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Abstract

In this thesis, we present a new end-to-end brain-computer interface 
system based on electroencephalography (EEG). Our system exploits the 
P300 signal in the brain, a positive deflection in event-related potentials, 
caused by rare events. P300 can be used for various tasks, perhaps the most 
well-known being a spelling device.

We have designed a flexible visual stimulus mechanism that can be 
adapted to user preferences. We have developed and implemented EEG 
signal processing, learning and classification algorithms. Our classifier is 
based on Bayes linear discriminant analysis, in which we have explored 
various choices and improvements. We have designed data collection 
experiments for offline and online decision-making. We have proposed 
modifications in the stimulus and decision-making procedure to increase 
online efficiency. We have evaluated the performance of our system on 8 
healthy subjects on a spelling task and have observed that our system 
achieves higher average speed than state-of-the-art systems reported in the 
literature for a given classification accuracy.
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P300 TABANLI GERÇEK ZAMANLI BİR
BEYİN-BİLGİSAYAR ARAYÜZ SİSTEMİNİN

TASARIM, UYGULAMA VE ANALİZİ

Armağan Amcalar

Elektronik Mühendisliği Yüksek Lisans Tezi, 2010

Tez Danışmanı: Yard. Doç. Dr. Müjdat Çetin

Anahtar Kelimeler: Beyin-Bilgisayar Arayüzü, P300 Heceleticisi

Özet
Bu tez çalışmasında, elektroensefalografi (EEG) tabanlı, yeni bir 

baştan sona beyin-bilgisayar arayüzü sistemi sunuyoruz. Sistemimiz, beyinde 
olaya-bağlı potansiyellerde oluşan P300 isimli artı yöndeki sinyali 
kullanmaktadır. P300 pek çok uygulama için kullanılabilmektedir. Bunların 
belki de en bilineni heceleme sistemleridir.

Kullanıcı tercihlerine göre şekillendirilebilen esnek bir görsel uyaran 
mekanizması tasarladık. EEG sinyal işleme, öğrenme ve sınıflandırma 
algoritmaları geliştirip uyguladık. Üzerinde çeşitli seçim ve iyileştirmeleri 
incelediğimiz sınıflandırıcımız Bayes doğrusal ayırtaç analizine 
dayanmaktadır. Bağlantısız ve çevrimiçi karar verme senaryoları için veri 
toplama deneyleri tasarladık. Çevrimiçi verimliliği artırmak için uyaran ve 
karar verme yordamlarında değişiklikler önerdik. Sistemimizin başarımını 8 
sağlıklı denek ile bir heceletici üzerinde değerlendirdik ve sistemimizin 
literatürde yer alan sistemlerden belli bir sınıflandırma doğruluğunda daha 
üstün ortalama hıza ulaştığını gözlemledik.
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CHAPTER 1

INTRODUCTION

In today’s world, controlling almost any object requires physical 

interaction with that object. For communication, we talk. For using a tool, 

we use our hands. When driving, we use our hands for controlling the wheel 

and our feet for controlling the pedals. Although researchers are trying hard 

to develop other means of control that won’t need physical interaction, the 

opportunities are limited. Control of the environment, or communicating 

with other people are possible only for healthy human beings. People who 

lost their control over their limbs or other muscles have little chance for 

communication and control. For example, people with Amyotrophic Lateral 

Sclerosis (ALS), brainstem stroke or Multiple Sclerosis (MS) have damaged 

motor neural pathways. In such a case, voluntary control over the body is 

lost fully or partially, and the patient is locked into his/her body [41].

With technological advancements, however, new ways of 

communication open up for people. One of the most promising technologies 

is brain-computer interfacing. A brain-computer interface (BCI) is intended 
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to help disabled subjects gain control over their environment with the use of 

their brain activity. A computer maps the activity of the subject’s brain to 

functions the subject is in need of like communication or physical control.

There are a number of techniques for recording activity from the brain, 

either invasively or non-invasively. Electroencephalography (EEG) is a 

noninvasive technique that records electrical brain activity via electrodes 

a t t a ch e d t o t h e s c a l p o f a s u b j e c t . A l o n g w i t h E E G ; 

magnetoencephalography (MEG), positron emission topography (PET), 

functional magnetic resonance imaging (fMRI) and optical imaging; 

functional near infrared spectroscopy (fNIRS) provide other ways to monitor 

brain activity [21].

In a BCI system that uses EEG, the computer records incoming 

signals from an EEG amplifier and by utilizing signal processing and 

classification techniques, analyzes and makes a decision of what to do with 

the data. Current studies allow patients to control robot arms or prostheses 

[25], communicate by selecting letters and words on a screen [8, 15, 27, 29], 

control a cursor [42], or control virtual reality applications [3, 4], etc.

1.1 Scope

This thesis focuses on dealing with problems in a popular BCI 

application that lets the subject type by choosing a letter among a matrix of 
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letters present on a screen. This application utilizes the P300 component of 

the event-related potentials that occur in the brain as a response to visual or 

auditory stimuli. This application is known as the P300 Speller and is first 

introduced by Farwell and Donchin in 1988 [15]. In this thesis, we present a 

new flexible stimulus mechanism that can be adapted to user preferences. 

We have designed data-collection experiments for offline and online decision-

making. We have proposed modifications in the stimulus and decision-

making procedure to increase online efficiency. Our classifier is based on 

Bayes linear discriminant analysis, in which we have explored various choices 

and improvements. We have evaluated the performance of our system on 12 

healthy subjects and observed that our system achieves higher average speed 

than state-of-the-art systems reported in the literature for a given 

classification accuracy.

1.2 Motivation

The motivation for this thesis has two aspects. The first one is social; 

providing a means of communication for locked-in patients, who, otherwise 

have no chance of communicating with the outer world is invaluable. Any 

effort in improving current conditions for the handicapped is worthy.

The second aspect is, despite all the advances in technology and 

various research done in this field, there are many open questions that do 
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not have a satisfactory answer yet. The biggest problem is, a researcher in 

this field deals with the brain, the most complex and obscure part of the 

human body. A human being’s actions are realized as a result of tiny 

electrical interactions between neurons in his brain, and the researcher wants 

to analyze these electrical variation. There are an estimate of 100 billion 

neurons in a human brain [40], and on the scalp, an electrode measures 

combined potentials of millions of neurons. The amplitude of the signal is 

very low, and the signal is prone to interference, especially from the mains 

electricity. The functioning of the brain is yet to be understood; more 

research is necessary to understand the interaction between neurons and 

behavior related to the use of BCIs [21]. Furthermore, although similarities 

exist, every brain is unique and subject variability is a big problem; 

performance of people vary on every technique. Also, the performance and 

responses of a specific person changes over time, vary from session to 

session, due to physical or mental condition of the subject; whether he is ill, 

happy, sad, tired, etc.

In the context of the P300 speller which was first proposed by Farwell 

and Donchin in [15], the issue of spelling rate is the main problem. 

Researchers are trying to speed up the system by tackling various aspects in 

the paradigm such as electrode selection, stimulus shape, timings, and 

presentation, data sampling, feature extraction, filtering, classification 

algorithm and other processing procedures.
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Another problem is in making the system real-time. Can people use 

the system in real life, for communicating easily? If yes, what will be the 

performance of the system, and will it satisfy the needs, in other words, will 

it be a reliable channel for communication? How long do we have to train 

the system, or the subject?

The common problem among all EEG applications, skin preparation 

before attaching electrodes, the usability of the overall system, etc. is still a 

problem in the speller.

From this perspective, there is an obvious need for continuous 

improvement in terms of higher robustness, online adaptation, compensation 

for time-varying responses, transferring classifier or filter parameters from 

session to session [21].

1.3 Contributions

Our goal in this thesis was to explore ways to increase the 

performance, especially, the real-time (online) performance of the speller.  

Using a known classifier, Bayesian Linear Discriminant Analysis (BLDA), we 

focused on developing a real-time system. The difficulties faced in this 

problem are introduced and ways to overcome them are presented, along 

with their performance. Applying BLDA to a real-time system, we have 

explored various optimizations and choices in EEG signal processing, and 
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proposed a new, greedy, decision-making algorithm that gives feedback to 

the subject about his/her choice in real-time based on the probabilistic 

results of the Bayesian classifier.

Another main focus of this work was developing a new stimulus 

technique to boost online performance, where we put a huge effort. For this 

purpose, we have developed a unique, extensive, customizable stimulus 

software that allows the researcher to experiment on various schemes and 

options such as stimulus timing, matrix size, matrix contents, coloring, etc. 

The software is also planned to form a basis for stimulus software developed 

as a tool in research at SU BCI group.

Overall, with our technique, we report a performance gain over 

published work in both online and offline analysis.

1.4 Outline

Chapter 2 presents the necessary background information about BCI, 

P300 speller paradigm, stimulus software, feature extraction and 

classification techniques and proposes mathematical preliminaries for the 

classifier.

Chapter 3 covers in detail technical features of the stimulus software 

we developed and used in our analysis. This chapter can also be used as a 

reference manual for the software.

6



Chapter 4 is about the offline experiments we have conducted with our 

subjects. Offline analysis method for the P300 speller, performance metrics 

and results of our experiments are given.

Chapter 5 discusses the problems that arise in online experiments, and 

our classification methods and decision making algorithms. The overall 

performance of our subjects is also reported.

Chapter 6 summarizes our work and presents our results in a 

compilation. A concluding discussion, and propositions and extensions about 

future work in the scope of this thesis are presented.
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CHAPTER 2

BACKGROUND

This chapter intends to help the reader understand basic concepts 

about brain-computer interfaces, EEG signal processing and the P300 

speller. A survey about published work, methods and results are also 

presented.

2.1 Introduction

Brain-computer interfaces help restore function to people with motor 

impairments by providing the brain with a new, non-muscular 

communication and control channel [41]. These systems monitor brain 

activity. As mentioned in Chapter 1, there are a number of alternatives  for 

measuring brain activity that are used in the clinic to diagnose and track 

n eu r o l o g i c a l d i s o r d e r s . Th e s e me th o d s c an b e l i s t e d a s 

electroencephalography (EEG), magnetoencephalography (MEG), positron 

emission tomography (PET), functional magnetic resonance imaging (fMRI) 
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and functional near infrared spectroscopy (fNIRS). For BCI approach, a 

method that is both fast, reliable and easy to acquire and use is required, so 

that patients can effectively use it. However, MEG, PET, fMRI and fNIRS 

are technically demanding, expensive and hard to utilize outside a 

laboratory. In contrary, EEG is relatively cheap, and offers different 

paradigms as control mechanisms.

As a communication and control channel, a BCI makes it possible for 

the handicapped to interact with the outer world, either by spelling letters 

and words, or selecting among a menu of medication needs; or to control the 

conditions of the room the person is in such as lighting or air conditioning, 

or prostheses for various tasks such as a motorized wheel chair, etc.

2.2 EEG

2.2.1 Basics

Electroencephalogram (EEG) is a technique for recording electrical 

activity of the human brain. Since the first introduction in humans by 

Berger in 1929 [5], EEG has been mainly used for clinical diagnosis of 

neurological disorders. EEG utilizes electrodes for recording brain activity. 

Recording via electrodes attached to the scalp is the most common and easy 

to apply noninvasive technique for EEG. Other invasive methods include 
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epidural, subdural or intracortical electrodes [41]. Invasive methods have an 

excellent resolution on the electrical activity of the brain, but are harder to 

implement and experiment with since they require surgical operation. This 

practical limitation drives most of the research in this area to be done with 

scalp recording, which is accomplished with electrodes attached to the 

subject’s scalp. The main problem of this noninvasive recording is the 

amplitude of the recorded signals, which usually lies in 5-20µV range. 

Furthermore, a signal read from an electrode is the combination of activity 

of millions of neurons, so in general, is not very informative about the 

nature of the brain.

2.2.2 Electrodes

Electrodes, simply, little flat pads of Ag/AgCl, are attached to the 

scalp with the help of an elastic cap, known as the electrode cap, an 

example of whom is shown in Figure 2.1. To decrease skin resistance or 

voltage offset and to have a stable, stationary conductive medium for proper 

measurements, usually a conductive gel is applied to the skin after abrasive 

skin preparation. Due to the passive nature of the electrodes; reasons such 

as electromagnetic interference, noise and signal degradation, need for skin 

preparation, etc., are problems for practical usage of these electrodes outside 

the laboratory.

10



Figure 2.1 64-channel electrode cap featuring international 10-20 system for 
electrode distribution [7]

Instead, active electrodes were developed, in which the electrodes are 

combined with a small, very high input impedance circuitry that usually 

does amplification on spot (Figure 2.2). These electrodes offer higher 

resistance to interference, due to the fact that they buffer the received signal 

before it travels a long way to the actual EEG amplifier. Although ‘dry’ 

versions of these electrodes are proposed where conductive gel is not needed, 

the stability of their performance is of question. The electrodes are placed 

on the head of the subject according to an international system called 10-20 

system, proposed by American EEG society[26]. This system proposes that 

the electrodes are placed in a 10% or 20% distance from each other with 
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respect to the total distance between the nasion and inion of the subject. 

Figure 2.3 shows the layout for a 64 channel EEG system. This is the 

system we follow in our recordings.

Figure 2.2 Active electrodes

12



Figure 2.3 Electrode placement layout according to 10-20 electrode system 
[6]

Note that these active electrodes are pin-type, instead of the general  

flat electrodes, so that the electrode can reach to the skin when attached to 

the cap.
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2.3 BCI Systems Details

 A model of a typical BCI system is given in Figure 2.4. Basically, a 

BCI system begins with electrodes. Either active or passive, these electrodes 

transmit the electrical activity on the scalp of the subject to a high-

sensitivity, low-noise amplifier, namely the EEG amplifier.

Data Acquisition

EEG
Amplifier

A/D
Conversion

Electrodes

Computer (Signal Processing)

Feature 
extraction

Digital 
filtering

Translation 
Algorithm

Feedback

Control

Figure 2.4 A general BCI system model

EEG amplifier applies basic analog filtering such as a high-order notch 

filter to remove mains interference, a high-order low-pass filter to remove 

14



DC components, a high-order high-pass filter to remove irrelevant frequency 

components. Some EEG amplifiers do not feature a power input for mains, 

they just work on batteries. This helps in blocking interference. EEG 

amplifier also amplifies the signals a few thousand times, until the signals 

are at an appropriate level for the analog to digital converter to sense. 

Generally, to prevent crosstalk between analog and digital data, ADC is 

separated from the analog amplifiers and has a box of its own.

Output of the ADC is fed to a computing device. While this device 

might be an embedded platform in the case of a BCI product, generally, it is 

a common PC that runs the researcher’s analysis software.

A typical raw EEG signal recorded for a duration of 1 s from channels 

at location Fz, Cz, Pz and Oz is depicted in Figure 2.5. Note that the 

signals include very high frequency components, usually out of the scope of 

EEG analysis. The amplitude of these components are generally large 

enough to block the frequency spectrum of interest. Therefore, the 

researcher further filters the incoming data to suit his/her purposes.
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Figure 2.5 A typical raw EEG signal recorded from locations Fz, Cz, Pz, Oz

Different BCI approaches have different interests in the frequency 

spectrum. Therefore a digital filtering process follows next. In the scope of 

this thesis, signals between 1-12Hz are investigated. Figure 2.6 shows the 

same epoch filtered with a 6th order Butterworth bandpass filter.

After filtering the data, the researcher looks for some specific features 

in it. The process that finds these features is called feature extraction. 

Features might be peaks, actual or special waveforms or deflections at 

specific times, spectral density, etc. In the scope of this thesis, the features 

are almost an imitation of the actual waveform, in other words, the 

amplitude of the signals for that period. Figure 2.7 depicts the same epoch 

after feature extraction. Figures 2.6-7 were shrunk for a better view of the 

features.
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Figure 2.6 Bandpass filtered epoch

Figure 2.7 Feature extracted epoch
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After feature extraction, a feature vector is formed. This feature vector 

is then run through a classifier, and that classifier decides what to do with 

the data. For example, in our study, we want to know if the feature vector 

includes signs of a P300 wave. If it does, we acknowledge that the subject is 

gazing on a letter he/she wants to type. If required conditions are satisfied, 

we might show the letter to the user as a feedback. This algorithm that 

decides what to do with the data (going on sampling, or finding a target) is 

called the translation algorithm, and might include one or more classifiers. 

In another BCI application, rotation of a robotic arm might be controlled by 

the spectral power of alpha waves. In other words, spectral power might be 

translated into a parameter for rotating a robotic arm. Either by feedback, 

or controlling some outer device, the result of the analysis realizes a function 

the subject is in need of.

2.4 Event Related Potentials, P300 component

Event related potentials (ERP) occur in the brain as a response to an 

external event. They can be measured before, during or after a sensory, 

motor or psychological event [11, 21] and usually have a fixed time delay 

after (or before) the event, named stimulus. In 1964, Walter et al. discovered 

that when a subject was required to press a button after detecting a target 

in a visual stimulus, they elicited a large negative voltage at frontal 
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electrodes that happen just before the subject presses the button [38]. This 

voltage, ERP component called Contingent Negative Variation (CNV) 

indicated the subject’s mental preparation to press the button. In 1965 

Sutton et al. discovered the P3 component, a large positive deflection in 

brain signals that occur around 300 ms after the stimulus in an experiment 

where subjects were presented with either auditory or visual stimulus in a 

random fashion where the subjects could not predict what the next stimulus 

would be [35]. In contrary, when the modality of the stimulus was perfectly 

predictable, the P3 component was much smaller in amplitude.

This idea brought about another paradigm known as the ‘oddball 

paradigm’, where the subject is stimulated with two categories of events - 

relevant and irrelevant. The relevant events occur rarely with respect to 

irrelevant events, and due to the complete random order of events, elicit a 

large P300 response in ERPs. In 1988, Farwell and Donchin used this 

paradigm to develop a communication system where subjects were able to 

type letters on a computer screen only by thought - with P300 signals [15]. 

Farwell and Donchin present a 6x6 matrix of letters and numbers to the 

subject. The rows and columns of the matrix flash in a block-randomized 

fashion, and the user is required to keep a mental count of the number of 

occurrences of a target, a letter he/she wants to type. Here, the row and 

column that contain the target letter are the relevant events, where in a 

block of 12 flashes, there are two of such events. The other events, rows and 
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columns that don’t interest the subject are irrelevant events, and there are 

ten of such events in a 12-flash block.

Figure 2.8 shows typical P300 responses of single trials, and averaged 

trials recorded at electrode site Pz.

(a)

(b)

Figure 2.8 (a) Single trial epochs; solid line is the response to a target 
stimuli, dashed line is the response to irrelevant stimuli. (b) Average of 10 
trials; solid line is the averaged response to 10 target stimuli, dashed line is 

the averaged response to 10 irrelevant stimuli
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This phenomenal research pointed that in the end, P300 wave can be 

used as an efficient actor in a new communication channel, a BCI. The 

proposed method opened a wide area of possibilities for further research and 

brought up countless new questions which, after 22 years, are yet to be 

answered.

One of the key elements in this research is how the stimulus is 

delivered to the subject. The next section underlies basic principles for 

common P300 stimulus software and includes properties of a well-known and 

widely used software package called BCI 2000. 

2.5 P300 Stimulus Software

A stimulus software has many purposes. Undoubtedly, the main 

purpose is to deliver the subject the required visuals, or directions, to evoke 

the necessary potentials. Apart from that, it is the duty of the stimulus 

software to note the exact time frames when the stimuli occurred, since the 

analysis in BCI depends solely on the actions of the subject. In other words, 

an action can only be analyzed when one can extract its response epoch 

from the recordings. On BCI systems, this is achieved by triggering. The 

stimulus software interfaces the recording device and sends a trigger signal 

whenever an action takes place. It is the duty of the device to save this 

21



information on a separate data channel. Aforementioned epochs are 

extracted from the recordings with this trigger information.

Since the needs of every research and researcher are different, research 

groups tend to develop their own stimulus software, trimmed to their special 

needs. As a research group may want to obtain different results based on 

small variations in the stimuli, the software might be customizable, or even 

extendible through plug-ins, etc.

2.5.1 Common P300 Speller Software Properties

A P300 speller software features visuals on screen that flash for 

predefined durations at predefined intervals. These flash events are called 

trials. Commonly, a matrix of visuals are presented by rows and columns. In 

other words, in any trial, a row or a column flashes. There are always two 

targets in a run, namely a row and a column that intersect, where, at the 

intersection is the target visual for the subject (see section 4.3 for speller 

terminology). The rows and columns are intensified in a block-randomized 

fashion, where some limitations might be applied (see sections 3.2.3 for a 

possible case of limitation). The rule in block-randomization is that, after a 

trial group of m+n intensifications, every row and every column is 

intensified only once. Therefore, before moving to the next trial group, we 

make sure that every element was intensified for an equal amount.
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2.5.2 BCI 2000 P300 Speller

BCI 2000 is a complete set of tools used by EEG research groups all 

over the world. Featuring a module-based system, BCI 2000 has the 

capability of data acquisition from several hardware, two stage (feature 

extraction and feature translation) signal processing phase, application 

interface where the subject decides an action with the help of translated 

control signals, and an operator interface to set various parameters and 

monitor other software and/or experiment related information [30].

Figure 2.9 Typical screenshot of BCI 2000 P300 speller application. Top box 
(including word SEND) is for specifying the target letters in copy mode. 

The empty box below it is for feedback.
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As a part of the User Application Module, BCI 2000 features a P300 

based speller application. Detailed in [1], this application has a wide variety 

of options to suit most P300 speller needs. Defining custom matrix 

dimensions, nested matrices, ability to show bitmaps in matrix cells instead 

of letters, or choosing a .wav file for auditory stimuli and feedback of 

classification operations are some of the functionalities that make BCI 2000 

so popular among researchers.

BCI 2000 speller can both be used in offline and online mode. In the 

copy (offline) mode, the operator is free to enter any text to be spelled, and 

the software pursues that text during the session. In the free (online) mode, 

there are no predefined text and the subject is free to choose any cell to 

concentrate on. In this mode, the software gives feedback about the detected 

choice of the subject.

Overall, with its extensive options, BCI 2000 provides a quick solution 

for any research group working with P300 signals. 

2.6 Survey of techniques

This chapter intends to inform the reader about classification and 

feature extraction approaches used in P300 BCI context.
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2.6.1 Stepwise Discriminant Analysis (SWDA)

Stepwise linear discriminant analysis is a technique for selecting 

suitable (predictor) variables (usually amplitude values) among the data to 

be included in a multiple regression model [20]. Initially starting with no 

terms in the model, forward stepwise regression is applied and the most 

statistically significant predictor variable having a p-value smaller than 0.1 is 

added to the model. After each new entry to the model, a backward 

stepwise regression is performed and the least significant variables having p-

values greater than 0.15 are removed. This process is repeated until the 

model includes a predetermined number of terms, or until all the terms that 

satisfy the entry/removal criteria are processed. This technique is applied in 

[12, 15, 31] and results are reported.

2.6.2 Support Vector Machines (SVMs)

SVM is a kernel-based classification method. Given a two class 

classification problem, SVM tries to find the optimum separating  

hyperplane (OSH) (or vector in this case) that has the maximum distance 

between itself and the nearest samples in each class [14]. These samples 

constitute the support vector; hence the name. This approach is good only 

for linearly separable samples, but real life examples such as EEG data are 

quite inseparable from each other because of the background activity of the 
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brain, and so nonlinear solutions have to be applied. Therefore, kernel 

functions, which map vectors into a higher dimensional space, are utilized to 

introduce nonlinearity to the optimum separating hyperplane. Polynomial 

kernels, Gaussian Radial Basis Functions and Exponential Radial Basis 

Functions are among the most popular kernel functions used in EEG.  [36, 

39] show example uses and report performance values using SVMs. 

2.6.3 Fisher’s Linear Discriminant Analysis (FLDA)

FLDA aims to compute a discriminant vector that separates two or 

more classes as well as possible. In this study, we only have two classes, one 

for the case that epoch under investigation includes a P300 wave, and one 

for the case that epoch under investigation does not include a P300 wave. 

FLDA searches for discriminant vectors that result in a large distance 

between the projected means and small variance around the projected means 

(small within-class variance). The discriminant vector w is a function of 

these data, and the output of the analysis, given an input vector   ̂x , is 

simply    w Tx̂  [17]. The output values generated by this analysis may be 

handled in two ways; for single trial EEG analysis, the maximum of the 

output values contains the answer, or for better accuracy, the output might 

be summed over multiple trials, and then the maximum can be chosen.
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2.6.4 Bayesian Linear Discriminant Analysis (BLDA)

BLDA can be seen as an extension to Fisher’s Linear Discriminant 

Analysis (FLDA). In BLDA, regularization is used to prevent over-fitting 

problem. A possible solution for finding regularization parameters is cross-

validation, which is a time-consuming and stationary process. Instead, with 

a Bayesian analysis, the degree of regularization can be estimated 

automatically and quickly from training data [17].

In the next section mathematical preliminaries of BLDA is presented.

2.6.5 Principal Component Analysis (PCA)

First described in 1901 by Pearson, PCA is a popular technique used 

in dimensionality reduction. PCA is a linear transformation that maps a 

feature space of correlated variables to a higher space of uncorrelated 

variables (hence the name principal components). In other words, PCA 

retains components of the dataset that contribute most to its variance, while 

ignoring the rest, where by definition, those components contain the ‘most 

important’ aspects of the data [2]. PCA works best if individual components 

have Gaussian distributions. PCA is a widely used technique both in 

dimensionality reduction and in classification. An example work that uses 

PCA is given in [39].
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2.6.6 Independent Component Analysis (ICA)

Independent Component Analysis is another technique used in 

decomposing a signal which is a combination of many other ‘independent’ 

signals (also known as the blind signal separation). Independence is a much 

stronger property than uncorrelatedness, so PCA is unable to separate these 

independent components. ICA is successfully applied in EEG signals. An 

example where ICA is used, along with its results can be seen in [23, 33].

2.7 BLDA

This section exactly follows Appendix B of [17] where a summary of 

BLDA is given. For a more detailed explanation see [16]. Algorithms that 

are closely related to the method presented below are the Bayesian least-

squares support vector machine [37] and the algorithm for Bayesian non-

linear discriminant analysis described by [10]. BLDA is also closely related 

to the so-called evidence framework for which detailed accounts are given in 

[22] and [9].

The fact that FLDA is a special case of least squares regression if 

regression targets are set to 
  

N
N

1

 for examples from class 1 and to 
  
−

N
N

2

for 

examples from class -1 (where  N is the total number of training examples, 
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  N1
is the number of examples from class 1 and   N2

is the number of examples 

from class -1). [9] gives a proof for the equivalence between least squares 

regression and FLDA. Given the connection between regression and FLDA, 

BLDA performs regression in a Bayesian framework and sets target values 

as mentioned above.

The assumption in Bayesian regression is that targets t and feature 

vectors x are linearly related with additive white Gaussian noise n.

    t = w Tx + n  (1)

Given this assumption, the likelihood function for the weights w used 

in regression is:

 
     
p(D | β,w) = β

2π

⎛

⎝
⎜

⎞

⎠
⎟

N
2

exp(− β
2

|| XTw − t ||2)  (2)

Here t denotes a vector containing the regression targets, X denotes 

the matrix that is obtained from the horizontal stacking of training feature 

vectors, D denotes the pair {X,t}, β denotes the inverse variance of the 

noise and N denotes the number of examples in the training set. It is 

assumed that the feature vectors contain one feature which always equals 

one; the bias term which is commonly used in regression can thus be 

omitted.
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To perform inference in a Bayesian setting, one has to specify a prior 

distribution for the latent variables, i.e. for the weight vector w. The 

expression for the prior distribution is:

 
     
p(w |α) = α

2π
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⎠
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D
2 ε

2π
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1
2
exp(− 1

2
w T ′I (α)w) , (3)

where   ′I (α) is a square,   D + 1 dimensional, diagonal matrix

 

   

′I (α) =
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⎡
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⎤

⎦

⎥
⎥
⎥
⎥

, (4)

and D is the number of features. The prior for the weights thus is an 

isotropic, zero-mean Gaussian distribution. The effect of using a zero-mean 

Gaussian prior for the weights is similar to the effect of regularization term 

used in ridge regression and regularized FLDA. The estimates for w are 

shrunk towards the origin and the danger of over-fitting is reduced. The 

prior for the bias (the last entry in w) is a zero-mean univariate Gaussian. 

Setting ε to a very small value, the prior for the bias is practically flat. This 

expresses the fact that a priori there are no assumptions made about the 

value of the bias parameter.

Given likelihood and prior, the posterior distribution can be computed 

using Bayes rule.
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p(w | β,α,D) = p(D | β,w)p(w |α)

p(D | β,w)p(w |α)dw∫
, (5)

Since both prior and likelihood are Gaussian, the posterior is also 

Gaussian and its parameters can be derived from likelihood and prior by 

completing the square. The mean m and covariance C of the posterior 

satisfy the following equations.

     m = β(βXXT + ′I (α))−1Xt  (6)

    C = (βXXT + ′I (α))−1  (7)

By multiplying the likelihood function (equation 2) for a new input 

vector   ̂x with the posterior distribution (equation 5) followed by integration 

over w, we obtain the predictive distribution, i.e. the probability distribution 

over regression targets conditioned on an input vector:

     p(t̂ | β,α, x̂,D) = p(t̂ | β, x̂,w)p(w | β,α,D)dw∫  (8)

The predictive distribution is again Gaussian and can be characterized 

by its mean µ and its variance  σ 2 .

    µ = mTx̂  (9)

 
    
σ 2 =

1
β
+ x̂ TCx̂  (10)
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In this study, only the mean value of the predictive distribution was 

used for taking decisions. More precisely, mean values were summed over 

trials and the letter corresponding to the maximum of the summed mean 

values was selected as the answer of classification.

In a more general setting, class probabilities could be obtained by 

computing the probability of the target values used during training. Using 

the predictive distribution from equation 8 and omitting the conditioning on 

  β,α,Dwe could use:

 

   

p(ŷ = 1 | x̂) =
p(t̂ =

N
1

N
| x̂)

p(t̂ =
N

1

N
| x̂) + p(t̂ =

−N
2

N
| x̂)

 (11)

Both the posterior distribution and the predictive distribution depend 

on the hyperparameters α and β . Although in this summary these 

parameters are assumed to be known, in real-world situations the 

hyperparameters are usually unknown. One possibility to solve this problem 

would be, as previously stated, to use cross-validation to determine the 

hyperparameters that yield the best prediction performance. However, 

Bayesian regression framework offers a more elegant and less time-

consuming solution for the problem of choosing the hyperparameters. The 

idea is to write down the likelihood function for the hyperparameters and 
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the maximize the likelihood with respect to the hyperparameters. The 

maximum likelihood solution for the hyperparameters can be found with a 

simple iterative algorithm which is  described in [22]. For a detailed 

explanation of BLDA, the user is encouraged to read [16].

2.8 State-of-the-art performance

Previous works have firmly shown that a P300 speller is an efficient 

communication channel, especially for disabled people who have no other 

means of communication. In this section, we will briefly discuss results 

reported by other researchers. To begin with, in [15], the original paper of 

Farwell and Donchin that introduced this speller, the typing rate is reported 

as 2.3 letters per minute with 95% accuracy. Although the bit rate 

(explained in Chapter 4) is reported as 12bits/min in this work, we 

calculated it as 10.67 bits per minute. Later, Donchin increased this rate up 

to 4.3 letters/min with 95% accuracy in [12]. The bit rate for this work was 

calculated as 19.83 bits/min. Meinicke reported 5.5 letters/min with above 

90% accuracy in [24], with a roughly calculated bit rate of 24 bits/min. In 

[18], Kaper reported an average of 47.26 bits/min. Serby reported an 

average of 5.45 letters/min with 92.1% accuracy and 23.77 bits/min in [33].

On top of these results, we report that with 6 able bodied subjects, we 

have reached an average online performance of 12.48 letters/min with 
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89.75% accuracy and 11.14 letters/min with error compensation, which is 

still prone to errors but makes sure that the subject types all the letters he/

she wants. Therefore, the time that wrong results take for classification is 

included and counted as lost time. For offline analysis, we report a bit rate 

of 56 bits/min. As far as we know, the speed of our system is unmatched 

among previously published work. The next chapters will give a lot more 

detail about our methodology and results.
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CHAPTER 3

STIMULUS SOFTWARE

As previously stated, a P300 BCI implementation requires many 

components, one of which is a stimulus software. Stimulus software is an 

essential part of BCI systems, where the analysis depends on processing 

signals that evoke after a subject is required to take an action. In this 

chapter, we describe in detail the SU-BCI P300 stimulus software we have 

developed.

3.1 SU-BCI P300 Stimulus Software

3.1.1 Basics

The stimulus software we developed for our research group is 

essentially a matrix-based system, first introduced by Farwell and Donchin 

in [15]. The software has many customization options that allows the user to 
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derive numerous analyses and cross-analyses within the context of a P300 

speller.

Ease of use, a simple and clean user-interface and customizability were 

the design goals for the software. Since SU-BCI group has plans for further 

studies in P300 speller context, the software had to be able to satisfy diverse 

needs. With this clear goal in mind, the software architecture is built so that 

the broad needs of different P300 experiments can be satisfied within a 

single software, by changing settings and parameters.

The software is developed in C#, an object-oriented language based on 

C++. While having advanced OOP features and capabilities that include 

and surpass those of C++, C# has a visual form management as easy as 

Visual Basic. The main motivations for developing the software in C# are 

the ease and quickness of development, ability to further develop extensions 

to allow more customization, and the ability to interface with our BioSemi 

hardware for triggering purposes.

3.1.2 Features and Preferences

The software is used on every experiment throughout the work in this 

thesis. The major advantages of the software are the ability to create a 

visual matrix of any shape in principle, the possibility of choosing any 

intervals for flashes, adjustable countdown timer for the target letter, and 

36



the ability to adjust how many trial groups (see section 4.3 for an 

explanation of a trial group) will be used for one letter. All of these settings 

are accessible through the options panel in the top section of the interface.

In the following sections, detailed explanation of each option in the 

options panel and feature will be provided.

Figure 3.1 Software screenshot, 6x6 matrix in action, 3rd row intensified

3.1.2.1 Matrix dimensions

The most important detail in a P300 speller stimulus is the matrix 

dimension. Matrix dimensions have direct effect on the performance of the 

analysis, due to the oddball paradigm fundamentals. Research about the 
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effects of different matrix sizes is essential and ongoing, as exampled in [13] 

& [32].

To allow future studies of changes of matrix dimensions, the software 

lets the conductor to define the width and height parameters of the matrix 

as the first element in the options panel. Theoretically, any positive integer 

is allowed for each dimension, as the software automatically fits (either by 

enlarging or reducing) the matrix in the window, although a row or column 

count of more than 10, might be inconvenient for the subject, as the number 

of visuals increases and therefore each visual becomes harder to detect.

Figure 3.2 A 4x12 sized matrix, 2nd column intensified
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3.2.2.2 Matrix elements (visuals)

The conductor is free to enter any letter or text in each cell of the 

matrix, in any order. Furthermore, the software allows the conductor to use 

symbols in a matrix, by letting the conductor choose any font-face for the 

matrix, including dingbats (symbol-based fonts) such as Zapf Dingbats, 

Wingdings and Webdings. In addition, since the software allows to use any 

font installed in the system, one can create a font solely to define a stimulus, 

making the capabilities of the software creating matrices virtually infinite.

Since the conductor enters the contents of each cell by hand, he is free 

to choose not to enter any visual in a cell. With this approach, one can 

design an asymmetrical matrix, or even a round matrix of visuals, as shown 

in Figure 3.3.
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Figure 3.3 A round matrix. Although the matrix is 8x8, some elements at 
each corner are left blank to get a “round” shape.

3.2.2.3 Presets

By default, the conductor is required to define a new matrix each time 

the software is run. This is a serious limitation as it might take valuable 

time. Therefore we have given the conductor the option of presets, hard-

coded predefined matrices.

A preset is a set of hard-coded variables in the source code of the 

software. A preset consists of the width and the height of the matrix, as well 

as the visuals inside. These hard-coded options are selectable in the Presets 

frame in the options panel. Although we have conducted all our experiments 
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with the first preset, the 6x6 matrix, another matrix, the Turkish QWERTY 

keyboard is also provided by default (see Fig. 4.2).

The easy way of preparing for the session is of course, preparing a 

preset and choosing it at the beginning of each session. With this 

opportunity, the conductor has the matrix prepared with one click.

3.2.2.4 Stimulus timing

One of the key elements affecting the performance of a P300 speller 

method is the stimulus timing, as discussed in [32] and [39].

To allow this kind of analyses on stimulus timing, the software has the 

Stimulus Timing frame in the options panel. Stimulus timing has two 

elements, span of each stimulus (denoted by Each stimulus), and the period 

between two stimuli (denoted by Intra-stimulus). Span of each stimulus 

specifies for how long a visual will be intensified, and intra-stimulus period 

decides the temporal gap between two intensifications.

Other options in this frame allow further customization. Start 

Countdown specifies for how long the runs will be delayed at the beginning 

of each session. As another important parameter, this period allows the 

subject a break, for long runs might falter the concentration of the subject. 

Moreover, the conductor might need some time to leave the room after 

starting the session, or might need some time for other arrangements. 
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The last, and the most important parameter in this group is for 

specifying how many trial groups there will be in a run, as this number 

directly affects classification performance. This effect has clearly been 

observed and reported in [17], [31] and [36]. In principle, the conductor is 

free to choose any number of trial groups, but the classification performance 

is generally satisfactory after 10 trial groups. The conductor should keep in 

mind the fact that longer runs negatively affect performance, as evidenced 

by the average P300 wave amplitude as shown in [19], [28] and [31].

3.2.2.5 Other options

Other options include font preference, and a minor style option called 

highlighting. Highlighting defines the style of the visual during 

intensification. There are two options; Highlight Background and Highlight 

Visual, and the conductor is able to choose one of them for the experiment. 

At startup or during intra-stimulus period, cell backgrounds are black and 

all the visuals are dark gray. During intensification, a row or a column 

becomes highlighted, i.e. turns white. These two options specify which part 

of the visual will be white, the cell background, or the visual itself. 

Examples are shown below.
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Fig 3.4 Different highlighting modes. (A) Background highlighting (B) 
Highlighting of the visuals

As described before, with this software, the conductor is able to design 

a matrix that uses figures and shapes. This is achieved by different font 

types called Dingbats. The conductor is able to define the font-type with the 

Select Font button. Once selected, all the entered text in the matrix will be 

converted into that selected font.

Figure 3.5 2x2 matrix with shapes
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3.2.2.6 Control commands

These options control the basic functionality of the stimulus session. 

To begin a session, the conductor clicks start. If all the parameters are set to 

accepted values, the session begins. In case of a parameter value error, the 

software just quits.

If no user intervention occurs, a session ends at the projected time, 

returning the software to the first state where the conductor is again allowed 

to make changes.

If the conductor needs to cancel the ongoing session, he can do so by 

clicking stop. Afterwards, to begin a new session, the conductor has to reset 

the session progress by clicking Reset.

3.2.2.7 Extra features

The software has some more auxiliary features implemented for 

debugging purposes. Two debug modes allow monitoring the operation of 

the software. Mode one records every event in the software. It notes down 

the exact beginning time of each run, target letter for each run and the 

intensifications by row and column numbers. This mode is useful for 

checking the recorded data and making sure it was recorded as intended, at 

the intended time.
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The second mode clears the matrix, resetting all the values of the cells 

to 0. Whenever a row or a column is intensified, all the elements belonging 

to that row or column get an increase in value. This mode is useful for 

checking that the algorithm is correctly distributing intensifications in 

groups of trials. It is also useful for understanding the randomized working 

principles of the algorithm, if one chooses to implement a controlled 

randomized stimulus distribution.

The last extra feature here is External Trigger. When the conductor 

wants to investigate the triggering operation (which itself will be described 

in the next section) without starting any session, he can send a trigger of 

any number to the recording device.  In order to make this investigation 

easier, the software increments the trigger value sent, each time the External 

Trigger button is pressed. This value is also visible in the accompanying text 

boxes, therefore is easier to identify, comparing directly with the results in 

the recording software.

3.2.3 Triggering

As hinted before, a very important behind-the-scenes functionality of a 

stimulus software is its triggering capability, because knowing the exact time 

of the stimuli is the principal requirement for extracting information about 

them.
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Our stimulus software has the ability to communicate with our 

recording hardware, BioSemi Active Two by utilizing the LPT port. Special 

care was taken due to the new Windows operating system regulations, as 

they forbid direct access to hardware resources such as the LPT port. The 

problem was handled by using extra DLL’s that reach the LPT port in 

kernel level.

Once a session is recorded with a subject, it can be used in many 

different analyses and cross-analyses. It may also be shared with other 

research groups or people, who were not present during the actual recording 

session, for further analysis. With this possibility in mind, the triggering 

properties gain another significance, because the researcher that investigates 

the recordings should be able to master every detail. Moreover, for 

functional purposes and to have the easier hand at processing the recorded 

data in MATLAB, the triggering data should be as specific as possible. 

Therefore, our stimulus software sends additional informative triggering 

signals at significant times.

The principal trigger signals are positions of intensifications. Each row 

or column has a unique ID number, and whenever a row or a column is 

highlighted, corresponding ID is sent over the trigger channel to the 

recording device.
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Rows and columns are numbered   from 0 to n
rows

+ n
columns

− 1 , where 

rows are numbered   from 0 to n
rows

− 1 and columns are numbered 

  from n
rows

 to n
rows

+ n
columns

− 1 . Therefore, when reading the recorded data 

file, the analyst has the possibility to extract the exact position of the 

intensification in the matrix, given that he knows the size of the matrix (see 

Chapter 4 for detailed information on how to acquire the basic information 

about the recording session, i.e. the dimensions of the matrix).

A tricky problem surfaces here, while trying to decipher the data. As 

we mentioned before, the stimuli are block-randomized, and the analysis 

software follows the trigger channel for discrete value jumps. Now, in a 

scenario where the last random element in a block, is the same as the first 

random element in the next block, although a new trigger value is sent, 

since the value remains the same, the analysis software is unable to detect 

the new trigger information. Therefore, a control over block randomization 

is required and implemented in this stage: the first random element in a 

block cannot be the same as the last random element of the previous block. 

If such a condition occurs, randomization is performed again; until such a 

problem is avoided.

For a healthy examination, these basic position trigger signals are not 

enough due to the aforementioned reasons and limitations. Therefore, the 

software features extra triggering information.
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First, since the software that analyzes recorded data extracts trigger 

information from level differences in the continuous trigger data channel, to 

mark the beginning of a session, the software sends a value of 255 - the 

maximum value the trigger signal can have - a value only used for this first 

time initialization. After this initialization, the next trigger signal, any value 

other than 255, will be detected safely and accurately by the analysis 

software.

Additionally, at the beginning of each run, the software sends two 

more trigger signals that help the analysis software define a new run. The 

first one is the ASCII value of the target character, and the other one is 

again, the position of the target letter in the matrix. ASCII value of the 

target character is used for easier examination purposes, and the position of 

the target character helps to easily label the real trigger signals by matching 

them to these values.

For practical reasons, an important assumption is made here: any of 

the matrix dimensions is expected to be at most 9. With this rule, the 

position of the target letter is sent to the trigger channel by concatenating 

each dimension value and adding a 1 in front. For example, if the letter is A, 

100 is transmitted. If the letter is C, 120 is transmitted. Therefore, the 

analysis software can obtain the targets by reading the second trigger signal, 

after the ASCII representation, and cropping out the leading 1 and 
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separating the digits. Of course, if need arises, an appropriate triggering 

protocol may be developed to handle larger dimensions.

The target letter and target position in the matrix, and most 

importantly knowing when a run ends and a new one starts are key elements 

to easily decipher the recorded data into recognizable data structures.

49



CHAPTER 4

OFFLINE ANALYSIS

This chapter will focus on the details of signal processing that occur, 

and will feature experimental results for offline analysis and comparisons to 

results of other BCI groups.

4.1 Background

Offline analysis of signals is used in conditions where the experiment is 

conducted independent of the analysis, either by necessity, or choice. The 

situation might even be that experiments are conducted in one laboratory in 

a broad period of time, and then the analysis is done in another place, with 

all the experimental data at once.

In P300 BCI context, the offline analysis finds use in developing 

classification algorithms and techniques that just need a data set to work 

on, as well as assessing and cross-validating known techniques. On the other 

50



hand, offline analysis has limited use, because there is no feedback capability 

to indicate the classification result and show the subject his choice.

For evaluating and optimizing the performance of our analysis method 

later to be used in online analysis, we conducted several offline analyses with 

prerecorded data, both from EPFL BCI experiments, and from our own 

recordings. The methods and results will be presented in the following 

sections.

For classifying a data set, one needs a classification software. Since 

such a software will involve extensive calculations on matrices, a platform 

suitable for mathematical calculations is preferred. For developing our 

software, we chose MATLAB.

4.2 Classification Software

The classification software we have developed in MATLAB for offline 

analysis of the experimental data we obtained, reads the BDF (BioSemi 

Data File) file that holds the recorded data into MATLAB, creates the 

necessary data structures, and does the training and testing of the chosen 

classifier with the given data.

The basics of the analysis method are structured around the 

techniques used in [17], with differences that are essential for our purpose. 

As the data structures are formed after the recorded data file is read, data 
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epochs of 1-second periods that follow each trigger signal are extracted and 

each epoch is labelled as 1 or -1 according to the target stimuli.

We have conducted recordings for 8 letters - 8 runs - in a session for 

the purpose of this analysis. According to this, epochs are placed inside the 

data structures for each run. Please check section 4.3 for detailed 

information about the method.

We have used the Bayesian Linear Discriminant for the classifier. The 

algorithm is proposed in [22], and the actual code is developed by Ulrich 

Hoffmann of EPFL BCI group in 2006. The classifier uses the first of two 

sessions as the training set, and the other session is fed into the classifier as 

the test set.

The classification problem here is whether the epoch in question 

contains a P300 wave or not, or in other words, if the stimulus in question 

creates a P300 wave or not. According to this, it is assumed that the subject 

could successfully process the matrix and the given instructions in the first 

session, as it is used for training purposes.

The classification software investigates trials in the recorded data in 

groups of 12. A classification score is generated according to the distance of 

data in each epoch to the training set. These scores are separated for 

columns and rows and trials with maximum scores in each group are 

selected as the result for the classification process. Since this result includes 
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a row and a column, the intersection points to the letter (matrix element) 

the classification algorithm obtained from the analysis of the recorded data.

If this letter is the same with the letter instructed to the subject 

during the experiment - and therefore the same with the letter recorded in 

trigger signals - the classifier performed correctly, and we have a correct 

result.

4.3 Terminology

A target is the letter the subject is instructed to focus on at that 

instant.

A trial is the intensification of each row or column, and is denoted by 

trigger signals in the recording, which are recorded in a separate, special 

channel to define time markings for important events (such as trials, and 

markings of the beginning of each run, etc.). Trials are events that occur 

successively and rapidly.

Defining the dimensions of the matrix rows and columns as  a and  b , 

the trials are flashed in a block-randomized fashion, in groups of  a + b . 

These groups are called trial groups and when all the elements in a trial 

group is flashed, a row or a column is flashed exactly once and there are no 

rows or columns that are not flashed, or flashed more than once.
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With this in mind, a trial group is the smallest data set for a P300 

classification problem. 

A run is the collection of trial groups. A run is recorded for each 

letter defined in a session. There can be a period of a few seconds between 

each run, but the recording is not interfered with, and continues.

In each session, the P300 stimulus software is executed once and 

consecutive recording may be done for a desired number of target letters - 

runs. The conductor should allow a brief period of a few minutes between 

two successive sessions to allow the subject a period for resting and relaxing.

A session group is the collection of all sessions recorded with one 

subject during the course of a day, with delays in between each session.

To obtain meaningful results with P300 waves using the oddball 

paradigm, one has to provide a training set of at least one trial with a label 

to indicate a P300 wave, and another trial with a label to indicate 

otherwise, and a test set of at least one trial group.

To increase the performance of the classifier, the number of recorded 

trial groups in a run in the training set has to be increased. In addition, to 

obtain better and clearer results and to allow room for errors, the size of 

test set should be increased.
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4.4 Method

4.4.1 Preliminaries

The method we have followed during the experiments is as follows:

We have two sessions in our session group. The rules and specifications 

for the first session are universal for each subject, and different for each 

subject for the second session. A  6 × 6  alphanumeric matrix of letters and 

numerals are standard in each session.

The target letters instructed in the first session are “D E D E D E D 

E” and therefore 8 runs are recorded with these targets. Before starting each 

run, the target is presented in the matrix to let the subject see where it is 

located in the matrix and therefore focus. As previously stated, according to 

the principles of our classifier, increasing the number of trial groups in each 

run increases the performance of the classifier and results in quicker and 

more correct classification. For this purpose, each run features 20 trial 

groups. Due to the size of the matrix, each trial group features 12 trials, 2 of 

which are targets and 10 of which are irrelevant stimuli.

Each trial lasts for 300 ms. For the first 125 ms, relevant row or 

column is intensified, and for the remaining 175 ms, all the elements in the 

matrix dim and the system waits for the next trial.
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According to this, a trial group lasts for 3.6 s. Considering this 

duration, if period between each run is ignored and with the assumption of 

highest performance, 16 letters per minute is the limit of the performance. 

For various reasons, performance of classification processes that feature one 

trial group is not satisfactory. In contrast, using more trial groups in each 

run decreases the number of letters classified per second, while increasing 

the probability of correct classification. As stated in Chapter 2, state-of-the-

art speed is about 6-8 letters / minute. With this research, one of our 

purposes is to propose a new stimulus method and increase the classification 

performance.

4.4.2 Data pre-processing

Recordings are done in conjunction with the method presented above, 

using the BioSemi Active Two EEG recording device. The software for 

recording the data is the native interface for the hardware, BioSemi 

ActiView. The data is sampled at 2 kHz. We use 12 active electrodes in the 

recordings which are placed in Fp1, Fp2, Fz, Cz, Pz, Oz, P3, P4, PO7 and 

PO8 locations according to the international 10-20 system, as well as two 

auxiliary electrodes for reference that are located on the mastoid channels.

ActiView software saves the recordings to the disk as a BDF file, 

whose format is developed by BioSemi. A BDF file has a similar structure to 
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an EDF file, but while the resolution of the EDF file is 16-bits, a BDF file 

has a 24-bit resolution. Although other specifications of the file format is the 

same as EDF, this resolution depth allows saving of more sensitive 

information.

The recordings saved in a BDF file is read into MATLAB via the code 

developed by Alois Schloegl in 1998. After this process, the raw data has to 

be structured and prepared for classification.

The trigger channel is extracted as the first part of these preparations. 

Times (sample numbers in sequence) and values (actual trigger values) of 

each trigger signal are obtained from the data in the trigger channel and 

stored in a key - value pair. This information will later be used for 

extracting epochs.

For a healthier analysis, the data have to be filtered. Especially to 

reduce the size of the feature space and rid the data of irrelevant frequency 

components, background noise and DC offset that occur between electrodes 

and the skin due to sweating, all the data are filtered with a 3rd order 

Butterworth bandpass filter of a pass band of 1-12 Hz. This filtering removes 

most of the unwanted artifacts.

ActiView saves the data unreferenced, that is, referenced to CMS, the 

common mode sense electrode which is just another electrode attached to 

the head in parieto-occipital region. To allow for a greater SNR, the data 

has to be re-referenced to a channel or a combination of channels.  The data 
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obtained from mastoid channels are assumed to contain body potentials due 

to muscle movement and no EEG signals, albeit relevant to P300 waves. 

Therefore, by taking the mean of two mastoid channels, a reference signal is 

acquired and by subtracting these from the other channels, the data are 

referenced.

Independent of any experimental procedure, this is the most 

fundamental data-preparation for recorded EEG data; in other words, a 

standard EEG recording has to be prepared in this fashion. Later on, more 

preparations specific to an experiment in question, might be necessary.

As the next step, we extract the ASCII coded letter trigger signals in 

the trigger channel. The data cell that holds the runs in a session is sized 

according to the number of extracted ASCII codes, therefore to the number 

of letters in the recording.

Later, each run is separated according to when the aforementioned 

triggers came and a standard data structure is formed for each run. A 

standard data structure for a run incorporates several parameters, such as a 

‘target’ parameter that holds which letter (or symbol) the target is,  a 

‘targetposition’ array that shows where the target is located in the matrix 

by rows and columns, a ‘stimuli’ array that holds the trigger values 

extracted from the trigger channel, a ‘labels’ array for deciding if the  

elements in ‘stimuli’ array correspond with the target or not, a ‘times’ array 

that holds the sample times (sample numbers in sequence) of when an 
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element in the ‘stimuli’ array has occurred (therefore, the aforementioned 

key-value pair is obtained with the ‘times’-‘stimuli’ array pair).

The next preparation step forms the data epochs regarding the values 

in the ‘times’ array. Each epoch is a data set of 1 seconds. Since the data 

are digitized at 2 kHz, each epoch holds 2048 samples. To reduce the size of 

the feature space and remove the unnecessary features, the data are 

decimated by 64.

In the next step, to remove the negative effects of electrode-skin 

resistance that result in amplitude changes and other anomalies, the data 

are normalized.

Unfortunately, if the waveform involves very high, extreme values, 

normalization may result in a poor performance. To avoid this problem, the 

data are windsorized in a 10% window. Windsorizing the data removes the 

extremities, clipping the samples that are out of this window and gives a 

meaning to normalization. Normalization and windsorization classes are also 

developed by Ulrich Hoffmann. Experimental results show that, while 

windsorizing and then normalizing data works well with recordings of some 

subjects, others give better results without windsorization and 

normalization. Because of this fact, the method that gives better results 

were chosen for each subject. This detail is expressed in figures in section 

4.5.2.
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With these last steps, the data are ready for classification. In the final 

state, an epoch is represented as an  m × n × t matrix where  m is the number 

of samples per epoch (32 in this case),  n  is the number of  channels (10 in 

this case) and  t (generally 240 for 20 trial groups) is the number of epochs.

4.4.3 Classification

The feature vector for each epoch is then the concatenation of filtered 

data from each electrode, e.g. a vector of 320 samples for 10 electrodes. In 

the end, for the classification algorithm to work on, the data are reshaped as 

a matrix of size  r × t where  r is the size of the feature vector (320 samples), 

and  t is the number of feature vectors.

As mentioned before, the classifier algorithm is chosen to be Bayesian 

LDA. The training set is the first session, whereas the test set is the second 

session, partly, or in full. Bayesian LDA calculates a score for each element 

(epoch) in the test set reflecting the distance defined by the training set. 

After that, the scores for epochs grouped in sizes of a trial group will be 

calculated. Since the matrix in question is  6 × 6 , the epochs are handled in 

groups of 12.

For example, if a complete run is used as a test set, according to the 

method explained above, there are 240 epochs in it. A total of 20 result 
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pairs are generated and rows and columns with the highest score are 

obtained as results. If the position of the target corresponds with these 

values, the classifier results are registered as correct.

4.5 Experiments and Results

4.5.1 Experiments

For offline analysis in our research, we have made experiments and 

sessions with 4 male and 5 female able-bodied subjects whose ages range in 

between 19 and 25.

At least two sessions were recorded with each subject, whose first 

session almost always consisted of “D E D E D E D E” and the second 

session consisted of random letters.

For the results shown below, the following approach has been pursued: 

All the epochs in the first session are used as the training set, and the 

second session is used as the test set. Plots feature two Y axes, where the 

one on the left shows the accuracy of the classifier against time, and the one 

on the right shows the bit rate of the classifier against time. We have 

previously stated that a trial group lasts for 3.6 s. Therefore, a run made of 

20 trial groups lasts for 72 s. Intuitively, the classifier performance is 

expected to increase as more test data are acquired, i.e. more time passes.
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The definition of the bit rate is mentioned in [41], first introduced in 

[34]. Basically, the bit rate shows the rate of information that would be 

transmitted per minute with the given accuracy. Defining P as the accuracy 

of correct classification, N as the number of elements in the matrix, and 

wrong classification accuracy as   (1 − P) / (N − 1) , then bits/situation is 

  
B = log

2
N + P log

2
P + (1 − P) log

2
[(1 − P) / (N − 1)] where P ≥

1
N

Figure 4.1 Bit rate plot versus Accuracy (%) for varying N’s. One trial 
group of our system lasts for 3.6 s. Adding another 1.4 s for feedback 

purposes, an average trial group takes 5 s. Therefore there can be 12 trial 
groups in a minute.
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For our analysis, the number of choices is 36. Therefore, in a trial 

group, we code  log2
36 ≅ 5.1699  bits/trial group. Assuming a trial group 

lasts for 5s (see Figure 4.1), maximum bit rate of our system is  62.0391  

bits/minute on the average.

For calculating accuracy, every run is classified separately and the 

accuracy is the total number of correct guesses in a session over total 

number of guesses. Since there are 8 runs in a session in general (see results 

for exceptions), there are 16 correct guesses at most. This means that 100% 

accuracy is achieved if the classifier guesses all the 16 results correctly.

4.5.2 Results

We show the classification results of 9 subjects in Figures 4.2 through 

4.9. The results are presented in a format directly compatible with [17]. It is 

easily seen that subject 1 and 2 performs best. Talking about the subject’s 

experience after each session, subject 1 and 2 stated that their concentration 

were utmost. Subject 3 stated that she might have counted a wrong letter in 

a run. Although she could not remember the exact run of the wrong letter, a 

corresponding result in Figure 4.4 shows that this is actually the case. The 

classifier has a 100% accuracy from 2nd trial group (which is a really 

impressive result) to 7th trial group in all runs. In contrary to the general 

expectation about the classifier performance stated in the previous section, 
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in Figure 4.4, after 7 runs, we see 1 wrong conclusion (93.75% accuracy) 

until the end of the runs. This might be due to wrong focusing of subject 3.

For subject 4 and 5, a run consisted of 10 trial groups instead of 20, 

and instead of mastoid channel references, averages of all 10 electrodes are 

used. The electrodes are consistent with other subjects. As a deviation, 

subject 4 used 8 totally random letters for the training set, and chose the 

word ‘MOZAIC’ for the test set. Subject 5 used the standard ‘D E D E D E 

D E’ for training set and wrote 6 random letters as the test set.

Although two sessions were recorded with Subject 7, due to a file 

handling error the first session’s recordings were lost. For Figure 4.8, other 

subjects’ recordings were tried as the test set for the classifier, and the best 

performing one was chosen (second session of Subject 6). Figure 4.8 is gives 

an important intuition about intra-subject classification performance. 

Although the performance is not optimal, the 100% accuracy achieved shows 

that, in contrast to other fields of BCI communication, P300 speller 

paradigm can tolerate subject variability.

Subject 8 reported to have concentration problems. The varying 

performance reflected in Figure 4.9 confirms this. Some runs are classified 

correctly and some runs have only one correct classification result.
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Figure 4.2 Offline analysis results for subject 1. No windsorization and 
normalization applied during data preparation.

Figure 4.3 - Offline analysis results for subject 2. No windsorization and 
normalization applied during data preparation.
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Figure 4.4 Offline analysis results for subject 3. No windsorization and 
normalization applied during data preparation.

Figure 4.5 Offline analysis results for subject 4. Windsorization and 
normalization applied during data preparation.
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Figure 4.6 Offline analysis results for subject 5. Applying or removing 
windsorization and normalization yielded same results.

Figure 4.7 Offline analysis results for subject 6. No windsorization and 
normalization applied during data preparation.
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Figure 4.8 Offline analysis results for subject 7. Windsorization and 
normalization applied during data preparation.

Figure 4.9 Offline analysis results for subject 8. Windsorization and 
normalization applied during data preparation.
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4.5.3 Discussion

Figure 4.10 shows the average classification performance. The x axis 

shows the number of trial groups, and the y axis shows the percentage the 

classifier predicted correct results. This figure tells us that in the ideal case 

with one trial group, 58% of the time the classifier predicts the right answer. 

For the rest of the time, the classifier has correct answers in 2 trial groups 

74% of the time and so on.

This result suggests that for 89% of the time, a letter can be classified 

correctly in only 2 trials. Considering the information in Figure 4.11, on 

average, a given set of 100 runs will last for 154 trial groups. This in turn 

shows that each run is on average classified in 1.54 trial groups. Assuming a 

period of 3.6 s for a trial group, this implies that a letter can be classified in 

5.544 s on average.

If we assume no delay between each run, then on the average our 

subjects can write 10.822 letters / minute. Unfortunately, one has to give a 

break to the execution of the experiment since feedback for a new letter is 

necessary to let the subject focus on the letter. If this interval between each 

letter is a brief 1.4 s as mentioned in Figure 4.1, the average letters per 

minute, found as a result of experiments done with 8 subjects, is found to be 

8.6405.

 This performance versus trials needed for 100% classification is 

illustrated in Figure 4.11 and Figure 4.12.
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Figure 4.10 Classification performance averaged over 8 subjects. The figure 
suggests that in 4 trial groups, more than 95% of the time the classifier 

predicted the correct target.

Figure 4.11 Distribution of a sample of a 100 letters, showing average 
classification performance of our subjects. The easiest 58 trials are classified 
with an accuracy of 100% in the first trial group, the next harder 31 trials 
need 2 trial groups, the next harder 10 trials need 3 trial groups and the 

hardest trial take 4 trial groups.

70



Figure 4.12 Histogram of data in Figure 4.11, showing how many letters 
take how many trial groups for correct classification.
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CHAPTER 5

ONLINE ANALYSIS

This chapter focuses on online recording, analysis and feedback of 

P300 signals. In chapter 4, we explored the capabilities of offline analysis, 

where the brainwaves are recorded first and the analysis is done separately 

afterwards, allowing one to do various kinds of analyses on the data. In 

online analysis, however, brainwaves are analyzed concurrently, as the 

recording continues. We have proposed and implemented improvements in 

our algorithms and software for online operation and efficiency. We have 

demonstrated reliable real-time operation of our system. On average, our 

system achieves 12.48 letters / minute with 89.75% and 11.14 letters / 

minute when 100% task completion is ensured This means the subject types 

all the letters he/she wants. There still might be errors in results, but they 

are compensated by the subject by retyping the wrong letter. The time that 

is lost due to retyping is taken into consideration in this result. Therefore we 

might say this is a pseudo-100% accuracy result.
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5.1 Background

There are two types of online analysis used in P300 speller research, 

according to the experimenter’s prior knowledge about the targets during 

the session. In one, the experimenter selects the target letters and gives 

them to the stimulus software to have the subject focus on those during the 

session. Since conductor knows what targets to expect and therefore the 

stimulus software records the trigger signals of these letters, the evaluation 

of system performance may be done with ease. Of course, this type of 

analysis is not really suitable for practical use, as the purpose of the whole 

speller is to provide disabled subjects a medium for interaction where they 

are free to write whatever they want. Nevertheless, in terms of evaluation of 

system performance, this method is frequently used since it allows more 

sophisticated analyses to be done off air, after the recording of the session is 

complete, just like offline analysis, using the knowledge of epoch labels. The 

difference with offline analysis is, the data are filtered and processed in real-

time, as they arrive. In other words, the data is first divided into epochs and 

then filtered and processed locally in epochs, instead of filtering and 

processing as a whole and then dividing into epochs. There are several issues 

that arise due to this in-epoch processing, and these will be investigated in 

section 5.2. In this type of analysis, runs always consist of a predetermined 
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number of trial groups (see section 4.3 for trial group). In other words, the 

number of trial groups in a run is not dependent on performance.

The second type is where the subject is completely free to choose the 

target letter to focus on. This time, the conductor has no prior knowledge of 

the target, and since there are no labels recorded with the data, he has to 

find it out only by classifying and evaluating the incoming signals. In this 

type of analysis, runs usually consist of different numbers of trial groups. 

The reason for this is as following:

Since this type offers no labels for epochs, the experimenter is unaware 

of the real target of the subject and has to find it out by analyzing the 

signals. Although waiting for a predetermined number of runs, and then 

looking at the classification results is possible, there usually is no need, 

because performance of the subject changes on every run; in one run, there 

might be good classification accuracy in 3 trial groups, and in another run, 

the same accuracy might be achieved in 6 trial groups. Now in the case that 

there is a predetermined number of runs, either one accepts false 

classification by not waiting enough for 6 trial groups, or waits redundantly 

for the answer might be already ready as soon as 3 trial groups. Making the 

system in a way to support random number of trial groups per run is a good 

idea to handle these problems.

Therefore we have developed a greedier version of our algorithm that 

relies on the fact that the classifier produces probabilistic scores. In the 
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beginning of each run, each row and column receives a score of 0. If their 

epoch includes a P300 wave, they get a positive score, with its magnitude 

reflecting the resemblance to the training set, and irrelevant epochs get a 

negative score. With this approach, there is usually no need to evaluate all 

the 12 epochs for a decision. If the score of an epoch already satisfies the 

margin, the decision can already be made.

Our analysis is based on this type, as it reflects the real usability of 

the system. From now on throughout this thesis, this type will be referred to 

as simply “online analysis”.

5.2 Problems and Observations

Evidence shows that background activity blurs the P300 activity in a 

quite random fashion. Therefore, averaging the incoming data for a better 

signal to noise ratio and easier analysis yields better results. In averaging, 

there are rows + columns number of groups, and members of each group are 

iteratively averaged (e.g., epoch of the first row in the matrix, in a trial 

group, has to be averaged again with the epoch of the first row in the next 

trial group). This is a huge disadvantage when one needs quick results, as 

the purpose of studies in this field is to decrease the number of necessary 

trial groups for correct classification, where the ideal number is 1. Clearly 

the second best performance, a correct answer per two trials, is not long 
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enough for averaging. In addition, in the previous chapter, we have shown 

that a large percentage of targets are classified in a few trials.  This fact 

makes averaging unsuitable for our purposes.

Another slight disadvantage in online analysis is in bandpass filtering. 

In offline analysis, bandpass filtering is done on a whole recorded data in a 

channel; in other words, the data to be filtered include a complete run. On 

the other hand, in online analysis, one has to filter and process data as they 

arrive in epochs. It is easily seen that epochs are just extracts of a recorded 

data of a run. Filtering parts of a data separately instead of filtering the 

data in whole produces a problem in dealing with low frequency 

components, as they are reflected in the recording as offset drifts. Filtering 

the data as a whole, helps one to have more samples, therefore even the 

smallest frequency component may complete a period, whereas in filtering 

by epochs, one cannot decide whether there is a sub-Hertz component or 

not.

Figure 5.1-3 show the same epoch of data in three different conditions; 

unfiltered, bandpass filtered before epoch extraction and bandpass filtered 

after epoch extraction. Figure 5.4 has the latter two on the same axis, to 

show the difference. Figure 5.5 shows the power spectrum of the same epoch 

in Figure 5.1-4. It is clearly seen that in-epoch filtering has a suppressive 

effect on low frequency components.

76



Keeping in mind that ISI is 300 ms (epochs have 300 ms delay between 

each other) and each epoch lasts for 1000 ms, it is clear that two consecutive 

epochs overlap. The last 700 ms of an epoch is the same as the first 700 ms 

of the following epoch. With this in mind, the error that occurs in in-epoch 

filtering can be visualized as in Figure 5.6-9. The second epoch (green line) 

is delayed to match the corresponding data points with the first epoch (blue 

line). For easier inspection, Figure 5.6 shows the two epochs separated on 

the same axis, regardless of their amplitude values. Figure 5.7 shows the two 

epochs overlapping. Note that the last 700 ms of the first epoch overlaps 

exactly with the first 700 ms of the second epoch. Figure 5.8 shows the two 

epochs separately, this time in-epoch filtered. Figure 5.9 shows two epochs 

overlapping. Notice that, either one of the epochs is wrong about estimating 

the actual data, i.e., the filtering errs.

Figure 5.1. Raw epoch data
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Figure 5.2. Epoch data filtered before epoch extraction 

Figure 5.3. In-epoch filtered data

78



Figure 5.4. Two different filtering schemes in one plot. Dashed line is data 
filtered before epoch extraction, solid line is in-epoch filtered data.

Figure 5.5. Power spectrum of the epoch in Figure 5.1-4. Dashed line is 
spectrum of data filtered before epoch extraction, solid line is spectrum of 

in-epoch filtered data.

79



Figure 5.6. Two consecutive epochs whose data were filtered before epoch 
extraction. The latter one (solid) is delayed for approximately 640 samples 

to overlap with the first one.

Figure 5.7. Two consecutive epochs whose data were filtered before epoch 
extraction. Note how they perfectly overlap, because essentially they are 

consecutive parts out of the same filtered data
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Figure 5.8. Two in-epoch filtered consecutive epochs.

Figure 5.9. Two in-epoch filtered consecutive epochs. If there were no 
filtering errors, the epochs would overlap perfectly, as in Figure 5.6

Figure 5.10 shows a standard classification performance of an offline 

analysis (where data is filtered before epoch extraction - no windsorization 

and normalization applied) and Figure 5.10 shows the results of the same 

analysis where data is filtered in epochs (without windsorization and 

normalization again). A similar performance drop like this one is observed in 
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most of the subjects, where a few exceptions exist. There were 4 letters in 

question in Figure 5.10 and 5.11. Correct classification of all letters in 

Figure 5.10 lasts 8 trial groups, 2 trial groups on average: 7.2s/letter. On the 

other hand, correct classification of all letters in Figure 5.11 lasts 11 trial 

groups, 2.75 trial groups on average: 9.9s/letter. These results tell us that, 

the order of filtering and epoch extraction has an impact on classification. 

Although we are free to choose the best order for offline analysis, for online 

analysis, filtering has to be done in-epoch. We conclude that we are forced 

to accept a worse performance, with actually the same data.

Figure 5.10. Classification performance of wholly filtered data
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Figure 5.11. Classification performance of in-epoch filtered data

Yet another problem is in windsorization and normalization. 

Practically, windsorization cuts the negative and positive peaks that lie in a 

margin of the maximum and minimum values in the given data. If one 

applies windsorization to data of a complete run, some smaller peaks will 

not be windsorized, in other words, some epochs might have no values that 

lie in the window.  On the other hand, windsorization in each epoch has 

little effect on peaks, because now the window will include less samples (due 

to the fact that an epoch is very short compared to a total run). Also, it 

might remove valuable data points in the case that there are no extreme 

points or peaks in that epoch. Figure 5.12 shows an epoch of data 

windsorized before epoch extraction, and Figure 5.13 shows the same epoch 

of data locally windsorized. Note that this epoch includes a peak. Figure 

5.14 and 5.15 show another epoch with different windsorization schemes, but 
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in this case there are no such peaks. There is a 10% window in Figures 

5.12-15.

Figure 5.12. Data windsorized before epoch extraction, includes peak

Figure 5.13. Data in-epoch windsorized, includes peak
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Figure 5.14. Data windsorized before epoch extraction, no peaks

Figure 5.15. Data in-epoch windsorized. Notice that the small, local peak is 
unnecessarily windsorized.

Unfortunately, normalization presents a similar situation, though it is 

not always a problem. Normalizing a data with peaks will suffer from low 

resolution, because to represent a peak in a normalized data one has to 

squeeze smaller-valued data points. We use zero-mean normalization, where 

the mean of the given data points are matched to zero. Although this 
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approach provides better resolution in small-valued data points, it is still 

prone to resolution loss. Windsorization helps normalization here, by 

removing some of those peaks. Figure 5.16 shows the effect of global and 

local normalization on the same epoch of data (no windsorization applied in 

both). Blue line represents global normalization, green line represents in-

epoch normalization. Clearly, global normalization has better resolution. 

Figure 5.17 shows the same epoch with windsorization applied. Note that, 

again, resolution is better in globally processed data and windsorization 

increases resolution.

Evaluating all of these different options to get a decisive scheme that 

performs good on all subjects showed us that it is practically impossible, 

and these nuances are subject dependent. Although we have shown with 

figures that processing data as a whole before epoch extraction looks good, 

classification performance vary from subject to subject. Performance of 6 

out of 8 subjects dropped with in-epoch processing (as exemplified in Figure 

5.10 & 5.11), whereas performance of the remaining 2 subtly increased.
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Figure 5.16. Different normalization schemes on the same epoch. Solid line 
represents global normalization, dashed line represents in-epoch 

normalization

Figure 5.17. Windsorization and normalization applied to the same epoch. 
Blue line represents global processing, green line represents in-epoch 

processing.
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5.3 Method

5.3.1 Preliminaries

To compare our results to other published works, we used two kinds of 

stimulus paradigms in online analysis, as in offline analysis. One is the 

classical gray and white matrix of 6x6 size that features letters and 

numerals.

On top of this, we propose another paradigm, where the letters flash in 

a randomly colored fashion. We believe this stimulation technique will fire a 

bigger P300 response in the subject’s brain, because the subject might get 

used to white flashes and expectations might arise. In a randomly colored 

fashion, there are two surprising events; one, as usual, the subject is 

unaware of when the flash will happen, and two, the subject is unaware of in 

what color the flash will happen.

Figure 5.18 shows an example where the same column is highlighted in 

different colors at different times.
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              (a)                                               (b)

Figure 5.18. Same row highlighted at different times.

The algorithm for random color generation is designed to select a 

random color out of six colors whose RGB values are listed in Table 5.1. 

Basically, each combination of 0 and 255 for each color is considered, and 

two colors are removed; black (since the background is also black), and due 

to subjects’ comments, blue.
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Color Name R G B

Green 0 255 0

Aqua 0 255 255

White 255 255 255

Yellow 255 255 0

Red 255 0 0

Magenta 255 0 255

Table 5.1. Details of colors used in random-colored stimulation paradigm

For online analysis, we have different numbers of sessions in our session 

group for each subject, where the first session is always the training session. 

Instead of using letters “D E D E D E D E” like offline analyses, we have 

used 8 random letters for each subject. Each run features 20 trial groups, 

and each trial lasts 300 ms.
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5.3.2 Data pre-processing

As we have mentioned before, the data are processed in-epoch. That is, 

incoming data are divided into relevant epochs first. After enough data to 

fill an epoch is streamed in, that epoch is ready for data preparation.

In the first step, the data are bandpass filtered in a 1-12 Hz passband 

to remove unwanted frequency components. Next, they are re-referenced to 

the mean of two mastoid channels. The data are then windsorized in a 10% 

window and normalized, and decimated by 64.

For details of this preparation, please see section 4.4.2.

5.3.3 Classification

As mentioned before, we use a greedy algorithm that gives faster 

results than the standard offline analysis method. This algorithm uses a 

fixed margin for all subjects, an empirical value decided by experimenting 

with data at hand. Observation shows that rows generally get smaller scores 

than columns. Therefore row margins are set at a lower value. When the two 

scores satisfy their margin, the intersection is displayed as the result of 

classification. Since the P300 response in subjects differ for all target epochs, 

scores vary, so the time to make a decision varies greatly. 
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5.4 Results and Discussion

Online performance values with color matrix are listed in Table 5.2. 

Note that these subjects do not necessarily follow the same numbering with 

subjects in Chapter 4. For easier comparison, we have included the offline 

analysis performance of subjects.

5.4.1 Results

Table 5.2 presents average online performance in detail, listing Right 

and Wrong classification results and two kinds of accuracy versus rate 

values. The first one allows errors in results, so typing rate is calculated 

disregarding the error in classification; therefore it is faster. In other words, 

the classifier produces wrong results, and these lower the overall accuracy 

for that subject.
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Average 
Offline 

Perform. 
(letters/
minute)

Average Online Performance (Color matrix)Average Online Performance (Color matrix)Average Online Performance (Color matrix)Average Online Performance (Color matrix)Average Online Performance (Color matrix)Average Online Performance (Color matrix)Average 
Offline 

Perform. 
(letters/
minute)

Right Wrong Time (s)

Avg. RateAvg. Rate Average 
Rate

(lts/min 
exc. W)

Average 
Offline 

Perform. 
(letters/
minute)

Right Wrong Time (s)
Acc (%) Rate

(lts/min)

Average 
Rate

(lts/min 
exc. W)

Subject 1 8.33 43 8 322.2 84.31 9.5 8.01

Subject 2 9.52 16 2 69.6 88.88 15.52 13.79

Subject 3 7.80 9 0 52.2 100 10.34 10.34

Subject 4 7.69 9 1 41.4 90 14.49 13.04

Subject 5 11.11 20 4 94.2 83.33 15.29 12.74

Subject 6 x 46 4 308.7 92 9.72 8.94

Average 8.89 89.75 12.48 11.14

Table 5.2. Average Online Performance

For example, Subject 2 typed a total of 18 letters, 16 correct and 2 

wrong. Then,

The total time for 18 decisions were 69.6 seconds. Then, typing rate in 

letters per minute is 15.52. This rate is achieved with 88.88% accuracy, due 

to the fact that 2 of the decisions were wrong.

The second accuracy versus rate calculation makes sure the subject 

types the exact letter he/she wants, so time spent on wrong classification 

 
Accuracy =

16
18

× 100 = 88.88%
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results are taken into calculation as lost time. This means, the subject has 

to correct the error, either by a backspace, or by retyping the intended 

letter. For example, if the subject intends to spell ‘ABCD’ and spells 

‘ABCE’ instead, he must correct himself by either spelling a backspace and 

the correct letter (which in this case the number of total spelled letters 

would be 7, with 5 correct letters (A, B, C, D, and one backspace) and one 

error (E)), or where backspace is unavailable, retyping the correct letter. 

Then the resulting string would be ‘ABCED’, with 4 correct letters and 1 

wrong letter. Note that the system is still prone to errors, but making sure 

that the subject writes all the intended letters has a meaning. Now, Subject 

2 intended to type 16 letters, but instead typed 16 correct and 2 wrong 

letters, achieving his/her goal in 18 letters. The total time to type all the 

intended 16 letters were 69.6 seconds. Then, the typing rate for intended 

letters is 13.79 letters per minute.

On average, our subjects had a typing rate of 12.48 letters per minute 

with an accuracy of 89.75%.

Figure 5.19 shows the first type of online analysis performance of 

Subject 5 with classical matrix and Figure 5.20 shows the first type of online 

performance of Subject 5 with color matrix. Figure 5.21 shows the first type 

of online analysis performance of Subject 3 with color matrix. Figure 5.22 

shows the first type of online analysis performance of Subject 4 with color 

matrix.
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Figure 5.19. Online performance of Subject 5 with classical matrix

Figure 5.20. Online performance of Subject 5 with color matrix
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Figure 5.21. Online performance of Subject 3 with color matrix

Figure 5.22. Online performance of Subject 4 with color matrix

5.4.2 Discussion

We have stated disadvantages of in-epoch data processing, in online 

analysis where the system is real-time, and then reported a performance 
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drop in most of the subjects. Then we showed online analysis results where 

color matrices were used as stimulus. The average speed is 12.48 letters/min 

for error ignorant results with accuracy of 89.75%, and 11.14 letters/min 

when errors are taken into consideration but the subject went on with 

typing until he typed all the letters he had intended first. The average offline 

performance of these subjects were 8.89 letters per minute for 100% 

accuracy. These results show that although there is a disadvantage in online 

analysis due to real-time processing, this disadvantage is compensated with 

our greedy algorithm that can produce fast results. Therefore, we see an 

increase in typing rate in online analysis. For online analysis, we had the 

opportunity to test color matrix performance versus classical matrix 

performance only with subject 5, and we see that there is a slight 

performance gain with color matrix.

We should note that the performance of our online algorithm is not at 

its best, as margins were fixed for all subjects. We believe that once a 

learning algorithm is developed for detecting optimum margins for subjects 

based on their training data, the performance would be much better. In 

other words, performance could be improves further by subject-adaptive 

selection of margins.
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CHAPTER 6

CONCLUSION

6.1 Summary

In this thesis, we have laid out basics of EEG applications and signal 

processing in EEG context. We have presented a new end-to-end brain-

computer interface, the P300 speller and evaluated its performance with 

both offline and online experiments. Compared to the published work so far, 

our results were superior in both cases. We have shown that, the P300 

speller is a good means of communication for disabled subjects.

Tackling the practical problems of such a system, we have explored 

various choices and improvements in both signal processing and the stimulus 

side. Effects of different data filtering schemes and different modes of 

stimulation were investigated and results were reported.
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6.2 Future work

6.2.1 Stimulus

Although we have presented our work in two schemes, one being the 

classical 6x6 matrix of gray/white letters and the other featuring random 

color flashes, there is a lot to be done in terms of stimulus experiments. 

Knowing there is little published work on stimulus alternatives, when 

designing our P300 stimulus software, we have kept in mind such 

opportunities, so our software allows many different customizations such as 

stimulus timing, matrix size and dimensions, cell contents, colors, flashing 

modes, etc. We are planning to do more experiments with different flashing 

modes, and especially, the round matrix.

6.2.2 Feedback

Another underdeveloped area of research in P300 speller is the means 

of feedback to the user. Most commonly, researchers wait for a 

predetermined time before displaying the result to the user, but we have 

shown in our work that this approach is redundant.

We have implemented the software infrastructure that allows us to 

display partial results as feedback, as the data is processed in real-time, as 

we think, this might increase the efficiency of the system. We have 
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experimented with such partial result feedback stimuli, but have not 

achieved a better performance. This is a field where a wide variety of 

improvements are possible.

6.2.3 Signal Processing

This area is where most of the effort in P300 speller research goes, and 

published work shows that there is no decisive answer for the question of 

which processing schemes to apply to subjects, as brain patterns and 

regulations of subjects differ, and their performance vary across different 

processing schemes.

In our work, we have chosen a fairly rugged, stable, good performance 

classifier, a Linear Discriminant Analysis with a Bayesian approach. This 

classifier features posterior density probabilities whose regularization 

parameters are learnt automatically from the training data. The research 

might be extended; more classifiers shall be tested and a study of their 

comparative performance shall be performed.

Furthermore, the performance of the decision-making algorithm we 

propose might be improved via application of machine learning techniques 

that deduce the necessary parameters and weights from the training data, 

therefore making the algorithm subject-specific.
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Another area of interest is the difference between row and column 

classification results. Our work shows that rows are harder to classify then 

columns. Although we have implemented one classifier for all stimuli, it is 

sensible to incorporate two classifiers; one for columns and one for rows. In 

fact, a study in this context presented promising results for such an 

approach in [14].

Another important aspect is the definition and characterization of 

errors in classification. Studying on the wrong answers in our experiments, 

we saw that often, a letter adjacent to the intended target is selected as the 

answer. Furthermore, an important portion of errors included letters 

irrelevant to the target, positioned in a far corner of the matrix. The effects 

that cause this type of wrong classification should be investigated in more 

detail. We believe that, training a second classifier based on these errors 

should help in error-reduction or preventing erroneous feedback to the user.

Overall, the P300 speller is still an exciting field of research that has 

countless unanswered questions. We are planning to address some of the 

issues addressed here in more detail in the near future.
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