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Abstract

Electroencephalography (EEG) based Brain-Computer Interface (BCI) sys-

tems are a new development in the field of applied neurophysiology. This new

approach has been made possible thanks to progress in EEG analysis and in in-

formation technology which has led to a better understanding of psychophysical

aspects of the EEG signals. BCI systems enable information flow from the brain

directly to the outside world. For widespread use of brain signals for such objec-

tives, effective signal analysis and pattern recognition techniques are needed.

In this thesis, we have developed a new technique based on hidden Markov

models, and have demonstrated the effectiveness of our algorithms both on a

standard dataset and on the data that we have collected in our laboratory.

We have used HMMs with AR features combined with PCA to classify two

and four class single trial EEG data recorded during imagination of motor actions
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type of BCI experiments. Results were compared with previous HMM based BCI

classifiers and Mahalanobis distance classifier fed with two different state-of-the-

art EEG features.
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EEG Tabanlı Beyin Bilgisayar Arayüzleri için
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Özet

Elektroensefalografi (EEG) tabanlı Beyin-Bilgisayar arayüzü (BBA) sistem-

leri uygulamalı nörofizyoloji alanındaki yeni gelişmelerden biridir. Bu sistem-

ler EEG analiz yöntemleri ve bilgi teknolojileri alanındaki gelişmeler ile EEG

sinyalinin psikofiziksel özelliklerinin daha iyi anlaşılmasıyla mümkün hale gelmek-

tedirler. BBA sistemleri beyinden dış dünyaya, çevresel sinir sistemini kullan-

madan, doğrudan bir bilgi akışı sağlamayı amaçlar. Bu amaca ulaşılabilmesi için

etkili sinyal işleme ve örüntü tanıma tekniklerine gerek vardır.

Bu tezde, saklı Markov modelleri (HMM) üzerine kurulu bir yaklaşım önerdik

ve yaklaşımımızın etkinliğini genel kullanıma açık bir veri kümesi ve kendi labo-

ratuvarımızda topladığımız veriler üzerindeki deneysel sonuçlar ile gösterdik.

Hareketin zihinde canlandırılması deneylerinden elde edilen iki ve dört sınıflı

EEG verilerden kestirilen özbağlanımlı parametrelere (AR) dayalı öznitelikleri

temel bileşen analizi (PCA) tabanlı boyut indirgeme ile birlikte kullandık ve

elde ettiğimiz boyutu indirgenmiş öznitelikleri HMMler kullanarak sınıflandırdık.

Elde ettiğimiz sonuçları daha önce yapılmış HMM tabanlı BBA sınıflandırıcıları

ve Mahalanobis mesafesi sınıflandırıcısı ile karşılaştırdık.
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CHAPTER 1

Introduction

This introduction gives brief information on a general BCI system and explains

the components of the EEG-based BCI system used in this thesis. We introduce

and discuss the pattern recognition problem involved in such a system, followed

by the main contributions and organization of the thesis.

1.1 Brain Computer Interfaces (BCIs)

Brain-Computer Interfaces (BCIs) are assistive systems for humans who have a

healthy brain but a dysfunctional peripheral nervous system. Such individuals

cannot convert their thoughts into actions. The purpose of a BCI system is to

establish a communication channel between the brain and the device that will

enable the user to perform an action. A general BCI system (Figure 1.1) is com-

prised by an interface to collect physiological data from the brain and a control

system to process the collected data which converts thoughts into actions. The

interface can either be a system such as Electroencephalograph (EEG), a Mag-

netoencephalograph (MEG) or a Magnetic Resonance Imaging (MRI) device to

record electromagnetic neurophysiologic; or a near infrared spectroscope (NIRS)

to record neurohematologic effects of working neuronal circuitry.

1



Figure 1.1: Brain Computer Interface System Scheme

1.2 Electroencephalography (EEG) Based Brain Computer Inter-

faces (BCIs)

Electroencephalography (EEG) based Brain-Computer Interface (BCI) systems

are a new development in the field of applied neurophysiology. These systems are

being developed in order to enable people who cannot carry out normal motor

functions, such as Amyotrophic Lateral Sclerosis (ALS) and Tetraplegic patients,

to control computer based devices. Currently the most important application

areas of BCI systems are: to facilitate the communication of ALS and paralyzed

patients with their environments; and to enable people with spinal cord injuries

to physically manipulate their surroundings by controlling neuroprostheses [5,6].

Electrophysiology based BCI systems can be realized both in an invasive fash-

ion through microelectrodes (Figure 1.2a) directly implanted in the brain or using

an electrode matrix (Figure 1.2b) spread out on the brain; and in a non-invasive

fashion through electrodes connected to the surface of the head (Figure 1.2c). In

this thesis, we consider non-invasive measurement scenarios. Systems relying on

signals measured from surface of the head are easier to use by patients in practice.

However, in the process of signal propagation from inside the brain to the outside

of the head, significant signal losses and superposition of various signals occur;

furthermore noise creeps into the data. Consequently, automatic signal analysis

becomes yet more challenging. An example, the one we have used for our study,

2



(a) Microelectrode (b) ElectroCorticoGram

(c) ElectroEncephaloGram

Figure 1.2: Invasive and Non-invasive Recording Techniques

of an EEG-based BCI is given in figure 1.3.

1.3 EEG Pattern Recognition Problem

Imagine a room full of people talking about various topics. Lets assume their a

television in this room and some of the people in the room talk louder or faster

according to some images they saw on the television. Meanwhile let a couple

of very good microphones record these people’s voices from outside of the room

and a scientist analyze these recordings to understand what a particular subset

of this group, including those who speak louder, say. In this particular scenario

we saw a combination of cocktail party and speech recognition problems.

EEG pattern recognition problem constitutes similar elements with the prob-

3



Figure 1.3: An EEG-Based Brain Computer Interface System Scheme

lem above. There are approximately 1011 neurons in the brain and 1014 con-

nections (synapses) between them. Each neuronal circuitry has its own duty

(Figure 1.4) and has interactions with many others constantly. Whenever we

record electrical activity of the brain with electrodes connected to the scalp, we

measure the electrical behaviors of a population of neurons (Figure 1.5). To deal

with this highly convoluted signal, there is a need for extensive signal processing

algorithms.

EEG is a time series signal. The purpose of an EEG-based BCI researcher is to

develop signal processing techniques to find specific patterns, as in the case above,

to carry specific actions in the brain using features extracted from this time series

signal. Development of those techniques requires addressing various pieces of the

problem including data acquisition, pre-processing, feature extraction, feature

selection and classification [7]. Different groups in the BCI community attacked

the problem from different angles depending on their area of expertise. If we

divide the community into two major groups as Neurobiologists and Engineers,

we will see that the former uses very simple pattern recognition methods such

4



Figure 1.4: Different parts of the brain are responsible for different actions. (taken

from epilepsyfoundation.org)

Figure 1.5: Volume conduction effect of brain tissues (Reprinted from [1])
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as simple thresholding [8, 9] and focuses much more on subject training, as will

be explained in section 2.2. More sophisticated methods, which will also be

described in section 2.2 in detail, and which are mostly favored by the latter

group of researchers, classify different EEG patterns using linear and nonlinear

classifiers [10–12].

Figure 1.6: Ten Individual Single Trials recorded during a Finger Movement

Experiment

When a subject performs a simple motor action such as moving a finger, a

corresponding signal can be recorded using EEG electrodes from the related part

of the brain, the motor cortex. In Figure 1.6, various EEG signal epochs during

a finger movement task recorded over this region of the brain has been shown.

Finger movement action was performed 10 times each lasting approximately 5

seconds. In theory, similar EEG patterns for each individual movement can be

expected. However, when we inspect each trial, one can see that these signals

6



significantly differ from each other. Our purpose is to find a way to extract the

similar patterns in the epochs for classification.This requires a series of steps such

as increasing the signal-to-noise (SNR) ratio, characterizing the signal structure

and designing a robust classifier. It is possible to increase the SNR of EEG

signal by averaging multiple single trials (Figure 1.6). However, averaging needs

repetition of trial and leads to loss of time. It is very important to work on

single trial epochs for that reason. Of course there is a trade off between SNR

and classification speed. Depending on the application, single trial classification

could be more important. For that reason, many studies have been performed on

single trial classification [13–18].

Figure 1.7: Time-Frequency Analysis (TFA) of 10 averaged single trials recorded

during a finger movement task. One can easily see the TF pattern.

In this thesis, we have focused on single trial classification of EEG epochs

recorded during 2 different motor imagery tasks. During the imagining of motor

actions, frequency structure of the EEG signal changes through time. An example

of a time-frequency analysis (TFA) of such a signal is shown in Figure 1.7. To

increase the SNR, ten individual single trials have been averaged and the TFA

7



has been performed. Averaging of multiple trials makes it easier to highlight the

evolution of the frequency structure through time. It is possible to interpret the

TFA figure as there are certain changes in the frequency structure of the signal

which might be thought as a change in the state of the brain. Throughout the

thesis, we have developed techniques that performed well despite the low SNR

and characterize the change of the frequency structure of the signal as well as

different states of the brain.

1.4 Contribution of this Thesis

The first contribution of this thesis is creating a publicly available BCI database.

This database is the first national BCI database which will be publicly available

in Turkey. There are a few BCI databases which were made publicly available

via international BCI competitions, none of which has 12 subjects and different

recording scenarios.

The second contribution involves a novel application of the hidden Markov

model (HMM) framework to the EEG based BCI problem. We have used HMMs

for a 4-class BCI problem for the first time. HMMs have been used for 2-class BCI

problems before [19] and worked pretty well because of the dynamic structure of

the classifier. However, previous studies used Hjorth features to train HMMs

whereas we have used auro-regressive (AR) features.

The third contribution of this thesis is a novel application of principal com-

ponent analysis (PCA) to extract and reduce EEG features. PCA has also been

used many times in the BCI context. Our contribution involves using PCA for

feature dimensionality reduction, and then using HMMs on the reduced dimen-

sional features.

8



1.5 Organization

In chapter 2, we review the current state-of-the-art BCI systems and classification

methods. In chapter 3, EEG feature extraction methods and statistical tools that

used in this thesis are summarized. In Chapter 4, the SU-BCI dataset that we

have recorded in our laboratory is described in detail and another data set we use

in our work is introduced. Chapter 5 contains our feature extraction approach,

PCA-based dimensionality reduction procedure, and HMM-based classifier, to-

gether with experimental results. Chapter 6 finalizes the thesis with conclusions

and potential future perspectives.
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CHAPTER 2

Background

In this chapter, we provide some information on the state-of-the-art in EEG based

BCI research and summarize current classification methods used in this field.

2.1 EEG based BCIs

EEG-based BCI research can be classified under two types of phenomena [20]:

• Evoked Potentials (EPs): EPs are uncontrolled responses that are gen-

erated by the subject to an external stimulus. EPs can be thought of as

a reflex of the brain to a given stimulus. Steady-State evoked potentials

(SSEP) and P300 responses are two types of EPs.

• Spontaneous EEG: These signals are consciously generated by the sub-

ject [7] before, during or after performing an action. Sensory-Motor rhythms

(SMR), Bereitschaftspotential (BP or Readiness Potential) and Slow Cor-

tical Potentials (SCPs) are the members of this type BCIs.

We describe each of these two types of BCIs in the following subsections.

2.1.1 Evoked Potential-based BCIs

Evoked potentials (EP) are electrical brain responses that are triggered by oc-

currence of particular events or stimuli. It is hard to detect this activity due to

10



(a) P300 (b) Sensory Motor

(c) Slow-Cortical Potentials (d) SSVEP

Figure 2.1: Examples of the types of phenomena used in EEG-based BCI tech-

niques. (Taken from [2] and [3])
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larger ongoing or background activity. Dawson [21] tried to solve this problem by

superposing a number of time-locking activities. This method enhances the event

related activity by suppressing the background activity. The main advantage of

EP-based BCIs is that they do not need subject training. There are two ma-

jor types of this kind of BCIs: Steady-state evoked potentials and P300 evoked

potentials.

2.1.1.1 Steady-State Evoked Potentials (SSEPs)

SSEPs appear during an exposure to auditory, visual or tactile periodic stimulus

such as flashing lights or repeating beeps. Amplitude or frequency of SSEPs can

be used as features.

Steady-state VEPs (SSVEPs) were used to enable subjects to use virtual

keyboards and perform other types of tasks. One particular setup to exploit

SSVEPs involves a number of flashing lights appearing on the screen as virtual

buttons. Each button flashes at different frequencies. When the subject focuses

on one of these buttons, EEG activity at that frequency increases (Figure 2.1d)

[22,23]. That is to say, when stimulated by a signal at a particular frequency, the

brain generates an oscillatory response at the same frequency and its harmonics

[24,25].

2.1.1.2 P300 Evoked Potentials

P300 is an increase in the EEG amplitude (Figure 2.1a) approximately 300

miliseconds after the presentation of a task-relevant stimulus [25]. Subjects are

given two types of stimuli one of which is less presented than the other (e.g.

with probability ratio of 1 to 10) which is called the ”odd-ball” paradigm. P300

phenomenon has been introduced to the BCI community by Farwell and Donchin

12



(a) Given stimulus (b) P300 Response

Figure 2.2: P300 spelling device

in 1988 [26], through the so-called P300-spelling device (Figure 2.2). In a P300

spelling device, rows and columns of a letter matrix flash randomly. Each time

the row or column of the chosen letter flashes, a P300 signal occurs in the brain.

After a couple of repetitions of this process and averaging over trials and matching

the row/column flashing pairs, the goal is to automatically detect the intended

letter based on the EEG signal and in this way enable the subject to write letters

on the screen.

2.1.2 Spontaneous EEG-based BCIs

2.1.2.1 Sensory Motor Rhythms (SMR)

There are four main rhythms in EEG known as alpha (α or µ, 8-12 Hz), beta(β,

13-higher), theta (θ, 4-8 Hz) and delta (δ, 0.1-4 Hz).

When someone does not process a sensory input or produce a motor output,

primary sensory or motor cortical areas display a 8-12 Hz activity knows as the µ

rhythm [2] (Figure 2.1b). The µ rhythm decreases with movement, preparation

of movement or imagination of that movement [27], particularly in contra-lateral
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areas of the brain to the limb movement. This decrease is called event-related

desynchronization (ERD). Similarly increased rhythm is called event related syn-

chronization (ERS) and often appears after movement [27].

Two of the prominent research groups (Wadsworth Center BCI Group, Al-

bany, NY and Graz BCI Group, Graz, Austria) in the field of EEG-based BCI

research use SMRs. In Wolpaw et al. [6, 28] patients with motor impairments

were able to learn to control their µ and β rhythm amplitudes and in this way

performed 2 dimensional movements on computer screen. Similarly, Graz-BCI

system enabled patients to control a virtual keyboard [29, 30] and an arm pros-

thesis [31, 32] .

2.1.2.2 Bereitschaftspotential (BP)

The Bereitschaftspotential or BP (from German, ”readiness potential”), also

called the pre-motor potential or readiness potential (RP), is slow negative po-

tentials in the premotor and motor cortex of the brain leading up to voluntary

muscle movement. The BP is a manifestation of cortical contribution to the pre-

motor planning of volitional movement. RPs are independent of the perception

or processing of stimuli [25]. It was first recorded and reported in 1964 by Hans

Helmut Kornhuber and Lder Deecke at the University of Freiburg in Germany.

In 1965 the full publication appeared after many control experiments. Since the

sensorimotor cortex has a somatotopic organization, the body part that will be

moved, or for which a movement is imagined, can be inferred from the location

of greatest amplitude of the RP. This phenomenon has been used in combination

with sensorimotor rhythms in a BCI based on motor imagery [25,33,34].
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2.1.2.3 Slow Cortical Potentials

SCPs are slow drifts in EEG from 300ms up to a couple of seconds (Figure 2.1c).

Positive SCPs means an increase in the cortical excitability and negative SCPs the

opposite. As in the SMR case, subjects can also learn to control their SCPs with

feedback training which takes longer than SMR training but apparently SCPs are

more robust than SMRs [7,35]. Birbaumer et al. [8] used slow cortical potentials

(SCPs) to make patients select letters, words or pictograms in a computerized

language support program called the thought translation device.

2.2 BCI Pattern Classification Methods

The purpose of a BCI is to translate neuronal activity into a command for a

computer. To achieve this goal, various machine learning algorithms have been

used. These algorithms are used to identify patterns of brain activity. Below we

provide a brief review of some of the major machine learning algorithms used for

EEG-based BCIs so far.

Most of the signal processing and machine learning tools such as linear classi-

fiers, neural networks, nonlinear Bayesian classifiers, nearest neighbor classifiers

and the combinations of any of the above were used for EEG-based BCI systems.

Table 2.1 summarizes classification methods used for EEG-based BCI systems so

far.This table is taken from [4].

Linear classifiers are one of the most popular algorithms for BCI applications

due to their simplicity. Linear Discriminant Analysis (LDA) is the most popular

linear classifier and it is based on discriminant algorithms that use linear functions

to distinguish classes. LDA has assumption of multivariate normal distribution

and all groups have the same covariance matrix. LDA has been used in many BCI
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systems such as motor imagery based BCI [27], P300 speller [36], multiclass [37]

or asynchronous [38] BCI. The biggest shortage of LDA is its linearity that can

lead to poor results on complex nonlinear EEG data [?, 4].

Support Vector Machines (SVMs) also use a discriminant hyperplane to iden-

tify classes. In BCI research the SVM has been applied to P300 data [39,40] and

motor imagery data [41]. Linear SVM enables classification using linear decision

boundaries and has been applied to a relatively large number of synchronous

BCI problems [10, 37]. Although they have good classification accuracy, several

problems exist that hinder the application of SVMs in practical BCI systems.

One major issue involves the optimization problems that have to be solved when

training SVMs. Solving these problems can be very time consuming, especially

when a large number of training examples is used.

Neural networks (NN) are, together with linear classifiers, the most used

classifiers in BCI research (see, e.g., [42]). Multi Layer Perceptron (MLP), one of

the most favorite NN used in classification, has been applied to almost all BCI

problems such as synchronous [43], asynchronous [44], binary [45] or multiclass

[42], BCI. When the network complexity is high, MLP classifiers are sensitive

to overtraining, especially with such noisy and non-stationary data as EEG [46].

This is why careful architecture selection and regularization is needed.

Bayesian techniques have been rarely used in BCI research. Bayesian graphi-

cal network (BGN) has been employed for BCI but currently it is not fast enough

for real-time BCI applications [47, 48]. Bayesian classification aims at assigning

to a feature vector the class it belongs to with the highest probability [49]. The

Bayes rule is used to compute a posteriori probability that a feature vector has

of belonging to a given class. Roberts and Penny [50] used autoregressive (AR)

model to extract EEG features recorded while the subject performed either men-
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Table 2.1: Classifiers used in BCI Research and their properties (taken from [4])

Classifier Linear Nonlinear Generative Discriminant Dynamic Static Regularized Stable Unstable High Dim. Robust

FLDA X X X X

RFLDA X X X X X

Linear-SVM X X X X X X

RBF-SVM X X X X X X

MLP X X X X

BLR NN X X X X

ALN NN X X X X

TDNN X X X X

FIRNN X X X X

GDNN X X X X

Gaussian NN X X X X

LVQ NN X X X X

Perceptron X X X X

RBF-NN X X X X

PeGNC X X X X X

Fuzzy X X X X

ARTMAP

NN X X X X

HMM X X X X

IOHMM X X X X

Bayes-Quad X X X X

Bayes-GraphNet X X X X

kNN X X X X

Mahalonobis X X X X
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tal arithmetic or imagined hand movements. Using the MAP (maximum a pos-

teriori) rule the class of this feature vector can be estimated. Bayesian classifiers

are also applied with success to motor imagery [51, 52] and mental task classifi-

cation [53, 54]. Other interesting examples for the use of Bayesian methodology

in BCI systems can be found in [55].

Hidden Markov Models (HMM) are popular dynamic classifiers used in a va-

riety of fields, perhaps most widely in the field of speech recognition [56]. An

HMM is a kind of probabilistic automaton that can provide the probability of

observing a given sequence of feature vectors. Each state of the automaton can

modelize the probability of observing a given feature vector. For BCI, these

probabilities usually are Gaussian mixture models (GMM), e.g., [30]. HMM are

perfectly suitable algorithms for the classification of time series. As EEG com-

ponents used to drive BCI have specific time courses, HMM have been applied

to the classification of temporal sequences of BCI features [19, 30, 57] and even

to the classification of raw EEG [58]. HMM are not very widespread within the

BCI community but these studies revealed that they were promising classifiers

for BCI systems. Another kind of HMM which has been used to design BCI is

the inputoutput HMM (IOHMM) [44]. IOHMM is not a generative classifier but

a discriminative one. The main advantage of this classifier is that one IOHMM

can discriminate several classes, whereas one HMM per class is needed to achieve

the same operation.

Generative algorithms have been used less frequently in BCI research than

discriminative methods. Generative algorithms based on Gaussian distributions

have been applied with success to the classification of motor imagery data [51]

and the classification of other cognitive tasks [53, 59]. A potential advantage of

using the generative approach in a BCI system is that a priori knowledge about
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neurophysiologic signals can be modeled relatively easily [44]. Further advantages

are that generative approaches can readily be used for multi-class problems, that

generative approaches can easily deal with missing data, and that a probabilistic

output is given. A potential disadvantage is that in generative approaches often

too many parameters have to be learned.

In this thesis we have used HMM to classify 2 class and 4 class sensory motor

data. To overcome the ”too many parameters” problem he have combined HMM

with PCA.
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CHAPTER 3

Preliminaries

In this chapter, we give background information on EEG feature extraction meth-

ods and dimension reduction as well as two classification algorithms of interest

in this thesis.

3.1 Feature Extraction

Two of the common techniques to extract EEG features in spontaneous EEG-

based BCI research, which we will focus on in this thesis, are: Autoregressive

(AR) Features and Hjorth Features. Autoregressive features are good at rep-

resenting frequency related features and Hjorth features are more related with

complexity of the data and its change through time [60].

3.1.1 Autoregressive (AR) Features

Parametric modeling of a random process has three steps; selecting the model

and the model order, estimating the model parameters, and obtaining the spectral

estimates by substituting the estimated model parameters into theoretical power

spectral density (PSD) functions [61]. AR parameter estimation is one of the

most commonly used techniques to extract frequency related EEG features. The

pth order autoregressive (AR) model describes an EEG signal yk(t) at channel

(electrode) k as:

20



yk(t) = a1,ky(t− 1) + a2,ky(t− 2) + ...+ ap,ky(t− p) + E(t)

Here, ai,k denotes the ith order AR parameter modeling the EEG signal at

channel k and E(t) is white noise with zero mean and finite variance. There

is a direct correspondence between the AR parameters and the autocorrelation

function of the process, and this correspondence can be inverted to determine the

parameters from the autocorrelation function using the Yule-Walker equations.

We have estimated AR parameters for each EEG channel that we have used for

this study using least-squares (LS) estimation.

Let K be the number of EEG channels to be used, p be the order of the AR

model and n is the number of time points; raw EEG data Y can be represented

as,

Y =


y1(t1) y1(t2) · · · y1(tn)

y2(t1) y2(t2) · · · y2(tn)
...

... · · · ...

yK(t1) yK(t2) · · · yK(tn)


K×n

(3.1)

while estimated AR feature space of Y is,

vAR(t) = {(a1,t, a2,t, ..., ap,t)1,

(a1,t, a2,t, ..., ap,t)2,

...

(a1,t, a2,t, ..., ap,t)K}
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3.1.2 Hjorth Features

The Hjorth parameters [62] namely activity, mobility and complexity describing

the properties of the EEG signal y(t) are calculated as follows:

Activity(y(t)) = V ar(y(t)),

Mobility(y(t)) =

√
Activity(dy(t)

dt
)

Activity(y(t))
,

Complexity(y(t)) =
Mobility(dy(t)

dt
)

Mobility(y(t)

vHjorth(t) = {(Activity,Mobility, Complexity)1,

(Activity,Mobility, Complexity)2,

...

(Activity,Mobility, Complexity)K}

Hjorth features are mostly used for the classification of motor imagery [12].

3.2 Principal Component Analysis

Principal component analysis (PCA), also known as discrete Karhunen-Loeve

transform (KLT) or Hotelling transform, is an orthogonal linear transformation

that maps the data into a new space, so called eigenspace, such that the elements

of the transformed data are uncorrelated with each other.
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Let f be the r dimensional feature vector with zero mean and covariance

matrix Σ.

Σ = Cov(X) =


var(f1) cov(f1, f2) · · · cov(f1, fr)

cov(f2, f1) var(f2) · · · cov(f2, fr)
...

...
. . .

...

cov(fr, f1) cov(fr, f2) · · · var(fr)


r×r

(3.2)

Eigenvalues and eigenvectors can be calculated using eigendecomposition:

Λ = W T ΣW

where W is the eigenvector matrix of the covariance matrix Σ, and Λ is the

corresponding diagonal matrix of eigenvalues. These eigenvectors in this case are

known as the principal components.

Λ =


λ1 0 0 0

0 λ2 0 0

0 0
. . .

...

0 0 · · · λr


r×r

Consequently, projection to the eigenspace is achieved by

z = Wf

One can reduce the dimension of the feature vector by ordering eigenvalues

and selecting the corresponding first s columns of W where s < r. PCA can

be seen as a linear projection Rr → Rs onto the lower-dimensional subspace

corresponding to the maximal eigenvalues [63].

3.3 Classification

Effective applications of hidden Markov models (HMMs) to multiclass EEG data

is one of the main purposes of this thesis. Since HMM is a dynamic classifier
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there is a need for a mean of comparison to a static classifier. In this section the

general idea of classification and details of used classifiers will be discussed.

Classification is a task of grouping things. If we come home from grocery

with some apples and oranges we can clearly claim that we bought two differ-

ent things since apples and oranges have very discriminative features like their

color,shape,taste etc.

10 15 20 25 30 35 40
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1.5

2

2.5

3

Oranges and Apples

Weight

Sh
ap

e Classifier

Features of Oranges

Features of Apples

Figure 3.1: Classification of 5 Oranges and 5 Apples according to their Weight

and Color

Classification starts with determining the most discriminative features of the

classes that we are trying to separate. Discriminative features of the data can

either be learnt from the data or one can chose those features according to some

beliefs he or she has about corresponding classes depending on their experience.

There may be different features of oranges and apples chosen to make a classifi-

cation. Depending on the chosen features and the type of classification method,

one can come up with different results of separating oranges and apples. Once the

class-based feature densities are learnt or predetermined, a new data depending

on its discriminative features can be assigned to one of the possible classes by
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calculating some distance between the new data and possible candidate classes.

The classifier in figure 3.1 has a linear and static structure. Mahalanobis

distance classifier can be shown as an example of a linear-static classifier. Maha-

lanobis distance classifier is a simple yet robust classifier that was proven to be

effective in classifying multi-class and asynchronous BCI problems [7].

3.3.1 Mahalanobis Distance

The Mahalanobis distance takes into account the covariance among the variables

in calculating distances. With this measure, the problems of scale and correlation

inherent in the Euclidean distance are no longer an issue. To understand how this

works consider that, when using Euclidean distance, the set of points equidistant

from a given location is a sphere. The Mahalanobis distance stretches this sphere

to correct for the respective scales of the different variables, and to account for

correlation among variables.

Mahalanobis distance between vectors X and Y is calculated as follows:

d2
XY = (X − Y )Σ−1(X − Y )T (3.3)

where Σ is sample covariance matrix.

The classification of a new feature point Z (Green spot in Figure 3.2) has

been done by measuring the Mahalanobis distance d from Z to each of the means

(There are 4 means in case of 4 class problem and 2 means for 2 class problem),

and assigning Z to the class for which the Mahalanobis distance is minimum.

The Mahalanobis distance can be applied directly to modeling problems as

a replacement for the Euclidean distance, as in radial basis function neural net-

works.
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Figure 3.2: Mahalanobis Distance Classifier

3.3.2 Hidden Markov Models (HMMs)

Classifying things that has static, unchanging, features may easily be done using

a simple classifier as in above case. However, if one tries to classify features

that have a dynamical structure, simple static classifiers may not work well as in

the case of time series signals. If a signal exhibits different patterns thought-out

time, taking account of this evolution of the pattern may introduce advantages for

classification. Hidden Markov Models (HMMs) can model this change as different

states of the process and by assigning probabilities of possible transitions among

different states. Then, based on some given test data, they can be used to

dynamically determine the most probable state sequences. HMMs are one of the

most popular dynamic classifiers in the speech processing community [56].

EEG is a time series signal. What we want to do is to model the temporal

frequency variations of the EEG epochs thought-out time. In the previous sec-

tion we have described two different feature extraction methods, AR and Hjorth.
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During performing a sensory motor task, when estimated in overlapping windows,

AR parameters and Hjorth features exhibit structural changes through-out time.

These changes may be interpreted as different states of the mind. Most likely

state sequences can be calculated using estimated class specific densities. Gaus-

sian mixtures is one (widely used) choice, but other densities could also be used

within HMMs. In this section, the theory of Hidden Markov models (HMM)

will be introduced in the context of continuous multiple observation sequences

recognition based on Rabiner’s tutorial on HMM’s [56,64]

3.3.2.1 Hidden Markov Models for Continuous Observation Densities

An HMM can be considered as the simplest dynamic Bayesian network with a

one dimensional chain structure. At each time step t it changes its state from

state i to state j with a transition probability of aij and at each time t that a

state j is entered, an observation is generated by jth state from the probability

distribution bj(xt) which is estimated by Gaussian mixtures in our study. The

Mathematical representation of the Gaussian mixture density that we have used

is

bj(xt) =
M∑

m=2

cjm
1√

(2π)n|Σjm|
exp(−1

2
(xt − µjm)Σ−1

jm(xt − µjm)), (3.4)

where M is the number of mixtures, n is the dimension of the observation vector

and µjm, Σjm, cjm are the mean, the covariance and the weight of mixture m of

state j.

An HMM has following parameters [56]:

• Number of states (N ),

• Set of state transition probabilities (A = {aij} ) from hidden state i to

hidden state j ,
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Figure 3.3: Graphical structure of a simple left-to-right HMM

• Set of observation probability distributions in state j (B = {bj(xt)} ),

• Initial state distribution, i.e., the set of probabilities of state i being the

initial state. (Π = {πi} )

There are three central issues to focus on HMMs:

1. The Evaluation Problem: Given the parameters of the model, compute

the probability of a particular output sequence. This requires summation

over all possible state sequences, but can be done efficiently using the for-

ward algorithm,

2. The Decoding Problem: Given the parameters of the model and a par-

ticular output sequence, find the state sequence that is most likely to have

generated that output sequence. This requires finding a maximum over

all possible state sequences, but can similarly be solved efficiently by the

Viterbi algorithm.,

3. The Learning Problem: Given an output sequence or a set of such se-

quences, find the most likely set of state transition and output probabilities.

In other words, derive the maximum likelihood estimate of the parameters

of the HMM given a dataset of output sequences. No tractable algorithm is

known for solving this problem exactly, but a local maximum likelihood can

be derived efficiently using the Baum-Welch algorithm. The Baum-Welch
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algorithm is also known as the forward-backward algorithm, and is a special

case of the Expectation-Maximization (EM) algorithm.

In contexts like speech recognition and EEG, a special type of HMM named

left-to-right HMM is favored. In a left-to-right HMM, only transitions from a

state to itself or to the following state is possible and the entry and exit states

are both do not generate any observations.

A three-state, left-to-right HMM topology is given in Figure 3.3.

The parameter N has to be determined a priori. There is a tradeoff between

too few states and too many states. Too few states may be inadequate to model

the structure of the data and too many states may model the noise too [64].

3.3.2.2 Learning Parameters of the Model

Learning the parameters of an HMM is determining the parameter set λ =

{A,B,Π}. The parameter B for Gaussian mixture distribution is equivalent

to the parameters {µ,Σ, c} which are the means, covariances and weights of the

mixtures. For left-to-right HMMs, the parameter Π is not relevant since the

initial state is known to be the non-emitting entry state. The parameters A and

B are estimated recursively by the Baum-Welch Algorithm, also known as the

Forward-Backward Algorithm.

The forward probability αj(t), defined as the probability of observing first t

observation vectors and being in state j, can be recursively computed by

αj(t) =
N−1∑
i=2

[αi(t− 1)aij]bj(xt) (3.5)

with initial conditions

α1(1) = 1, (3.6)
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αj(1) = a1jbj(x1), (3.7)

for 1 < j < N and the final condition

αN(T ) =
N−1∑
i=2

[αi(T )aiN ]. (3.8)

Notice here that from the definition of αj(t)

P (X|M) = αN(T ). (3.9)

Similarly, the backward probability βi(t), defined as the probability of observing

the observation vectors from t + 1 to T and being in state i, can be recursively

computed by

βi(t) =
N−1∑
j=2

aijbj(xt+1)βj(t+ 1) (3.10)

with initial conditions

βi(T ) = aiN , (3.11)

for 1 < i < N and the final condition

β1(1) =
N−1∑
j=2

a1jbj(x1)βj(1). (3.12)

Multiplying the forward and backward probabilities, the probability of being in

state i at time t and in state j at time t+ 1, ξt(i, j), is derived as

ξt(i, j) =
αi(t)aijbj(xt+1)βj(t+ 1)∑N

i=1

∑N
i=1 αi(t)aijbj(xt+1)βj(t+ 1)

, (3.13)

and the probability of being in state i at time t, γi(t), is derived as

γi(t) =
N∑

j=1

ξt(i, j). (3.14)

Given the above definitions, the re-estimation formulae can be expressed as
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aij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γi(t)

, (3.15)

µjm =

∑T
t=1 γjm(t)xt∑T

t=1 γjm(t)
, (3.16)

Σjm =

∑T
t=1 γjm(t)(xt − µjm)(ot − µjm)′∑T

t=1 γjm(t)
, (3.17)

cjm =

∑T
t=1 γjm(t)∑T
t=1 γj(t)

. (3.18)

Needless to say, the parameters to be estimated have to be initialized before the

re-estimation procedure. The initial estimates can be chosen such that

aij = 0.5 1 < i < N − 1, 2 < j < N, (3.19)

µjm =
1

T

T∑
t=1

xt, (3.20)

Σjm =
1

T

T∑
t=1

(xt − µjm)(xt − µjm)′, (3.21)

cjm =
1

M
. (3.22)

3.3.2.3 Computing Likelihood of a New Trial

After estimating the λ = {A,B,Π} for each task, recognition can be performed

based on the model likelihoods. The likelihoods P (X|λ) are calculated for each
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model over the most likely state sequence. The most likely state sequence can be

identified using the Viterbi Algorithm as discussed before.

In Viterbi Algorithm, for a given model λ, φj(t) representing the maximum

likelihood of observing first t observation vectors and being in state j is recursively

computed by

φj(t) = max
i
{φi(t− 1)aijbj(xt)}, (3.23)

where

φ1(1) = 1, (3.24)

φj(1) = a1jbj(x1), (3.25)

for 1 < j < N which gives the best state sequence. Eventually, the likelihood

P (X|λ) can be evaluated by

P (X|λ) = φN(T ) = max
i
{φi(T )aiN} (3.26)

and the model with the highest likelihood is decided to be the imagined move-

ment.
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CHAPTER 4

Data

We have focused on spontaneous EEG-based BCI applications for this thesis.

Two different sensory-motor datasets have been used. First dataset, SU-BCI-

SM-2009, recorded in the EEG Room built in Computer Vision and Pattern

Analysis Laboratory in Sabancı University from 12 subjects and has 2 classes.

This dataset will be publicly available to researchers in Turkey. Second dataset is

a publicly available dataset, BCI Competition IV-2a, recorded in Graz University

of Technology from 9 subjects and has 4 classes. Details of the datasets are given

below.

4.1 SU-BCI Dataset

4.1.1 EEG Room

The most important step in EEG research is data collection. Traditional way

to record EEG signals from subjects is to use an instrumentation amplifier with

high Common Mode Rejection Ratio (CMRR) in an electro-magnetically (EM)

shielded room to prevent 50 Hz line noise. Since we wanted to record our own

EEG data, we had to built our own EM shielded EEG room. Steps of building

the VPALAB EEG Room are as follows:
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(a) EEG Room Section in VPALAB (L020) (b) EEG Room Floor Coating

(c) Faraday Cage (d) Plaster Coating

(e) Soundproofing

Figure 4.1: EEG Recording Room (Outside)
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(a) Door from Outside (b) Door from Inside

(c) Interface Box (d) DC Lighting

Figure 4.2: EEG Recording Room (Inside)
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• Step 1: 1× 3 meter framed 3mm galvanized steel plates were prepared.

• Step 2: First of all, floor plates were laid (figure 4.1(b)).

• Step 3: A 4 × 3 × 2.6 meter room (Faraday cage) had been built using

galvanized steel plates (figure 4.1(c)).

• Step 4: This Faraday cage was coated with plaster for protection and hold-

ing the filling material between the galvanized steel and plaster (figure

4.1(d)).

• Step 5: The outside of the room was coated with black pyramidal sponges

to prevent outside noise (figure 4.1(e))

The EEG Room has a special RF shielding which has copper whisks around

to unify the Faraday cage when the door is closed (figure 4.2(a),4.2(b)). There is

an interface box (figure 4.2(c)) on the corner of the room which runs 20 Ampere

filters (100dB, 1 GHz ). Cables that run from the outside in are filtered through

this filter, which prevents 50 Hz line noise. Lighting is done using three 12V DC

bulbs.

4.1.2 Experimental Procedure

SU-BCI-SM-2009 dataset is recorded using Biosemi Active 2 system. Biosemi

Active 2 system has up to 256 active electrodes (figure 4.3) depending on the

configuration. We used a 64 channel system. The data were recorded at a sam-

pling frequency of 2048Hz and resampled into 256Hz and filtered (Figure 4.6)

with a 4th order FIR filter with a passband between 0.16 and 45 Hz for further

analysis (An example of a time-frequency analysis of the data can be seen in figure

4.9). Recording was made unreferenced. During the processing average-reference
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(a) Active Electrodes (b) Electrode Bundle with

32 Electrodes

(c) Biosemi Active 2 Am-

plifier and Battery

Figure 4.3: Biosemi Active 2 System and Active Electrodes

(a) Before Sticking Electrodes (b) 64 Electrode Connected to Head

Figure 4.4: Preparation for EEG Recording
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(a) Left Arrow (b) Fixation Cross (c) Right Arrow

Figure 4.5: Figures shown during Experiments

Figure 4.6: 4th Order Bandpass FIR Filter Response
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Figure 4.7: Sample SU-BCI data

data have been used. This data set consists of EEG data from 12 subjects.

The cue-based BCI paradigm consisted of two different motor tasks, namely

the movement or imagination of movement of the left index finger (class 1 - left)

and movement or imagination of movement of the right index finger (class 2 -

right). Two sessions on the same day were recorded for each subject. Each

session is comprised of 3 different experiments. In the first experiment (SU-BCI-

SM-2009N1), subjects performed actual movement of right or left index fingers

according to randomly appearing cues on the screen. In the second experiment

(SU-BCI-SM-2009Im1), instead of actually moving fingers, subjects were asked

to imagine moving their corresponding fingers depending on the cue. In the last

experiment (SU-BCI-SM-2009V1) subjects moved their right or left index finger

depending on an uninformative cue (No arrow, only fixation cross in (Figure

4.5b)). One run consists of 40 trials (20 for each of the classes for the first
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(a) Electrode Configuration

(b) Timing scheme of the paradigm

Figure 4.8: Electrodes and Timing for Dataset 1
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two experiments and subjects were asked to try to perform approximately 20

movement for each classes in the third experiment). Subjects were sitting on a

wooden armchair in front of a computer screen. At the beginning of a trial (t =

0 s), a fixation cross appeared on the black screen (Figure 4.5b). In addition, a

short acoustic warning tone was presented. After two seconds (t = 2 s), a cue in

the form of an arrow pointing either to the left or right(corresponding to one of

the two classes left hand or right hand) appeared and stayed on the screen for 1.25

s. This prompted the subjects to perform the desired motor imagery task. No

feedback was provided. The subjects were asked to carry out the motor imagery

task until the fixation cross disappeared from the screen at t = 6 s. A short break

followed where the screen was black again. The paradigm is illustrated in Figure

4.8.

In this thesis, SU-BCI-SM-2009Im1 dataset was used.

4.2 BCI Competition Dataset

This data set consists of EEG data from 9 subjects. The cue-based BCI paradigm

consisted of four different motor imagery tasks, namely the imagination of move-

ment of the left hand (class 1 - left), right hand (class 2 - right), both feet (class 3

- down), and tongue (class 4 - up). Two sessions on different days were recorded

for each subject. Each session is comprised of 6 runs separated by short breaks.

One run consists of 48 trials (12 for each of the four possible classes), yielding a

total of 288 trials per session.

At the beginning of each session, a recording of approximately 5 minutes was

performed to estimate the EOG in sequence. The recording was divided into 3

blocks: (1) two minutes with eyes open (looking at a fixation cross on the screen),
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(a) C3-Left (b) C3-Right

(c) C4-Left (d) C4-Right

(e) Cz-Left (f) Cz-Right

(g) Pz-Left (h) Pz-Right

Figure 4.9: Time-Frequency Maps of 4-Electrodes (C3,C4,Cz,Pz) for Left (a,c,e,g)

and Right (b,d,f,h) Finger Movement.
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(2) one minute with eyes closed, and (3) one minute with eye movements.

Figure 4.10: Sample BCI Comp. data

The subjects were sitting in a comfortable armchair in front of a computer

screen. At the beginning of a trial (t = 0 s), a fixation cross appeared on the

black screen. In addition, a short acoustic warning tone was presented. After

two seconds (t = 2 s), a cue in the form of an arrow pointing either to the left,

right, down or up (corresponding to one of the four classes left hand, right hand,

foot or tongue) appeared and stayed on the screen for 1.25 s. This prompted the

subjects to perform the desired motor imagery task. No feedback was provided.

The subjects were asked to carry out the motor imagery task until the fixation

cross disappeared from the screen at t = 6 s. A short break followed where the

screen was black again. The paradigm is illustrated in Figure 4.11.

Twenty-two Ag/AgCl electrodes (with inter-electrode distances of 3.5 cm)

were used to record the EEG; the montage is shown in Figure 4.11a up. All

signals were recorded monopolarly with the left mastoid serving as reference and

the right mastoid as ground. The signals were sampled at 250 Hz and bandpass

filtered between 0.5 Hz and 100 Hz. An additional 50 Hz notch filter was enabled

to suppress line noise.
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(a) Electrode Configuration corresponding to international 10-20

system

(b) Timing scheme of the paradigm

Figure 4.11: Electrodes and Timing for Dataset 2
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In addition to the 22 EEG channels, 3 monopolar EOG channels were recorded

and also sampled with 250 Hz (see Figure 4.10). They were bandpass filtered be-

tween 0.5 Hz and 100 Hz (with the 50 Hz notch filter enabled), and the sensitivity

of the amplifier was set to 1 mV. The EOG channels are provided for the sub-

sequent application of artifact processing methods [65] and must not be used for

classification. A visual inspection of all data sets was carried out by an expert and

trials containing artifacts were marked. Eight out of the total of nine data-sets

were analyzed in [66,67].

All data sets are stored in the General Data Format for biomedical signals

(GDF), one file per subject and session.
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(c) C3-Tongue
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(f) C4-Right
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(g) C4-Tongue
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(k) Cz-Tongue
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(l) Cz-Feet
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(o) Pz-Tongue
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Figure 4.12: Time-Frequency Maps of 4-Electrodes (C3,C4,Cz,Pz) for Left

(a,e,i,m) and Right (b,f,j,n) Finger Movement and Tongue (c,g,k,o) and Feet

(d,h,l,p) Movements
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CHAPTER 5

AR-PCA-HMM Approach for BCI

Obermeier et al. [30] used HMMs combined with Hjorth features (Hjorth-HMM)

for two class offline [19] and [30] online BCI scenarios and compared their results

with those obtained through a linear discriminant classifier (LDC). They used AR

features for LDC (AR-LDC) while they preferred Hjorth features for the HMM

classifier due to their lower dimensionality.

Since AR features give more time-frequency related information about the

EEG data compared to Hjorth features, and what we actually try to model is

the temporal change in the frequency characteristic of the EEG signal, we have

decided to explore the question of whether HMMs with AR features would provide

better classification performance than HMMs with Hjorth features. However, as

rightfully pointed out by Obermeier et al., high dimensionality of the feature

space is an issue that one needs to address. We propose using PCA to reduce

the dimensionality of AR features and using these features to train an HMM for

classification.

Another issue is intersubject variability which is one of the biggest problems

[40] for the EEG-based BCI systems on the way of creating a unified classifier. As

already shown by many studies [2,30,39,40,44], a classifier aiming to discriminate

different EEG patterns should be trained with data from the same subject. This

is why every feature-classifier pair used in this thesis is person specific. Following

procedures were applied to each subject one-by-one.
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5.1 Feature Extraction

We have used four EEG channels (C3, C4, Cz and Pz) to extract features be-

cause of their proven significance in movement and imagination of movement

experiments [12].

Y =


yC3(t1) yC3(t2) · · · yC3(tn)

yC4(t1) yC4(t2) · · · yC4(tn)

yCz(t1) yCz(t2) · · · yCz(tn)

yPz(t1) yPz(t2) · · · yPz(tn)


4×n

(5.1)

where n is the number of time points in a trial.

As discussed in Blanco et al. [68] EEG signal is stationary ranging from several

seconds to several minutes depending on the state of the brain. Assuming that

the 5 second EEG epoch that we work on would be non-stationary, we decided

to extract features in 500ms windows and perform further processing in these

windows. There is a 200ms overlap between windows.

Figure 5.1: Features were extracted in overlapping sliding windows

We have extracted AR features using the procedures that we have discussed

48



in section 3.1.1:

F =



a1,C3(1), · · · , a1,C3(M)
...

...
...

ap,C3(1), · · · , ap,C3(M)

a1,C4(1), · · · , a1,C4(M)
...

...
...

ap,C4(1), · · · , ap,C4(M)

a1,Cz(1), · · · , a1,Cz(M)
...

...
...

ap,Cz(1), · · · , ap,Cz(M)

a1,P z(1), · · · , a1,P z(M)
...

...
...

ap,Pz(1), · · · , ap,Pz(M)


4p×M

Here ai,k(m) is the AR parameter at the mth window and M is the number

of overlapping windows. We have concatenated the features of different channels

in each window. Each window is assumed to have stationary EEG features.

Similarly, Hjorth features were also extracted using the method explained in

section 3.1.2:
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FHjorth =



ActivityC3(1) ActivityC3(2) · · · ActivityC3(M)

MobilityC3(1) MobilityC3(2) · · · MobilityC3(M)

ComplexityC3(1) ComplexityC3(2) · · · ComplexityC3(M)

ActivityC4(1) ActivityC4(2) · · · ActivityC4(M)

MobilityC4(1) MobilityC4(2) · · · MobilityC4(M)

ComplexityC4(1) ComplexityC4(2) · · · ComplexityC4(M)

ActivityCz(1) ActivityCz(2) · · · ActivityCz(M)

MobilityCz(1) MobilityCz(2) · · · MobilityCz(M)

ComplexityCz(1) ComplexityCz(2) · · · ComplexityCz(M)

ActivityPz(1) ActivityPz(2) · · · ActivityPz(M)

MobilityPz(1) MobilityPz(2) · · · MobilityPz(M)

ComplexityPz(1) ComplexityPz(2) · · · ComplexityPz(M)


12×M

From now on, each column of F either is an AR or Hjorth feature, will be

represented as f c
m if data are labeled and as fm if the data are not labeled, where

m ∈ [1, . . . ,M ] and c ∈ [1, . . . , 4], with c denoting the class label.

5.2 Dimensionality Reduction using PCA

We compute one eigenvector matrix for each overlapping window separately. To

do that, first we estimate features for each trial using four electrodes as explained

in Section 5.1. Then, we create the following matrix Gn
m for each overlapping

window by concatenating the data from same window of different classes:

Gn
m =

[
f 1

m, . . . , f
4
m

]
4.p×4

where n ∈ [1, ..., N ] denotes the trial number and N corresponds to the total

number of trials. For the sake of notational simplicity we ignore the dependence
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of f c
m on the trial index n. Then, corresponding features from the corresponding

windows of each trial are concatenated:

Hm =
[
G1

m, · · · , GN
m

]
4.p×4.N

For each overlapping window m, we estimate the covariance matrix of fm as

Σ̂m = HT
mHm. Then Wm is found as the matrix of eigenvectors of Σ̂m.

First s rows (s < 4p) of each overlapping window specific Wm matrix is

used and represented as W s
m to calculate each reduced dimensional feature vec-

tor, where s is the number of principal components that we want to reduce the

dimension to.

jc
m = W s

mf
c
m

Finally, by concatenating the reduced dimensional feature vectors we get the

following reduced dimensional feature matrix J c
train for each class:

J c
train = [jc

1, j
c
2, . . . , j

c
M ]s×M

We apply the learned matrix W s
m for dimensionality reduction of unlabeled

test data.

5.3 HMM-Based Classifier

We learn a different HMM for each class in each particular classification experi-

ment. We model the conditional probability densities of the reduced dimensional

feature vectors given the underlying states with Gaussian mixtures. For each of

these models, we consider two sets of parameters to be learned. The first one,

which we denote model-order parameters includes the number of states (NoS) of

the HMM, the number of Gaussian mixtures (NoGM), the AR model order p,

and the reduced dimension s. We denote the second set of parameters as model
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Figure 5.2: Left-to-Right HMM model for 3 states and 3 mixture of gaussians

(Reprint from Obermaier et al. 2001)

parameters λc = (A,B,Π). Here A denotes the state transition probabilities,

B is the means and variances of the observation probability distributions and

Π is initial state distributions (see [56]). We split the data into three namely

F c
train (40%), F c

validation (30%), Ftest (30%). For a fixed set of model-order pa-

rameters, we learn the model parameters based on training data F c
train using the

expectation-maximization (EM) algorithm so that the likelihood of the observed

training sequences is locally maximized. We learn the model-order parameters

by maximizing the classification performance on validation data F c
validation. We

then test our classification approach on test data Ftest based on these learned

parameters.

5.4 Experimental Analysis and Results

Probability of correct classification (PCC) of different feature extraction, feature

reduction and classification algorithm settings are presented in this section. We
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investigated whether our proposedAR→ PCA→ HMM method is superior

toAR→ HMM ,AR→Mahalanobis andHjorth→ HMM methods

for two-class and four-class BCI systems. We also present a comparison of AR-

PCA-HMM with the top techniques in BCI Competition IV on BCI Competition

IV-2a dataset.

For BCI Competition IV-2a dataset, we report three different results: val-

idation and two different test results. Result Test-1 is obtained after training

with the first 40%(F c
train) of the data and testing with last 30%(Ftest) of the

data. Result Test-2 is obtained after training with the first 70%(F c
train(40%)+

F c
validation(30%)) of the data and testing with last 30%(Ftest) of the data.

For SU-BCI-SM-2009Im1 dataset, we report test results which are obtained af-

ter training with the first 60%(F c
train) of the data and testing with last 40%(Ftest)

of the data.

5.4.1 Four-Class Results

BCI Competition IV-2a dataset consists of EEG data from 9 subjects. We have

used the first sessions of first 8 of the subjects. These same 8 subjects were also

used in [67] and [66].

We interpret the probability of correct classification (PCC) performance of

the validation set as the degree of learning of the classifier. Figure 5.3 reports

the best PCC performances of different classifiers over the validation dataset.

Parameters that lead to the reported PCC performances are listed in Table 5.1.

Figure 5.4 and 5.5 report PCC performances over the unseen data Ftest. For

7 of 8 subjects, our approach achieves the highest PCC. In Table 5.2, we present

a comparison of AR-PCA-HMM with the top techniques in BCI Competition IV

on this dataset in terms of the κ coefficient. We observe that AR-PCA-HMM
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Figure 5.3: Validation Performance of the proposed AR-PCA-HMM approach as

compared to other techniques.

achieves the best performance.
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Table 5.1: Model-order parameters that lead to the best probability of correct

classification results in the validation dataset and used in the test dataset.

Method Parameters S1 S2 S3 S4 S5 S6 S7 S8

AR-PCA-HMM

p 14 15 14 14 15 14 15 15

s 10 8 8 10 10 7 9 8

NoGM 3 3 3 3 3 2 3 3

NoS 5 5 5 3 5 5 5 5

AR-HMM

p 9 5 5 8 6 15 13 6

NoGM 2 1 1 1 2 1 1 3

NoS 4 2 3 4 1 2 3 3

Hjorth-HMM
NoGM 3 1 3 2 1 1 1 3

NoS 5 3 1 5 3 1 4 1

AR-Mahal p 10 8 5 7 9 5 6 9

Figure 5.4: Performance of the proposed AR-PCA-HMM approach as compared

to other techniques (Test1).

55



Figure 5.5: Performance of the proposed AR-PCA-HMM approach as compared

to other techniques (Test2).

Table 5.2: AR-PCI-HMM vs. State-of-the-art Techniques. κ = (C × PCC −

1)/(1−C). κ approaches zero as PCC approaches 1/C where C is the number

of classes.

Feature / Classifier κmean S1 S2 S3 S4 S5 S6 S7 S8

AR-PCA / HMM .65 .93 .91 .34 .36 .95 .01 .89 .81

FBCSP / Naive Bayes .57 .68 .42 .75 .48 .40 .27 .77 .75

CSP / LDA-Bayes .51 .69 .34 .71 .44 .16 .21 .66 .73

CSP / SVM-Voting .30 .38 .18 .48 .33 .07 .14 .29 .49

CSP / LDA-SVM .29 .46 .25 .65 .31 .12 .07 .00 .46

CSP / SVM .28 .41 .17 .39 .25 .06 .16 .34 .45
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5.4.2 Two-Class Results

Two-Class problem is relatively easier to solve compared to four-class one. How-

ever, due to insufficient amount of data (20 trials for each class), training a

classifier and testing with validated model order parameters was not a robust

option. In Figure 5.6 we present optimized PCC performances. In particular, in

this experiment we present results based on model-order parameters that max-

imize PCC on the test data for which we report classification results. Hence

our experiment here leaves out the issue of effective learning the model-order

parameters.

Figure 5.6: Performance of the proposed AR-PCA-HMM approach as compared

to other techniques with optimized model-order parameters.

Although, AR-PCA-HMM again reached the highest PCC performance as

in the four-class problem, insufficient amount of two-class data prevents us from

performing more intensive investigations on classification performance of the pro-

posed and existing classification methods.
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Table 5.3: Model-order parameters that gave best probability of correct classifi-

cation results on the test dataset.

Method Parameters S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

AR-PCA-HMM

p 6 12 13 14 10 13 6 12 9 5 6 5

s 4 3 5 10 2 6 4 3 2 3 2 5

NoGM 1 2 3 3 3 1 1 2 2 2 3 3

NoS 4 3 2 5 5 3 5 3 4 1 4 3

AR-HMM

p 15 7 10 8 7 5 5 10 7 5 10 6

NoGM 3 1 3 1 3 2 1 1 1 2 2 1

NoS 5 3 3 3 3 5 5 2 4 5 2 4

Hjorth-HMM
NoGM 3 1 3 3 3 3 3 2 3 1 3 3

NoS 5 4 5 5 5 4 5 5 5 4 4 4

AR-Mahal p 9 10 8 5 8 12 7 11 10 5 9 8
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CHAPTER 6

Conclusions and Future Work

6.1 Summary and Conclusions

In this thesis, we have proposed an AR-PCA based approach combined with hid-

den Markov Models (HMMs) to solve the EEG-based BCI classification problem.

The main idea of the thesis was supporting the use of AR features with HMM

classifiers for EEG-based BCI problem. AR features are good frequency estima-

tors however their relatively high dimensions are problematic for the convergence

of HMM parameters during training. To overcome this problem, we have pro-

posed decreasing the dimensions of AR features using PCA to make them more

suitable for HMM classifiers.

Four-class classification results suggest that AR features are better features

for HMM based EEG-BCI classifiers and dimension reduction is crucial for EEG

classification. Comparison with the state-of-the-art classification methods shows

that dynamic structure of the HMMs combined with a good frequency estimator

results in better performance than all static classifiers and their combinations.

Depending on the subject, it is possible to reach 80% classification accuracies

using AR-PCA-HMM in the four-class problem which is a quite reasonable result

compared to AR-Mahalanobis which could only achieve up to 35% which is not

very far from classification by chance.

Two-class classification results suggest that HMM classifiers coupled with AR
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features lead to better PCC performances. Due to limitations in the amount of

data, our experimental analysis on the two-class dataset was not as thorough as

that on the the four-class dataset. In particular, we have avoided the model-

order parameter learning problem and presented (optimistic) results for each

method based on model-order parameters optimized on the test data. We aim

to collect more data, and perform a validation-based analysis as in the four-

class experiments in the future. As the number of trials increases, subjects may

perform the imagination of movement tasks better trial by trial which will lead

to a decrease in the inter-trial variability.

It is clear that the four-class problem is harder to solve and needs better mod-

eling of the data. Results suggest that modeling the evolution of the frequency

structure of the EEG data with HMM outcompetes the static approach more for

the four-class problem compared to the two-class one. As the complexity of the

problem increases, the need for the use of HMMs increases.

Dimension reduction is very important for EEG classification. For the four-

class problem PCA increases the classification performance. Using these results,

we can conclude that PCA should be applied to EEG data after the feature

extraction independent of the feature extraction method.

6.2 Future Work

HMMs are generative models. They are typically trained to maximize the joint

likelihood of observation and label pairs. To do this, enumeration of all possible

observations is needed. Because of that reason, it is possible that the inference

problem may be intractable. Conditional random fields (CRFs) can overcome

this problem as proposed by Lafferty et al. [69].
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We have modeled the temporal, time-frequency, structure of the EEG data by

using a one dimensional graphical model, HMMs. One important future direction

in this research may be modeling not only the temporal but also the spatial

structure of the EEG data. In this thesis, we have used different EEG channels for

classification but we have not modeled the spatial relation between those channels.

Modeling the information flow between different EEG channels combined with

temporal evolution of the frequency change may give much more better results.

However, localization of the EEG activity is crucial at this point since the volume

conduction effects of the head tissues, the EEG signal at different electrodes seem

to carry very similar information.

We have proposed one particular way of using PCA to reduce the dimension of

AR features. We have calculated PCA mapping matrices for each 500 ms length

overlapping windows. One can investigate the use of different window lengths

and different number of principal components as well as their coevolution.
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