-step, and finally,  ε  is computed with Equation (3.18) in the second 

step after the computation of elastic part ε  during the first step.  

 
 Case4: this is a single-step procedure where each of the first and the second order 

derivatives in Equations (4.8) and (4.9) are individually evaluated using Equations 

(3.16) and (3.36).  

 
All four cases have been tested under the same input parameters; namely, the magnitude of the 

centerline velocity v 3.4  m/s, -3 2
1 -  2.8 x10  Pa s  , and 2 1  0.1 x    , which produces 

0.0952De  . The results of all relevant simulations led us to conclude that Case1 and Case2 

procedures could not predict the correct flow behaviour in that fluid particles gradually 

become unstable especially outside the channel as the simulation progress. On the other hand, 

Case3 and Case4 result in stable simulations as shown in Figure  4-7 and Figure  4-8. 
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Case 3 Case 4 

a) the magnitude of the velocity, m/s 

b) the normal component xxT of the extra stress tensor in the x-direction, Pa. 

c) the normal component yyT of the extra stress tensor in the y-direction, Pa. 

d) the shear component xyT of extra stress tensor stress, Pa. 
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e) the first normal stress difference 1N , Pa. 

 
Figure  4-7: Simulation results for Case3 and Case4. 
 
 
 
 

a) b) c) 

d) e) f) 
Figure  4-8: a) Magnitude of the velocity versus the axial distance, b) magnitude of the velocity 
as a function of channel width, c) the shear component xyT of the extra stress tensor, d) the 

normal component xxT of the extra stress tensor in the x-direction, e) the normal component 

yyT of the extra stress tensor in the y-direction, and f) the first normal stress difference 1N . 

Results are shown for x= 0.185 m.  
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Simulation results have revealed that the Case4 procedure seems to capture the swelling 

phenomenon; nevertheless, it is rather sensitive to the magnitude of the De number, and only 

works for quite small De number values with the upper bound of 0.0952, above which the 

fluid flow gets highly instable producing oscillating and perturbed free surface. As well, 

Case4, does not produce the correct fields. The approach presented in Case3 proves to be the 

most applicable and effective one in capturing swelling process. Since the De number used in 

this set of simulations is rather small, the polymeric fluid did not exhibit noticeable die swell 

upon being extruded. 

 
 
 
4.4.3 The First and the Second Normal Stress Coefficients Effects 
 
 
 
The first and the second normal stress coefficients have a significant influence on the 

behaviour of extruded fluid flow. It is important to note that the sign of the first normal stress 

coefficient 1 determines whether the polymeric fluid swells or contracts upon being extruded. 

For swelling phenomenon to occur, the first normal stress coefficient should be of a negative 

sign leading to positive N1 >0, while the positive first normal stress coefficient results in 

negative N1  0, hence forcing the polymeric fluid to contract. To be able to test if the 

developed algorithm can also predict the contraction behaviour, we have performed 

comparative numerical simulation studies with the following input parameters; for simulating 

swelling process, -3 2
1 4.0x10  Pa s   , 2 10.1 x    , and 18800 /B

xF N kg , while for the 

contraction phenomenon, -3 2
1  4.0x10  Pa s  , 2 10.1 x    , and 200000 /B

xF N kg . These 

parameters produce a center line velocity of v 9.0  m / s , resulting in 0.38De  .  
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The extrudate contraction The extrudate swelling 

a) the magnitude of the velocity, m/s. 

b) the normal component xxT of the extra stress tensor in the x-direction, Pa. 

c) the normal component yyT of the extra stress tensor in the y-direction, Pa. 

d) the shear component xyT of extra stress tensor stress, Pa. 
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e) the first normal stress difference 1N , Pa. 

 
Figure  4-9: Simulation results for the extrudate contraction and swelling. 
 
 

 
a) b) c) 

d) e) f) 
 
Figure  4-10: a) Magnitude of the velocity versus the axial distance, b) magnitude of the 
velocity as a function of channel width, c) the shear component xyT of the extra stress tensor, d) 

the normal component xxT of the extra stress tensor in the x-direction, e) the normal component 

yyT of the extra stress tensor in the y-direction, and f) the first normal stress difference 1N . 

Results are shown for x= 0.185 m. Recalling that since a body force is used to accelerate the 
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fluid particles, it is difficult to fine-tune the applied body force such that an identical centerline 
velocity for contraction and swelling phenomena can be produced.  
 
 
Figure  4-9 and Figure  4-10 present the simulation results for both swelling and contraction 

cases. One can safely conclude that die swell or contraction is a flow phenomena observed in a 

viscoelastic fluid. When a polymeric fluid is sheared between the walls of the die, it develops 

tensile stresses along the flow direction (positive xxT ) bringing about positive first normal 

stress difference N1 > 0. This additional stress in the fluid exerts a net force on the walls of the 

channel. Once the polymeric fluid is extruded through the die, it can not support this 

additional stress; hence the fluid tends to expand in the radial direction. On the other hand, 

some other polymeric fluids when sheared may develop compression along the streamlines 

(negative xxT ), thereby resulting in negative N1 < 0. Hence, normal stresses are responsible for 

the occurrence of polymer swelling and contraction. An interesting observation to note is that 

to achieve the same centerline velocity, the body force applied in the simulation of the 

contraction phenomenon is higher than that used in the swelling case. This is due to the fact 

that since the fluid element is compressed along the stream line direction (negative xxT ), the 

body force applied is used for overcoming this compression and keeping the flow in motion.  

 
 
 
4.4.4 Inlet Velocity Effects on the Extrudate Swell 
 
 
 
To study the effect of velocity on the extrudate swelling, we performed two numerical 

experiments with the same viscometric parameters, -3 2
1 4.0 x10  Pa s   , 2 10.1 x    . The 

fluid is accelerated with the body force of 11000 /B
xF N kg  for the first experiment, and 

18800 /B
xF N kg   for the second experiment. The computed center line velocity magnitudes 

and Deborah numbers for each experiment are v 2m/s  and 0.08De  , and v 10m/s  and 

0.4De  , respectively. It is obvious from Figure  4-11 and Figure  4-12 that the raise in the 

extrusion velocity increases the shear rate. Remembering that the first normal stress difference 
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is a function of the shear rate, as the shear rate increases, so does the normal stress difference, 

and in turn swelling is augmented. 

 

 

 Lower velocity Higher velocity 

a) the magnitude of the velocity, m/s 

b) the normal component xxT of the extra stress tensor in the x-direction, Pa. 

c) the normal component yyT of the extra stress tensor in the y-direction, Pa. 

d) the shear component xyT of extra stress tensor stress, Pa. 
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e) the first normal stress difference 1N , Pa. 
 

Figure  4-11: Simulation results for two different centerline velocities within the channel. 
 
 

 
a) b) c) 

 
d) e) f) 

Figure  4-12: a) Magnitude of the velocity versus the axial distance, b) magnitude of the 
velocity as a function of channel width, c) the shear component xyT of the extra stress tensor, d) 

the normal component xxT of the extra stress tensor in the x-direction, e) the normal component 

yyT of the extra stress tensor in the y-direction, and f) the first normal stress difference 1N . 

Results are shown for x= 0.185 m.  
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4.4.5 Deborah Number Effects on the Extrudate Swell 
 
 
 
In order for understanding the effect of Deborah number as well as the inertial effect on the 

swelling mechanism, we performed two sets of simulations in which two different Re number 

values (Re=5 and 10) and various De numbers ranging from 0 to 0.5 are used (see Figure 

 4-13). Simulations parameters employed in the present study are listed in Table  4-1. Figure 

 4-14 summarizes the results of the simulations in terms of the swelling ratio versus Deborah 

number, and clearly shows that the radius of the extrudate jet increases monotonically as the 

value of De increases. Results in Figure  4-15 suggest that as the normal component of the 

extra stress tensor increases, so does the first normal stress difference, hence leading to an 

increase in the diameter of the extrudate in radial direction. Another interesting conclusion that 

can also be extracted from the given results is that as the De number increases, the extrudate 

swell starts at the die exit, while for smaller De numbers, it is delayed. We have also observed 

that the inertial force has a significant effect on the swelling diameter. Figure  4-13 also shows 

that the swelling obtained from simulations with the centerline velocity of 10 m/s 

(corresponding to Re number of 10) is greater than those computed with the centerline 

velocity of 5 m/s (Re=5). 

 
It is noted that the WSPH algorithm presented here has an upper bound for achievable De 

number. For Reynolds number of 5 and 10, the upper bonds are 0.3, and 0.5, respectively. In 

simulations with De number values greater than these upper bounds, fluids particles 

accumulate at the die exit. As the simulation progress, local fractures in particle distribution 

starts forming at the channel exit, whereby terminating the simulation. It is experimentally 

well known that as the Deborah number increases, the polymeric fluids starts acting more 

solid like, thereby experiencing difficulties in its flow nature. As a result, it may experience 

fracture, which is widely referred to as “melt fracture” in the polymer processing industry. 

Nevertheless, it is believed that the upper bonds mentioned are not high enough to induce such 

a physical insight. Therefore, we conclude that these thresholds in obtainable Deborah 

numbers are of numerical nature. Investigating why WSPH approach has a threshold in 

achievable Deborah number is a subject of the future research in this area. We have also 

developed ISPH algorithm to study if the limitation in De number is due to SPH method or 
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not, and run several test cases. The preliminary outcomes of these runs have shown that one 

can obtain higher De numbers than those achievable with WSPH. The refined results will be 

published in a follow-up study which will involve the detailed comparison of the WSPH and 

ISPH results.  

 
 

Table  4-1: Input parameters for simulations with various De and Re numbers.  
 

          Re v/h   
    

1v /De h   

v 5m/s , Re=5 v 10m/s , Re=10 
B

xF  /N kg
1  2Pa s  

B
xF  /N kg  

1  2Pa s  

0 4100.0 0.0 8170.0 0.0 
0.02 3870.0 44.0 x 10 7410.0 4 2.0 x 10
0.1 2780.0 3 2.0 x 10 5670.0 3 1 .0 x 10  
0.2 1710.0 3 4.0 x 10 3720.0 3  2.0 x 10
0.3 1245.0 36.0 x 10 2578.0 3  3.0 x 10
0.4   1950.0 3  4.0 x 10
0.5   1549.0 3  5.0 x 10

 
 
 

v=5 m/s v=10 m/s 

a) De=0.0 

b) De=0.02  
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c) De=0.1  

d) De=0.2 

e) De=0.3 
 
 

v=10 m/s 

f) De=0.4 g) De=0.5 
 
Figure  4-13: Particle distributions with colours denoting values of the first normal stress 
difference 1N  for Re numbers of 5 and 10 , and for various De numbers.  
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(a) (b) (c) 
 
Figure  4-14: The swelling ratio at different axial positions x= 0.21, 0.23, and 0.25 m for 
different centerline velocities, a) v=5 m/s, b) v=10 m/s respectively, c) averaged swelling ratio 
for v=5 m/s and 10 m/s. 
 
 
 

v = 5 m/s v = 10 m/s 

(a) 

(b) 
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(c) 

(d) 
 
Figure  4-15: a) the shear component xyT of the extra stress tensor, b) the normal component 

xxT of the extra stress tensor in the x-direction, c) the normal component yyT of the extra stress 

tensor in the y-direction, and d) the first normal stress difference 1N . Results are shown for x= 

0.185 m.  
 
 
 
4.4.6 WSPH Versus ISPH Algorithm 
 
 
 
Apart from having an upper bound for obtainable De numbers, the WPSH algorithm has been 

proven to be very effective in modelling the extrudate swell problem. In the following, we will 

briefly compare the results obtained with WSPH and ISPH approaches. For both algorithms, 

identical simulation parameters are utilized such that the magnitude of the centerline velocity 

is v 6.8 m/s , -3 2
1 4.0 x10  Pa s   , 2 1  0.1 x    , producing 0.272De  . One can 

conclude from Figure  4-16 and Figure  4-17 that results of WSPH and ISPH algorithms are in 

agreement except for the free surface profile. This slight discrepancy might be attributed to the 

difference in enforcing fluid incompressibility. As for the assessment of the average swelling 
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ratio, the WPSH algorithm gives an average swelling ratio of 1.362, while the ISPH algorithm 

produces an average swelling ratio of 1.355.  

 
 

WSPH ISPH 

a) the magnitude of the velocity, m/s. 

b) the normal component xxT of the extra stress tensor in the x-direction, Pa. 

c) the normal component yyT of the extra stress tensor in the y-direction, Pa. 

d) the shear component xyT of extra stress tensor stress, Pa. 
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e) the first normal stress difference 1N , Pa. 

 
Figure  4-16: The comparison of WSPH and ISPH algorithms. 
 
 

 
         (a)           (b) 

 
          (c)           (d) 

 
Figure  4-17: a) Magnitude of the velocity versus the axial distance, b) the shear component 

xyT of the extra stress tensor, c) the normal component xxT of the extra stress tensor in the x-

direction, and d) the first normal stress difference 1N . Results are shown for x= 0.185 m. 
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CHAPTER 5 
 
 
 
 

5 CONCLUDING REMARKS AND FUTURE WORK 
 
 
 
The SPH method has proven itself to be an effective technique to model second order fluids 

with free surface flows as it allows the relatively easy implementation of free surface tracking, 

which is otherwise difficult in mesh-dependent techniques, and is able to predict swelling 

behaviour of the second order polymeric when extruded through a die. Thus, the SPH method 

can be considered as a viable and efficient alternative for modelling the extrudate swell. It is 

noted that the field variables and material functions predicted using Rivlin-Ericksen 

constitutive equation together with the contravariant components of the convected derivative 

of the viscous stress tensor give rise to a correct trend in swelling behaviour of polymeric 

fluids. In addition, it was found that the elastic stress tensor should be treated separately and 

computed in two steps in order to obtain correct results. The effects of various rheological and 

processing parameters on the swelling phenomenon have been presented such as the 

magnitude and sign of the first and second normal stress coefficients, velocity of flow, and 

Deborah number. In light of the simulation results, one can rightfully conclude that the SPH 

method is able to capture both swelling and contraction behaviour of a second-order polymeric 

fluid correctly. It has been shown that results obtained using both the WSPH and the ISPH 

algorithms are in agreement.  

 
We have noted that the WSPH algorithm has a limitation in terms of the achievable Deborah 

number. Investigating why WSPH approach has a threshold in achievable Deborah number is 

a subject of the future research in this area. We have also developed ISPH algorithm to study 

if the limitation in De number is due to SPH method or not, and run several test cases. The 

preliminary outcomes of these runs have shown that one can obtain higher De numbers than 
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those achievable with WSPH. The refined results will be published in a follow-up study which 

will involve the detailed comparison of the WSPH and ISPH results. Furthermore, the 

developed WSPH and ISPH codes for second order viscoelastic non-Newtonian fluid will be 

extended to model other complicated physics in the field of polymer processing such as the 

modeling of elecro-spinning of single and multiphase polymeric fluids under the influence of 

electric field, and droplet formation of non-Newtonian fluid at the tip of a capillary tube. 

 
 
 
 
 



58 
 

 
 
 
 
 
 

REFERENCES 
 
 
 
 
1. Liang Y, Oztekin A, Neti S. Dynamics of viscoelastic jets of polymeric liquid 

extrudate. J. Non-Newtonian Fluid Mech. 1999; 81: 105–132. 
2. Joseph DD, Maita JE, Chen K. Delayed die swell. J. Non-Newtonian Fluid Mech. 

1987; 24: 31-65. 
3. Mitsoulis E, Vlachopoulos J, Mirza FA. Numerical simulation of entry and exit flows 

in slit dies. Polymer Engineering and Science. 1984; 24: 707-715. 
4. Mitsoulis E. The numerical simulation of boger fluids: a viscometric approximation 

approach. Polymer Engineering and science. 1986; 22: 1552–1562. 
5. Mitsoulis E. Three-dimensional non-newtonian computations of extrudate swell with 

the finite element method. 1999; 180: 333–344. 
6. Gast L, Ellingson W. Die swell measurements of second-order fluids: numerical 

experiments. Int. J. Numer. Meth. Fluids. 1999; 29: 1–18. 
7. Ahn Y-C, Ryan ME. A finite difference analysis of the extrudate swell problem. 

International Journal for Numerical Methods In Fluids. 1991; 13: 1289-1310. 
8. Tome MF, Doricio JL, Castelo A, Cuminato JA, McKee S. Solving viscoelastic free 

surface flows of a second-order fluid using a marker-and-cell approach. Int. J. Numer. 
Meth. Fluids. 2007; 53: 599–627. 

9. De Paulo GS, Tome MF, McKee S. A marker-and-cell approach to viscoelastic free 
surface flows using the PTT model. J. Non-Newtonian Fluid Mech. 2007; 147: 149–
174. 

10. Mitsoulis E, Vlachopoulos J, Mirza FA. Simulation of vortex growth in planar entry 
flow of a viscoelastic fluid. Journal of Applied Polymer Science. 1985; 30: 1379-1391. 

11. McKee S, Tome MF, Ferreira VG, et al. Review The MAC method. Computers & 
Fluids 2008; 37: 907–930. 

12. Gingold RA, Monaghan JJ. Smooth particle hydrodynamics: theory and application to 
non-spherical stars. Mon. Not. R. Astron. 1977; 181: 375-389. 

13. Rook R, Yildiz M, Dost S. Modeling transient heat transfer using SPH and implicit 
time integration. Numerical Heat Transfer. 2007; 51 (Part B): 1–23. 

14. Monaghan JJ, Kocharyan A. SPH simulation of multi-phase flow. Computer Physics 
Communications. 1995; 87: 225-235. 

15. Monaghan JJ, Huppert HE, Worster MG. Solidification using smoothed particle 
hydrodynamics. Journal of Computational Physics. 2005; 206: 684–705. 

16. Rook R, Dost S. The use of smoothed particle hydrodynamics for simulating crystal 
growth from solution. International Journal of Engineering Science. 2007; 45: 75–93. 

17. Seoa S, Min O. Axisymmetric SPH simulation of elasto-plastic contact in the low 
velocity impact. Computer Physics Communications. 2006; 175: 583–603. 



59 
 

18. Shao S, Lo EYM. Incompressible SPH method for simulating newtonian and non-
newtonian flows with a free surface. Advances in Water Resources. 2003; 26: 787–
800. 

19. Fang J, Owensb RG, Tacher L, Parriaux Al. A numerical study of the SPH method for 
simulating transient viscoelastic free surface flows. J. Non-Newtonian Fluid Mech. 
2006; 139: 68–84. 

20. Fang J, Parriaux A, Rentschler M, Ancey C. Improved SPH methods for simulating 
free surface flows of viscous fluids. Applied Numerical Mathematics. 2009; 59: 251–
271. 

21. Morris JP, Fox PJ, Zhu Y. Modeling low Reynolds number incompressible flows using 
SPH. Journal of Computational Physics. 1997; 136: 214–226. 

22. Ellero M, Kröger M, Hess S. Viscoelastic flows studied by smoothed particle 
dynamics. J. Non-Newtonian Fluid Mech. 2002; 105: 35–51. 

23. Ellero M, Tanner RI. SPH simulations of transient viscoelastic flows at low Reynolds 
number. J. Non-Newtonian Fluid Mech. 2005; 132: 61–72. 

24. Rafiee A, Manzari MT, Hosseini M. An incompressible SPH method for simulation of 
unsteady viscoelastic free-surface flows. International Journal of Non-Linear 
Mechanics. 2007; 42: 1210 –1223. 

25. Massoudi M, Vaidya A. On some generalizations of the second grade fluid model. 
Nonlinear Analysis: Real World Applications. 2008; 9: 1169 –1183. 

26. Labropulu F, Xu X, Chinichian M. Unsteady stagnation point flow of a non-newtonian 
second-grade fluid. Mathematics Subject Classification. 2000; 60: 3797-3807. 

27. Osswald TA, Hernández-Ortiz JP. Polymer Processing: Modeling and Simulation. 
Hanser Gardner Publications, Inc.: USA; 2006. 

28. Dunn JE, Fosdick RL. Thermodynamics, stability and boundedness of fluids of 
complexity 2 and fluids of second grade. Arch. Ration. Mech. Anal. 1974; 56: 191–
252. 

29. Han CD. Rheology and Processing of Polymeric Materials. Vol 1. Oxford University 
Press, Inc.: New York; 2007. 

30. Monaghan JJ. Smoothed particle hydrodynamics. Rep. Prog. Phys. 2005; 68 1703–
1759. 

31. Monaghan JJ. Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 1992; 
30: 543-574. 

32. Liu GR, Liu MB. Smoothed Particle Hydrodynamics: A Meshfree Particle Method. 
World Scientific Publishing Co. Pte. Ltd.: Singapore; 2003. 

33. Yildiz M, Rook RA, Suleman A. SPH with the multiple boundary tangent method. Int. 
J. Numer. Meth. Engng. 2009; 77: 1416–1438. 

34. Rodriguez-Paz M, Bonet J. A corrected smooth particle hydrodynamics formulation of 
the shallow-water equations. Computers and Structures. 2005; 83: 1396–1410. 

35. Cummins SJ, Rudmany M. An SPH projection method. Journal of Computational 
Physics 1999; 152: 584–607  

36. Yildiz M. Growth of bulk SiGe single crystals by liquid phase diffusion method: 
experimental and computational aspects. Vdm verlag; 2009. 

 

 


