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Abstract 

Single nucleotide polymorphisms (SNPs) are DNA sequence variations that occur when 

a single nucleotide in the genome sequence is altered. Since, variations in DNA 

sequence can have a major impact on complex human diseases such as obesity, 

epilepsy, type 2 diabetes, rheumatoid arthritis; SNPs have become increasingly 

significant in identification of such complex diseases. Recent biological studies point 

out that a single altered gene may have a small effect on a complex disease, whereas 

interactions between multiple genes may have a significant role. Therefore, identifying 

multiple genes associated with complex disorders is essential.  In this spirit, 

combinations of multiple SNPs rather than individual SNPs should be analyzed. 

However, assessing a very large number of SNP combinations is computationally 

challenging and due to this challenge, in literature there exist a limited number of 

studies on extracting statistically significant SNP combinations. In this thesis work, we 

focus on this challenging problem and develop a five step “disease-associated multi-

SNP combinations search procedure’’ to identify statistically significant SNP 

combinations and the significant rules defining the associations between SNPs and a 

specified disease. The proposed five step multi-SNP combinations procedure is applied 

to the simulated rheumatoid arthritis data set provided by Genetic Analysis Workshop 

15. In each step, statistically significant SNPs are extracted from the available set of 

SNPs that are not yet classified as significant or insignificant. In the first step, the 

genome wide association analysis (GWA) is performed on the original complete multi-

family data set. Then, in the second step we use the tag SNP selection algorithm to find 

a smaller subset of informative SNP markers. In literature most tag SNP selection 

methods are based on the pair wise (two-markers) linkage disequilibrium (LD) 

measures. But in this thesis, both the pair wise and multiple marker LD measures have 

been incorporated to improve the genetic coverage. Up to the third step the procedure 

aims to identify individual significant SNPs.  In the third step a genetic algorithm (GA) 
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based feature selection method is performed. It provides a significant combination of 

SNPs and the GA constructs this combination by maximizing the explanatory power of 

the selected SNPs while trying to decrease the number of selected SNPs dynamically. 

Since GA is a probabilistic search approach, at each execution it may provide different 

SNP combinations. We apply the GA several times to obtain multiple significant SNP 

combinations, and for each combination we calculate the associated pseudo r-square 

values and apply some statistical tests to check its significance. We also consider the 

union and intersection of the SNP combinations, identified by the GA, as potentially 

significant SNP combinations. After identifying multiple statistically significant SNP 

combinations, in the fourth and fifth steps we focus on extracting rules to explain the 

association between the SNPs and the disease. In the fourth step we apply a 

classification method, called Decision Tree Forest, to calculate the importance values of 

individual SNPs that belong to at least one of the SNP combinations found by the GA. 

Since each marker in a SNP combination is in bi-allelic form, genotypes of a SNP can 

affect the disease status. Different genotypes of SNPs are considered to define candidate 

rules. Then utilizing the calculated importance values and the occurrence percentage of 

the candidate rule in the data set, in the fifth step we perform our proposed rule 

extraction method to select the rules among the candidate ones. In literature there are 

many classification approaches such as the decision tree, decision forest and random 

forest. Each of these methods considers SNP interactions which are explanatory for a 

large subset of patients. However, in real life some SNP interactions that are observed 

only in a small subset of patients might cause the disease. The existing classification 

methods do not identify such interactions as significant. However, of the proposed five-

step multi-SNP combinations procedure extracts these interactions as well as the others. 

This is a significant contribution to the research on identifying significant interactions 

that may cause a human to have the disease.  
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Özet 

Genom dizilimindeki tek bir nükleotidin değiĢimi ile oluĢan DNA dizilimindeki 

çeĢitliliklere tekli nükleotid polimorfizm (SNP) denir. DNA dizilimdeki farklılıklar 

obezite, diyabet, romatoid artrit gibi kompleks hastalıkların oluĢumunda önemli bir 

etkiye sahip olduğundan, SNP analizi kompleks hastalıkların tanımlanmasında giderek 

önem kazanmaktadır. Yakın zamandaki biyolojik çalıĢmalar, tek bir gendeki değiĢimin 

kompleks hastalıkların tanılanmasında zayıf olduğunu gösterirken, birden çok gen 

etkileĢiminin önemli bir role sahip olduğunu iĢaret etmektedir. Bu nedenle, kompleks 

bir hastalığın teĢhis edilmesinde hastalıkla iliĢkili tek bir genden ziyade gen 

kombinasyonlarının incelenmesi gerekmektedir. Ancak insan genomunda çok fazla 

sayıda SNP bulunduğundan SNP kombinasyonlarının oluĢturulması hesaplama 

açısından zor bir problemdir. Bu nedenle literatürde kompleks bir hastalıkla ilgili 

önemli SNP kombinasyonlarının çıkarılmasını ele alan çalıĢmaların sayısı oldukça 

sınırlıdır. Bu tez çalıĢmasının amacı bu zorlu problem üzerine yoğunlaĢarak istatistiksel 

olarak önemli SNP kombinasyonlarını ve bu kombinasyonlardaki SNP’ler ile kompleks 

hastalık arasındaki iliĢkiyi gösteren önemli iliĢki kurallarının çıkarılmasıdır. Bu 

kapsamda beĢ aĢamalı arama algoritması geliĢtirilmiĢ ve önerdiğimiz prosedür Genetic 

Analysis Workshop 15 tarafından sağlanan romatoid artrit SNP data setine 

uygulanmıĢtır. Prosedürün her bir aĢamasında istatistiksel olarak önemli SNP’ler henüz 

önemli olup olmadığı belirlenmemiĢ mevcut SNP seti arasından seçilmektedir. 

Prosedürün ilk aĢamasında orjinal SNP verisine genom iliĢki analizi, ikinci aĢamada ise 

daha küçük fakat daha bilgi verici SNP seti elde etmek için temsilci SNP seçim metodu 

uygulanmıĢtır. Literatürde birçok SNP seçim algoritması ikili bağlantı dengesizliği 

(pairwise linkage disequilibrium) ölçülerine dayalıdır. Bu tezde, en az sayıda SNP ile 

maksimum genetik bilgiye ulaĢabilmek amacıyla hem ikili hem çoklu bağlantı 
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dengesizlik ölçü metotları kullanılmıĢtır. Üçüncü aĢamaya kadar, önerdiğimiz prosedür 

SNP’lerin önemini bireysel olarak incelemektedir. Üçüncü aĢamada ise genetik 

algoritmaya dayalı nitelik seçim metodu ile önemli SNP kombinasyonları elde 

edilmiĢtir. Genetik algoritma (GA), seçilen SNP sayısını dinamik olarak azaltmakta ve 

seçilen SNP’lerin açıklayıcı gücünü maksimize edecek Ģekilde SNP kombinasyonlarını 

oluĢturmaktadır. GA olasılıklı arama yaklaĢımı olduğu için algoritmanın her 

uygulanıĢında farklı SNP kombinasyonları elde edilebilir. Bu nedenle genetik algoritma 

birkaç kez uygulanmıĢ ve birçok önemli SNP kombinasyonu elde edilmiĢtir. Daha 

sonra, her bir önemli SNP kombinasyonu için istatistik testleri ve ölçüm kriterleri 

(pseudo r2) kullanılarak SNP kombinasyonlarının istatistiksel önemi kontrol edilmiĢtir. 

Ayrıca, belirlenmiĢ önemli SNP kombinasyonlarındaki ortak SNP’ler belirlenerek bu 

SNP’lerden yeni bir aday SNP kombinasyonu oluĢturulmuĢtur. Dördüncü aĢamada her 

bir kombinasyondaki en önemli 6 SNP’i belirlemek amacıyla karar ağacı ormanı 

sınıflandırma metodu uygulanmıĢtır. Kompleks bir hastalığın oluĢumunda SNP 

genotiplerinin de önem taĢıdığı düĢünüldüğünden beĢinci aĢamada SNP’lerin farklı 

genotipleri aday kurallar olarak göz önüne alınmıĢ ve önemli SNP 

kombinasyonlarındaki her bir SNP için aday SNP-genotip iliĢki kuralları çıkarılmıĢtır. 

BeĢinci aĢamada aday iliĢki kuralları arasından önemli kuralları seçmek için, hesaplanan 

önem değerlerinden ve aday kuralların görülme sıklığından yararlanılarak önerdiğimiz 

kural çıkarma metodu uygulanmıĢtır. Literatürde karar ağacı, karar ağacı ormanı, rassal 

orman gibi birçok sınıflandırma metodu kullanılmaktadır. Fakat bu metotların her birisi 

hasta insan populasyonunun çoğunluğunu açıklayan SNP etkileĢimlerini dikkate 

almaktadır. Ancak gerçek hayatta bazı SNP etkileĢimleri hasta insanların sadece çok 

küçük bir kısımda gözlemlenmektedir. Mevcut sınıflandırma metotları bu etkileĢimleri 

tespit etmekte yetersiz kalmaktadır. Bizim önerdiğimiz beĢ aĢamalı SNP kombinasyonu 

arama prosedürü ise hem bu iliĢkileri hem de diğer sınıflandırma yöntemleri tarafından 

bulunan önemli iliĢki kurallarını çıkarabilmektedir. Bu nedenle, önerdiğimiz beĢ 

aĢamalı SNP kombinasyonu arama prosedürü ve iliĢki kurallarının çıkarımı algoritması 

kompleks bir hastalığa neden olabilecek önemli SNP etkileĢimlerinin incelenmesine 

iliĢkin çalıĢmalara önemli bit katkı sağlamaktadır.  
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CHAPTER 1 

 

INTRODUCTION 

 

Recently, SNP (single nucleotide polymorphisms) analyses have been receiving 

significant attention for developing new treatments against common complex diseases. 

A combination of genetic, environmental and even lifestyle factors may cause the 

complex disease. Thus, investigating the disease causing effects is not an easy task. 

Since complex diseases are not controlled by a single locus, analyzing SNP 

combinations would be more powerful to extract the susceptible gene or chromosomes 

related to the disease  

In this study, we focus on the rheumatoid arthritis (RA) disease, which is a complex 

multi factorial disorder. It affects many joints and tissues and cause deformations of 

them. To determine possible genetic reasons of RA, we conducted a genome based 

analysis. Scientists have been investigating RA many years. According to these 

previous studies, we know some of the susceptible chromosomal regions which are 

associated with the disease. Although other chromosomes may affect the disease status, 

we just focus on chromosome 6 to test our results against the previous studies.  

There is a wide literature on the SNP analysis for different objectives. For instance, 

the genome wide association or linkage based methods can be applied to determine the 

possible disease related SNPs from a SNP data (Freedman, 2004; Samani et al., 2007; 

Uh et al., 2007). In order to obtain a specified genetic coverage with the minimum 

number of SNPs a tag SNP selection method can be used (Gopalakrishnan, 2006; Sya et 

al., 2006; Hao, 2007; Wang et al., 2008). Data mining tools or classification methods 

can be performed to extract susceptible disease related genotypes (Murthy et al., 1995; 

Tong et al., 2003; Tong et al., 2004; Xie et al., 2005).  

The aim of genome wide association (GWA) analysis is to determine disease 

susceptibility genes for complex disorders. By the help of this approach we can scan a 

large number of SNP markers in the human genome. The principle of GWA is based on 
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comparing allele, genotype or haplotype frequencies between patient and healthy 

people. In our study we scan 17821 SNP markers on chromosome 6 in human genome 

to detect RA disease related significant SNPs.  

Tag SNP selection is an important method in designing case control association 

studies (Hao, 2007). Linkage disequilibrium measures which are based on pair wise 

correlation between SNPs are widely used for the purpose of designing association 

studies (Gupta, 2005). The goal is to minimize the number of markers selected for 

genotyping in a particular platform and therefore reduce the genotyping cost while 

simultaneously representing information provided by all other markers (Hao, 2007). 

Thus, the main advantage of tag SNP selection is obtaining a smaller set of SNPs, which 

includes most of the information in the original SNP set. In our study, we used 

Haploview-Tagger software for the tag SNP selection. The tag SNP selection algorithm 

of Tagger is based on both the pair-wise and multiple linkage disequilibrium. 

Feature selection is a variable selection method which helps us to better understand 

the data and it is another powerful method to select a subset of disease relevant SNPs. 

This technique is also referred as the discriminative gene selection in the field of 

biology. Feature selection algorithms are used to determine influential genes related to 

the disease by removing most irrelevant and redundant SNPs from the data (Horne et 

al., 2004; Phuong et al., 2005; Saeys et al., 2007). In our study, our aim is to analyze 

disease susceptible SNP combinations not to analyze the effect of an individual SNP. 

Thus, we developed a feature selection method based on a genetic algorithm to 

determine disease related SNP combinations.  

The machine learning techniques such as support vector machines, decision tree 

and decision forest are used to identify a set of disease causing SNPs. Machine learning 

is a scientific discipline that deals with the developing algorithms that let computers  

change behavior based on data. Among these techniques, decision tree and decision tree 

forest are widely used for the SNP classification, since they allow the use of both non-

numerical and numerical values (Vlahou et al., 2003). Besides, the accuracy of decision 

forest and decision tree is higher than other methods (Murthy et al., 1995). Decision 

forest is a technique of combining the results of multiple classification models to 

produce a single prediction (Tong et al., 2003). Because most genetic data is noisy, a 

decision tree algorithm may not provide reasonable classification accuracy. However, 

when several decision trees are combined to produce a decision tree forest, 

classification accuracy considerably increases. Therefore, we preferred to use a decision 

http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Data
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tree forest algorithm rather than a decision tree algorithm. We compute a significance 

value for each SNP of a SNP combination set by using the DTREG software. 

Consequently, we determine the most significant SNPs for each combination set. 

In complex diseases, determining the most significant SNP combinations may not 

be adequate to explain the disease because different genotypes of a bi-allelic SNP may 

affect the disease status in a different way. While a homozygous genotype may be the 

reason of the disease, a heterozygote one may not. Thus, after determining significant 

SNP combinations, the genotype effect should be extracted. For this reason, we develop 

a decision rule procedure.  

The reasons of having a complex disease have been studied for many years, but 

most of the studies focus on individual effects of SNPs. Since a complex disease is 

multi-factorial, a group of SNP effects should be investigated. Our genetic algorithm 

based feature selection method analyzes multiple SNPs simultaneously. Thus, our 

proposed approach is potentially more successful to explain the disease causing effects 

compared to individual SNP analysis methods. Besides, existing studies in general have 

computational difficulties to investigate more than two-SNP effects due to the memory 

and time limits. Fortunately, we are able to identify several-SNP effects in a reasonable 

time and without requiring too much memory. In addition, unlike the existing decision 

rule methods our method may detect rarely observed relations and so may provide a 

higher explanatory power. Moreover, there is no other study which combines all the 

bioinformatics approaches mentioned above; genome wide association analysis, optimal 

tag SNP selection, feature selection, decision tree forest and decision rule models. Thus, 

our study may be a useful guide for the complex disease analysis and contribute to 

literature and real-world practice. 
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CHAPTER 2 

 

PREPROCESSING OF THE DATA: GENOME WIDE ASSOCIATION 

ANALYSIS AND RELATED WORK  

 

The first step of our work is to apply genome wide association analysis (GWA) to 

determine disease susceptible SNPs and eliminate unrelated and redundant SNPs from 

the data. By applying GWA, we obtain a smaller set of potentially significant SNPs 

related to RA disease.  

There are two different methods considering the whole genome to identify 

causative factors of a complex disease: genome wide linkage mapping and genome 

wide association analysis (GWA). Although genome wide linkage mapping is robust 

when two different alleles at a locus affect the disease susceptibility (allelic 

heterogeneity), it is not robust when two different alleles at different locus affect the 

disease susceptibility (locus heterogeneity). Linkage mapping is partially successful to 

determine the disease related genes or single nucleotide polymorphisms (SNPs) when 

heritability of a complex disease is low. Unlike the genome wide linkage mapping, the 

genome wide association analysis can be applied for both pedigree and case/control data 

sets. Risch et al. (1996) compare the two methods and mention that the genome wide 

association is a more powerful technique. Thus, we use the genome wide association 

method in our study instead of the linkage mapping. Before introducing GWA, a brief 

explanation of single nucleotide polymorphisms (SNPs) is given in below. 

Single nucleotide polymorphism (SNP) is a variation in DNA sequence which 

occurs when a single nucleotide (A, T, C or G) in the genome differs between members 

of a species. For instance, two similar DNA sequences (AAGCCTA and AAGCTTA) 

are presented in Figure 2.1. The only difference in these sequences is the 5
th 

nucleotide 

(C and T). Each different sequence is called a SNP.  

Study of SNPs is a key point in biomedical science to identify a function of a gene. 

In human genome, there are approximately 10 million SNPs some of which do not have 
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a significant role in developing the disease. Thus investigating whole SNPs allows us to 

identify associated SNPs with the risk of developing a disease.  

 

Figure 2.1. Two DNA molecules with a polymorphism 

 

2.1. Genome Wide Association Analysis  

GWA is a method to investigate millions of susceptible SNPs to associate them to a 

specific disease. GWA focuses on comparing the genetic variation between case 

(individuals having the specified disease) and control (individuals not having the 

disease) groups. It is based on the idea that if the genetic variation at a gene location is 

observed more frequently in case groups than in control groups, this variation is 

considered as strongly the reason of the disease. Currently, GWA has been applied for 

many complex diseases: obesity (Johansson et al., 2009), breast cancer (Zheng et al., 

2009), type 2 diabetes (McCarthy et al., 2009), myocardial infarction (Kathiresan et al., 

2009) and Alzheimer (Waring et al., 2008). Genome wide association analysis has six 

main steps: 

 Collecting genomic data: selection of case and control groups  

 DNA isolation, genotyping and quality control of SNPs 

 Analysis of population stratification  

 Statistical tests for SNP association 

 Looking up potentially significant SNPs  

 Replication of identified association in an independent population  

In our study, GWA is applied by the help of the genome wide analysis module of SVS7 

software (SNP and Variation Suit) which is developed by Golden Helix Team.  
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2.1.1. Collecting Genomic Data  

 

The data in our hand is a simulated rheumatoid arthritis data which is provided by the 

Southwest Foundation for Biomedical Search Group (Genetic Analysis Workshop 15, 

2006, GWA15). GWA team firstly generated a population including two million 

families each of which including 2 parents and 2 offspring with the RA status. 100 

random samples, including 2000 controls (none of the individuals in the family has the 

disease status) and 1500 case families (including affecting sibling pair (ASP) and 

affected or unaffected parents), are created from the entire population. Each of 100 

replicates (the random sample) includes all the individuals of 1500 case families and 

just one randomly selected individual of a control family. 

In GWA analysis, the selection of case and control groups from the same 

population is a crucial issue. The previous related studies reveal that DR type at the 

HLA locus on chromosome 6 of human beings has strongly affected the RA status. 

Thus, we investigate a very dense map of 17820 SNPs on chromosome 6 rather than 

considering the whole chromosomes. We need to have three different data files, 

including phenotype, genotype and map information. Phenotype data consists of family 

id, individual id, father id, mother id, sex and rheumatoid arthritis affection status 

(2=affected, 1=unaffected). Individual IDs are unique integers within each replicate. All 

SNPs in the data are in diallelic form and are coded as 1 and 2. In the map data, 

chromosome number, marker name and physical location in base pairs are reported. 

There is no missing SNP information on all family members in the data.   

Moreover, although the original data includes some genotyping errors, these errors 

are not modeled for 100 replicate samples. In addition, there is no false phenotype 

information. To upload our data to SVS, we first write a C++ code to convert the data to 

SVS7 input format.  

 

2.1.2. Genotyping and Quality Control  

 

2.1.2.1.1. Filtering Poor Quality SNPs 

 

Before statistical testing, we filter poor quality SNPs from data according to some 

quality metrics: call rate, minor allele frequency and Hardy Weinberg Equilibrium 

(HWE).  
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Call rate: We drop SNPs that can not satisfy the specified call rate (0.90).  

Minor allele frequency (MAF): MAF indicates the frequency of a less common allele of 

the SNP at a locus that is observed in a specific population. If we select SNPs having 

lower MAF values in the data, we need to select more tag-SNPs to capture the whole 

variation in the population. Since our aim is to find a minimum number of SNPs 

associated to the disease, we desire higher MAF values. Generally, the most appropriate 

MAF value is 0.01. Thus, we drop SNPs having a MAF value smaller than 0.01. 

2.1.3. Detect Population Stratification 

Since population stratification may cause false positive results in the analysis, assessing 

the impact of population stratification is a significant part of GWA analysis. Population 

stratification indicates the differences in allele frequencies between case and control 

groups resulted from different ancestries rather than the association between the 

diseases. Population stratification (population structure) is analyzed by comparing the 

observed association between SNPs and the disease with the expected association 

statistics under the null hypothesis of no association. The deviations from the null 

distribution are assessed by quantile-quantile plot (Q-Q plot). In y axes of Q-Q plots, 

the observed association statistics (chi-square statistic or –log10p) of each SNP are 

displayed in an increasing order. In x axes of Q-Q plots, expected association statistics 

under the null hypothesis (such as chi-square) are displayed. If there is a deviation from 

the identity line, either the assumed distribution is incorrect or the sample includes true 

associated SNPs.  

In Figure 2.2.A the black line points out the expected chi-square statistics under the 

null hypothesis of no association. The dark blue line indicates the observed chi-square 

statistics including all SNPs and the light blue line shows the observed chi square 

statistics when the most strongly associated SNPs are excluded from the data. Figure 

2.2.B refers to the observed and expected chi-square statistics of SNPs after the 

population stratification is adjusted. After adjustment, the observed chi-square statistics 

of SNPs converges to expected chi-square statistics which indicates the existence of 

population stratification in the data.  
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Figure 2.2. Quantile – Quantile Plots (A and B) 

Another method to analyze the population stratification is the principal component 

analysis (PCA). Since we do not know the statistically significant SNPs in the 

beginning of the study, we applied the genotypic principal component analysis which 

uses the “EIGENSTART” PCA technique developed by Price (AL et al., 2006). 

Firstly we compute the principal components by finding up to top 50 components. 

For further information about principal component formulas, you can read “SNP and 

Variation Suite (SVS)” Manual. We then plot eigenvalues of principal components to 

determine the number of principle components to be extracted from the data. The 

largest eigenvalues correspond to principal components. According to “EIGENSTRAT” 

PCA technique the first principal component or the first few principal components 

correspond directly to the stratification patterns. Therefore, after determining the top k 

(user defined value) principal components, these patterns should be removed from both 

the SNP data and dependent variable data by using vector-analysis related techniques. 

SVS automatically detects these patterns and removes them from the data and provides 

a corrected input data to the user. To be sure about removing the patterns, SVS also 

provides a PCA outlier removal option. To do this, we select the number of principal 

components involving in this process and standard deviation threshold to remove 

outliers. After correcting the population stratification, genotype association tests will be 

applied to the corrected data.  
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2.1.4. Genotype Association Testing  

Although SVS provides many association tests, the only statistical test which is 

available for corrected data is the correlation trend test.  

2.1.4.1. Correlation/Trend Test 

Correlation/Trend test is used to test the significance of correlation between two 

numeric variables. Suppose that we have n pairs of observations, xi for (i=1, 2…n) 

indicating the SNP value and yi indicating the disease status. The correlation between xi 

and yi, denoted by R, is: 

       
(2.1) 

R
2
 approximates a chi-square statistic with (n-1-k) degrees of freedom, where k is 

the number of principal components that is removed from the data. This chi-square 

statistics allow us to find a p value. 

                                                                                  (2.2)                             

2.1.4.2. Bonferroni Correction  

Bonferroni correction is a method used for multiple dependent or independent 

hypothesis testing comparisons. According to Bonferroni rule, if we want the overall 

significance level of the whole set to be equal to α, each individual hypothesis must be 

tested at α/n significance level where n is the total number of hypothesis.  By reducing 

the alpha value, we can avoid false positive results or in other words type 1 error. Type1 

error is the rate of rejecting the null hypothesis when the null hypothesis is true. In our 

study, the null hypothesis refers to the case of not having the disease.  

2.1.4.3. False Discovery Rate (FDR) 

False discovery rate is the expectation of proportion of false positives to total positives 

in the data. FDR controls the type-1 errors in the analysis. 

                                                              (2.3) 
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2.1.5. Looking Up Potentially Significant SNPs 

We firstly list the correlation/trend test p values in an increasing order and then select 

the SNPs having a p value smaller or equal to specified significance level (α/n) for 

further analysis. After determining the statistically significant SNPs, we isolate the non-

significant ones from the data and construct a new subset of SNP data.  

2.1.6. Replication of Identified Association in Independent Populations 

The replication of genome wide association analysis in independent populations is 

significant to reduce the number of false-positive results. A false positive result refers to 

a SNP which is found to be related to the disease although it has no effect on developing 

the disease. To eliminate these results, we perform seven replication studies with 

different case and control populations. Each replication data includes the same SNP set 

(17820 SNPs on chromosome6).  
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CHAPTER 3 

 

PREPROCESSING OF THE DATA: OPTIMAL TAG SNP SELECTION  

 

 

The current genotyping technologies are not adequate to genotype all SNPs in all genes 

although the number of SNPs at a gene is finite (Nickerson et al., 2000). Thus, a set of 

informative SNPs should be chosen to use existing technology. Consequently, 

theoretical approaches have been developed for many years to choose a set of 

informative SNPs. Carlson et al. (2004) mention that investigating all SNPs is 

inefficient, because some of these SNPs are strongly correlated and they can provide the 

same information. The technique of selecting a set of minimum number of SNPs which 

provides maximum information about unselected SNPs in the data based on the 

correlation between SNPs is called the tag SNP selection procedure. There exist many 

publications about tag SNP selection based on linkage disequilibrium statistics 

(Gopalakrishnan et al., 2005; Syam et al., 2006; Hao K., 2007; Wang et al., 2008).  

Pearson et al. (2008) state that SNPs which are located nearly each other are tend to 

be inherited together more often than expected by chance, and this nonrandom 

association is called the linkage disequilibrium. If a SNP has high linkage 

disequilibrium with another SNP, they are almost always inherited together. Thus, if we 

know the information that one of these SNPs is related to the disease, we can easily 

state that the other SNP may strongly be related to the disease as well. Linkage 

disequilibrium for a SNP pair is quantified by the help of a correlation measure. This 

correlation measure indicates the proportion of variation of one SNP explained by other 

SNP and it can only take the values between 0 and 1. If a SNP pair has a correlation 

value bigger than a pre-specified value (generally 0.8), those SNPs are supposed to be 

related to the disease. Linkage disequilibrium (D) and correlation (R
2
) measures are 

calculated as in below. 
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Most tag SNP selection studies are based on the pair-wise linkage disequilibrium. 

Shyam et al. (2006) study tag SNP selection based on the pair-wise linkage 

disequilibrium criteria to minimize the number of selected SNPs while obtaining 

maximum information provided by all SNPs. Although pair-wise linkage disequilibrium 

methods provide reasonable solutions, researchers have also focused on multiple 

linkage disequilibrium based tag SNP selection algorithms. Hao K. (2007) proposes a 

tag SNP selection method which is based on the multiple marker linkage disequilibrium. 

He develops Carlon’s Greedy algorithm method (Carlson et al., 2003; Carlson et al., 

2004). The proposed method by Hao includes both pair-wise and multiple SNP linkage 

disequilibrium of nearly located SNPs. Wang and Jiang (2008) propose a new greedy 

algorithm by considering the method of Hao. Their method is more efficient in terms of 

time and memory.  While Hao’s aim is to find a tag SNP set which can cover most of 

the data, Wang and Jiang can find a SNP set which covers all the SNP in the data with 

less time and memory usage. Barrett et al. (2005) also develop a tag SNP selection 

algorithm based on both the pair-wise and multiple correlations. This algorithm has 

been integrated in Haploview software which is developed by The Broad Institute of 

MIT and Harvard in 2004. We used Haploview-Tagger module to find optimal tag 

SNPs among the set of SNPs which are obtained at the end of genome wide association 

analysis.  

3.1. Haploview Tagger Module 

Haploview Tagger algorithm works in two steps. First, it selects tag SNPs based on the 

pair-wise linkage disequilibrium, which is similar to Carlson’s Greedy approach. In the 

second step, it searches SNPs based on the multiple linkage disequilibrium (multi-

marker haplotype) to improve tagging performance. Multi-marker correlation measures 

are calculated similar to the pair-wise correlation. The only difference is the multi-
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marker approach uses haplotype instead of single SNPs. Thus, it calculates the 

correlation between haplotype blocks. A haplotype is a haploid genotype; it is a set of 

closely linked SNPs that are tend to be inherited together. Haploview Tagger has an 

option to force specific SNPs as tag SNPs not to exclude them from the further analysis. 

According to previous studies of RA disease and the results obtained for the GWA15 

simulated data, SNP3437 is strongly related to the disease. Thus, in all tag SNP 

selection processes, we use this option not to exclude SNP3437 before implementing 

the genetic algorithm based feature selection process. Haploview Tagger algorithm 

needs haplotype blocks for multi-marker correlation calculations. Therefore, before 

running the Tagger algorithm, we form linkage disequilibrium blocks based on the 

Gabriel’s algorithm (Gabriel et al., 2002). Then we determine the tag SNP selection 

criteria. We ignore pair-wise comparisons of SNPs which have a distance bigger than 

300 kb apart. This avoids the selection of SNPs which are too far from each other. We 

also set correlation threshold as 0.8 and LOD (log of odd ratio) score as 3.0. LOD score 

is a statistical estimate of whether two loci are likely to lie near each other on a 

chromosome and are therefore likely to be inherited together as a package (Breiman, 

1999). Finally, we set the minimum distance between tag SNPs as 0 bp and run the 

Tagger algorithm. The Haploview Tagger output provides us with the tag SNPs set, 

captured SNPs set and a coverage ratio. The captured SNPs are the SNPs which are not 

selected as the tag SNPs but can be explained by the tag SNP sets. The coverage is the 

percentage of alleles which are explained by the tag SNPs set. At this stage, we obtain 

the potentially informative disease related SNPs and the next step is to find the disease 

related SNP combinations. For this reason, we develop a genetic algorithm based 

feature selection method, which will be explained in detail in Chapter 6.  

3.2. Detecting Colinearity between TAG SNPs 

Since we select tag-SNPs according to linkage disequilibrium measures, it is most likely 

to include correlated SNPs in the constructed tag-SNP set because a tag SNP is highly 

correlated with its neighboring SNPs. In genetic algorithm based feature selection 

method, we use the method of logistic regression to construct SNP combinations. 

However, considering correlated SNPs as predictor variables in a regression analysis 

can lead misleading results. For example, some of the estimated coefficients in the 

regression equation can even have opposite signs. Thus, excluding correlated SNPs 



27 

 

from the further analysis is crucial to improve the statistical performance of a regression 

model. For this reason we calculated the pair-wise correlation of each SNP to extract the 

colinearity between SNPs and exclude SNPs which have a pair-wise correlation higher 

than 0.90. We also make a list of correlated SNPs to determine the excluded SNPs 

associated with each selected SNP. 
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CHAPTER 4 

 

APPROACHES USED IN GENETIC ALGRORITM BASED FEATURE 

SELECTION METHOD  

 

Before introducing our genetic algorithm based feature selection method, the utilized 

statistical techniques are briefly discussed in this section to provide better understanding 

of the proposed method.  

4.1. Logistic Regression and Related Studies  

In the field of bioinformatics, epidemiologic data sets include large number of 

genes (SNPs) and small number of data samples. This issue makes it difficult to classify 

and construct a model for the gene or SNP selection. However, logistic regression is an 

effective approach to analyze significant genes or SNPs in medical studies. For 

instance, Foraita et al. (2008) apply logistic regression for comparison of graphical 

chain models. After constructing several logistic models, another important issue is how 

to select one of the models. Therefore, two information criteria are proposed to select 

the best statistical model among a group of models: Akaike information criterion (AIC) 

and Bayesian information criterion (BIC). For instance, Stumpfl et al. (2005) apply AIC 

for statistical analysis of biological networks. Xiaobo et al. (2005) propose a logistic 

regression method based on AIC and BIC to identify important genes for the cancer 

classification. Li et al. (2001) apply a two stage variable selection method to the 

German asthma data set to find the variables that best explains the data set. In the 

following section, we present a brief explanation of logistic regression, the motivation 

of using logistic regression and the explanation of AIC and BIC criteria.  
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4.2. Introduction to Logistic Regression 

Like many forms of regression analysis, logistic regression uses several predictor 

variables, but it specifically aims to estimate the probability of occurrence of an event. 

Our aim of using a logistic regression method is to construct a biologically reasonable 

model to explain the association between a dependent variable (the probability of 

having the disease) and many independent variables (a group of SNPs).  In this section, 

we briefly introduce the univariate logistic regression method but in our study we apply 

the multiple logistic regression method and the presented techniques can be generalized 

for the multivariate case.  

4.2.1. Logistic Regression Method  

The mean value of the dependent variable given the independent variable is called the 

conditional mean and represented as “  xYE / ”. (x=independent variable, Y=dependent 

variable). In linear regression this conditional mean is explained by a linear equation: 

                                              ./ 10 xxYE                                                            (4.1) 

where 0  and 1  indicate the model coefficient. For binary response variables, the 

conditional mean must be between 0 and 1. [0 ≤  xYE /  ≤ 1] like the cumulative 

distribution of a random variable. Thus, for the analysis of binary dependent variables, 

many distribution functions have been used. In our study, we used the logistic 

distribution. Let us denote the  xYE /  by  x . By using the logistic distribution; 

 x  is defined as; 

 x =
.

.
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       (4.2)   

 

Figure 4.1. Logistic curve 

http://en.wikipedia.org/wiki/Probability
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As it can be seen from the figure of the logistic curve, input values for the logistic 

curve can take any value from -∞ to +∞. Since  x  can only take the values between 0 

and 1, it must be converted to a real number in linear regression. This transformation is 

called “logit transformation”. By transferring  x  to  xg , we can obtain continuous 

values which can range from -∞ and +∞.  
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(4.3)   

The unknown model parameters ( 10 , ) are estimated using the maximum 

likelihood estimation method. Thus, the maximum likelihood estimators, which 

maximize the likelihood function, are used to predict the probabilities of having the 

disease.  

4.2.3. Testing the Significance of the Variables 

The model parameters are estimated with and without the independent variables 

that are tested for the significance. These two sets of estimated parameters define two 

likelihood functions, which we refer to as fittedLL
 
and fullLL ; fittedLL : likelihood of the 

fitted model and fullLL : likelihood of the model including all parameters. The 

“likelihood ratio test” used the following statistic “D” to compare the difference 

between these two models:  

   













full

fitted

LL

LL
D ln2                                                            (4.4) 

D is also called “deviance”. Moreover, the distribution of D is known 

(approximately chi-square distribution) and therefore can be used for hypothesis testing.  

4.3. Assessing the Fitness of the Model (Goodness of Fit Test) 

By the goodness of fit test, we can test how effective a logistic model is. In our study, 

the statistical tests and pseudo r
2
’s are used for two purposes. The first purpose is to test 

the significance of a SNP-combination and the second purpose is to compare the 

significance of different SNP-combinations.  
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4.3.1. Classification Tables  

A classification table displaying the results of correctly and misclassified instances is 

useful to understand how the model fits the data. We perform the following steps to find 

the classification error: 

 Calculate the predicted response variables representing the probabilities of 

having a disease by applying the multiple logistic regression.  

 Using the estimated function, calculate the predicted disease probability for each 

individual. 

 Predict whether an individual has the disease or not based on the predicted 

probability. Set a cutoff value and if the predicted probability of an instance is 

bigger than that cutoff value, it is considered as case (has the disease) and takes 

the value of 1. If it is smaller than the cutoff value, it is considered as control 

(does not have the disease) and takes the value of 0. 

 Compare actual disease status and predicted disease status and count the number 

of correctly classified instances.  

 Divide the number of truly classified instances to the total number of instances 

to obtain the correct classification rate.  

There are two measurements in a classification table: sensitivity and specificity. Let 

us denote the response variable as Y. Positive value of Y (Y=1) indicates cases and 

negative value of Y (Y=0) indicates controls. 

                                                             (4.5) 

                                                            (4.6) 

In our study, our aim is to obtain the highest sensitivity with the constructed logistic 

model (SNP-combinations). We want to predict the disease status with minimum 

number of explanatory variables. However, just considering sensitivity can lead 

misleading results due to the fact that the constructed model (SNP-combinations) can 

also be explanatory for controls. Thus, we define a new measurement which we call 

“CAR (classification accuracy ratio)” to indicate the classification performance of the 

constructed model.  

                                              (4.7) 
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4.3.2. Hosmer-Lemeshow Test  

Hosmer and Lemeshow (2000) suggest dividing observations into groups according to 

their predicted probabilities to obtain a chi-square statistics. To use Hosmer-Lemeshow 

test we firstly list predicted probabilities in an ascending order. Then we divide these 

probabilities into 10 groups. The first group includes the observations which have the 

smallest predicted values and the last group includes the observations which have the 

highest predicted values. For each group, we compute a chi-square statistic by using the 

predicted and observed probabilities. 

     

 group 

 

 

 

Then we construct a null hypothesis stating that there is no difference between the 

observed and predicted probabilities. If the p value of the statistic is smaller than 0.05, 

we reject the null hypothesis. Hence greater p value is desired not to reject the null 

hypothesis. 

4.3.3. Likelihood Ratio Test (LRT) 

LRT is another option to test the goodness of fit of the model obtained by the logistic 

regression. This test uses log likelihoods (LL) as a measurement. Since probability is 

smaller than 1, LL can take values between negative infinity and zero. Statistical 

packages like SPSS and STATA does not display LL. Since -2LL approximates a chi-

square distribution, they provide -2*LL. We desire small values of -2LL for better 

prediction of response variable. Suppose a model h(x) with N predictors: 
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Then construct a null hypothesis (H0) and compute the following measurements by 

using the equation 4.4.  

         Null Hypothesis: Ho: 0....10  N                              

-2LLnull = model with only intercept      

    -2LLmodel (N) = model with intercept and N predictors     

        Model chi-square= -2LLnull-(-2LLmodel (N)) with N degrees of freedom     

If the model p value is smaller than a pre-specified threshold value, we can reject 

the null hypothesis meaning that the model is statistically significant.  

4.3.4. Scalar Measures of Fit: Pseudo R
2
 

Unlike linear regression, there is not only one coefficient of determination (R
2
) defined 

for logistic regression. However, there are different pseudo R
2
’s which are constructed 

to measure the fitness of a logistic model. Although they are different, none of them is 

superior from each other. Besides, none of these pseudo R
2
’s represents the explained 

variance clearly. Hence they only provide partial information about the model.  

4.3.4.1. Efron’s Pseudo R
2
 

Efron (1978) suggested a pseudo-R
2 

for binary response variables.  

                                                   

 

 

  

4.3.4.2. McFadden’s Pseudo R
2
 

McFadden (1973) proposed a pseudo R
2
 for models whose parameters are estimated by 

a maximum likelihood method. This pseudo R
2 

also called “likelihood ratio index”.  

 Calculate the log likelihood  of the model with all parameters in the 

regression model. 

 Calculate the log likelihood  of the model with only the intercept.  
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To avoid overfitting, McFadden’s pseudo R
2
 is adjusted by including a penalty 

parameter (K) which indicates the number of predictors in the model. 

                                           

4.3.4.3. Cox and Snell Pseudo R
2
 

Most statistical packages like SPSS provide Cox and Snell pseudo R
2
 in logistic 

regression outputs. We also compute this measure. Let N be the total number of 

observations in the data set, then Cox and Snell pseudo R
2
 is given by; 

 

4.3.4.4. Nagelkerke Pseudo R
2
 

Since Cox and Snell pseudo R
2
 can never take the value of 1, Nagelkerke modified it 

and suggested the following pseudo-R
2
 by dividing the Cox and Snell pseudo R

2
 by its 

maximum possible value. 

                                                                                                     

4.3.4. Information Measures  

To compare and select logistic models including different number of parameters, 

information measures like Akaike Information Criterion (AIC) and Bayesian 

Information Criterion (BIC) have been recently used in literature. Model selection 

criteria of AIC/BIC recently applied to epidemiology (Li et al., 2001); microarray data 

analysis (Nyholt et al., 2001) and DNA sequence analysis. The advantage of using such 

information measures is that we can use them for both nested and nonnested regression 

models. A nested regression model refers to two regression models which are identical 

except one variable. Nonnested models define any regression models that include more 
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than one different variable with the other model. Although the aim of AIC and BIC is 

the same (finding a good model), they differ in a theoretical sense. This difference can 

lead the selection of a different model among the same model set by each criterion. 

Despite their difference, there is not a clear explanation that one criterion is superior to 

the other. Selection of a good logistic model depends on the data set on hand. For 

different data sets, sometimes one criterion may find a better model than the other. 

Hence we consider both criteria. 

4.3.5.1. Akaike Information Criterion (AIC) 

The objective of AIC model selection is to find a model that best explains the data with 

the least number of independent variables. AIC is just a model selection tool rather than 

a hypothesis testing. Adding variables can fit the data perfectly and increases the 

likelihood but it can cause over fitting. To avoid this problem, AIC includes a penalty 

parameter which is an increasing function of the number of parameters in the model. 

Among a several competing models which are obtained from the same data set, the one 

with the lowest AIC value is the best. AIC is based on the theory of information gain 

“Kullback-Leibler information”. Information gain is a measure of the difference 

between two probability distributions. More detailed information about the 

mathematical derivation of AIC and Kullback-Leibler information are given in 

(Burnham and Anderson, 2002). AIC is calculated by the following formula (Akaike,  

1987).  

                                                (4.10) 

 

 

4.3.5.2. Bayesian Information Criterion (BIC) 

Schwarz (1978) proposes Bayesian information criterion for model selection. BIC is 

based on Bayes Rule and it is an approximation of the Bayes Factor. Similar to AIC, 

BIC includes a stronger penalty term to deal with the over fitting problems. Since the 

penalty term of BIC is stronger, it generally selects less complex models than AIC. 

Besides, BIC also includes sample size in the penalty term. BIC is computed by the 

following formula: 
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(4.11) 

                                   

                               

                             

The first term in the model indicates the deviance that measures the difference 

between the log-likelihood of the best fitting model and the log-likelihood of the model 

under consideration. As more parameters are added to the model, this term gets larger. 

The second term represents the penalty. For the models with too many parameters, the 

penalty term increases. For the models with too few parameters, the deviation increases. 

By combining these two terms, we balance over fitting and under fitting problems.  

4.3.5.3. Comparison of AIC and BIC 

The comparison of AIC versus BIC is very difficult since they are based on different 

theory. BIC assumes that the true generation model is in the set of candidate models and 

it assumes that there was a true model which is independent of the sample size in the 

model set, thus BIC tries to select this true model as the sample size goes to infinity 

with probability one. Unlike BIC, AIC does not assume that the true model is in the 

candidate models. It just selects the best model among a group of models. Most 

simulations that show BIC to perform better than AIC assume that the true model is in 

the candidate set and that it is relatively low dimensional. In contrast, most simulations 

that favor AIC over BIC assume that the true model is infinitely dimensional, and hence 

it isn’t in the candidate set. Wagenmakers et al. (2004) state that AIC selects a specific 

model for the sample size at hand, but BIC does not. 
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CHAPTER 5 

 

LITERATURE REVIEW: FEATURE SELECTION ALGORITMS  

 

 

In bioinformatics field, the data often consists of large number of features and 

comparably very few number of samples. In such cases, the method of feature selection 

is very useful to improve the classification accuracy. The aim of feature selection is to 

select the most informative feature subset from the original data by providing 

reasonable prediction accuracy (Koller and Sahami, 1996). The main advantage of a 

feature selection method is reducing the problem dimension by not deteriorating the 

prediction performance. Silverman (1986) determines the required sample size for 

problems having different dimensions. As it is shown in Table 5.1, even for small 

dimensionality, the required number of sample is very huge. Thus, the search space of 

feature selection is very high and the problem is NP-hard. Moreover, collecting the 

genetic data requires high technology and budget, due to this problem achieving the 

required sample size is generally impossible. To deal with this problem, reducing the 

feature dimension is crucial to decrease the required amount of time and memory by the 

learning algorithms (Steinbach et al., 2006). 

Table 5.1. Required Sample Size for Given Number of Dimensions  

Dimensionality Required Sample Size 

1 4 

2 19 

5 786 

7 10,700 

10 842,000 
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Dash and Liu (1997) propose that in a typical feature selection method, there are 

four basic steps: a generation procedure, an evaluation function, a stopping criterion, a 

validation procedure.  

 generation procedure is used for producing candidate subsets iteratively; 

 an evaluation function investigates the feature subset under examination; 

 a stopping criterion is used to decide when to stop; and 

 a validation procedure is needed to test the validity of the feature subset.  

The initial step of a feature selection algorithm, called generation procedure, is 

searching for a feature subset (Siedlecki et al., 1988; Langley, 1994). The generation 

process can start with no feature, with all features or a random subset of features. In 

the first two cases, features are iteratively added or removed, whereas in the last case, 

features are either iteratively added or removed or produced randomly thereafter 

(Langley, 1994; Dash and Liu, 1997).  

The second step is measuring the goodness of a generated subset and comparing it 

with the goodness of the previous best subset by using the evaluation function. If the 

current subset is better, then it is replaced with the previous best subset.  

To execute the feature selection algorithm in a reasonable time, there is a need for 

stopping criterion. Stopping criterion can be based either on the generation procedure or 

the evaluation function. If the selected feature number or the iteration number reaches to 

a predefined value or if deleting or adding features does not provide a better subset or 

the optimal subset is obtained, the algorithm stops.  

The validation step is not part of a feature selection process but it is strongly 

recommended to be applied to test the prediction power of the selected subset using 

independent populations. Figure 5.1 represents the feature selection process with 

validation (Langley, 1994; Dash and Liu, 1997). 
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Figure 5.1. General Feature Selection Process with Validation 

Feature selection methods can be applied to supervised (classification) or 

unsupervised (clustering) learning. For unsupervised learning, the feature selection 

method is applied to group features to find a good feature subset that provides a high 

cluster quality. In unsupervised learning, the feature selection aims to find a feature 

subset that provides higher classification accuracy (Kim and et al., 2003). Feature 

selection techniques are categorized into three groups (filter, wrapper and embedded) 

based on the integration of feature selection search to the classification model (Saeys et 

al., 2007). 

5.1. Feature Selection Methods  

5.1.1. Filter method 

In the filter method, each feature is ranked according to some univariate metric. 

Features which have the highest rank are used for further analysis and the others 

are eliminated from the data (Ahmad et al., 2008). Filter approach considers all 

features and put them in a filter to output a subset of good features. Then this 

feature subset is used as an input for the classification algorithm. This method 

searches the feature subset independent of the classifier. Since feature selection 

is independent of the classification algorithm, the subset selection is performed 

only once and various classifiers are obtained (Saeys et al., 2007). Thus, it is 

faster than wrapper and embedded methods (Guyan and Elisseeff, 2003). Most 

filter approaches use univariate filter metrics like chi-square (Forman, 2003), 
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Euclidean distance and information gain (Ben-Bassat, 1982). These metrics 

investigate the power of each feature individually by ignoring the feature 

dependencies. Thus, filter methods cannot detect the features which are not 

individually informative but can be informative when it is combined with other 

features. In order to tackle this problem, multivariate search methods are 

developed: Markov blanket filter (Koller and Sahami, 1996), correlation based 

feature selection (Hall, 1999), Pearson correlation coefficient (Cho and Won, 

2003) and fast correlation based feature selection (Yu and Liu, 2004).  

 

5.1.2. Wrapper method 

Wrapper method considers all features and generates some subsets of candidate 

features and passes them to the predictor. The predictor makes training and 

computes the prediction power of the feature subset. A new feature subset is 

generated until the optimum or near-optimal feature subset is obtained. There 

are two wrapper search methods; deterministic and randomized. Sequential 

forward selection (Kitler, 1978), sequential backward elimination (Kittler, 1978) 

and beam search (Siedelecky and Sklansky, 1988) are some examples of the 

deterministic search methods. Simulated annealing, genetic algorithm (Holland, 

1975) and randomized hill climbing (Skalak, 1994) are randomized search 

techniques. In wrapper techniques, feature subset search is integrated with the 

classifier, in other words it considers feature dependencies. The main 

disadvantages of a wrapper approach are its risk of overfitting and intensive 

computational time (Saeys et al., 2007). 

 

5.1.3. Embedded method 

Embedded methods perform variable selection in the process of training and are 

usually specific to given learning machines (Elisseef and Guyon, 2003). Like 

wrapper techniques, embedded approaches are specific to a given learning 

algorithm. Decision trees, weighted naive bayes (Duda et al., 2001) and random 

forest (Guyon et al., 2002; Weston et al., 2003) are some examples of embedded 

feature selection techniques. Embedded methods are much faster than wrapper 

methods (Saeys et al., 2007). 
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5.2. Available Feature Selection Algorithms  

Feature selection algorithms may be based on the statistical pattern recognition 

(SPR) classification techniques (supervised and unsupervised) or they can use artificial 

neural networks (ANN). An artificial neural network (ANN) is a nonlinear statistical 

data modeling tool for simulating biological neural networks. An artificial neural 

network consists of interconnected group of neurons. SPR techniques are categorized 

into two groups based on the optimality of the solutions. It can provide either optimal or 

suboptimal feature sets. Suboptimal solutions can be divided into two categories based 

on the number of feature subsets on a given solution. A suboptimal solution has either 

single solution obtained at the beginning of the algorithm and improves this solution 

iteratively or a population of different feature subsets each time the selection is applied. 

To generate a feature subset, deterministic or randomized feature selection techniques 

can be used. Deterministic models are the algorithms that give the same feature subset 

each time the feature selection is performed. Stochastic models are the ones that provide 

different feature subsets for each application of the algorithm.  

Deterministic single solution methods firstly construct one feature subset and add 

or remove features iteratively until a stopping condition is satisfied. Deterministic single 

solution algorithms do not guarantee optimal solutions due to the fact that they do not 

search for all possible subsets. Beam and best first search are examples of multiple 

solution deterministic feature selection models. 

The most widely used stochastic multiple solution feature selection method is 

genetic algorithm which is introduced by Siedlecki and Sklansky in 1989. Branch and 

bound method is an optimal solution search method that is proposed by Narenda and 

Fukunaga (1977). Optimal search algorithms are impractical for even small sample 

problems because the complexity of such algorithms is exponential in the worst case 

scenarios.  

Feature selection methodology can also be based on node pruning. A node pruning 

algorithm firstly trains the data, removes least prominent node and iterates this 

procedure until reaching the specified node size or classification accuracy. Figure 5.2 

displays the categorized feature selection methods (Jain and Zongker, 1997).  
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Figure 5.2. Taxonomy of feature selection algorithms 

In bioinformatics, feature selection algorithms are applied for sequence, microarray, 

mass spectra and single nucleotide polymorphism analysis (Daly et al., 2001; Gabriel et 

al., 2002; Carlson et al., 2004). Since exhaustive search techniques are not practical to 

implement, researchers often prefer evolutionary algorithms (simulated annealing, 

genetic algorithm) to solve optimization and machine learning problems (Segal and 

Zhang, 2006).  

Shah and Kusiak (2004) develop a genetic algorithm based feature selection 

method to identify gene/SNP patterns. They use a global search mechanism, weighted 

decision tree, decision-tree based wrapper, a correlation-based heuristic to select the 

most significant genes. Wu and et al. (2008) propose a heuristic based on genetic 

algorithm to assemble single individual SNP haplotypes. Chang et al. (2008) develop an 

odd ratio based genetic algorithm procedure to produce SNP barcodes of genotypes to 

measure the disease risk among many SNP combinations. Nakamichi et al. (2004) 

propose a combination of logistic regression and genetic algorithm model to investigate 

the association between a combination of SNPs and a disease. Gong et al. (2005) 

develop a data reduction technique based on a genetic algorithm and support vector 

machines to identify the key SNP features. Ooi and Tan (2003) apply a genetic 
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algorithm based gene selection method for a multi-class prediction problem. Ooi and 

Tan (2003) also propose that genetic algorithm based techniques may be powerful tools 

to analyze complex multi-class gene expression data. Liu et al. (2005) combine genetic 

algorithm and support vector machine methods for multi-class cancer classification. 

Handels et al. (1999) apply various feature selection algorithms to optimize skin tumor 

recognition by using greedy algorithms. According to Handels et al. (1999) among all 

available feature selection techniques, genetic algorithm gives the best results in terms 

of the classification rate. In this study, we also focus on genetic algorithm based feature 

selection methods.  
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CHAPTER 6 

 

PROPOSED METHOD: GENETIC ALGORITHM BASED FEATURE 

SELECTION METHOD  

 

 

The goal of this research is developing a feature (SNP) selection method to identify 

significant SNP combinations related to a complex disease. In literature different feature 

selection approaches exist such as the principal component analysis, genetic algorithm 

(GA) and decision tree. Among these techniques, the GA is an efficient and effective 

method to analyze millions of SNPs. In this study, we develop a genetic algorithm 

based feature selection method to maximize the explanatory power of the selected SNPs 

while trying to decrease the number of SNPs dynamically. The proposed GA is applied 

to the simulated rheumatoid arthritis data set provided by Genetic Analysis Workshop 

15 and at each execution the algorithm constructs a set (combination) of SNPs with the 

minimum cardinality and the highest explanatory power in a logistic regression model. 

Before introducing the proposed GA, we provide a short summary of the genetic 

algorithm approach. 

6.1. Steps of the Genetic Algorithm  

 Generate an initial population (by random selection of individual solutions). 

 Calculate the fitness function of each solution in the population. 

 Apply reproduction, crossover and mutation operators. 

 Determine the fitness value (score) of each newly generated solution. 

 Remove solutions, which have unsatisfactory fitness value from the population. 

 Repeat this process until a termination condition has been satisfied. 

In the first step of the algorithm, an initial solution set, which is called population, 

is constructed (generation).  A population includes valid alternative candidate solutions, 
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which are called individuals. The initial population is used to produce a new generation, 

which is called offspring. In the second step, fitness function values are calculated to 

determine the quality of the solutions in the population. The new population is expected 

to be better than the old one in terms of fitness values. The third step (reproduction) 

includes two main processes, which are crossover and mutation. In the crossover 

process, two chromosomes are paired and two new chromosomes (solutions) are 

obtained. After generating new solutions, mutations of chromosomes occur according to 

the mutation probability (rate). If the mutation rate is met for a chromosome, the 

associated solution is obtained by changing one/more genes in that chromosome. In the 

fourth step, the fitness value of each newly generated solution in the population is 

calculated. In the fifth step the unsatisfactory solutions are removed from the population 

to make the population better in terms of the fitness values. As the search iterates 

through multiple generations, fitter solutions increase in the population, and less fit 

solutions decrease in the population. As a result the final population would be the best 

of all populations considered through the algorithm. 

6.2. Introduction to Proposed Genetic Algorithm based Feature Selection 

Method  

We determine the population size by the formula that is proposed by Küçükural (2009). 

Let X denote the population size (the number of parents in one generation), Y denote 

the size of the tag-SNPs set, P denote the desired number of occurrence of a SNP in one 

population (or called feature coverage) and K denote the number of SNPs used to 

represent a parent. Let W denote the number of individuals who have the worst fitness 

scores in the population. X and W are calculated by the following formula.                                    

                   (6.1)  

                                        (6.2) 

In the proposed algorithm, three different methods to generate populations are described 

in detail. The first method is used to generate the initial population and the second 

method is implemented M1 times to generate ``better’’ populations (in terms of 

significance of SNPs) iteratively. At each implementation of the second method, the 

current population is used and improved to generate the next population. For example, 

the initial population is used to generate the second one, and the M
th

 population is used 

to generate the (M1+1)
th

 population. Then the (M1+2)
th

 population is obtained by 
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applying the third proposed generation method. Finally, additional populations are 

generated by reapplying the second method M2 times to further improve the generated 

populations. After a total of M1+M2+2 generation of populations, a final ``population’’ 

is obtained and the rest of study focuses only this population. 

The first population generation method constructs each individual by random 

selection of SNPs. The second population generation method constitutes each individual 

by using the survival probabilities of individuals in the previous population. The third 

population generation method uses survival probabilities of SNPs in the previous 

population to form a parent.  

The first method is applied at the beginning of the algorithm and all tag SNPs have 

the same importance score to be involved in a SNP combination (individual). Thus, in 

order to generate an individual, we apply random selection of tag SNPs. In the second 

method, we obtain next generation by applying crossover between two individuals 

obtained from the previous population. Since the individuals who have a higher fitness 

score can generate a better individual, we use survival probabilities of individuals in the 

previous population. The individuals having a higher survival probability refer to the 

individuals which have a higher chance to be a patient. Applying this procedure to 

several times, we can acquire information about significance of SNPs by counting the 

frequency of each SNP in the population. The more frequently observed SNPs have a 

higher survival probability meaning that they may be the disease causing SNPs. If a 

SNP has a higher survival probability, it has a higher chance to be transferred to the 

next generation. Therefore, we firstly apply second method M1 times to obtain highly 

observed SNPs. Then we apply the third method which uses SNP survival probabilities 

for once to generate an individual by not applying crossover. Thus, in that way we 

integrate this information about SNPs to the algorithm. Then we continue to apply 

second method to reach the best population. 

6.3. Outline of the Proposed Algorithm  

As it is mentioned before to compare SNP combination models we use AIC and 

BIC measures. Since these two measures do not give the same solution, we coded 

developed algorithm two times. The first one only uses AIC measure as a fitness score 

and second one uses only BIC.  In the next section, the outline of our feature selection 

method will be given in terms of AIC measure. The genetic algorithm based feature 



47 

 

selection method which uses BIC measure is also the same. Thus we represent fitness 

score as AIC/BIC to mention the usage of two measures. The flowchart of the proposed 

algorithm is given in Figure 6.1.   

 

 

Figure 6.1.  Flow chart of the genetic algorithm based feature selection method 
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I. CONSTRUCT THE FINAL PROPOSED POPULATION  

A. GENERATE INITIAL (PARENTS’) POPULATION (POPULATION): 

first generation method  

1. Generate the initial population: Each population includes X individuals which 

are called parents. Repeat the procedure of creating a parent, which is 

explained below, X times to generate the initial population.  

a. Select a SNP randomly from the tag-SNPs set. (Generate a random 

number between 1 and Y.) 

b. Select (K/2-1) SNPs from the left side and 15 SNPs from the right 

side of the SNP selected in Step (a) to obtain a K-feature-sized-

parent. If there are not enough SNPs in one of the sides, select all 

SNPs in that side and select remaining ones from the other side. 

Thus, (K-1) SNPs are selected from the neighborhood of the chosen 

tag-SNP and a parent with K features is obtained. K should be an 

even number.  

c. After generating a parent, calculate its fitness score. To do it, apply 

the method of multiple logistic regression to the original multiple 

family data. In this application of the multiple logistic regression, the 

K features associated to that parent are considered as explanatory 

variables and the response variable takes value one if the case has the 

disease and zero otherwise. Then, calculate fitness scores: the values 

of the Akaike Information Criterion (AIC) and the Bayesian 

Information Criterion (BIC) 

d. Execute Steps (a)-(b) and (c) X times to obtain the initial population.  

2. Calculate the estimated survival probability of each parent in the initial 

population: 

a. Calculate the total fitness score of the initial population. (Sum the 

fitness value of each parent). 

b. Divide the fitness value of each parent by the population fitness 

value.  

c. Calculate the survival probability of each parent by subtracting the 

fitness score from 1. The higher the survival probability, denoted by 
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i  for the i
th 

parent (i=1,…,X),  the higher the significance of a parent 

(the combination of SNPs), since a low AIC/BIC value (fitness score) 

indicates a high significance in the logistic regression.  

 

B. OBTAIN THE NEXT (OFFSPRINGS’) POPULATION: second 

generation method 

1. Apply Crossover: 

a.  Select two parents from the initial population based on the 

associated survival probabilities. We perform a random selection as 

described below: 

Construct intervals corresponding to each parent in a way that the 

length of the interval for the i
th

 parent is equal to the survival 

probability i :  [ )},(),...,,(),,0{(
1

1

12111  






X

i i

X

i i  . Then 

generate a random number from the interval ),0(
1 

X

i i  and if the 

value belongs to the interval ),(
1

1

1  





i

i i

i

i i  , we select the i
th 

parent. 

b. Generate two random numbers between 1 and Y to determine the 

starting and ending points of the crossover region and apply the two-

point crossover to construct two new children. For each child, if there 

exist multiple copies of a SNP, just keep one and delete the other 

copies. Thus, the generated children do not have repetitive SNPs. 

2. Apply the multiple logistic regression for each new child and calculate their 

AIC and BIC values.  

3. Execute Steps 1-3 X/2 times iteratively to obtain the next population with X 

parents.   

4. Apply mutation operator for each parent in the population that we are 

currently generating. 

a. Assign a mutation rate by generating a random number between 0 

and 1.  If the mutation rate is smaller than 0.05, then the mutation is 

applied.  Otherwise mutation is not applied.  

b. If the mutation is decided to be applied, select a SNP to be mutated 

by generating a random number between 1 and K. Thus, at most one 

mutation is allowed to occur for each parent.  
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c. For each SNP in the tag-SNP set (with Y SNPs), calculate the 

associated survival probability (not for parents, for individual SNPs). 

d. Use the method described in Step B.1 for selecting a SNP to be used 

as the new value of the mutated SNP. Here different than Step B.1 

we consider the survival probability of each SNP in the tag-SNP set. 

e. After the mutation, make sure that the new value, the SNP selected in 

Step 4.e, has at most one copy in the parent. 

5. Apply multiple logistic regression to each parent in the current population 

and calculate their fitness scores.   

6. Elitism of Best Childs   

a. Find the W worst parents (children of the previous population) in the 

current population according to their fitness scores.  

b. Find the W best parents in the previous population according to their 

fitness values.  

c. Replace the worst parents in the current population with the best parents 

in the previous population.  

d. Calculate fitness score of the new population obtained after the 

replacement.   

e. Calculate the survival probability of each parent in the population. 

 

C. REPEAT STEPS B.1-B.6 M1-1 TIMES TO CONSTRUCT THE 

(M1+1)
th

 POPULATION (use the second generation method)  

At this stage of the algorithm, the (M1+1)
th

 population is the best one. 

However, to further improve it, we employ the third generation method.  

 

D. CREATE A NEW PARENT POPULATION BY USING SNP 

SURVIVAL PROBABILITIES: third generation method 

1. Calculate the survival probabilities of individual SNPs based on the number 

of occurrence in the (M+1)
th

 population.  

2. Use the method described in Step B.1 for selecting K SNPs to construct a 

potentially significant combination of SNPs (a parent). Here different than 

Step B.1 we consider the survival probability of each SNP based on the 

number of occurrences.  

3. Repeat Step D.2  X times to form a population including X parents. 
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4. Apply the multiple logistic regression to the generated population and 

calculate the fitness score of each parent.  

5. Calculate the survival probability of each parent in the population.   

6. Implement Steps B.1-B.6 to obtain the (M1+2)
th

 generation. 

 

E. GENERATE ADDITIONAL M2 POPULATIONS iteratively applying 

the second generation method M2 times. (UB on M2=500) 

We set an upper bound on the value of M2. If the algorithm can keep 

improving the available populations, this upper bound is attained. Otherwise, 

the algorithm stops if there is no improvement in the best fitness score of the 

populations generated in consecutive 50 iterations. 

 

II. CALCULATING SOME STATISTICAL MEASURES FOR THE FINAL 

POPULATION   

We apply hypothesis testing and calculate pseudo r-squares to determine the 

statistical significance of a combination.   

 

A. Classification Table  (Prediction Performance)  

As mentioned before, the final population includes the best SNP 

combinations in terms of goodness of fitness. We picked the SNP 

combination in the last population which best fits the data and prepare a 

classification table for that SNP combination.  We tried different cutoff 

values (from 0.3 to 0.7) to predict whether an individual has the disease or 

not based on predicted probabilities. According to numerical results, the 

value 0.5 performs well in terms of correct prediction percentage. Therefore, 

if it is not stated otherwise we take the cutoff value as 0.5 in our 

computational study.  

B. Apply McFadden’s Pseudo R-Square 

C. Apply Adjusted McFadden’s Pseudo R-Square 

D. Apply Cox and Snell Pseudo R-Square 

E. Apply Nagelkerke Pseudo R-Square 

F. Apply Efron’s Pseudo R-Square 

G. Apply Likelihood Ratio Test 

H. Apply Hosmer and Lemeshow Chi-Square Test (Goodness of Fit Test) 
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III.  REITERATE ALL STEPS FROM I TO III 

To test the validity of the proposed approach, we run the whole algorithm 5 

times.  

 

IV. FIND OCCURANCE NUMBER OF EACH DISTINCTIVE SNP by 

CONSIDERING ALL RUNS 

 

V. EXTRACT SNPs WHOSE OCCURANCE RATIO IS BIGGER THAN T 

(0.85)  

Find “intersection SNP set”.  

At the end of the whole algorithm, we obtain potentially significant SNP 

combinations which are supposed to lead to the disease.  

After obtaining five significant SNP combinations and one intersection SNP set 

from seven runs of the algorithm, we construct a new SNP combination from the 

intersection SNP set. Therefore, we have seven alternative SNP combinations for a 

population.  

Since we calculate the statistical measures (pseudo-r2s) for the seven potentially 

significant SNP combinations, we then use these measures in order to decide whether 

the SNP combination is really significant or not. If a SNP combination satisfies the 

threshold values of all pseudo-r2 measures, then this SNP combination is considered as 

significant and otherwise it is eliminated from the study. Satisfying all pseudo-r2 

thresholds allow us to choose a SNP combination independent of the measure. 

However, a decision maker can specify a set of r2s that have to be satisfied in his study 

to determine the significant SNP combinations.  

In the next step, since a SNP combination includes more than six SNPs, we apply 

DTREG decision tree forest algorithm for each SNP combination to reduce the number 

of SNPs into six in a SNP combination because, our rule extraction method considers at 

most six SNPs.  

DTREG decision tree forest algorithm assigns an importance value (over 100) to 

each SNP in the SNP combination set. Then we select the top six SNPs according to 

their importance value. We then apply decision rule extraction method for each possible 

SNP combination to determine the classification performance of each SNP combination. 
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Next, we pick the SNP combination which has the highest classification performance 

for this population and denote it as the “best SNP combination of the population”. (In 

this procedure we apply decision rule extraction method for six times for both AIC 

based solutions and BIC based solutions, in total 12 times).  

We apply the same steps (preprocessing and genetic algorithm based feature 

selection method) for seven different populations and obtain the best SNP combination 

for each population. Thus, we have seven best SNP combinations in total. These seven 

SNP combinations provide very similar classification accuracy and each of them is 

significant.  

Although the populations are different, the best SNP combinations consist of some 

common SNPs. In order to find the mostly observed SNPs in best SNP combinations, 

we determine the occurrence of each SNP in seven alternative SNP combinations. We 

then select the top six SNPs which are mostly observed and construct a new SNP 

combination from these SNPs. We then compared the classification accuracy of that 

SNP combination with the other seven best SNP combinations. According to 

experimental results, there is not a considerable difference in terms of classification 

accuracy of the newly generated SNP combination and the SNP combinations obtained 

from genetic algorithm. Thus we will apply decision rule extraction method to any of 

that SNP combination to find the related SNP-genotype relations. We selected the 

newly generated SNP combination to extract genotype-SNP relations. 
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CHAPTER 7 

 

APPLICATION OF DECISION TREE FOREST ALGORITHM TO 

OBTAIN THE BEST SET OF SIGNIFICANT SNP COMBINATIONS 

 

 

Decision tree learning is a widely used decision support tool in data mining field. It uses 

a decision tree as a predictive model to classify an instance. A decision tree method 

produces IF-THEN expressions to classify an instance. These If-THEN structures are 

very helpful to get intuitive interpretation of biological questions. Although decision 

tree is an effective tool for rule extraction, it cannot provide reasonable classification 

accuracy for a noisy data like the one in our study. However, for many years techniques 

to combine the results of multiple classification models have been investigated to make 

a single prediction from many decision trees which are called decision tree forest (Tong 

et al., 2003). Decision tree forest is a technique that combines similar single decision 

trees to provide higher classification accuracy compared to the single decision tree 

models. Tong et al. (2003) suggest a decision forest algorithm to classify 232 chemicals 

into two categories (estrogen and non-estrogen receptor-binding). They compared the 

model performance between a decision tree and a decision tree forest. They conclude 

that decision forest provides a higher classification accuracy for both testing and 

validation samples. According to Tong et al. (2004) combining several identical 

decision tree models produces no gain thus provides a more accurate prediction ratio. 

Xie at al. (2005) examine the association between esophageal cancer risk and 61 SNPs 

in a case/control study by developing a decision tree forest method. Like decision trees, 

decision tree forest algorithms also uses IF-THEN rules for classification of 

observations but unfortunately, it does not list the produced rules as an output. 

However, it assigns an importance value for each variable in the data set so that we can 

be aware of the most significant variables in the data set. Since our aim is to reduce the 

size of a SNP combination before applying our rule extraction method, we use a 
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decision tree forest algorithm to select the most significant six SNPs from a SNP 

combination. We use DTREG decision tree forest algorithm which is developed by Phil 

Sherrod who integrates the random forest algorithm of Breiman (1999) into DTREG. 

Decision tree forest models are so far among the most accurate models invented 

(Sherrod P., 2009). One advantage of decision tree forest is that without using a separate 

data set validation can be done by using out of bag data rows. However, the main 

disadvantage of a decision tree forest is that the model is too complex and it includes 

many decision trees. Thus, the decision tree cannot be visualized. The outline of the 

algorithm to construct a decision tree forest is given in below:  

 Assume that the data set includes N observations and m variables.  

 The first step is the selection of N observations from the data set with 

replacement (bagging). Approximately 2/3 of the rows are selected as a test 

sample. The remaining 1/3 of the rows are called “out of bag” rows and these 

rows are used as a validation sample. For each time that a new tree is created, 

this random selection is repeated.  

 The second step is constructing a decision tree by the use of selected rows in 

step1.  To split a node in a tree, only a group of variables (k) is chosen randomly 

among m variables (k < m). For each time that a node is splitted, we randomly 

select a new variable set from m variables.  

 By repeating steps 1 and 2, we obtain a large decision tree forest.  

After constructing the decision forest, we run the rows through each tree in the 

forest and record the predicted value. Then we use the predicted categories for each tree 

as votes and assign the category with the most votes as the predicted category for the 

row (Sherrod P., 2009). DTREG assigns each variable (SNP) an importance ratio by 

applying the following steps: For each tree in the forest, DTREG puts down the out of 

bag observations and counts the number of truly classified instances. Then it randomly 

permutes the values of variable m in the out of bag observations and runs them through 

the decision tree. After that it counts the number of truly classified instances for the 

permuted data. Next it subtracts the vote of out of bag data from the vote of the 

permuted one. It iterates this procedure for each tree sums the differences and then takes 

the average of differences. This number is the raw importance score for variable m. 

After calculating the importance ratio for each variable, we then select the top six 

variables to reduce the size of the SNP combination.  
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CHAPTER 8 

 

PROPOSED DECISION RULE EXTRACTION METHOD   

 

 

After obtaining significant SNP combinations from the genetic algorithm, we developed 

a rule extraction method to analyze significant genotypes related to the disease. A rule 

refers to a SNP combination with genotype information. Although determining 

significant SNP combinations is a very significant issue, it is not enough to understand 

the structure of a complex disease. Different genotypes of a SNP may result the disease 

status in a different way. Thus, the affect of genotypes should also be assessed. 

Different softwares are publicly available to extract decision rules according to 

genotype information of SNPs like DTREG, Weka and RapidMiner. These tools use 

decision tree algorithms or special rule mining methods. Since most genetic data are 

very dense, decision tree algorithms do not provide an adequate classification ratio for 

such data. They extract the rules which are mostly observed in the population. However, 

in real life, some patients may have a common genotype related to the disease but the 

ratio of these people in the population may be very rare. Most of the existing softwares 

do not detect such relations. Our developed rule extraction method can detect both 

rarely and mostly observed relations in the population. Hence, it provides higher 

classification accuracy than other well known methods. 

8.1. Outline of the Proposed Decision Rule Extraction Method  

General outline of our developed method is given in Figure 8.1. We take the significant 

SNP combinations identified using the GA as an input and provide significant SNP 

relations (rules) which are associated with the disease, as outputs. As it can be 

understood from the figure, our rule extraction method has three main stages:  

 Association rule mining, 
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 Selection of significant rules,  

 Determination of minimum number of significant rules. 

 

Figure 8.1. Representation of the Proposed Decision Rule Extraction  

 

Figure 8.2. Detailed Outline of the Proposed Rule Extraction Method 
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By using DTREG decision tree forest algorithm, we obtain the most significant six 

SNPs for each alternative SNP combinations. However, all the patients may not have all 

these six SNPs. Thus, in the rule extraction stage we construct new SNP combinations 

with the additional genotype information by using these six SNPs. We allow a 

combination include at least one and at most six SNPs.  

8.2. Steps of the Proposed Decision Rule Extraction Method  

8.2.1.  Association Rule Mining  

In our study, all SNPs are in bi-allelic form and bi-allelic SNPs have three possible 

genotypes (AA, Aa, aa). We firstly construct all possible SNP-genotype combinations 

including at most six SNPs. Thus, we allow a combination with at most six significant 

SNPs and at least one significant SNP.  Combinations of larger number of significant 

SNPs can also be considered. But in our experiments we observed that considering at 

most six SNPs is good enough in terms of the classification accuracy. Then for each 

constructed rule, we firstly identify the patients, who have these rules and compute the 

number of such patients in each group (case and control). Totally a large number of 

different rules can be obtained. For example, in our study we obtain 4094 rules in total 

with at least one and at most six SNP combinations. But some of these rules may not be 

observed or may be rarely observed in the population. Thus, a rule selection procedure 

is required to extract significant rules among the rule set. For this reason we developed 

a selection procedure.  

8.2.2. Selection of Significant Decision Rules  

To select significant rules among the whole rule set, we determine two selection criteria. 

The first criterion is called “Ratio1” and the second is called “Ratio2”. How to calculate 

these measures is given in 8.1 and 8.2.  

P = the number of cases which have the rule 

H= the number of controls which have the rule 

R= the number of cases which have the rule 

T = total number of cases 
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Ratio1 = P / H          (8.1) 

     Ratio2 = R / T               (8.2) 

We set thresholds values for Ratio1 and Ratio2 which are 1.9 and 0.03 respectively 

to eliminate non-significant rules.  If a rule satisfies both of the criteria threshold values, 

this rule is selected as a significant rule. Because our aim is to extract the rules which 

are mostly observed in patients, we desire a P value which is 1.9 times bigger than H. 

Besides, a rule can be observed in cases more than controls but it may have a very low 

frequency.  Hence, we define the second criterion (Ratio2) to select a rule which is 

observed at least 3 percentages of the patients. We especially set a lower threshold value 

for Ratio2 not to exclude the rarely observed significant rules. By eliminating rules 

which do not satisfy these thresholds, we obtain a set of significant rules.  

8.2.3. Determining Minimum Number of Significant Rules 

Among significant rule set, some rules may explain the same patients. Our objective is 

to extract the smallest number of rules to explain the status of all the patients.  This rule 

selection problem can be modeled as a general weighted set covering problem to find an 

optimal set of rules.  

8.2.3.1. General Weighted Set Covering Model 

For each rule, we define a set (rule set) including the patients which have that rule. Then 

considering these rule sets, we want to determine the minimum number of rule sets for 

which the union covers (contains) all the patients. We consider alternative methods 

considering different criteria to select the rules. These criteria are incorporated into the 

models by defining weights associated with the rule sets. Then we solve the 

corresponding weighted set covering problem, which can be formulated as a binary 

linear programming problem. The general weighted set covering model is given in 

below: 

Min objective      (8.3) 

Subject to  

 

= 0 or 1       
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Parameters: 

 

 

  

 

 

 

Decision variables: 

 

 

We solve the general weighted set covering model for three different types of 

weights. The models according to these three different criteria are explained in below.  

First criterion: Giving equal importance to each rule 

The first objective is selecting the optimal number of rules by giving each rule the 

same importance value. To do this, we assign the value of 1 as the weight of a rule and 

so the objective function coefficients in 8.3 are  

          (8.4) 

Second criterion: Maximum cardinality  

We define the weight of each significant rule based on the cardinality, i.e., the number 

of patients covered by the rule set. A weight of a rule is calculated as:  

  (8.5.) 

 

Selecting rules based on maximum cardinality can allow a researcher to analyze the 

rules which are observed in the majority of patients. This information can be useful for 

developing cures and drugs that most of the patients can respond.  
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Third criterion: Maximum ratio1 

We also define the weight of a rule based on maximum ratio1. Ratio1 is the 

proportion of the rules which are observed in cases divided by the rules which are 

observed in controls. A weight of a rule based on maximum ratio1 criterion is calculated 

as: 

 

 

Giving priority for the rules having the maximum ratio1 value in rule selection can 

allow a researcher to determine the most different SNP-genotype combinations between 

cases and controls. This information can be useful for the diagnosis of the disease.  

The solution of the weighted set covering problem based on different criteria might 

provide different sets of rules due to the different objective functions with the general 

set covering algorithm.   

8.3.  Extracting Significant Genotype of Each Significant SNP in the Significant 

SNP Combination  

After determining optimal significant rule sets based on different criteria, the next step 

is to extract the significant genotypes of each SNP in the significant SNP combination. 

Since not all genotypes of a SNP can lead to the disease status, we should analyze the 

genotypes that are observed in optimal rule sets. Thus, we investigate the genotype of 

each SNP in each rule in the optimal rule sets so we can determine the relationship 

between the disease and the genotype of a SNP (being homozygote or heterozygote). 



62 

 

 

 

CHAPTER 9 

 

EXPERIMENTAL RESULTS  

 

We repeated our study seven times by using different population samples to test the 

reliability of the proposed methods. As it is mentioned before, our analysis was based 

on the simulated rheumatoid arthritis data provided by Genetic Analysis Workshop 15. 

Since we know the most likely disease causing genome interval (chromosome 6) from 

the previous studies (Uh et al., 2007; Zhang et al., 2007), we apply our methods to 

17820 SNPs on chromosome 6. Each replication data set consists of 8000 individuals, 

but they include different number of cases and controls. For each replication, first we 

apply preprocessing steps (genome wide association analysis and tag SNP selection) to 

17820 SNPs. The number of SNPs remained after the end of preprocessing steps is 

listed in below for each replication. 

Table 9.1. Number of potentially significant SNPs remained after preprocessing 

 Data Set 

Name 

 Number of Significant 

SNPs determined by GWA  

Number of Selected Tag-SNPs 

determined by Haploview   

Replicate 1 rep0001 165 148 

Replicate 2 rep0002 171 154 

Replicate 3 rep0004 160 142 

Replicate 4 rep0005 189 111 

Replicate 5 rep00052 145 89 

Replicate 6 rep00053 188 130 

Replicate 7 rep00054 148 108 

 

Although the initial data sets include large number of SNPs (17820 SNPs), the number 

of potentially significant SNPs after preprocessing is not very huge. Thus, eliminating 

insignificant SNPs from the analysis is a very crucial step to save time. After applying 

genome wide association tests, we extract the potentially significant SNPs whose p 

value are smaller than Bonferroni adjusted significance level (0.05/number of SNPs 
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included in the association analysis of GWA after removing the poor quality 

SNPs).Then we apply a tag SNP selection algorithm to choose optimal SNP set.   

We use tag SNPs as an input for genetic algorithm based feature selection 

algorithm code. For each replication, we run MATLAB code five times and obtain five 

significant SNP combinations. Then we find the intersection of SNPs that are observed 

in these five significant SNP combinations and construct a new SNP combination by 

using these SNPs. Thus, we have six alternative significant SNP combinations for each 

replicate. We have 84 (42 of them are obtained from BIC based GA, the others are 

obtained from AIC based GA) alternative significant SNP combinations in total.  

To test whether a SNP combination is reasonable in terms of goodness of fitness, 

we calculate statistical measures which are mentioned in Chapter 4. The results of 

statistical measures are given in the Appendix A. All alternative significant SNP 

combinations have very similar statistical measurement values and all pseudo-r2 values 

are bigger than 0.3 indicating the goodness of fitness of the alternative models (SNP 

combinations). The size of each significant SNP combination obtained from GA and 

average SNP size are given in Table 9.2. 

Table 9.2. Size of each SNP significant SNP combination obtained from GA 

SIZE AIC BIC 

Population1 21 18 

Population2 21 19 

Population3 23 21 

Population4 22 19 

Population5 22 22 

Population6 20 20 

Population7 20 20 

Average  21 20 

Because alternative SNP combinations include more than six SNPs, we apply a 

decision tree forest algorithm to find the most significant six SNPs. (We construct 200 

decision trees for each decision tree forest). Then we apply our decision rule extraction 

algorithm to that six-SNP combination. Each alternative solution in a replicate 

approximately provide the same sensitivity value which is always approximately 0.85. 

The intersection SNP set always provides a better sensitivity value (approximately 0.90-

0.94) for each replicate. As an example the sensitivity values of alternative 

combinations for replicate 5 are given in Table 9.3. Each solution refers to a significant 
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SNP combination-including six SNPs-obtained from genetic algorithm based feature 

selection method.  

Table 9.3. Sensitivity value of each solution of a genetic algorithm based feature 

selection method 

Replicate_0005 

 

Sensitivity – AIC 

based GA (%) 

Sensitivity – BIC 

based GA (%) 

SOLUTION1 84.78 87.51 

SOLUTION2 84.38 84.58 

SOLUTION3 84.72 84.50 

SOLUTION4 85.38 84.78 

SOLUTION5 84.78 89.73 

INTERSECTION 91.2 91.2 

 

In the second and third column of Table 9.3 the sensitivity values of solutions 

obtained from genetic algorithm based feature selection method which considers AIC 

and BIC as a rule selection criterion are listed respectively. Since intersection SNP 

combinations provide higher sensitivity values, we consider SNP intersection sets for 

each replicate for further analysis. Hence, we have seven alternative solutions having a 

sensitivity value more than 0.90. If a replication includes more than six SNPs in the 

intersection SNP set, we apply DTREG to reduce the SNP number into six. We next 

execute our decision rule code for each intersection SNP set. The sensitivity value of 

each intersection SNP set is given in Table 9.4.  

Table 9.4. Sensitivity value of each solution of a genetic algorithm based feature 

selection method for seven replications 

 

Sensitivity (%) 

– AIC based 

GA 

Sensitivity (%) 

– BIC based 

GA 

Replicate 1 90.51 90.0 

Replicate 2 92.54 93.17 

Replicate 3 93.82 93.60 

Replicate 4 91.55 93.34 

Replicate 5 91.59 93.46 

Replicate 6 90.70 90.84 

Replicate 7 90.23 90.34 

Average Sensitivity 91.56 92.11 

 

These seven alternative SNP combinations include common SNPs providing a very 

close sensitivity values (min: 90.23 - max: 93.82). Moreover, using Akaike or Bayesian 
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information criterion as a fitness score does not affect the results considerably. Both 

methods give very similar results including at most two different SNPs.  

Although the data sets are different for each replicate, the SNP combinations 

consist of some common SNPs. To determine the mostly observed SNPs, we also 

counted the occurrence of each SNP placed in seven alternative combination sets 

(intersection SNP set). The mostly observed SNP is denseSNP6_3437 which is 

mentioned by Uh et al. (2007) as the most significant SNP leading to the disease. 

Moreover, according to the data answers provided us by the Genetic Analysis 

Workshop, DR type at the HLA locus on chromosome 6 is the trait locus and includes 

denseSNP6_3734. In the following table, we listed mostly observed SNPs in descending 

order. The second column indicates the names of the important SNPs; the third column 

indicates the occurrence of each SNP in seven alternative SNP combinations; the fourth 

column displays SNPs that are correlated with the SNP in the second column. PF 

denotes the previously determined significant SNPs. 

Table 9.5. The most significant SNPs obtained from seven replications 

   CORELATED SNPs 

PF denseSNP6_3437 16 denseSNP6_3413 (2), denseSNP6_3419 (1) 

      denseSNP6_3416 (3), denseSNP6_3818 (2) 

PF denseSNP6_3430 8 denseSNP6_3414 (2),denseSNP6_3427 (3) 

  denseSNP6_3446 7   

  denseSNP6_3429 7 denseSNP6_3415 (1) 

  denseSNP6_3434 7  

PF denseSNP6_3440 6 

denseSNP6_3437, denseSNP6_3430  

  denseSNP6_3438 5 

PF denseSNP6_3439 5 

PF denseSNP6_3426 4 

PF denseSNP6_3442 4 

  denseSNP6_3947 4   

  denseSNP6_3870 4   

  denseSNP6_3443 3   

PF denseSNP6_3436 2  denseSNP6_3429 

 denseSNP6_3435 2  

 

In the following table, all red shaded SNPs (denseSNP6_3437, denseSN6_3430, 

denseSNP6_3440, denseSNP6_3438, denseSNP6_3439) are highly correlated to each 

other (Correlation > 0.85). The black shaded SNPs do not have a high correlation with 

any other SNP. DenseSNP6_3429 are highly correlated with denseSNP6_3436.  
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DenseSNP6_3437 and denseSNP_3430, denseSNP_3446, denseSNP6_3429 and 

denseSNP6_3434 are observed in all solutions. While counting the occurrence of SNPs, 

we consider the correlated SNPs of each SNP because we deleted the correlated SNPs 

from the data before applying the genetic algorithm based feature selection method. 

Thus, some of the SNPs cannot be observed in some populations, but instead of that 

SNP, the correlated SNP can be chosen as a significant SNP. This is the reason why 

some SNPs have an occurrence number bigger than seven.  

Zhang et al. (2007) proposes a nonparametric association analysis and combines 

family and case control genotype data. The test that they propose performs better than 

traditional case-control chi-square test and transmission disequilibrium test in terms of 

type 1 error rate. They apply their method to the same GWA 15 simulated data set 

considering just chromosome 6. According to their results, the most likely interval for a 

major gene is between 49.4262 cm and 49.5184 cm on chromosome 6. They found 

denseSNP6_3439, denseSNP6_3442, denseSNP6_3437, denseSNP6_3436, 

denseSNP6_3440, denseSNP6_3430 and denseSNP6_3426 as the most significant 

SNPs. As it can be seen from the table above, we can detect the previously determined 

significant SNPs as well as the new significant SNPs.  

In literature, there is only one study which constructs SNP combinations. Uh et al. 

(2007) develop a Bayesian variable-selection logistic regression model to find the 

disease causing SNPs combinations. They apply their method to the SNPs on 

chromosome 6 of GWA 15 simulated data. They find just one significant SNP 

combination including denseSNP6_3437 and denseSNP6_3439. They also investigated 

the average prediction error of that SNP combination and find the best prediction 

performance as 86.94 %. Since we can classify patients more accurately by adding 

additional SNPs to the SNP combinations, our method performs better in terms of 

classification accuracy (>90 %). Moreover, Zhang et al. (2007) investigate SNPs 

individually and can find just six important SNPs which are listed in below, but we 

investigate SNP combinations and thus can extract more significant SNPs (15 SNPs). 

To compare our results with the previous works, we apply our decision rule 

algorithm to the independent populations by selecting just the previously determined 

SNPs and newly found SNPs. For this reason we pick the mostly observed six SNPs 

from our analysis. These SNPs are: denseSNP6_3429, denseSNP6_3430, 

denseSNP6_3434, denseSNP6_3437, denseSNP6_3440, denseSP6_3446. The selected 

SNPs and the related sensitivity ratio are given for each population in Table 9.6.   
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According to Table 9.6, newly determined SNPs; denseSNP6_3429, 

denseSNP6_3434 and denseSNP6_3446 provide a higher prediction ratio. This 

indicates that the SNP combinations including denseSNP6_3429, denseSNP6_3434 and 

denseSNP6_3446 are more powerful than the combinations having denseSNP6_3439, 

denseSNP6_3426 and denseSNP6_3442. Moreover, while Zhang et al. (2007) find just 

six significant SNPs by investigating SNPs individually, we find 15 significant SNPs by 

constructing SNP combinations. This reveals the fact that investigating SNPs 

individually can lead some SNPs to be disregarded. Our method, thus, can find more 

powerful SNP combinations than the previously mentioned SNP combination (just 

including two SNPs) and individually significant SNPs (six SNPs). 

Table 9.6. Comparison of newly and previously detected SNPs 

Previously detected SNPs 

3437, 3430, 3440, 3439, 3426, 3442, 

3436 

Sensitivity Ratio 

(%) 

Population1 91,23 

Population2 92,12 

Population3 91,91 

Population4 89,08 

Population5 89,74 

Population6 91,23 

Average Sensitivity Ratio 90.88  

Newly detected SNPs 

3429, 3430, 3434, 3437, 3440, 3446 

Sensitivity Ratio 

(%) 

Population1 89,5 

Population2 92,77 

Population3 92,51 

Population4 92,97 

Population5 92,55 

Population6 91,92 

Average Sensitivity Ratio 92,03 

 

 

 In the literature, in order to construct decision rules, decision tree algorithms are 

mostly applied. However, most genetic data are noisy and decision tree algorithms are 

inefficient to classify a case/control data. For this reason, scientists have been 

developing a decision tree forest algorithm for biological data recently (Tong et al., 

2004). However, while decision tree algorithms apply for the decision rules to be an 
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output, decision tree forest algorithms do not. Thus, we develop our own decision rule 

extraction method. To test the performance of our decision rule extraction method, first 

we apply DTREG decision tree forest and single decision tree algorithms to the tag 

SNPs set (the SNP set used in genetic algorithm based feature selection method as an 

input) for the same six populations.  

The reason of comparing our results with DTREG is that it is the only software that 

includes decision tree forest module. Moreover, DTREG single decision tree algorithm 

provides a better classification performance than other single decision tree tools like 

Weka and RapidMiner. The sensitivity results of each population are displayed in Table 

9.7.  

Table 9.7. Sensitivity value of solutions obtained from DTREG 

SNPs found by DTREG - Decision Tree Forest 

changes in each repetition Sensitivity Ratio (%) 

Population1 78,6 

Population2 79,41 

Population3 78,52 

Population4 79,46 

Population5 78,94 

Population6 79,54 

Average Sensitivity Ratio 79,1 

SNPs found by DTREG - Single Decision Tree 

changes in each repetition Sensitivity Ratio (%) 

Population1 72,66 

Population2 71,21 

Population3 75,39 

Population4 76,36 

Population5 74,71 

Population6 79,11 

Average Sensitivity Ratio 74,9 

 

As it can be seen from Table 9.7, although DTREG decision tree forest algorithm 

provides a higher sensitivity value than single decision tree algorithm, it is still smaller 

than the sensitivity value obtained from our decision rule extraction method. While 

DTREG can find an average sensitivity value approximately as 0.80, our decision rule 

extraction method can find average sensitivity as 0.92. Besides, while denseSNP6_3437 

are observed in our all alternative SNP combinations, DTREG decision tree and 

decision tree forest algorithms do not detect it as a significant SNP for each population.  
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Next, to determine the genotype-SNP effect, we investigated the output of our 

decision rule extraction method to a random population by selecting mostly observed 

six-SNPs (denseSNP6_3429, denseSNP6_3430, denseSNP6_3434, denseSNP6_3437, 

denseSNP6_3440, denseSNP6_3446). Although set covering algorithm gives the best 

genotype-SNP rule set, a researcher want to learn the SNP combinations which are 

mostly observed in cases. Thus he/she can consider ratio1 as a rule selection criterion in 

his analysis. Another scientist may want to learn the rules which can explain most of the 

patients and may select maximum cardinality as a rule selection criterion.  Therefore we 

modify the weights in the objective function of the weighted set covering model for 

three different aims. But all of the rule sets based on different criterion give the same 

classification accuracy because they consider the same patient set covered by all rules. 

For each criterion the number of selected rules is listed with respect to the number of 

SNPs in a rule in Table 9.8.  

Since weighted set covering algorithm is an optimal search method, it selects the 

minimum number of rules. Rules including six-SNPs are rarely selected. Thus, 

investigating SNP combinations including more than six SNPs may be unnecessary.  

Table 9.8. Number of selected rules according to each criterion 

 General Set 

Covering Alg.  

Set Covering Alg. 

Based on Max 

Ratio1 

Set Covering Alg. 

Based on Max. 

Cardinality 

Total 

Number of 

Rules  

Population1 4 4 4 12 

Population2 5 5 6 16 

Population3 8 8 8 24 

Population4 6 6 8 20 

Population5 8 7 9 24 

Population6 5 5 6 16 

min;max 4;8 4;8 4;8 112 

 

The rules selected by weighted set covering algorithm is given in Table 9.9, Table 9.10 

and Table 9.11. According to the optimal rule set obtained from weighted set covering 

model when all the weights are equal to one, all SNPs are in homozygote form. 

However, considering other rule sets which are based on maximum cardinality and 

maximum ratio1 criteria some of the SNPs can be in heterozygote form. Thus, we 

considered all rules in all rule sets and extracted the genotypes of each SNP.  
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Table 9.9. Selected rules according to general set covering algorithm 

          

     

RULE SETS ACCORDING TO 

GENERAL SET COVERING 

ALGORITHM  

 SNP G SNP G SNP G SNP G G: GENOTYPE 

RULE 3437 dd       

POPULATINON1 
RULE 3440 dd 3446 dd     

RULE 3430 dd 3446 dd     

RULE 3430 dd 3440 dd     

RULE 3437 dd       

POPULATINON2 

RULE 3434 dd 3446 dd     

RULE 3429 dd 3446 dd     

RULE 3434 dd 3434 dd     

RULE 3446 dd 3440 dd     

RULE 3437 dd       

POPULATION3 

RULE 3434 dd 3446 dd     

RULE 3446 dd 3446 dd     

RULE 3429 dd 3434 dd     

RULE 3434 dd 3440 dd     

RULE 3430 dd 3446 dd     

RULE 3429 dd 3434 dd     

RULE 3429 dd 3440 dd     

RULE 3437 dd       

POPULATION4 

RULE 3434 dd 3446 dd     

RULE 3429 dd 3434 dd     

RULE 3434 dd 3440 dd     

RULE 3430 dd 3434 dd     

RULE 3430 dd 3440 dd 3446 dd   

RULE 3437 dd       

POPULATION5 

RULE 3434 dd 3446 dd     

RULE 3440 dd 3446 dd     

RULE 3429 dd 3434 dd     

RULE 3434 dd 3440 dd     

RULE 3430 dd 3434 dd     

RULE 3430 dd 3440 dd     

RULE 3429 dd 3430 dd     

RULE 3437 dd       

POPULATION6 

RULE 3434 dd 3446 dd     

RULE 3429 dd 3434 dd     

RULE 3434 dd 3440 dd     

RULE 3429 dd 3430 dd 3440 dd   

    
D=MINOR ALLELE, d=MAJOR 

ALLELE 
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Table 9.10. Selected rules based on maximum ratio1 criterion 

          

 

RULE SETS ACCORDING TO SET 

COVERING ALGORITHM BASED ON 

MAXIMIM RATIO CRITERION  

 SNP G SNP G SNP G SNP G G: GENOTYPE 

RULE  3437 dd             

POPULATINON1 
RULE  3440 dd 3446 dd         

RULE  3430 dd 3446 dd         

RULE  3430 dd 3440 dd         

RULE  3437 dd             

POPULATINON2 

RULE  3440 dd 3446 dd         

RULE  3429 dd 3434 dd         

RULE  3434 dd 3440 dd         

RULE  3429 Dd 3434 dd 3446 dd     

RULE  3437 dd             

POPULATION3 

RULE  3434 dd 3446 dd         

RULE  3440 dd 3446 dd         

RULE  3429 dd 3434 dd         

RULE  3434 dd 3440 dd         

RULE  3430 dd 3446 dd         

RULE  3430 dd 3434 dd         

RULE  3430 dd 3440 dd         

RULE  3437 dd             

POPULATION4 

RULE  3434 dd 3446 dd         

RULE  3429 dd 3434 dd         

RULE  3434 dd 3440 dd         

RULE  3430 dd 3434 dd         

RULE  3430 dd 3440 dd         

RULE  3437 dd             

POPULATION5 

RULE  3440 dd 3446 dd         

RULE  3429 dd 3434 dd         

RULE  3434 dd 3440 dd         

RULE  3430 dd 3440 dd         

RULE  3429 dd 3430 dd         

RULE  3434 dd 3440 Dd 3446 dd     

RULE  3437 dd             

POPULATION6 

RULE  3434 dd 3446 dd         

RULE  3429 dd 3434 dd         

RULE  3434 dd 3440 dd         

RULE  3430 dd 3440 dd         

 
D=MINOR ALLELE, d=MAJOR 

ALLELE  
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Table 9.11.Selected rules according to set covering algorithm based on max. cardinality  

 RULE SETS BASED ON MAXIMIM CARDINALITY  

 SNP G SNP G SNP G SNP G GENOTYPE 

RULE  3437 dd             

POPULATINON1 
RULE  3440 dd 3446 dd         

RULE  3430 dd 3440 dd         

RULE  3429 dd 3430 dd 3440 Dd 3446 dd 

RULE  3437 dd 3440 Dd         

POPULATINON2 

RULE  3440 Dd 3446 dd         

RULE  3429 dd 3434 dd         

RULE  3434 dd 3449 dd         

RULE  3437 dd 3440 dd         

RULE  3429 dd 3434 dd 3446 dd     

RULE  3437 dd             

POPULATION3 

RULE  3434 dd 3446 dd         

RULE  3440 dd 3446 dd         

RULE  3429 dd 3434 dd         

RULE  3434 dd 3440 dd         

RULE  3429 Dd 3430 dd 3434 dd     

RULE  3429 dd 3430 dd 3440 dd     

RULE  3429 dd 3430 dd 3440 dd 3446 dd 

RULE  3434 dd 3446 dd         

POPULATION4 

RULE  3429 dd 3434 dd         

RULE  3434 dd 3440 dd         

RULE  3437 dd 3440 dd         

RULE  3437 dd 3440 Dd 3446 Dd     

RULE  3429 Dd 3430 dd 3434 dd     

RULE  3437 dd 3440 Dd 3446 dd     

RULE  3430 dd 3440 dd 3446 dd     

RULE  3437 dd 3440 Dd         

POPULATION5 

RULE  3440 dd 3446 dd         

RULE  3429 dd 3434 dd         

RULE  3434 dd 3440 dd         

RULE  3437 dd 3440 dd         

RULE  3430 dd 3440 dd         

RULE  3429 dd 3430 dd         

RULE  3429 Dd 3430 dd 3434 dd     

RULE  3434 dd 3440 Dd 3446 dd     

RULE  3437 dd 3440 Dd         

POPULATION6 

RULE  3434 dd 3446 dd         

RULE  3429 dd 3434 dd         

RULE  3434 dd 3440 dd         

RULE  3437 dd 3440 dd         

RULE  3437 dd 3430 dd 3440 dd     
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Table 9.12. Significant genotype of each significant SNP 

SNP name  Genotypes  Occurrence 

Percentage of 

Occurrence  

denseSNP6_3434 dd 53 47,3 % 

denseSNP6_3440 Dd, dd 52 46,4 % 

denseSNP6_3446 Dd, dd 39 34,8 % 

denseSNP6_3430 dd 30 26,7 % 

denseSNP6_3429 Dd, dd 29 25,8 % 

denseSNP6_3437 dd 24 21,4 % 

 

To test the performance of our decision rule extraction method, we also apply 

DTREG-single decision tree algorithm to the six-SNP combination determined by our 

feature selection method. While DTREG single decision tree algorithm can classify 

instances with an average 76.36 % prediction accuracy, our decision rule extraction 

method can provide higher prediction accuracy (90-92%). In table 9.13 the sensitivity 

values of each population that is calculated according to DTREG single decision tree 

algorithm are listed. 

Table 9.13. Sensitivity values calculated by DTREG-single decision tree 

DTREG - Single Decision Tree 

3429, 3430, 3434, 3437, 3440, 

3446 Sensitivity Ratio (%) 

Population1 80.74 

Population2 81.14 

Population3 80.74 

Population4 72.20 

Population5 70.73 

Population6 72.66 

Average Specificity Ratio 76.36 
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CHAPTER 10 

 

CONCLUSION AND FUTURE RESEARCH 

 

 

In this thesis, we propose a genetic algorithm based feature selection method and 

decision rule extraction method in order to determine the significant SNP combinations 

and significant SNP-genotype relations (rules). Our experimental results show that the 

proposed algorithm provides better classification accuracy than previous works. 

Moreover, the significant SNP combinations determined by us explain more patients 

than other method which considers the SNP combinations.  

In conclusion, our genetic algorithm based feature selection method can construct 

equally significant SNP combinations which provide better classification accuracy than 

decision tree forest and single decision tree algorithms. Moreover, since we consider 

SNP combinations, we can detect the power of SNP groups to explain the disease. 

While investigating SNPs individually can only find six important SNPs, our feature 

selection method can detect fifteen significant SNPs. Any six-SNP combinations by 

using fifteen important SNPs in Table 8.4 can lead to similar classification accuracy 

because there is a little difference with the SNP combinations. While the previous work 

(Uh. Et al., 2007) can detect only one SNP combination including two SNPs with a 

lower prediction performance (at most 86.94 %); our genetic algorithm based feature 

selection method can detect more powerful SNP combinations. Besides, our decision 

rule extraction method also performs better than current decision tree and decision 

forest algorithms of DTREG. While DTREG single decision tree algorithm can detect 

rules with average 76.36 % classification accuracy including six significant SNPs which 

are determined by us, we can provide 92.03% classification accuracy with the same 

SNP combination. 

Since the genetic factors are not the only reason of a complex disease, further 

research may focus on constructing SNP combinations by not only considering 

genetic factors but also including environmental factors to the model to better 

explain the disease.  
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Appendix A 

 

Results of the statistical measurements of significant SNP combinations 

 

Table A.1. Statistical results of solutions obtained from population1 (replicate1) 

 

 METHOD _ AIC  

REPLICATE_001  CAR McFaddens_R
2 McFaddens_R

2 RoxSnell_R
2 

SOLUTION1 0,7815 0,308240342 0,304404173 0,34416313 

SOLUTION2 0,77825 0,307522221 0,303503378 0,343518266 

SOLUTION3 0,782875 0,309411939 0,30557577 0,345213851 

SOLUTION4 0,7805 0,308479623 0,305008803 0,344377861 

SOLUTION5 0,782125 0,308870511 0,305034342 0,344728493 

REPLICATE_001  Nagelkerke_R
2 Efron's_R2 LRT p value 

Pro_Hosmer 

Test  

SOLUTION1 0,34416313 0,368544182 0 0,022825919 

SOLUTION2 0,343518266 0,367699563 0 0,111738662 

SOLUTION3 0,345213851 0,370214334 0 0,082744536 

SOLUTION4 0,344377861 0,368517489 0 0,082827236 

SOLUTION5 0,344728493 0,369457419 0 0,107442131 

 METHOD _ BIC 

REPLICATE_001  CAR McFaddens_R
2 McFaddens_R

2 RoxSnell_R
2 

SOLUTION1 0,7815 0,308240342 0,304404173 0,34416313 

SOLUTION2 0,77825 0,307522221 0,303503378 0,343518266 

SOLUTION3 0,782875 0,309411939 0,30557577 0,345213851 

SOLUTION4 0,7805 0,308479623 0,305008803 0,344377861 

SOLUTION5 0,782125 0,308870511 0,305034342 0,344728493 

REPLICATE_001  Nagelkerke_R
2 Efron's_R2 LRT p value 

Pro_Hosmer 

Test  

SOLUTION1 0,34416313 0,368544182 0 0,022825919 

SOLUTION2 0,343518266 0,367699563 0 0,111738662 

SOLUTION3 0,345213851 0,370214334 0 0,082744536 

SOLUTION4 0,344377861 0,368517489 0 0,082827236 

SOLUTION5 0,344728493 0,369457419 0 0,107442131 
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Table A.2. Statistical results of solutions obtained from population2 (replicate2) 

 

 METHOD _ AIC 

REPLICATE_002  CAR McFaddens_R
2 McFaddens_R

2 RoxSnell_R
2 

SOLUTION1 0,788125 0,322484239 0,317194937 0,35726727 

SOLUTION2 0,786375 0,320137711 0,315942747 0,355196678 

SOLUTION3 0,78675 0,32210978 0,317732426 0,356937291 

SOLUTION4 0,7875 0,320556472 0,315996729 0,355566685 

SOLUTION5 0,78775 0,322236603 0,317859249 0,357049068 

REPLICATE_002  Nagelkerke_R
2 Efron's_R2 LRT p value 

Pro_Hosmer 

Test  

SOLUTION1 0,35726727 0,387113717 0 0,111948468 

SOLUTION2 0,355196678 0,38439133 0 0,051983622 

SOLUTION3 0,356937291 0,385649198 0 0,022790705 

SOLUTION4 0,355566685 0,385172403 0 0,081847452 

SOLUTION5 0,357049068 0,386745295 0 0,091650651 

 METHOD _ BIC 

REPLICATE_002  CAR McFaddens_R
2 McFaddens_R

2 RoxSnell_R
2 

SOLUTION1 0,786625 0,320010117 0,316544712 0,355083898 

SOLUTION2 0,785875 0,320210006 0,316015042 0,355260571 

SOLUTION3 0,786 0,318547384 0,315081979 0,353789573 

SOLUTION4 0,783875 0,317000778 0,312441034 0,352418206 

SOLUTION5 0,786 0,319255618 0,315790213 0,35441659 

REPLICATE_002  Nagelkerke_R
2 Efron's_R2 LRT p value 

Pro_Hosmer 

Test  

SOLUTION1 0,355083898 0,384023873 0 0,004032994 

SOLUTION2 0,355260571 0,384206913 0 0,061208955 

SOLUTION3 0,353789573 0,382268502 0 0,110441881 

SOLUTION4 0,352418206 0,380622698 0 0,003093263 

SOLUTION5 0,35441659 0,383164292 0 0,081373446 
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Table A.3. Statistical results of solutions obtained from population3 (replicate3) 

 

 METHOD _ AIC  

REPLICATE_003  CAR McFaddens_R
2 McFaddens_R

2 RoxSnell_R
2 

SOLUTION1 0,78325 0,30204463 0,298580639 0,339117229 

SOLUTION2 0,784125 0,302425027 0,298596405 0,339461868 

SOLUTION3 0,783625 0,301228178 0,297217241 0,338376917 

SOLUTION4 0,783375 0,301834894 0,298006271 0,338927131 

SOLUTION5 0,782875 0,30106378 0,296870526 0,338227749 

REPLICATE_003  Nagelkerke_R
2 Efron's_R2 LRT p value 

Pro_Hosmer 

Test  

SOLUTION1 0,339117229 0,365382135 0 0,016311758 

SOLUTION2 0,339461868 0,365604338 0 0,041311121 

SOLUTION3 0,338376917 0,364451353 0 0,009502415 

SOLUTION4 0,338927131 0,365130023 0 0,023577975 

SOLUTION5 0,338227749 0,363792078 0 0,000991894 

 METHOD _ BIC 

REPLICATE_003  CAR McFaddens_R
2 McFaddens_R

2 RoxSnell_R
2 

SOLUTION1 0,7825 0,301135357 0,297853681 0,338292699 

SOLUTION2 0,783625 0,30188284 0,298418848 0,338970592 

SOLUTION3 0,78475 0,30141786 0,298136184 0,338548984 

SOLUTION4 0,781 0,297861334 0,29330345 0,335315282 

SOLUTION5 0,782375 0,300943505 0,296020991 0,338118597 

REPLICATE_003  Nagelkerke_R
2 Efron's_R2 LRT p value 

Pro_Hosmer 

Test  

SOLUTION1 0,338292699 0,363912998 0 0,014165057 

SOLUTION2 0,338970592 0,364526448 0 0,003017833 

SOLUTION3 0,338548984 0,364580586 0 0,004809922 

SOLUTION4 0,335315282 0,360313102 0 0,014270119 

SOLUTION5 0,338118597 0,362910213 0 0,036030485 
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Table A.4. Statistical results of solutions obtained from population4 (replicate4) 

 

 METHOD _ AIC  

REPLICATE_004  CAR McFaddens_R
2 McFaddens_R

2 RoxSnell_R
2 

SOLUTION1 0,785 0,315050523 0,311222755 0,35086178 

SOLUTION2 0,785 0,316002671 0,312721727 0,351708953 

SOLUTION3 0,784 0,31582147 0,312175977 0,351547815 

SOLUTION4 0,786 0,3167447 0,312916932 0,352368406 

SOLUTION5 0,786125 0,316231661 0,312221619 0,351912532 

REPLICATE_004  Nagelkerke_R
2 Efron's_R2 LRT p value 

Pro_Hosmer 

Test  

SOLUTION1 0,35086178 0,378355803 0 0,026951945 

SOLUTION2 0,351708953 0,380238015 0 0,037179525 

SOLUTION3 0,351547815 0,37999165 0 0,092557399 

SOLUTION4 0,352368406 0,381489537 0 0,087296621 

SOLUTION5 0,351912532 0,380776852 0 0,01028793 

 METHOD _ BIC 

REPLICATE_004  CAR McFaddens_R
2 McFaddens_R

2 RoxSnell_R
2 

SOLUTION1 0,78225 0,30984439 0,305105249 0,346210017 

SOLUTION2 0,78425 0,314533384 0,31125244 0,350401193 

SOLUTION3 0,784875 0,314843925 0,311562982 0,350677815 

SOLUTION4 0,78125 0,313482388 0,310201444 0,349464121 

SOLUTION5 0,783375 0,314001 0,310537782 0,349926687 

REPLICATE_004  Nagelkerke_R
2 Efron's_R2 LRT p value 

Pro_Hosmer 

Test  

SOLUTION1 0,346210017 0,373247359 0 0,099197342 

SOLUTION2 0,350401193 0,378684798 0 0,093137769 

SOLUTION3 0,350677815 0,379384471 0 0,0482096 

SOLUTION4 0,349464121 0,376767159 0 0,089466495 

SOLUTION5 0,349926687 0,377727112 0 0,075221967 
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Table A.5. Statistical results of solutions obtained from population5 (replicate5) 

 

 METHOD _ AIC  

REPLICATE_005  CAR McFaddens_R
2 McFaddens_R

2 RoxSnell_R
2 

SOLUTION1 0,787875 0,318154678 0,313416375 0,353669533 

SOLUTION2 0,7865 0,31773173 0,313722397 0,353294423 

SOLUTION3 0,787625 0,317672578 0,31329876 0,353241945 

SOLUTION4 0,787375 0,316673136 0,312299318 0,352354609 

SOLUTION5 0,78875 0,317352284 0,313342951 0,352957711 

REPLICATE_005  Nagelkerke_R
2 Efron's_R2 LRT p value 

Pro_Hosmer 

Test  

SOLUTION1 0,353669533 0,381735973 0 0,020186465 

SOLUTION2 0,353294423 0,380701349 0 0,031627066 

SOLUTION3 0,353241945 0,380931079 0 0,044766034 

SOLUTION4 0,352354609 0,37993917 0 0,00694565 

SOLUTION5 0,352957711 0,380756262 0 0,010218295 

 METHOD _ BIC 

REPLICATE_005  CAR McFaddens_R
2 McFaddens_R

2 RoxSnell_R
2 

SOLUTION1 0,787375 0,315709466 0,311882376 0,351497881 

SOLUTION2 0,788875 0,314939583 0,31165922 0,35081262 

SOLUTION3 0,787 0,312618838 0,309338474 0,348742576 

SOLUTION4 0,786625 0,315136821 0,311127488 0,350988247 

SOLUTION5 0,788375 0,316574626 0,312565292 0,352267083 

REPLICATE_005  Nagelkerke_R
2 Efron's_R2 LRT p value 

Pro_Hosmer 

Test  

SOLUTION1 0,351497881 0,379536849 0 0,069769564 

SOLUTION2 0,35081262 0,378601899 0 0,000382614 

SOLUTION3 0,348742576 0,375513272 0 0,003861529 

SOLUTION4 0,350988247 0,378519802 0 0,005419507 

SOLUTION5 0,352267083 0,379680076 0 0,006262061 
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Table A.6. Statistical results of solutions obtained from population6 (replicate6) 

 

 METHOD _ AIC  

REPLICATE_006  CAR McFaddens_R
2 McFaddens_R

2 RoxSnell_R
2 

SOLUTION1 0,786125 0,325520079 0,321327762 0,360116532 

SOLUTION2 0,78975 0,3267724 0,322215534 0,361214671 

SOLUTION3 0,787125 0,324711139 0,321247921 0,359406183 

SOLUTION4 0,785375 0,32499768 0,320805363 0,359657892 

SOLUTION5 0,78725 0,324219284 0,319115594 0,358973888 

REPLICATE_006  Nagelkerke_R
2 Efron's_R2 LRT p value 

Pro_Hosmer 

Test  

SOLUTION1 0,360116532 0,386159917 0 0,002332275 

SOLUTION2 0,361214671 0,387021524 0 0,000699506 

SOLUTION3 0,359406183 0,38523544 0 0,018978741 

SOLUTION4 0,359657892 0,385495438 0 0,000870237 

SOLUTION5 0,358973888 0,384734352 0 0,001100371 

 METHOD _ BIC 

REPLICATE_006  CAR McFaddens_R
2 McFaddens_R

2 RoxSnell_R
2 

SOLUTION1 0,787125 0,324246026 0,321329632 0,358997399 

SOLUTION2 0,78525 0,324121318 0,319929001 0,35888775 

SOLUTION3 0,787125 0,324448583 0,32080309 0,359175457 

SOLUTION4 0,788125 0,324501075 0,320673307 0,359221592 

SOLUTION5 0,78825 0,324876629 0,321231136 0,359551568 

REPLICATE_006  Nagelkerke_R
2 Efron's_R2 LRT p value 

Pro_Hosmer 

Test  

SOLUTION1 0,358997399 0,385030617 0 0,004475674 

SOLUTION2 0,35888775 0,384536195 0 0,006077299 

SOLUTION3 0,359175457 0,384903453 0 0,002091754 

SOLUTION4 0,359221592 0,385166 0 0,004994042 

SOLUTION5 0,359551568 0,385441476 0 0,002198742 
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Table A.7. Statistical results of solutions obtained from population7 (replicate7) 

 

 METHOD _ AIC  

REPLICATE_007 CAR McFaddens_R
2 McFaddens_R

2 RoxSnell_R
2 

SOLUTION1 0,79 0,324352704 0,319973122 0,358766226 

SOLUTION2 0,7875 0,32382673 0,319264666 0,358303998 

SOLUTION3 0,7865 0,323169062 0,318971962 0,357725569 

SOLUTION4 0,7885 0,323149194 0,318587129 0,357708087 

SOLUTION5 0,789125 0,324044482 0,3196649 0,3584954 

REPLICATE_007  Nagelkerke_R
2 Efron's_R2 LRT p value 

Pro_Hosmer 

Test  

SOLUTION1 0,358766226 0,387149983 0 0,03666968 

SOLUTION2 0,358303998 0,386362818 0 0,058766173 

SOLUTION3 0,357725569 0,385850109 0 0,082979186 

SOLUTION4 0,357708087 0,385753048 0 0,104263826 

SOLUTION5 0,3584954 0,386870941 0 0,076075663 

 METHOD _ BIC 

REPLICATE_007  CAR McFaddens_R
2 McFaddens_R

2 RoxSnell_R
2 

SOLUTION1 0,78775 0,322589214 0,318574597 0,357215151 

SOLUTION2 0,787 0,321951574 0,31884937 0,356653393 

SOLUTION3 0,787125 0,321208021 0,316645956 0,355997705 

SOLUTION4 0,788375 0,323389956 0,319922787 0,357919907 

SOLUTION5 0,789125 0,322439695 0,318790044 0,35708347 

REPLICATE_007  Nagelkerke_R
2 Efron's_R2 LRT p value 

Pro_Hosmer 

Test  

SOLUTION1 0,357215151 0,385322992 0 0,029711858 

SOLUTION2 0,356653393 0,384461221 0 0,089505084 

SOLUTION3 0,355997705 0,384245915 0 0,09758638 

SOLUTION4 0,357919907 0,386200689 0 0,074513843 

SOLUTION5 0,35708347 0,385419802 0 0,07351742 
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Appendix B 

 

 

Detailed results of tag-SNPs selection  

Table B.1. Tag SNPs of each population (replication – rep)  

 

TAG SNPs 

REP1 REP2 REP3 REP4 REP5 REP6 REP7 

SNP6_3281 SNP6_3437 SNP6_3437 SNP6_3437 SNP6_3020 SNP6_3437 SNP6_3437 

SNP6_3427 SNP6_3353 SNP6_3434 SNP6_3776 SNP6_3765 SNP6_3026 SNP6_3428 

SNP6_3418 SNP6_3773 SNP6_3407 SNP6_3028 SNP6_3049 SNP6_3428 SNP6_3031 

SNP6_3781 SNP6_3406 SNP6_3262 SNP6_909 SNP6_3428 SNP6_3017 SNP6_2862 

SNP6_3449 SNP6_3407 SNP6_3304 SNP6_3049 SNP6_3007 SNP6_2871 SNP6_3767 

SNP6_3483 SNP6_3424 SNP6_3421 SNP6_3428 SNP6_2871 SNP6_3453 SNP6_3308 

SNP6_3198 SNP6_3429 SNP6_3416 SNP6_3484 SNP6_2875 SNP6_3777 SNP6_3239 

SNP6_3650 SNP6_3425 SNP6_2862 SNP6_2793 SNP6_3118 SNP6_2870 SNP6_2870 

SNP6_3406 SNP6_3291 SNP6_3773 SNP6_3687 SNP6_3407 SNP6_3239 SNP6_3084 

SNP6_3081 SNP6_3478 SNP6_3460 SNP6_2863 SNP6_3353 SNP6_3006 SNP6_3420 

SNP6_3318 SNP6_3416 SNP6_3580 SNP6_3691 SNP6_3580 SNP6_3330 SNP6_3454 

SNP6_3759 SNP6_3430 SNP6_3662 SNP6_3084 SNP6_3083 SNP6_3221 SNP6_3434 

SNP6_2850 SNP6_3443 SNP6_3353 SNP6_3017 SNP6_3437 SNP6_3423 SNP6_3406 

SNP6_2873 SNP6_2947 SNP6_3031 SNP6_3119 SNP6_3454 SNP6_3165 SNP6_3580 

SNP6_3197 SNP6_3772 SNP6_3654 SNP6_3306 SNP6_3017 SNP6_3434 SNP6_2874 

SNP6_3479 SNP6_3467 SNP6_3285 SNP6_3434 SNP6_3423 SNP6_3580 SNP6_3083 

SNP6_3454 SNP6_3580 SNP6_3366 SNP6_3197 SNP6_3434 SNP6_3477 SNP6_3479 

SNP6_2862 SNP6_3191 SNP6_3454 SNP6_3421 SNP6_2874 SNP6_3525 SNP6_3763 

SNP6_3407 SNP6_2781 SNP6_2870 SNP6_3455 SNP6_3479 SNP6_3407 SNP6_2723 

SNP6_3463 SNP6_3763 SNP6_2863 SNP6_3081 SNP6_3416 SNP6_3083 SNP6_3293 

SNP6_3656 SNP6_2863 SNP6_3572 SNP6_3407 SNP6_3325 SNP6_3196 SNP6_3533 

SNP6_3576 SNP6_3466 SNP6_3286 SNP6_3580 SNP6_3417 SNP6_3534 SNP6_3359 

SNP6_3325 SNP6_3154 SNP6_3307 SNP6_2909 SNP6_3086 SNP6_3211 SNP6_3416 

SNP6_3384 SNP6_3359 SNP6_3055 SNP6_3781 SNP6_3466 SNP6_3935 SNP6_3443 

SNP6_3307 SNP6_3021 SNP6_3534 SNP6_3065 SNP6_3292 SNP6_2723 SNP6_3535 

SNP6_3375 SNP6_3014 SNP6_3430 SNP6_3423 SNP6_3378 SNP6_3918 SNP6_3426 

SNP6_3777 SNP6_3321 SNP6_3308 SNP6_2912 SNP6_3430 SNP6_3430 SNP6_3463 

SNP6_3309 SNP6_2714 SNP6_3261 SNP6_3462 SNP6_3413 SNP6_3759 SNP6_3493 

SNP6_2707 SNP6_3428 SNP6_3338 SNP6_3331 SNP6_3443 SNP6_2549 SNP6_147 

SNP6_3436 SNP6_2721 SNP6_3293 SNP6_3430 SNP6_3763 SNP6_2874 SNP6_3309 

SNP6_3662 SNP6_2705 SNP6_3870 SNP6_3739 SNP6_3544 SNP6_3375 SNP6_3497 

SNP6_159 SNP6_3271 SNP6_2984 SNP6_3072 SNP6_3366 SNP6_3456 SNP6_3252 

SNP6_3437 SNP6_3567 SNP6_2723 SNP6_3460 SNP6_3584 SNP6_3440 SNP6_3413 

SNP6_2848 SNP6_3286 SNP6_3432 SNP6_3375 SNP6_3429 SNP6_2724 SNP6_3203 

SNP6_3272 SNP6_2723 SNP6_3543 SNP6_3572 SNP6_3533 SNP6_3463 SNP6_3494 

SNP6_3433 SNP6_3221 SNP6_3309 SNP6_3579 SNP6_3465 SNP6_3546 SNP6_3086 

SNP6_3221 SNP6_3573 SNP6_2947 SNP6_3761 SNP6_3426 SNP6_3439 SNP6_3378 
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SNP6_3396 SNP6_3440 SNP6_3359 SNP6_3422 SNP6_3460 SNP6_3396 SNP6_3379 

SNP6_3541 SNP6_3071 SNP6_3191 SNP6_3467 SNP6_3478 SNP6_3311 SNP6_3072 

SNP6_3058 SNP6_3099 SNP6_3651 SNP6_3103 SNP6_2937 SNP6_3325 SNP6_3429 

SNP6_3557 SNP6_2866 SNP6_3283 SNP6_3478 SNP6_3572 SNP6_3425 SNP6_3446 

SNP6_3455 SNP6_3479 SNP6_3347 SNP6_3812 SNP6_3057 SNP6_147 SNP6_3396 

SNP6_3038 SNP6_3771 SNP6_2705 SNP6_2772 SNP6_3421 SNP6_3415 SNP6_3164 

SNP6_3580 SNP6_3444 SNP6_3494 SNP6_3797 SNP6_3467 SNP6_3086 SNP6_3425 

SNP6_2706 SNP6_3454 SNP6_3287 SNP6_3818 SNP6_3444 SNP6_3289 SNP6_3439 

SNP6_2795 SNP6_3331 SNP6_3761 SNP6_3446 SNP6_3236 SNP6_3191 SNP6_2713 

SNP6_3037 SNP6_2800 SNP6_2724 SNP6_3337 SNP6_3797 SNP6_3459 SNP6_3560 

SNP6_3025 SNP6_3025 SNP6_3655 SNP6_3396 SNP6_3546 SNP6_3467 SNP6_3347 

SNP6_2724 SNP6_3775 SNP6_3038 SNP6_3173 SNP6_3037 SNP6_2713 SNP6_3460 

SNP6_3462 SNP6_3294 SNP6_3264 SNP6_3413 SNP6_3462 SNP6_3449 SNP6_3279 

SNP6_3572 SNP6_3471 SNP6_3584 SNP6_3763 SNP6_3195 SNP6_3331 SNP6_3594 

SNP6_3366 SNP6_2707 SNP6_3014 SNP6_3424 SNP6_3440 SNP6_3203 SNP6_3447 

SNP6_3425 SNP6_3026 SNP6_3424 SNP6_3449 SNP6_3321 SNP6_3402 SNP6_3188 

SNP6_3467 SNP6_3584 SNP6_3778 SNP6_3465 SNP6_3446 SNP6_3567 SNP6_3338 

SNP6_3417 SNP6_2722 SNP6_3763 SNP6_3272 SNP6_3447 SNP6_3236 SNP6_3058 

SNP6_3083 SNP6_3413 SNP6_3533 SNP6_3443 SNP6_3579 SNP6_3286 SNP6_3325 

SNP6_3402 SNP6_3055 SNP6_3337 SNP6_2724 SNP6_3567 SNP6_3272 SNP6_2724 

SNP6_3654 SNP6_3426 SNP6_3378 SNP6_3438 SNP6_3759 SNP6_3544 SNP6_3384 

SNP6_3556 SNP6_2914 SNP6_2875 SNP6_3385 SNP6_3099 SNP6_2859 SNP6_3236 

SNP6_2844 SNP6_3056 SNP6_3772 SNP6_2848 SNP6_3442 SNP6_3770 SNP6_2894 

SNP6_2717 SNP6_2870 SNP6_3384 SNP6_3184 SNP6_2848 SNP6_3447 SNP6_3344 

SNP6_2723 SNP6_3382 SNP6_3265 SNP6_3236 SNP6_3396 SNP6_3359 SNP6_3366 

SNP6_3533 SNP6_3475 SNP6_3770 SNP6_3540 SNP6_3103 SNP6_3533 SNP6_3478 

SNP6_3440 SNP6_3066 SNP6_3656 SNP6_3466 SNP6_3415 SNP6_3543 SNP6_3417 

SNP6_3772 SNP6_2849 SNP6_3422 SNP6_3338 SNP6_3449 SNP6_3200 SNP6_2910 

SNP6_3426 SNP6_3533 SNP6_3546 SNP6_3293 SNP6_2724 SNP6_3460 SNP6_3259 

SNP6_3379 SNP6_2913 SNP6_3415 SNP6_3471 SNP6_3197 SNP6_3443 SNP6_2947 

SNP6_3330 SNP6_3385 SNP6_3428 SNP6_3533 SNP6_3947 SNP6_2984 SNP6_3465 

SNP6_3017 SNP6_3276 SNP6_3429 SNP6_3584 SNP6_3425 SNP6_3465 SNP6_3572 

SNP6_3338 SNP6_3378 SNP6_3466 SNP6_3325 SNP6_3304 SNP6_2848 SNP6_3770 

SNP6_3154 SNP6_3427 SNP6_3083 SNP6_3543 SNP6_3535 SNP6_2910 SNP6_2714 

SNP6_3413 SNP6_3197 SNP6_3197 SNP6_3285 SNP6_2549 SNP6_3292 SNP6_3912 

SNP6_3442 SNP6_2937 SNP6_3417 SNP6_3327 SNP6_3293 SNP6_3204 SNP6_3584 

SNP6_3432 SNP6_3765 SNP6_3442 SNP6_3353 SNP6_3384 SNP6_2705 SNP6_2705 

SNP6_3579 SNP6_3418 SNP6_2706 SNP6_3463 SNP6_3494 SNP6_3309 SNP6_3353 

SNP6_2863 SNP6_3777 SNP6_3777 SNP6_3056 SNP6_3359 SNP6_3366 SNP6_3037 

SNP6_3534 SNP6_2802 SNP6_2848 SNP6_3440 SNP6_3812 SNP6_3379 SNP6_2937 

SNP6_2871 SNP6_3571 SNP6_3306 SNP6_3494 SNP6_3200 SNP6_3912 SNP6_3190 

SNP6_3195 SNP6_3058 SNP6_3195 SNP6_2714 SNP6_3338 SNP6_3327 SNP6_3292 

SNP6_3424 SNP6_3483 SNP6_2861 SNP6_2937 SNP6_3422 SNP6_3416 SNP6_3422 

SNP6_3765 SNP6_3228 SNP6_3756 SNP6_2705 SNP6_3327 SNP6_3572 SNP6_3430 

SNP6_3382 SNP6_3031 SNP6_3330 SNP6_2910 SNP6_3193 SNP6_3429 SNP6_3546 

SNP6_3189 SNP6_3049 SNP6_3657 SNP6_3347 SNP6_3309 SNP6_3812 SNP6_3223 
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SNP6_3581 SNP6_3525 SNP6_3912 SNP6_3416 SNP6_3379 SNP6_3353 SNP6_3532 

SNP6_2705 SNP6_2900 SNP6_3193 SNP6_2713 SNP6_2723 SNP6_3455 SNP6_3761 

SNP6_3415 SNP6_3275 SNP6_3771 SNP6_3444 SNP6_2859 SNP6_3037 SNP6_3191 

SNP6_3771 SNP6_3366 SNP6_3462 SNP6_3378 SNP6_3543 SNP6_3038 SNP6_3197 

SNP6_3767 SNP6_3325 SNP6_3054 SNP6_3544 SNP6_3524 SNP6_3304 SNP6_3304 

SNP6_3678 SNP6_3327 SNP6_3435 SNP6_3359 SNP6_3770 SNP6_3797 SNP6_3462 

SNP6_3021 SNP6_3330 SNP6_3535 SNP6_3304   SNP6_3426 SNP6_3534 

SNP6_3049 SNP6_3017 SNP6_2707 SNP6_3759   SNP6_3509 SNP6_3331 

SNP6_3465 SNP6_3581 SNP6_3440 SNP6_2865   SNP6_2900 SNP6_3038 

SNP6_3438 SNP6_3449 SNP6_3544 SNP6_2717   SNP6_3338 SNP6_3440 

SNP6_3584 SNP6_3338 SNP6_3025 SNP6_2743   SNP6_3756 SNP6_3449 

SNP6_3775 SNP6_2894 SNP6_3331 SNP6_3429   SNP6_3251 SNP6_3285 

SNP6_3652 SNP6_3433 SNP6_3678 SNP6_3088   SNP6_3482 SNP6_3266 

SNP6_3327 SNP6_3038 SNP6_3455 SNP6_3546   SNP6_3413 SNP6_3483 

SNP6_3086 SNP6_3535 SNP6_3017 SNP6_3417   SNP6_3197 SNP6_3524 

SNP6_3214 SNP6_3272 SNP6_3767 SNP6_3309   SNP6_3057 SNP6_3402 

SNP6_3055 SNP6_147 SNP6_2982 SNP6_3442   SNP6_3077 SNP6_3870 

SNP6_3060 SNP6_3322 SNP6_3436 SNP6_2706   SNP6_3306 SNP6_3444 

SNP6_3494 SNP6_3214 SNP6_3200 SNP6_3200   SNP6_2995 SNP6_3573 

SNP6_3439 SNP6_2797 SNP6_3759 SNP6_3191   SNP6_3384 SNP6_3543 

SNP6_3773 SNP6_3060 SNP6_3433 SNP6_3479   SNP6_3237 SNP6_3375 

SNP6_3014 SNP6_2910 SNP6_3325 SNP6_3447   SNP6_3422 SNP6_3158 

SNP6_3353 SNP6_3447 SNP6_3037 SNP6_3402   SNP6_3207 SNP6_2859 

SNP6_3676 SNP6_2862 SNP6_3081 SNP6_3545   SNP6_3080 SNP6_3759 

SNP6_3378 SNP6_3375 SNP6_3664 SNP6_3058   SNP6_3321 SNP6_3471 

SNP6_3761 SNP6_3063 SNP6_3426 SNP6_2723   SNP6_3444   

SNP6_3482 SNP6_3041 SNP6_3322 SNP6_3770   SNP6_3462   

SNP6_3031 SNP6_3200 SNP6_3282 SNP6_3321   SNP6_3763   

SNP6_3657 SNP6_3767 SNP6_3418     SNP6_3584   

SNP6_3054 SNP6_3778 SNP6_3413     SNP6_3510   

SNP6_3655 SNP6_3434 SNP6_3058     SNP6_2894   

SNP6_2947 SNP6_3509 SNP6_3745     SNP6_3446   

SNP6_2937 SNP6_3546 SNP6_3414     SNP6_2714   

SNP6_3322 SNP6_3438 SNP6_3266     SNP6_3213   

SNP6_3423 SNP6_2875 SNP6_2713     SNP6_3478   

SNP6_3184 SNP6_3103 SNP6_3775     SNP6_3055   

SNP6_3444 SNP6_3306 SNP6_3467     SNP6_2937   

SNP6_3664 SNP6_3292 SNP6_3385     SNP6_3579   

SNP6_3012 SNP6_3384 SNP6_3402     SNP6_3184   

SNP6_3193 SNP6_3308 SNP6_3644     SNP6_3227   

SNP6_3200 SNP6_3051 SNP6_3652     SNP6_3531   

SNP6_3478 SNP6_3465 SNP6_3375     SNP6_3378   

SNP6_3447 SNP6_2724 SNP6_2860     SNP6_3344   

SNP6_3236 SNP6_3476 SNP6_3327     SNP6_3399   

SNP6_3422 SNP6_3293 SNP6_3439     SNP6_3060   

SNP6_3414 SNP6_3439 SNP6_3184     SNP6_3479   
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SNP6_3535 SNP6_3000 SNP6_3947     SNP6_3870   

SNP6_3385 SNP6_3524 SNP6_3396         

SNP6_3649 SNP6_3307 SNP6_3236         

SNP6_3774 SNP6_3759 SNP6_3446         

SNP6_3331 SNP6_3463 SNP6_3479         

SNP6_3778 SNP6_3442 SNP6_3227         

SNP6_3430 SNP6_2873 SNP6_2937         

SNP6_3466 SNP6_3534 SNP6_3650         

SNP6_3460 SNP6_3309 SNP6_3483         

SNP6_3443 SNP6_2850 SNP6_3406         

SNP6_3429 SNP6_3761 SNP6_3465         

SNP6_3228 SNP6_3396 SNP6_2866         

SNP6_3416 SNP6_3493 SNP6_3478         

SNP6_2910 SNP6_3204           

SNP6_3546 SNP6_3572           

SNP6_3446 SNP6_3012           

SNP6_3763 SNP6_2901           

SNP6_3191 SNP6_2795           

SNP6_3359 SNP6_3037           

  SNP6_3432           

  SNP6_3494           

  SNP6_3446           

  SNP6_2871           

  SNP6_3532           

  SNP6_14754         
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Appendix C 

 

Detailed results of DTREG  

Table C.1. Important SNPs when the full tag-SNPs set is given to DTREG-Single Decision 

Tree as an input for replication1  

 

REPLICATION 1 

  =======  Overall Importance of Variables  ======= 

   Variable       Importance 

denseSNP6_3439       100.000 

denseSNP6_3437         8.894 

denseSNP6_3327         0.438 

denseSNP6_3576         0.437 

denseSNP6_3759         0.398 

--------  Training Data  -------- 

  Sensitivity = 72.66% 

  Specificity = 83.34% 

  Geometric mean of sensitivity and specificity = 77.82% 

  Positive Predictive Value (PPV) = 76.95% 

  Negative Predictive Value (NPV) = 79.94% 

  Geometric mean of PPV and NPV = 78.43% 

--------  Validation Data  -------- 

  Sensitivity = 71.80% 

  Specificity = 83.38% 

  Geometric mean of sensitivity and specificity = 77.38% 

  Positive Predictive Value (PPV) = 76.78% 

  Negative Predictive Value (NPV) = 79.44% 

  Geometric mean of PPV and NPV = 78.10% 
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Table C.2. Important SNPs when the full tag-SNPs set are given to DTREG-Single Decision 

Tree as an input for replication2 

 

REPLICATION 2 

  =======  Overall Importance of Variables  ======= 

   Variable       Importance 

denseSNP6_3439       100.000 

denseSNP6_3437         8.558 

--------  Training Data  -------- 

  Sensitivity = 71.21% 

  Specificity = 84.37% 

  Geometric mean of sensitivity and specificity = 77.51% 

  Positive Predictive Value (PPV) = 78.00% 

  Negative Predictive Value (NPV) = 79.02% 

  Geometric mean of PPV and NPV = 78.51% 

--------  Validation Data  -------- 

  Sensitivity = 71.21% 

  Specificity = 84.37% 

  Geometric mean of sensitivity and specificity = 77.51% 

  Positive Predictive Value (PPV) = 78.00% 

  Negative Predictive Value (NPV) = 79.02% 

  Geometric mean of PPV and NPV = 78.51% 

 



96 

 

Table C.3. Important SNPs when the full tag-SNPs set are given to DTREG-Single Decision 

Tree as an input for replication3 

 

REPLICATION 3 

  ========  Overall Importance of Variables  ======== 

   Variable       Importance 

denseSNP6_3439       100.000 

denseSNP6_3437        11.093 

--------  Training Data  -------- 

  Sensitivity = 71.94% 

  Specificity = 83.01% 

  Geometric mean of sensitivity and specificity = 77.27% 

  Positive Predictive Value (PPV) = 76.79% 

  Negative Predictive Value (NPV) = 79.10% 

  Geometric mean of PPV and NPV = 77.94% 

--------  Validation Data  -------- 

  Sensitivity = 75.39% 

  Specificity = 83.01% 

  Geometric mean of sensitivity and specificity = 77.27% 

  Positive Predictive Value (PPV) = 76.79% 

  Negative Predictive Value (NPV) = 79.10% 

  Geometric mean of PPV and NPV = 77.94% 
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Table C.4. Important SNPs when the full tag-SNPs set are given to DTREG-Single Decision 

Tree as an input for replication4 

 

REPLICATION 4 

  =======  Overall Importance of Variables  ========= 

   Variable       Importance 

denseSNP6_3442       100.000 

denseSNP6_3440        19.202 

denseSNP6_3430         3.553 

denseSNP6_3449         2.786 

denseSNP6_3437         1.452 

--------  Training Data  -------- 

  Sensitivity = 76.36% 

  Specificity = 81.76% 

  Geometric mean of sensitivity and specificity = 79.01% 

  Positive Predictive Value (PPV) = 76.64% 

  Negative Predictive Value (NPV) = 81.53% 

  Geometric mean of PPV and NPV = 79.05% 

--------  Validation Data  -------- 

  Sensitivity = 75.39% 

  Specificity = 80.20% 

  Geometric mean of sensitivity and specificity = 77.76% 

  Positive Predictive Value (PPV) = 74.90% 

  Negative Predictive Value (NPV) = 80.61% 

  Geometric mean of PPV and NPV = 77.71% 
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Table C.5. Important SNPs when the full tag-SNPs set are given to DTREG-Single Decision 

Tree as an input for replication5 

 

REPLICATION 5 

  ========  Overall Importance of Variables  ========= 

   Variable       Importance 

denseSNP6_3437       100.000 

denseSNP6_3434        17.278 

denseSNP6_3430         3.995 

denseSNP6_3947         2.712 

denseSNP6_3467         0.654 

--------  Training Data  -------- 

  Sensitivity = 74.71% 

  Specificity = 82.62% 

  Geometric mean of sensitivity and specificity = 78.56% 

  Positive Predictive Value (PPV) = 77.14% 

  Negative Predictive Value (NPV) = 80.62% 

  Geometric mean of PPV and NPV = 78.86% 

--------  Validation Data  -------- 

  Sensitivity = 74.11% 

  Specificity = 82.77% 

  Geometric mean of sensitivity and specificity = 78.32% 

  Positive Predictive Value (PPV) = 77.16% 

  Negative Predictive Value (NPV) = 80.28% 

  Geometric mean of PPV and NPV = 78.71% 
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Table C.6. Important SNPs when the full tag-SNPs set are given to DTREG-Single Decision 

Tree as an input for replication6 

 

REPLICATION 6 

  ======  Overall Importance of Variables  ========== 

   Variable       Importance 

denseSNP6_3439       100.000 

denseSNP6_3437        19.179 

denseSNP6_3479         0.880 

denseSNP6_3912         0.707 

denseSNP6_3304         0.598 

--------  Training Data  -------- 

  Sensitivity = 82.98% 

  Specificity = 79.71% 

  Geometric mean of sensitivity and specificity = 81.33% 

  Positive Predictive Value (PPV) = 75.99% 

  Negative Predictive Value (NPV) = 85.82% 

  Geometric mean of PPV and NPV = 80.76% 

--------  Validation Data  -------- 

  Sensitivity = 79.11% 

  Specificity = 78.47% 

  Geometric mean of sensitivity and specificity = 78.79% 

  Positive Predictive Value (PPV) = 73.98% 

  Negative Predictive Value (NPV) = 82.92% 

  Geometric mean of PPV and NPV = 78.32% 
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Appendix D 

 

Detailed results of DTREG-Single Decision Tree  

Table D.1. Sensitivity values when only the significant SNP combination is given to DTREG-

Single Decision Tree as an input for replication1  

 

REPLICATION 1 

  ======  Overall Importance of Variables  ========= 

   Variable       Importance 

denseSNP6_3437       100.000 

denseSNP6_3430         3.719 

denseSNP6_3429         0.604 

denseSNP6_3446         0.601 

denseSNP6_3440         0.308 

--------  Training Data  -------- 

  Sensitivity = 81.20% 

  Specificity = 71.85% 

  Geometric mean of sensitivity and specificity = 76.38% 

  Positive Predictive Value (PPV) = 69.28% 

  Negative Predictive Value (NPV) = 83.02% 

  Geometric mean of PPV and NPV = 75.84% 

--------  Validation Data  -------- 

  Sensitivity = 80.74% 

  Specificity = 71.87% 

  Geometric mean of sensitivity and specificity = 76.18% 

  Positive Predictive Value (PPV) = 69.17% 

  Negative Predictive Value (NPV) = 82.68% 

  Geometric mean of PPV and NPV = 75.63% 
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Table D.2. Sensitivity values when only the significant SNP combination is given to DTREG-

Single Decision Tree as an input for replication2 

 

REPLICATION 2 

  =====  Overall Importance of Variables  ============ 

   Variable       Importance 

denseSNP6_3437       100.000 

denseSNP6_3430         4.732 

--------  Training Data  -------- 

  Sensitivity = 81.14% 

  Specificity = 72.97% 

  Geometric mean of sensitivity and specificity = 76.95% 

  Positive Predictive Value (PPV) = 69.67% 

  Negative Predictive Value (NPV) = 83.49% 

  Geometric mean of PPV and NPV = 76.27% 

--------  Validation Data  -------- 

  Sensitivity = 81.14% 

  Specificity = 72.97% 

  Geometric mean of sensitivity and specificity = 76.95% 

  Positive Predictive Value (PPV) = 69.67% 

  Negative Predictive Value (NPV) = 83.49% 

  Geometric mean of PPV and NPV = 76.27% 
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Table D.3. Sensitivity values when only the significant SNP combination is given to DTREG-

Single Decision Tree as an input for replication3 

 

REPLICATION 3 

 ======  Overall Importance of Variables  ============ 

   Variable       Importance 

denseSNP6_3437       100.000 

denseSNP6_3430         3.719 

denseSNP6_3429         0.604 

denseSNP6_3446         0.601 

denseSNP6_3440         0.308 

--------  Training Data  --------  

Sensitivity = 81.20% 

  Specificity = 71.85% 

  Geometric mean of sensitivity and specificity = 76.38% 

  Positive Predictive Value (PPV) = 69.28% 

  Negative Predictive Value (NPV) = 83.02% 

  Geometric mean of PPV and NPV = 75.84% 

--------  Validation Data  -------- 

  Sensitivity = 80.74% 

  Specificity = 71.87% 

  Geometric mean of sensitivity and specificity = 76.18% 

  Positive Predictive Value (PPV) = 69.17% 

  Negative Predictive Value (NPV) = 82.68% 

  Geometric mean of PPV and NPV = 75.63% 
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Table D.4. Sensitivity values when only the significant SNP combination is given to DTREG-

Single Decision Tree as an input for replication4 

 

REPLICATION 4 

  ======  Overall Importance of Variables  ======== 

   Variable       Importance 

denseSNP6_3437       100.000 

denseSNP6_3434        18.147 

denseSNP6_3430         4.705 

denseSNP6_3446         0.987 

--------  Training Data  --------  

  Sensitivity = 72.20% 

  Specificity = 83.39% 

  Geometric mean of sensitivity and specificity = 77.60% 

  Positive Predictive Value (PPV) = 77.31% 

  Negative Predictive Value (NPV) = 79.29% 

  Geometric mean of PPV and NPV = 78.29% 

--------  Validation Data  -------- 

  Sensitivity = 72.20% 

  Specificity = 83.39% 

  Geometric mean of sensitivity and specificity = 77.60% 

  Positive Predictive Value (PPV) = 77.31% 

  Negative Predictive Value (NPV) = 79.29% 

  Geometric mean of PPV and NPV = 78.29% 
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Table D.5. Sensitivity values when only the significant SNP combination is given to DTREG-

Single Decision Tree as an input for replication5 

 

REPLICATION 5 

 ======= Overall Importance of Variables  ======== 

   Variable       Importance 

denseSNP6_3437       100.000 

denseSNP6_3434        17.278 

denseSNP6_3430         3.995 

--------  Training Data  --------  

  Sensitivity = 70.73% 

  Specificity = 83.87% 

  Geometric mean of sensitivity and specificity = 77.02% 

  Positive Predictive Value (PPV) = 77.49% 

  Negative Predictive Value (NPV) = 78.49% 

  Geometric mean of PPV and NPV = 77.99% 

--------  Validation Data  -------- 

  Sensitivity = 70.73% 

  Specificity = 83.87% 

  Geometric mean of sensitivity and specificity = 77.02% 

  Positive Predictive Value (PPV) = 77.49% 

  Negative Predictive Value (NPV) = 78.49% 

  Geometric mean of PPV and NPV = 77.99% 
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Table D.6. Sensitivity values when only the significant SNP combination is given to DTREG-

Single Decision Tree as an input for replication6 

 

REPLICATION 6 

  ====  Overall Importance of Variables  ============ 

   Variable       Importance 

denseSNP6_3437       100.000 

denseSNP6_3434        17.143 

denseSNP6_3430         5.001 

denseSNP6_3446         0.315 

--------  Training Data  --------  

  Sensitivity = 72.75% 

  Specificity = 83.37% 

  Geometric mean of sensitivity and specificity = 77.88% 

  Positive Predictive Value (PPV) = 77.20% 

  Negative Predictive Value (NPV) = 79.81% 

  Geometric mean of PPV and NPV = 78.49% 

--------  Validation Data  -------- 

  Sensitivity = 72.66% 

  Specificity = 83.35% 

  Geometric mean of sensitivity and specificity = 77.82% 

  Positive Predictive Value (PPV) = 77.15% 

  Negative Predictive Value (NPV) = 79.76% 

  Geometric mean of PPV and NPV = 78.44% 

 

 

 

 

 

 


