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ABSTRACT 

An HVA22-like protein was found to be differentially expressed in root tissue of 
wild emmer wheat (Triticum turgidum ssp. dicoccoides), under prolonged drought stress 
conditions. In this study we were able to clone and characterize the open reading frame 
of HVA22-like protein from root tissue of wild emmer wheat accession number 
TR39477, which was previously shown to be a drought-tolerant genotype. Sequence 
analysis indicated that HVA22-like protein product was a membrane protein and had 
four hypothetical transmembrane domains. Presence of the protein was shown by 
expressing it both in Escherichia coli and Saccharomyces cerevisiae and analyzing with 
sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis. 
Localization of the protein in the cell was observed in S. cerevisiae utilizing a vector 
containing green fluorescent protein (GFP) gene. Results obtained using a confocal 
laser microscope indicated that the transformation of yeast cells with only the empty 
vector containing GFP gene yielded in a homogenous distribution of the GFP upon 
induction with galactose whereas the HVA22-like protein tagged with GFP was 
localized in the cell. Expression of GFP tagged HVA22-like protein was further 
confirmed with western blot analysis using mouse anti-GFP antibody. The work 
presented in this thesis was the first study to identify and characterize the HVA22-like 
protein and its protein product from Triticum turgidum ssp. dicoccoides. 

 



 

 

 

 

 

KURAKLIK KOŞULLARI ALTINDA ABA ĐLE ĐNDÜKLENEN HVA22-

TÜRÜ BĐR PROTEĐNĐN YABANĐ BUĞDAYDAN (Triticum turgidum ssp. 

dicoccoides) KLONLANMASI VE KARAKTERĐZASYONU 

 

Esen Doğan 

Biyoloji Bilimleri ve Biyomühendislik Programı 

Tez Danışmanı: Doç. Dr. Hikmet Budak 

 

Anahtar Sözcükler: Kuraklık stresi, HVA22-türü protein, yabani buğday, Triticum 

turgidum ssp. dicoccoides, hücresel lokalizasyon 

ÖZET 

Uzun kuraklık koşulları altında, HVA22-türü bir proteinin yabani buğday 
(Triticum turgidum ssp. dicoccoides) kök dokusunda farklı olarak ekspres edildiğini 
göstermiştir. Bu çalışmada, yabani buğdayın kuraklığa dayanıklı olduğu önceden 
gösterilen TR39477 numaralı çeşidinin kök dokusundan HVA22-türü bir proteinin açık 
okuma çerçevesi (ORF) klonlanmış ve karakterize edilmiştir. Sekans analizi, protein 
ürününün dört adet olası transmembran bölgesi (domain) olduğuna işaret etmektedir. 
Proteinin varlığı hem E. coli’de hem de S. cerevisiae’de gerçekleştirilen ekspresyonlarla 
gösterilip SDS-PAGE yöntemi ile analiz edilmiştir. Proteinin hücre içindeki 
lokalizasyonu yeşil florosan protein (GFP) geni taşıyan bir vektörün kullanılması ile S. 
cerevisiae’de gözlenmiştir. Konfokal lazer mikroskobu kullanılarak elde edilen sonuçlar 
sadece boş vektör ile transforme edilen maya hücrelerinin galaktoz ile indüklenmesi 
sonrasında ekspres edilen GFP’nin hücre içinde homojen olarak dağıldığını gösterirken, 
HVA22-türü protein sekansını barındıran vektörün ekspresyonunun indüklenmesi 
sonrası GFP ile işaretlenmiş HVA22-türü proteinin hücre içinde lokalize olduğunu 
göstermektedir. GFP ile işaretlenmiş HVA22-türü proteinin ekspresyonu ayrıca western 
blot tekniği kullanılarak fare anti-GFP’si ile doğrulanmıştur. Bu tezde sunulan çalışma, 
HVA22-türü bir proteinin  Triticum turgidum ssp. dicoccoides bitkisinden izole edilip 
karakterize edilmesini gösteren ilk çalışmadır. 
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1. I(TRODUCTIO( 

 

 

There are biotic (plant pathogens, competition with other organisms etc.) and 

abiotic (drought, high temperature, salinity, cold etc.) environmental stress factors 

which affect growth and productivity in plants. Drought is the major stress factor for 

plants which have agronomical value. When the parts of earth that are available to 

agricultural practices all around the world is classified considering environmental stress 

factors; drought has the highest affect with 26% fraction. It is followed by mineral stress 

with 20% and cold and freezing stress with 15%. The other entire stress types sum up to 

29% whereas only the areas which make up the 10% of total are not affected with any 

kind of stress factors (Kalefetoğlu and Ekmekçi, 2005).  

 

 

Figure 1.1 Types of abiotic stress factors that have adverse effects on plants. (Adapted 
from Madhava Rao K.V. et al., 2006) 



 

 

 

Figure 1.2 Classification of environmental stress factors. Drought is the major stress 
factor for plants which have agronomical value 

 

As water resources become more limited, use of water for agricultural purposes 

is also getting more restricted. It is known that Turkey is included among the countries 

which constitute a risk group regarding global warming and this clearly points out the 

importance of taking measures against drought in an agricultural perspective.  

Considering the fact that amelioration of agricultural areas is impossible either 

in terms of physical properties or almost impossible in financial terms; it is clear that 

making plants that have agronomical value more resistant to drought is a more 

applicable strategy in dealing with the problems that global warming will bring about. 

From an application point of view, in relation with the dynamics of duration of drought 

in every target area; it is very crucial that suitable genotypes are determined and 

selected while optimizing both the available water amount and efficiency of using 

available water in order to increase the yield. 

Wild and primitive wheat types are richer in terms of genetic variation compared 

to modern wheat types. As a result, wild and primitive wheat genotypes are often 

utilized in molecular studies and breeding programs. Consequently, it is critical that 

mechanisms those are responsible for drought resistance and molecules that are 

effective in these mechanisms to be revealed and studied in wild emmer wheat so that 

resistance of modern bread wheat and modern durum wheat being the crops which are 

produced the most in worldwide can be improved (Vasil, 2007). There are studies 

related to genetic diversity for drought tolerance retained in the tetraploid wild emmer 



 

 

wheat, which was originated and probably domesticated in Turkey (Luo et al., 2007; 

Nevo, 1998; Peleg et al., 2005). 

Microarray technology is a very common and powerful tool used both in 

analysis of expression and identification of genes under various abiotic stress 

conditions. There are different kinds of microarray studies aimed at identifying stress-

inducible genes under a variety of conditions, for instance cold, high salinity and 

drought, in Arabidopsis and rice and also in some other plants (Kawasaki et al., 2001; 

Seki et al., 2001; Seki et al., 2002; Rabbani et al., 2003; Dubouzet et al., 2003; 

Maruyama et al., 2004). Construction of cDNA libraries and expression sequence tag 

(EST) sequencing results are also very promising in terms of discovery of novel genes 

which are involved in stress response pathways via analysis of transcript profiles (Vij 

and Tyagi, 2007; Bohnert et al., 2006; Wong et al., 2005) 

Although the molecular studies that are aimed at understanding the underlying 

mechanisms of different defense properties observed in plants against different 

environmental stress conditions are mostly performed in model plants such as 

Brachypodium distachyon and Arabidopsis thaliana due to reasons such as ease of 

handling of their relatively small genomic content;  it would be wise to include plants 

that have agronomical value since the improvement of those plants is becoming more 

crucial considering the ever-increasing population of the world and increasing harshness 

of environmental conditions. 

A recent study of our group (Ergen and Budak, 2009) resulted in the 

construction of subtractive cDNA libraries and sequencing ESTs in order to analyze the 

expression profile of drought-inducible genes under slow drought conditions in wheat 

genotypes and cultivar accessions originating from Turkey. An initial screen of 200 

genotypes had resulted in selection of 26 of these, which were promising for purposes 

of screening the drought-inducible genes in terms of displaying contrasting properties 

either being drought-tolerant or drought-sensitive. This selection was based on both 

physiological data and phenotypic appearances. Physiological data consisted of leaf 

water content (LWC) determination, soil water content (SWC) determination and single 

photon avalanche diode (SPAD) measurements whereas phenotypic differences was 

observed in terms of change in stature of the plants, wilting, crispiness and paling of the 

leaves. SPAD values provided a relative chlorophyll content measurement of leaves 



 

 

which changed during stress treatment and served as an indicator of the level of 

deterioration caused by water-deficit conditions. Detailed information on basis of SPAD 

technology and interpretation of SPAD measurements in chlorophyll content 

determination are given in section 2.4.2 of this text. 

 

 

Figure 1.3 Graphical representation of SPAD values of wild emmer wheat sensitive     
genotype. After a temporary increase, SPAD values displayed a significant decrease for 
stress group of sensitive genotype of wild emmer wheat. (Adapted from Ergen and 
Budak, 2009) 

 

Figure 1.4 Graphical representation of SPAD values of wild emmer wheat resistant     
genotype. SPAD values did not display a significant difference for control and stress 
group of tolerant genotype of wild emmer wheat in contrast to sensitive genotype. 
(Adapted from Ergen and Budak, 2009) 



 

 

 

Figure 1.5 Graphical representation of SPAD values of modern durum wheat variety 
Kızıltan. A temporary increase was observed in the SPAD values of stressed plants of 
modern durum wheat variety Kızıltan at around fifth day of water shortage. (Adapted 
from Ergen and Budak, 2009) 

 

A second selection was performed among those 26 contrasting genotypes by 

repeating the experiment and again considering LWC, SWC, SPAD measurements 

together with phenotypic deterioration levels under prolonged drought conditions and 

six cDNA libraries were constructed using seven day stressed leaf and root samples of 

tolerant (TR39477), sensitive (TTD-22) wild emmer wheat genotypes and modern 

durum wheat variety Kızıltan out of those 26 genotypes. Reason for selecting the seven 

day after the beginning of drought stress treatment as a time point for differential 

expression analysis was that the levels of LWC displayed a significant difference both 

for resistant and sensitive genotype (86% and 74% respectively). According to results of 

the study, an HVA22-like protein was found to be differentially expressed at expressed 

sequence tag (EST) level in root tissue of wild emmer wheat (Triticum turgidum spp. 

dicoccoides) tolerant genotype under slow drought conditions. 

It is well-established that abscisic acid (ABA) mediated signaling is involved in 

many stress responses including those to drought stress. HVA22 is one of the proteins 

whose expression is induced and regulated by ABA which was first isolated from barley 

(Hordeum vulgare L.) (Guo and Ho, 2008). Many homologues of HVA22 have been 

identified in various organisms such as fungi, plants, animals but not in prokaryotes, 

implying that HVA22 and HVA22-like proteins play unique role especially in 

eukaryotes (Shen et al., 2001). 



 

 

The objective of the present study was to show that an HVA22-like protein gene 

of wild emmer wheat was differentially expressed in root tissue of drought-tolerant 

genotype (TR39477) under prolonged drought conditions both at transcript level and 

protein level but it is not expressed in root tissue of cultivated modern durum variety 

Kızıltan under the same conditions. For that reason the drought treatment experiment 

was repeated and terminated at the seventh day of slow drought imposition since the 

subtractive cDNA libraries were constructed using 7-day stressed root and leaf samples 

for aforementioned three genotypes. A comparison of expression of HVA22-like protein 

in root and leaf tissues of sensitive genotype was also included.  

We were able to clone, to our knowledge for the first time, the full length open 

reading frame (ORF) of an HVA22-like protein from Triticum turgidum spp. 

dicoccoides. Its sequence analysis indicated that ORF of HVA22-like protein translated 

into a 219 amino acid protein with an estimated average molecular weight of about 25 

kDa and its pI was around 9.6. Further prediction for its structure also indicated that it 

was indeed a membrane protein as previously shown (Brands and Ho, 2002) and it had 

four hypothetical transmembrane domains.  

In order to show the presence of protein product, expression analyses were done 

both in Escherichia coli and Saccharomyces cerevisiae. As expected its expression in E. 

coli retarded the growth of organism dramatically, however we were able to show its 

presence by SDS-PAGE analysis. Objective of expression studies done in S. cerevisiae 

was to show that HVA22-like protein displayed localization in yeast cells owing to its 

predicted transmembrane domains and utilized a vector containing GFP gene. Results 

obtained using a confocal laser microscope indicated that the transformation of yeast 

cells with only the empty vector containing GFP gene yielded in a homogenous 

distribution of the GFP protein upon induction with galactose whereas the HVA22-like 

protein tagged with GFP at its C-terminal was localized in the cell. Expression of GFP 

tagged HVA22-like protein was further confirmed with western blot analysis using 

mouse anti-GFP antibody. 

 

 

 



 

 

 

 

 

 

2. BACKGROU(D 

 

2.1 Wild emmer wheat 

Triticum turgidum spp. dicoccoides (wild emmer wheat) is wild wheat that is 

native to Fertile Crescent of the Near East which also covers the southeastern region of 

Turkey (Zohary and Hopf, 2001). It is annual, monocotyledonous and predominantly 

self-pollinating tetraploid wheat. It is known to be the sole wild stock in the Triticum 

genus, which is cross-compatible and interfertile with the turgidum wheat which is 

cultivated. Tetraploid wild emmer wheat (4X BBAA) is the progenitor of hexaploid 

modern bread wheat (Triticum aestivum L. spp. aestivum, 6X BBAADD) and wild 

relative of cultivated tetraploid modern durum wheat (Triticum turgidum L. spp. durum, 

4X BBAA).  

 

Figure 2.1 Map showing location of the Fertile Crescent. Dark green line represents the 
Fertile Crescent in which many of the crops that have agronomical value today are 
thought to be originated from and cultivated (Adapted from Brown T.A, 2002). 

 



 

 

 

2.2 Plant responses to abiotic stress factors 

Upon perception of abiotic stress there might either be production of new gene 

products together with the modification or degradation of the existing ones 

(Yamaguchi-Shinozaki and Shinozaki, 2005) as depicted in Figure 2.1.  (Ashraf and 

Foolad, 2007).  When the number of genes induced under abiotic stress conditions are 

taken into account, it is obvious that the discovery of new gene products are important 

for establishing drought stress tolerance in plants and it is also crucial for improving the 

crop yields in fields as a practical means (Ergen et al., 2009; Shinozaki and Yamaguchi-

Schinozaki, 2007). There are a considerable number of reviews concerning abiotic 

stress response mechanisms in plants (Wingler et al., 2008; Neill et al., 2008; 

Nakashima et al., 2009; Bruce et al., 2007) and a more detailed description of responses 

to drought stress conditions can be found in the following sections of this text. 

 

Figure 2.2 Transcriptional regulatory networks involved in environmental stress 
conditions. A, B and C in rectangular boxes represent the cis-acting factors, circles 
labeled as A, B and C denotes the transcription factors (Adapted from Yamaguchi-
Shinozaki and Shinozaki, 2005). 



 

 

2.2.1 Involvement of ABA-signaling in response to abiotic stress  

 

Abscisic acid (ABA) is a plant hormone whose production is increased under 

stress conditions and also under water deficit conditions specifically (Christman et. al, 

2005; Chinnusamy et al., 2008). An analogy between ABA and adrenalin can describe 

the role of ABA in plants as adrenalin in our veins also triggers and drives reactions 

against stress. Studies related to ABA dates back to early times regarding it as a stress 

hormone however it might have other functions even when there is no stress condition 

(Zeevart and Creelman, 1988). For example, it has long been known that ABA is 

involved in the seed development and germination and it also seems to be involved in 

embryo growth and differentiation together with accumulation of certain molecules in 

cotyledon or endosperm (Crouch and Sussex, 1981; Fong et al., 1983; Bray and Beachy, 

1985; Vilardell et al., 1990). 

 An intriguing point of view of ABA involvement in abiotic stress is that since it 

is a stress hormone which triggers a myriad of responses under various stress responses, 

inevitably there is cross-talk among some of the responses that are triggered by ABA 

such as cold, salinity and drought, however there are also some certain differences. 

(Lachno and Baker, 1986; Shinozaki and Yamaguchi-Shinozaki 2000). There are also 

indications so as to genes that are encoding putative RNA-binding proteins and an 

aldose reductase enzyme which is known to be involved in the synthesis of sorbitol in 

plants are also induced by ABA signaling. (Bartels et al., 1991; Ludevid et al., 1992). 

Although it is well-established that there are many genes whose expression is 

activated by ABA whose production in turn is known to be increased upon sensing 

drought and other abiotic stress conditions (Shinozaki and Yamaguchi-Shinozaki, 

2007); drought tolerance is not restricted to ABA activation of gene expression 

(Yamaguchi-Shinozaki and Shinozaki, 2005; Shinozaki and Yamaguchi-Schinozaki, 

2000). Among the genes which are identified as drought-inducible, some are induced by 

exogenous ABA treatment whereas some does not respond to same treatment. To date, 

expression analysis of drought-inducible genes has led to the identification of at least 

four independent regulatory pathways which play role in controlling gene expression 

that is responsible for drought stress tolerance in plants. Two of these pathways are 



 

 

involved in ABA-dependent responses whereas the other two acts independent of ABA 

signaling (Yamaguchi-Shinozaki and Shinozaki, 2005; Barrero et al., 2006). 

 

2.2.2 Effects of drought on plant physiology 

Shortage of water usually results from insufficient rain fall, poor water storage 

capacity of soil and also when the water uptake of plants cannot compensate for the 

high rates of transpiration. Effects of drought range from molecular to morphological 

levels. As mentioned earlier, transcriptional regulation is one of the major responses to 

drought; expression of some genes might be turned whereas existent expression of 

certain genes might be ceased (Yamaguchi-Shinozaki and Shinozaki, 2005; Umezawa et 

al., 2006; Seki et al., 2007). Water deficit conditions can also lead to loss of turgor, 

change in cell volume, increase in the concentrations of various solutes, disruption of 

membrane integrity, increased levels of protein denaturation together with denaturation 

of some other molecular components as well (Bartels and Souer, 2003; Lawlor and 

Cornic, 2002; Lawlor, 2002; Grifth and Parry, 2002; Parry et al., 2002). A reduction in 

growth of plants is also observed (Kaya et al, 2006, Harris et al., 2002; Farooq et al., 

2009).  The extent of water deficit stress condition response of plants depends on the 

duration of water shortage, severeness of the water shortage as well as on the species, 

genotype and the developmental status of plants.  

It is important to understand the functions of gene products formed under 

drought conditions in order to have a better evaluation of water deficit tolerance 

mechanisms of plants and to be able to improve the water tolerance of plants in field. 

Although there is a considerable number of genes which are characterized and shown to 

be involved in drought tolerance have been identified, the details of signal transduction 

and drought perception together with the following establishment of tolerance  still 

waits to be evaluated and resolved (Madhava Rao K.V. et al., 2006; Ingram and Bartels, 

1996.).  

 



 

 

 

 

Figure 2.3  Functions of drought stress-inducible genes in stress tolerance and response 
(Adapted from Shinozaki and Yamaguchi-Schinozaki, 2007). 

 
 

 

 

 

Figure 2.4 Scheme of possible mechanisms playing role in growth reduction in plants 
under water deficit conditions. (Adapted from Farooq et al., 2009). 

 



 

 

It is important to understand the functions of gene products formed under 

drought conditions in order to have a better evaluation of water deficit tolerance 

mechanisms of plants and to be able to improve the water tolerance of plants in field. 

Although there is a considerable number of genes which are characterized and shown to 

be involved in drought tolerance have been identified, the details of signal transduction 

and drought perception together with the following establishment of tolerance  still 

waits to be evaluated and resolved (Madhava Rao K.V. et al., 2006; Ingram and Bartels, 

1996.).  

  

2.2.2.1 Photosynthesis 

 

Along with the reduction in crop growth and yield, leaf water content, and 

reduced nutrient uptake, drought stress also causes a decreased rate of photosynthesis 

upon stomatal closure, which is almost always the first measure of defense upon stress 

perception (Farooq et al., 2009; Mansfield and Atkinson, 1990; Cominelli et al., 2005; 

Tezara et al., 1999; Flexas and Medrano, 2002). As the drought conditions get harsher, a 

decrease in Rubisco activity is observed following stomatal closure (Bota et al., 2004), 

and there occurs a change in adjustment to CO2 available in the chloroplast and also in 

relative total chlorophyll content (Loreto et al., 1995). Possible reason for the decline in 

photosynthesis rate of a plant under water deficit conditions might be due to the fact that 

increasing concentration of solutes in the cell results in a higher viscosity of the 

cytoplasm and they may become toxic hindering the activity of enzymes that are 

involved in the photosynthetic pathway (Hoekstra et al., 2001). 



 

 

 
 

Figure 2.5 Possible mechanisms that result in the decreased rate of photosynthesis in a 
plant under drought conditions (Adapted from Farooq et al., 2009). 

 

2.2.2.2 Importance of chlorophyll content determination in drought-stress response 
using single photon avalanche diode (SPAD) measurement 
 

Measuring the chlorophyll content can be useful in diagnosing the health status 

of a plant (Kumar et al., 2002). Chlorophyll content can change in response to different 

environmental stresses (biotic or abiotic) (Fanizza et al., 1991; Samdur et al., 2000; 

Lawson et al., 2001) and it is also dependent on the developmental stage of the leaf 

(Costa et al., 2001). 

Chemical extraction of chlorophylls which requires the destruction of leaf 

samples and makes use of various solvents in the process was used until newer non-

destructive methods was developed. Traditional destructive method is a time consuming 

one and it also requires spectrophotometric measurements which in turn are converted 

into concentrations using standard solutions and equations (Arnon, 1949; Lichtenthaler, 

1987; Ritchie, 2008). In contrast, newly developed optical methods are non-destructive, 

easy to perform and also can be used in the field very quickly however they provide a 



 

 

relative chlorophyll content (i.e. index) rather than measuring absolute chlorophyll 

amounts in per unit leaf area (Hawkins et al., 2007; Markwell et al., 1995). 

A SPAD (Single-Photon Avalanche Diode) meter (also known as a chlorophyll 

meter) is a device which measures the ratio of light transmitted at 920 nm to that at 650 

nm; former is not affected by the leaf chlorophyll content whereas the latter is absorbed 

by chlorophyll strongly. Consequently a SPAD measurement is correlated to leaf 

chlorophyll content and it is found to be near-linear (Neufeld et al., 2006). The 

relationship between the ratio of the absorbance and chlorophyll amount of a leaf is also 

dependent on species (Bonneville and Fyles, 2006). 

However, as the leaves become more injured due to stress, SPAD meter readings 

become unreliable (Neufeld et al., 2006).  Several reasons are held responsible for that 

deviation of the near-linear relationship between the chlorophyll content and SPAD 

values. One of them is that chlorophyll amount becomes too low to be detected by 

SPAD meter accurately (Gratani, 1992). Another reason might be that the spatial 

distribution of chlorophyll might display variations resulting in additional scattering in 

the SPAD/total chlorophyll relationship (Castelli et al., 1996; Monje and Bugbee, 

1992). Also the presence of necrotic tissue in the later stages of injury further changes 

the transmittance of light due to loss of cytoplasm and emergence of dead cells 

throughout the cell. It is known that especially the presence of dead cells and loss of 

pigments lead to a reduction in absorbance as enhancing the light transmission and also 

causing an increased scattering (Castelli et al., 1996; Monje and Bugbee, 1992).  

 

2.3 HVA22-like protein and its homologues  

HVA22-like protein family identified in various but limited number of plants 

such as barley and Arabidopsis (Chen et al., 2009; Chen et al.; 2002) and in some other 

eukaryotes, including mammals, is one of the known drought response proteins which 

also plays a unique role in eukaryotes but not in any of the prokaryotic organisms 

probably due to its membrane-associated nature and its role in vesicular trafficking 

(Guo and Ho, 2008; Shen et al. 2001).  

HVA22 was first isolated from barley aleurone layers (Chen et al., 2002; Guo 

and Ho, 2008). Many homologues of HVA22-like proteins have been identified in 



 

 

various organisms such as fungi, plants, animals but not in prokaryotes, implying that 

HVA22 and HVA22-like proteins play unique role especially in eukaryotes (Shen et al., 

2001). Recently HVA22-like protein has been shown to be involved in vesicular 

trafficking and programmed cell death in cereal aleurone cells (Guo and Ho, 2008) 

together with autophagic internalization (Brands and Ho, 2002; Chen et al., 2009). 

However there is also evidence that not all HVA22-like protein homologues play role 

only in drought response in plants and they can also be involved in salt stress response. 

RNA interference studies performed in Arabidopsis also suggests that some HVA22-

like homologues have role in plant reproductive development (Chen et al., 2002).  

HVA22-like protein has been shown to have a yeast homolog Yop1p, which 

interacts with GTPase-interacting protein Yip1p, (Brands and Ho, 2003; Brands and Ho, 

2002) and its deletion together with the deletion of Rtn4a, which is known to be a 

reticulon protein having role in shaping the endoplasmic reticulum, has also been 

demonstrated to be responsible for the disruption of endoplasmic reticulum 

membranous networking structure. This finding is supported by the later work of a 

group displaying the involvement of HVA22 in membranous vesicle formation in 

autophagy pathway (Chen et al., 2009).  HVA22-like protein is also a unique type of 

ABA-inducible genes considering the fact that it has been shown to be induced by 

exogenous treatments of cycloheximide which is known to be a chemical that blocks 

translational elongation (Shen et al. 1993)  

One definition of the candidate genes is given as the “transgenic intervention 

points” (Gutterson and Zhang, 2004) since they can be utilized in agricultural 

enhancement of crops. In that context, HVA22-like protein is a candidate gene which 

plays an enhancing role in tolerance under water deficit conditions suggested by the 

results of two earlier studies (Ergen and Budak, 2009; Ergen et al., 2009). For that 

reason it is important to investigate that protein family in plants those have agronomical 

value. 

 

 

 

 



 

 

 

 

 

 

3.  MATERIALS A(D METHODS 

 

 

3.1 Materials 

 

3.1.1 Plant Material 

Triticum turgidum spp. dicoccoides accession numbers TR39477and TTD-22 

and Triticum durum variety Kızıltan used in this study were obtained from a set of seeds 

characterized in a previous study of our group (Ergen & Budak 2009).  

3.1.2 Chemicals and Commercial Kits 

 

A detailed list of chemicals and kits used in the present study is given in 

Appendix C. 

 

3.1.3 Buffers and Solutions 

 

The growth media, buffers, and solutions used in the present study were 

prepared according to Sambrook et al., 2001 unless otherwise stated. 

 

3.1.4 Primers 

Primers were commercially synthesized in Iontek Company, Istanbul. 

 

 



 

 

3.1.5 Culture Growth Media 

a. Escherichia coli  

 LB Broth (Lennox L broth) containing tryptone, yeast extract and NaCl (Sigma) 

was used for liquid culture preparation of bacterial cells. 20 g of LB Broth was used for 

preparation of 1 L liquid medium. The liquid medium was autoclaved at 121°C for 15 

minutes before using. Ampicillin was added to liquid medium afterwards at a final 

concentration of 100 µg/ml for selection. 

 LB Agar (Luria Bertani, Miller) containing tryptone, yeast extract, NaCl and agar 

(Sigma) were used for preparation of solid medium. 40 g of LB Agar was used for 

preparation of 1 L solid medium and the solution was then autoclaved at 121°C for 15 

minutes. Autoclaved medium was poured to petri plates after cooling down to ~50°C. 

Ampicillin was added to liquid medium afterwards at a final concentration of 100 µg/ml 

for selection. 

b. Saccharomyces cerevisiae 

 

Yeast peptone-dextrose (YPD) agar medium was used for viability test of 

INVSc1 (Invitrogen, Germany) yeast strain. YPD liquid medium was used in 

preparation of competent yeast cells. 

 

Complex synthetic minimal medium lacking uracil (SD-Ura) medium was used 

for both liquid expression cultures and solid medium in plates for propagation of 

appropriate colonies under selection. Liquid medium contains drop-out medium and 

either 2 % glucose for regular growth or 0.1% glucose for expression cultures. Solid 

SD-Ura medium contains 2% glucose. 

 

3.1.6 Equipment 

A detailed list of equipment used in the present study is given in Appendix D. 

 

 

 



 

 

 

 

3.2 Methods 

 

 

3.2.1 Plant growth conditions  

Seeds were surface sterilized before pre-germinating them in petri dishes for one 

week at 4°C in the dark. Seedlings which were at the similar germination stage were 

transferred to six pots for wild emmer wheat resistant genotype, six pots for wild emmer 

wheat sensitive genotype and five pots for durum wheat var. Kızıltan (two seeds per 

pot) which contained a clay : sand mixture (3:2). Mineral composition was adjusted 

afterwards with the addition of 100 ppm N, 2.5 ppm Fe, 100 ppm P, 20 ppm S and 2.5 

ppm Zn and mixed thoroughly before planting the seeds. Total weight of the soil used 

was 1700g. 

 

Plants were then grown under a natural environment in greenhouse (10–12 hours 

daylight; temperature 25±3°C). Positions of the pots were changed randomly every 3-4 

days and well watered daily for three weeks. Drought stress treatment was started by 

withholding water from stress treatment pots whereas control group plants were kept 

with well-watering scheme daily. Treatments were performed in triplicate. 

 

Plant samples were collected at the end of seventh day of drought treatment at 

the regional midday. The drought-tolerant and drought-sensitive wild emmer wheat 

genotypes together with modern durum wheat variety Kızıltan were compared in terms 

of physical appearance based on the SPAD measurements. 

 

 

 

 

 

 



 

 

3.2.2 Single-Photon Avalanche Diode (SPAD) measurements 

SPAD measurements were taken from the leaf tissues for relative chlorophyll 

content determination starting with the stress treatment applied to stress group plants 

using SPAD-502 Chlorophyll Meter (Konica, Minolta, Ramsey, NJ, USA). SPAD 

measurements were also taken for the control group plants until the end of the sample 

collection which was performed on the seventh day. 

 

 

3.2.3 Sample collection 

Root and leaf samples from both control group plants and stress group plants 

were collected on the seventh day of treatment and directly frozen in liquid nitrogen and 

stored at -80°C. 9-day stress root and leaf samples were obtained from the tissue sample 

collection of our group’s previous study (Ergen and Budak, 2009). 

 

3.2.4 Total R(A isolation 

200 mg leaf and 300 mg root samples were first ground in liquid nitrogen using 

autoclaved mortars and pestles. After thorough grinding either 2 ml Trizol® 

(Invitrogen) or TRI Reagent® (Sigma Aldrich) was added and continued grinding.  1 ml 

of homogenized sample was then transferred to a microcentrifuge tube using a wide-

bore pipette tip. Homogenized samples were kept on ice until all samples were 

homogenized. All the processed samples were then incubated at room temperature for 

10 minutes. 0.4 ml chloroform was added to each sample and the tubes were shaken 

vigorously and incubated at room temperature for 5 minutes. The samples were 

centrifuged at 11,000 x g for 15 minutes at 4°C. The upper aqueous phase which 

contained the RNA was transferred to a clean microcentrifuge tube. Following 

extraction with chloroform, 0.5 ml isopropanol was added in order to precipitate RNA. 

The samples were then incubated at room temperature for 10 minutes and centrifuged at 

11,000 x g for 10 minutes at 4°C. RNA pellet was washed with 1 ml 75% DEPC-treated 

ethanol. The samples were vortexed until the pellet was removed from the bottom of the 

tube. After washing the samples were centrifuged at 7,500 x g for 5 minutes at 4°C. 

Then the supernatants were discarded carefully and the RNA pellets were air-dried until 



 

 

there was no liquid in the microcentrifuge tubes.  The pellets were then dissolved in    

30 µl RNase-free water incubating at 55°C for one hour and by pipetting up and down 

every 15 minutes to ensure complete dissolution. For quantification of isolated total 

RNA, NanoDrop spectrophotometer was used. The samples were then stored at -80°C 

until further use. 

 

3.2.5 First strand cD(A synthesis 

First strand cDNA synthesis by reverse transcription was performed with 1.5 µg 

of total RNA for each sample using Transcriptor High Fidelity cDNA synthesis kit 

(Roche, Germany) following manufacturer’s instructions.  

3.2.6 Primer design 

Expressed sequence tag (EST) sequence (Accession number: FK827962) which 

was annotated as HVA22-like protein K from a previous study (Ergen & Budak, 2009) 

was first translated into its corresponding amino acid sequence before using Basic Local 

Alignment Search Tool for protein sequences version (BLASTp). The most significant 

hit (probability score of 6e-25) was a complete coding sequence Receptor expression-

enhancing protein 6 mR%A (Accession number: EU962261) which was amplified from 

Zea Mays (clone 241353). The sequence was submitted in 2008 and contained 1108 

bases. Primers were designed covering the 591 bp region from base 223 to 813 which 

included a start codon and ended with a stop codon therefore defined a open reading 

frame which had the potential of coding HVA22-like protein. 

Details of the sequences and primer design scheme can be found in Appendix D.  

 

Table 3.1Primer sequences designed for wild emmer wheat resistant and sensitive 
genotypes and durum wheat Kızıltan HVA22-like protein coding sequence. 

(ame Orientation Sequence 

Hva22-like 

protein 

Forward 5'- ATG GCT CTC CTC GCC CC -3' 

Reverse 5'- TTA AGT TTC AGT TCC CGA CAC ACC AGC -3' 

 

 



 

 

For localization experiments, a different set of gene-specific primers were 

designed with addition of homologous recombination site sequences those were present 

in the yeast enhanced green fluorescent protein  (yEGFP) vector to 5’ ends of primers 

given in Table 3.1. Stop codon was removed from the reverse primer sequence in order 

to be able to tag the protein with GFP. 

 

Table 3.2 Primer sequences designed for localization experiments 

(ame Orientation Sequence 

Hva22-like 

protein-GFP 

Forward 5'- ACC CCG GAT TCT AGA ACT AGT GGA TCC 

CCC ATG GCT CTC CTC GCC CC -3' 

Reverse 5'- AAA TTG ACC TTG AAA ATA TAA ATT TTC 

CCC AGT TTC AGT TCC CGA CAC   

ACC AGC -3' 

 

3.2.7 PCR amplification of HVA22-like protein cD(As 

PCR reactions were set up using the reverse transcription products. iTaq DNA 

Polymerase Kit (iNtRON, South Korea) was used following manufacturer’s instructions 

for seven day and nine day stressed root samples of wild emmer wheat drought-tolerant 

genotype and modern durum wheat variety Kızıltan. For the rest of the samples Taq 

DNA Polymerase (Fermentas, Germany) was used again following manufacturer’s 

instructions.  

Reactions were run in a gradient PCR machine with an initial denaturation at 

94°C for 5 minutes. Thirty cycles were performed with denaturation at 94°C for            

1 minute; annealing either at 55°C or 57.3°C or 60°C for 45 seconds and extension at 

72°C for 1 minute. Final extensions were done at 72°C for a further 10 minutes. Results 

were checked at 1% agarose gel by running the gel at 100V for 35 minutes in 1X TBE 

buffer using 5µl sample from each of the reaction tubes and adding 1 µl of 6X loading 

dye. 

 

 



 

 

3.2.8 Gel extraction 

After analysis of the PCR results by AGE, the remaining PCR products of 45µl 

which proved to contain the ~660bp amplicon of interest were run this time in 1.5% 

agarose gel for the purpose of obtaining sharper bands.  

The agarose gel fragments with expected molecular weights were excised with a 

clean scalpel. The bands of interests were purified using QIAquick® Gel Extraction Kit 

(Qiagen, Germany) following the manufacturer’s instructions. cDNA was eluted in     

30 µl sterile dH2O and quantified by measuring the absorbance of samples at 260 nm 

using NanoDrop spectrophotometer. The samples were stored at -20°C.  

3.2.9 Ligation to cloning vector 

The PCR products were ligated to the pGEM®-T Easy Vector System I 

(Promega, Germany) in 10-µl reactions. 3:1 (insert:vector) ratios were prepared in order 

to obtain proper ligation via T-A cloning. Ligation reactions were performed following 

manufacturer’s protocol. The reactions were incubated overnight at 4°C to maximize 

the number of transformants as indicated by the manufacturer’s protocol. 

 

3.2.10 Preparation of chemically competent cells  

From an E .coli DH5α strain, single colony was inoculated in 50 ml LB. It was 

left for growth overnight (~16 hours). An aliquot of 4 ml from the overnight culture was 

transferred to 400 ml LB medium in a sterile 2 L flask. Cells were grown until an  

OD600 measurement of ~0.375 was reached and the culture was divided into pre-chilled 

50 ml falcon tubes. Falcons were incubated on ice for 10 minutes before centrifugation 

at 2,700 x rpm for 7 minutes at 4°C. Resulting supernatant was discarded and the 

remaining cell pellet was resuspended in 10 ml ice-cold CaCl2 solution (60 mM CaCl2, 

15% Glycerol, 10 mM PIPES – pH: 7.0). The falcon tubes were then centrifuged again 

at 1,800 x rpm for 5 minutes at 4°C. Supernatant was discarded and the cell pellet was 

once again resuspended in 10 ml same ice-cold CaCl2 solution. Then falcons were 

incubated on ice for 30 minutes and were centrifuged at 1,800 x rpm for 5 minutes at 

4°C. Supernatant was discarded and cell pellet was resuspended in 2 ml of ice-cold 

CaCl2 solution. Resuspended cell pellets were then aliquoted dispensing 200 µl into pre-

chilled 2 ml eppendorf tubes and immediately freezing in liquid nitrogen. The 



 

 

competent cells were then stored at -80°C. A control transformation was also 

performed.  

3.2.11Transformation  

Ligation reaction end products (5 µl) was added into 100 µl chemically 

competent DH5α strain of Escherichia coli and kept on ice for 20 minutes after gently 

mixing the suspension by stirring with the help of the pipette tip.  Cells were then 

subjected to heat-shock at 42°C for 45 seconds and directly returning them into ice 

afterwards. After a further incubation on ice for 5 minutes, 1 ml SOC medium was 

added onto each tube and left for incubation at 37°C for 45 minutes. 

Because the ligation products were of a TA-cloning procedure, from each tube 

directly 200 µl of cells was dispensed onto LB plates containing 100 µg/ml ampicillin 

since pGEM®-T Easy vector contained an ampicillin resistance gene as a selectable 

marker. 100 µl of 100 mM IPTG and 20 µl of 50 mg/ml X-gal were added onto plates 

and allowed to dry at 37°C for 30 minutes right before spreading for the purposes of 

blue/white colony screening. Plates were then incubated at 37°C for ~12 hours. 

 

3.2.12 Colony selection 

pGEM®-T Easy vector (Promega, Germany) allowed for blue/white selection by 

utilizing LacZ gene and white colonies were selected as positive clones and used in the 

following procedures. 

 

3.2.13 Plasmid isolation  

For confirmation of the selection of “true” positive colonies, selected white 

colonies were inoculated in 4 ml of LB medium containing 100 µg/ml ampicillin and 

incubated overnight (12-16 hours) at 37°C with constant shaking at 270 x rpm.  Plasmid 

isolation was then performed using High Pure Plasmid Isolation Kit (Roche, Germany) 

following manufacturer’s instructions. DNA was eluted in 50 µl elution buffer and 

quantified using NanoDrop spectrophotometer. Samples were kept at -20°C for further 

use. 

 

 



 

 

3.2.14 Restriction digestion confirmation 

pGEM®-T Easy vector  provided EcoRI cut site in order for extraction of the 

insert in one reaction for downstream application Restriction digestion of the isolated 

plasmids using EcoRI cut site was also due the fact that original primers lacked specific 

restriction sites in design. 

 

3.2.15 Sequencing 

Selected plasmids were sent to REFGEN Biotechnology Company, ANKARA 

for commercial sequencing. 

 

3.2.16 Sequence analysis 

The sequences obtained were first subjected to the VecScreen algorithm 

(http://www.ncbi.nlm.nih.gov/VecScreen/VecScreen.html) provided in the National 

Center for Biotechnology Information (NCBI) webpage in order to eliminate the 

contaminating vector sequences. BLASTP, BLASTN, BLASTX, and TBLASTX 

algorithms    (Altschul et al., 1997; Altschul et al., 1990)    were used to analyze the 

DNA sequences which are all provided at NCBI webpage 

(http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi?CMD=Web&PAGE_TYPE=BlastHom

e). 

Protein secondary structure and membrane topology predictions was performed 

using HMMTOP  server v2.0 (http://www.enzim.hu/hmmtop/html/submit.html) and the 

results were confirmed utilizing membrane topology predictions were performed 

utilizing TMHMM server v2.0 (http://www.cbs.dtu.dk/services/TMHMM/). Graphical 

representation of predicted transmembrane helices was shown using and TMRPres2D 

application (http://bioinformatics.biol.uoa.gr/TMRPres2D/) which provides two 

dimensional drawings of the given sequence. Protein structure modeling was performed 

using Modweb algorithm (http://modbase.compbio.ucsf.edu/ModWeb20-

html/modweb.html) and the output then was visualized using Pymol software 

(http://www.pymol.org/).  

  



 

 

In order to investigate the functional relationships of HVA22-like protein with 

other known proteins a conserved domain search was performed using the tool provided 

in NCBI conserved domain search webpage 

(http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). Obtained result was further 

analyzed using Conserved Domain Architecture Retrieval Tool (CDART) 

(http://www.ncbi.nlm.nih.gov/Structure/lexington/lexington.cgi). 

 

3.2.17 Protein Expression Analysis 

3.2.17.1 Subcloning into expression vector 

3.2.17.1.1 Isolation of expression vector from glycerol stock 

 

Several 4 ml LB medium containing 100 µg/ml ampicillin were inoculated with 

200 µl TOPO cells (E. coli) containing empty pET22b(+) expression vector and 

incubated at 37°C overnight by constant shaking at 280 x rpm. Plasmid isolations were 

performed using High Pure Plasmid Isolation Kit (Roche, Germany) following 

manufacturer’s instructions. 

3.2.17.1.2 Restriction digestion of expression vector and cloning vector containing 
fragment of interest 

 

Both pET22b(+) vector (~1 µg)  and the plasmid containing fragment of interest 

(~1 µg) were digested with 10 units of EcoRI (Fermentas, Germany) at 37°C for ~2.5 

hours. In the last 45 minutes for incubation, 1 µl of calf intestinal alkaline phosphatase 

(CIAP) (Fermentas, Germany) was added into the microcentrifuge tube containing 

pET22b(+) vector as substrate in order to prevent the possible self-ligation of vector. 

Results were analyzed with agarose gel electrophoresis. 

3.2.17.1.3 Gel extraction 

 

Bands corresponding to 660bp HVA22-like protein coding sequence and to 

~5.4kb pET22b(+) vector were extracted using QIAquick® Gel Extraction Kit (Qiagen, 

Germany) following manufacturer’s instructions. Concentrations were determined using 

NanoDrop spectrophotometer and by agarose gel electrophoresis. 



 

 

3.2.17.1.4 Ligation 

 

Ligations were performed using a insert:vector ratio of 5:1 corresponding to an 

amount of 100 ng vector and 55 ng of insert in a total of 10 µl reaction volumes. Proper 

control ligations were also set up together with the actual ligation reaction. Reaction 

mixtures were then incubated at 4°C overnight. 

 

3.2.17.2 Transformation of pET22b(+) expression vector construct containing 
HVA22-like protein ORF 

 

Ligation reaction end products (2 µL) were added onto 100 µL chemically 

competent DH5α strain of Escherichia coli and kept on ice for 20 minutes after gently 

mixing the suspension by stirring with the help of the pipette tip.  Cells were then 

subjected to heat-shock at 42°C for 45 seconds and directly returning them into ice 

afterwards. After a further incubation on ice for 5 minutes, 1 ml SOC medium was 

added onto each tube and left for incubation at 37°C for 45 minutes. 

Cells were pelleted at 5,000 x g for 3 minutes and resuspended in the remaining 

medium (~100 µl) after discarding the supernatant. Resuspended cells were then 

dispensed onto LB plates containing 100 µg/ml ampicillin since expression vector 

contained an ampicillin resistance gene as a selectable marker. 100 µl of 100 mM IPTG 

and 20 µl of 50 mg/ml X-gal were added onto plates and allowed to dry at 37°C for 30 

minutes right before spreading for purposes of blue/white screening. Plates were then 

incubated at 37°C for ~12 hours. 

 

3.2.17.3 Colony PCR  
 

For confirmation of the true positive colonies colony PCR was performed with 

the gene-specific primers given in Table 3.1. using the reaction set-up and cycling 

parameters described in section 3.2.6 of this text at a annealing temperature of 57.3°C. 

 

3.2.17.4 Plasmid isolation  

In order to be able to transform the Rosettagami2™ (Novagen, Germany) and 

BL21(DE3) E. coli competent cells for expression studies, inoculations from true 



 

 

positive colonies of DH5α E. coli competent cells containing HVA22-like protein ORF 

in pET22b(+) vector (Novagen, Germany) were performed. 

White colonies which were determined to be true positive were inoculated in 

4ml of LB media containing 100 µg/ml ampicillin and were then incubated overnight 

(12-16 hours) at 37°C with constant shaking at 270 x rpm.  Plasmid isolation was 

performed using a commercial plasmid isolation kit (Roche, Germany) following 

manufacturer’s instructions. DNA was eluted in 50 µL elution buffer and quantified 

using NanoDrop spectrophotometer. Samples were kept at -20°C for further use. 

 

3.2.17.5 Transformation into Rosettagami2™ and BL21(DE3) E. coli competent 

cells 

Ligation reaction end products (4 µL) were added into 100 µL chemically 

competent DH5α strain of Escherichia coli and kept on ice for 25 minutes after gently 

mixing the suspension by stirring with the help of the pipette tip.  Cells were then 

subjected to heat-shock at 42°C for 45 seconds and directly returning them into ice 

afterwards. After a further incubation on ice for 5 minutes, 1 ml SOC medium was 

added onto each tube and left for incubation at 37°C for 55 minutes. 

 

Cells were pelleted at 5000 x g for 3 minutes and resuspended in the remaining 

medium (~100 µl) after discarding the supernatant. Resuspended cells were then 

dispensed onto LB plates containing 100µg/ml ampicillin since expression vector 

contained an ampicillin resistance gene as a selectable marker. 100 µl of 100 mM IPTG 

and 20 µl of 50 mg/ml X-gal were added onto plates and allowed to dry at 37°C for 30 

minutes right before spreading for purposes of blue/white screening. Plates were then 

incubated at 37°C for ~12 hours. 

 

3.2.17.6 Orientation determination 

 

Restriction digestion with XhoI (Fermentas, Germany) was performed in order 

to determine the orientation of insert. Reaction mixtures were incubated at 37°C for 3 

hours and were then thermally inactivated incubating at 80°C for 20 minutes. Results 

were analyzed using agarose gel electrophoresis. 



 

 

3.2.17.7 Culture inoculation 

 

In order to prepare starter cell cultures for the actual expression, 5 ml LB media 

containing 100 µg/ml ampicillin was inoculated using colonies which were previously 

determined to contain the HVA22-like protein coding sequence in correct orientation by 

restriction digestion. Those cultures were then incubated at 37°C overnight by constant 

shaking at 280 x rpm. 

  

3.2.17.8 Induction with IPTG, growth curve construction and sample collection 

 

In order to determine their density, OD600 measurements of starter cultures were 

taken and diluted to a final OD600 value of 0.1 using fresh 50 ml LB media containing 

100 µl/ml ampicillin in 250 ml flasks. Cells were grown until an optical density of ~0.6 

was reached (~2.5 hours after dilution). Then cells were induced by addition of IPTG at 

a final concentration of either 0.5 mM or 0.7 mM or 1 mM IPTG. One flask was kept 

uninduced for control purposes. 

Samples (1 ml) were collected by pelleting the cells at 13,200 x rpm for one 

minute. Supernatants were discarded and pellets were immediately frozen and kept until 

use for protein extraction at -20°C. Sample collection was performed in one-hour 

intervals starting with the induction while recording OD600 values. 

 

3.2.17.9 Protein extraction 

Cell pellets were resuspended thoroughly in 25 µl lysis buffer containing 1 

mg/ml lysozyme, 25 mM Tris-HCl pH 8.5, 10 mM EDTA and 50 mM glucose. An 

equal volume of triton buffer containing 25 mM DTT, 100 mM NaCl, 200 mM MgCl2 

and 0.8 % Triton X-100 was then added to resuspended pellets in order to achieve 

complete lysis and solubilization. Solubilized cells were then centrifuged for 10 minutes 

at 13,200 x rpm in a tabletop centrifuge at 4°C. Supernatants were transferred into a 

clean 1.5-ml microcentrifuge tube. 3 µl 6X SDS loading dye was added to 15 µl of 

those supernatants for SDS-PAGE analysis.  

 

 



 

 

3.2.17.10 SDS-PAGE analysis 

 

SDS-Polyacrylamide gels with a 5% stacking gel concentration and a 12% 

separating gel concentrations were prepared as described in Sambrook et al., 2001 and 

18 µl of samples were loaded into each lane. Gels were stained overnight with 

Coomassie Blue R-250 at room temperature and destained overnight with 10% acetic 

acid solution at room temperature.  

 

3.2.17.11 Sequencing 

 

Plasmids with which the expression analyses were performed were sent to 

Refgen, Ankara for commercial sequencing. 

 

3.2.17.12 Sequence analysis of pET22b(+) vector containing expressed coding 
sequence 
 

The sequences obtained were first subjected to the VecScreen algorithm 

(http://www.ncbi.nlm.nih.gov/VecScreen/VecScreen.html) in order to eliminate the 

contaminating vector sequences. Then BLASTN algorithm was used for comparison of 

the expression vector construct sequence with the cloning vector construct which was 

previously shown to contain the coding sequence for HVA22-like protein.  

 

3.2.18 Cellular Localization 

3.2.18.1 Amplification of HVA22-like protein with homologous recombination 
compatible gene-specific primers 
 

 PCR reactions were set up using remaining cDNAs obtained as described in 

section 3.2.4 as templates. In order to obtain blunt-end PCR products which was 

required for homologous recombination process and for improved accuracy pfu DNA 

polymerase (Fermentas, Germany) was used.  

Reactions were run in a gradient PCR machine for determination of the optimum 

annealing temperature. PCR was started with an initial denaturation at 94°C for 5 

minutes. Thirty five cycles were then performed with denaturation at 94°C for 1 minute; 



 

 

annealing either at 55°C or 57.3°C or 60°C for 1 minute and extension at 72°C for 2 

minutes. Final extensions were done at 72°C for a further 15 minutes. Results were 

analyzed using AGE and subsequent extraction from agarose gel was performed using a 

commercial gel extraction kit (Roche, Germany) following manufacturer’s instructions. 

Concentration was determined using NanoDrop spectrophotometer. 

3.2.18.2 Linearization of yEGFP vector 

 

 Linearization of yEGFP vector was achieved by incubating 2 µg of vector with 

10U SmaI restriction enzyme (Fermentas, Germany) for ~17 hours at 30°C. Efficiency 

was analyzed using AGE and subsequent extraction from agarose gel was performed 

using a commercial gel extraction kit (Roche, Germany) following manufacturer’s 

instructions. Concentration was determined using NanoDrop spectrophotometer. 

3.2.18.3 Cloning HVA22-like protein coding sequence into GFP-8His containing 
yEGFP vector by homologous recombination 
 

 Procedure for homologous recombination was performed as described in Drew 

et al., 2008 without any modifications. Briefly, the gene of interest which included 5’ 

overhangs (35bp) that complemented upstream and downstream sequences to either side 

of the SmaI site in yEGFP vector was amplified with pfu polymerase (Fermentas, 

Germany) using PCR. Then cloning with homologous recombination was performed by 

addition of 5 µl of 150 ng/µl PCR product and 3 µl of 25 ng/µl SmaI-linearized yEGFP 

vector into S. cerevisiae competent cells together with 42 µl sterile dH2O in order to 

complete the volume to 50 µl. For the expression of only GFP, intact yEGFP vector was 

added (5 µl of 150 ng/µl) into competent cells by completing the volume to 50 µl with 

sterile dH2O. 

  

 

 

 

 



 

 

 

3.2.18.4 Competent yeast cell preparation and Transformation 

 

Procedure for competent yeast cell preparation and subsequent transformation 

was performed as described in Drew et al. 2008 without any modifications. Briefly, in a 

50-ml capped tube 5 ml of yeast peptone dextrose (YPD) medium was inoculated with 

the Saccharomyces cerevisiae strain INVSc1 (Invitrogen, Germany) with a sterile loop 

and grown overnight at 30°C with constant shaking at 260 x rpm. Overnight culture was 

diluted to an OD600 of 0.1 in a 250-ml flask containing 50 ml of YPD and grown under 

the same conditions until an OD600 of 0.5-0.6 was obtained. Cells were then spun down 

at 3,000 x g for 5 minutes at 4°C. Then the supernatant was discarded and cells were 

resuspended in 25 ml dH2O. Cells were once again spun down under the same 

conditions and were resuspended in 1 ml of 100 mM sterile lithium acetate (LiAc). 

Resuspended cells were then transferred into a 1.5-ml microfuge tube and centrifuged at 

8,000 x g for 15 seconds. Supernatant was discarded and the pellet was resuspended in 

400 µl of 100 mM sterile LiAc. 

Fresh microfuge tubes containing 240 µl of 50% (wt/vol) PEG 3350 

(autoclaved) were prepared for transformation and were put on ice. 50 µl aliquots of cell 

suspension from the previous step were added into each tube and vortexed for 5 seconds 

to obtain a homogeneous cell suspension. Single-stranded carrier DNA (25 µl of 2 mg 

ml-1) was added into each suspension and vortexed for 5 seconds. DNA mix products of 

the homologous recombination cloning protocol (50 µl) were added into each tube, 

vortexed for 5 seconds and labeled accordingly. Tubes were then incubated at 30°C and 

exposed to heat-shock for 25 minutes at 42°C. Cells were then removed from the heat 

block and centrifuged at 8,000 x g for 15 seconds at room temperature and washed in 

100 ml of sterile dH2O to get rid of the remaining medium. Each suspension was then 

plated onto –URA selective media plates and incubated for ~4 days at 30°C. 

 S. cerevisiae strain INVSc1 (Invitrogen, Germany) was used as host organism 

since the yEGFP vector contained URA marker for selection purposes and one of the 

phenotypic properties of INVSc1 strain was its –URA phenotype. 

 



 

 

3.2.18.5 Colony PCR 

 

Colony PCR was performed using Taq DNA polymerase (Fermentas, Germany) 

following manufacturer’s instructions and with cycling parameters as described earlier 

in section 3.2.17.1 of this text. Yeast cells were burst in a microwave oven at maximum 

temperature for 4 minutes prior to PCR reaction and used as templates. PCR was started 

with an initial denaturation at 94°C for 5 minutes. Thirty five cycles were then 

performed with denaturation at 94°C for 1 minute; annealing either 57.3°C for 1 minute 

and extension at 72°C for 2 minutes. Final extensions were done at 72°C for a further 15 

minutes. Results were analyzed using AGE. 

3.2.18.6 Expression and Sample Collection 

 

Procedure for expression was performed as described in Drew et al., 2008 with 

slight modifications. Briefly, appropriate colonies were picked from the plates 

according to colony PCR results and each were inoculated in an aerated 50-ml capped 

tube containing 10 ml –URA selective medium with 2% glucose. Inoculations were also 

performed for uninduced sample collection. Cultures were then inoculated overnight at 

30°C with constant shaking at 260 x rpm. Aliquots of 10 µl from overnight cultures 

were spotted onto fresh –URA selective plates and allowed to dry at room temperature 

before transferring them to incubator for growth at 30°C until the colonies started to 

form. Afterwards, remaining overnight cultures were diluted to an OD600 of 0.12 in 50-

ml capped tubes containing 10 ml –URA medium with 0.1% glucose and incubated at 

30°C with constant shaking at 260 x rpm until an OD600 of ~0.6 was reached (ca. 7 

hours). Expression of HVA22-like protein-GFP and only GFP were induced by addition 

of sterile galactose to a final concentration of 2%. Cultures were then left for expression 

for ~22 hours which was previously found to be the optimum duration for expression of 

membrane proteins.  

Expression was performed twice; one for visualization of cellular localization of 

the HVA22-like-protein-GFP construct together with only GFP and the other was for 

detection of construct with anti-GFP using western blotting for confirmation purposes. 

Cell cultures used for visualization were centrifuged at 13,200 x rpm for 3 minutes at 

4°C after ~22 hours of expression and were then used for slide preparation in order to be 



 

 

analyzed in confocal laser microscopy. Cell cultures used in western blotting were 

centrifuged at 5,000 x g for 40 minutes at 4°C after ~22 hours of expression and were 

then kept at -20°C until further use in protein extraction. 

3.2.18.7 Visualization of cellular localization using confocal laser microscopy 

 

 Slides to be analyzed with confocal laser microscope (Leica, USA) were 

prepared on ice dispensing 1µl of aliquot from cells which were resuspended in     1 ml   

–URA selective  medium  containing 50%   glycerol after centrifugation at 13,200 x 

rpm for 3 minutes at 4°C and immediately covering it with a cover slip and applying 

nail polish to the edges of the slip in order to prevent evaporation of medium owing to 

the viscous and sticky nature of the chemical.  

 

3.2.19 Western Blotting 

3.2.19.1 Protein extraction from yeast cells 

 

Cell pellets (approximately 2.3 mg wet weight) were removed from -20°C 

freezer and resuspended in 100 µl distilled water. 100 µl of 0.2 M NaOH was added and 

cell suspensions were incubated at room temperature for 5 minutes. Cells were then 

pelleted in a tabletop microfuge at maximum speed for 1 minute and the supernatant 

was discarded. Pellets were resuspended in 50 µl 2XPAGE sample buffer containing β-

mercaptoethanol as reducing agent and then incubated at 40°C for 30 minutes. Prior to 

pelleting the cells again in a tabletop microfuge at maximum speed for 1 minute, 12 µl 

of resuspensions was reserved for representation of whole cell protein content. After 

pelleting the cell suspensions, supernatant was transferred into a clean microfuge tube 

and 12 µl was used for representation of soluble protein fraction in SDS-PAGE 

separation. After separation of soluble fraction into a new clean microfuge, the 

remaining insoluble fraction was dissolved in 50 µl 2XPAGE sample buffer containing 

β-mercaptoethanol as reducing agent and boiled at 95°C for 5 minutes. From each 

sample tube 18 µl was used for representation for insoluble fraction. 

 



 

 

3.2.19.2 SDS-PAGE and blotting of membranes 

 SDS-Polyacrylamide gels with a 5% stacking gel concentration and a 12% 

separating gel concentration were prepared as described in Sambrook et al., 2001. Gels 

were then blotted on PVDF membranes for 1 hour at 25 mA constant current at room 

temperature in transfer buffer prepared by mixing 14.41 g Tris base, 3.028 g glycine and 

200 ml methanol completing the volume to a final of 1 L by adding distilled water. 

Blotted membranes were blocked with 5% non-fat dry milk solution on an orbital 

shaker overnight at 4°C on orbital shaker. 

3.2.19.3 Antibody incubation and signal detection 

 Blocked membranes were incubated with anti-GFP (Roche, Germany) overnight 

at 4°C on an orbital shaker. Secondary antibody incubation was performed with a 

dilution factor of 1:3000 using 5% non-fat dry milk solution for 1 hour at room 

temperature again on an orbital shaker. Following secondary antibody treatment 

membranes were washed three times for 15 minutes each at room temperature. TBS 

buffer containing 0.1% Tween20 was used in washing steps. 

 For signal detection, the membranes were treated with Pierce ECL Western 

Blotting Substrates (Pierce, Thermo Scientific) and the resulting signals were analyzed 

on CL-XPosure Film (Pierce, Thermo Scientific). 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

4. RESULTS 

 

4.1 Greenhouse Experiments 

 

Different types of wheat genotypes differ considerably in their ability to tolerate 

water scarcity. A variation in response to water deficiency was detected both between 

two different wild emmer wheat genotypes used in this study and also among wild 

emmer wheat genotypes and modern durum wheat Kızıltan as well which was in 

agreement with the previous study of our group (Ergen and Budak, 2009) that 

constituted the basis of the current study. In agreement with the previous study, the 

initial general response of the plants to water deficiency was reduction in shoot growth, 

emergence of pale green leaves and necrotic streaks on both sides of the young leaves. 

Tolerance to water deficiency determination was restricted to SPAD measurements and 

leaf symptoms in this study since a comprehensive initial screen comprising 200 

different genotypes was already performed by an additional leaf water content, soil 

water content, proline accumulation levels analyses. That initial screening was also 

repeated with the most promising 26 contrasting genotypes as mentioned earlier 

utilizing the same comprehensive physiological and phenotypic data analyses; 

consequently the current study utilized three different genotypes which were used in 

construction of cDNA libraries from which a large collection of EST sequencing was 

performed following slow drought stress treatment.  

 

The experiment carried out in the controlled greenhouse conditions confirmed 

that tolerant genotype showed the highest tolerance to water-deficit conditions having 

more green leaves and a more erect stature. Modern durum wheat Kızıltan followed it 

with a moderate tolerance when compared to sensitive genotype being the most 

susceptible one under drought stress condition. These findings were also consistent with 

SPAD values which were collected daily. 



 

 

4.2 SPAD Measurements 

 

SPAD values were calculated as the average of six measurements from three 

different individuals for each plant set taken in the afternoon each day following the 

start of drought stress treatment (Martinez and Guiamet, 2004; Babar et al., 2006). Data 

was in agreement with the previous work of our group (Ergen and Budak, 2009). A 

temporary increase present in the SPAD values of wild emmer wheat sensitive genotype 

can be explained by the increase inflicted upon ratio of transmittance due to emergence 

of dead cells and necrotic tissue which is absent in the control group of the same 

genotype (Neufeld et al, 2006; Castelli et al., 1996; Monje and Bugbee, 1992; 

Yomomato et al., 2002). Therefore the SPAD measurements belonging to control group 

of sensitive genotype remained nearly constant until the end of the seventh day whereas 

that of stress group plants showed a significant decrease around fifth day of the water 

shortage which was also the case in the previous study (Ergen and Budak, 2009). SPAD 

values of drought-tolerant genotype control group and stress group plants did not differ 

significantly. Graphs showing the relation between the SPAD values of stress and 

control group plants from each genotype are represented below.  

 

 
Figure 4.1 A decline in the SPAD values obtained from stress group plants of wild 
emmer wheat sensitive genotype was observed compared to that of control group of 
plants. 

 
 



 

 

 

Figure 4.2 SPAD values obtained from stress group plants and control group plants of 
wild emmer wheat resistant genotype did not show a significant difference. 

 

 

 

 

Figure 4.3 SPAD values obtained from stress group plants and control group plants of 
durum wheat Kızıltan genotype did not show a significant difference. 

 

4.3 Amplification of HVA22-like protein using gene specific primers by reverse 

transcription-PCR 

PCR amplification using gene-specific primer pair gave the differentially 

expressed fragment size of ~700bp although the expected amplicon size was 591bp 

according to the region which was used from Zea Mays clone in primer sequence design 

(detailed in Appendix D). 

 



 

 

 Figure 4.4 shows the agarose gel electrophoresis (AGE) image of gradient-PCR 

which demonstrates the proper amplification of the fragment of interest. This was 

achieved best at 57.3°C as annealing temperature. Expected molecular weight was 

around 660bp and bands with expected sizes were observed only in 9-day stressed 

samples of wild emmer wheat. The fragments with desired molecular weights were 

extracted from gels to be purified to be used in subsequent cloning steps. All AGE 

images were taken after running a 1% agarose gel in 0.5X TBE buffer at 100V for 40 

minutes and staining with 0.005% ethidium bromide unless otherwise stated. 

 

 

 
 

Figure 4.4 AGE gel image of HVA22-like protein amplification by RT-PCR.       
HVA22-like protein was differentially expressed in 9-day stressed root tissue samples 
of Triticum turgidum ssp. dicoccoides drought-tolerant genotype (TR) and it was absent 
in samples of 9-day stressed modern durum wheat variety Kızıltan (Kz) root tissue. 

 
PCR amplification of cDNAs synthesized from total RNAs isolated from leaf tissues of 

resistant and sensitive accessions together with modern durum wheat variety Kızıltan 

leaf samples displayed differential expression of HVA22-like protein in leaves although 

it was at very low level compared to levels of expression observed in 9-day stressed root 

sample of wild emmer wheat resistant genotype. This is in agreement with the fact that 

ABA is produced in roots and transported to leaves (Zhang and Davies W.J., 1987; 

Zhang, 2006; Trapeznikov et al., 2003; Sharp and LeNoble, 2002) consequently the 

induction of HVA22-like protein in roots is higher than that of in leaf tissue. 

 



 

 

 
 
Figure 4.5 AGE gel image of RT-PCR results. HVA22-like protein expression was also 
differential in leaf tissues. (TR, drought tolerant wild emmer wheat genotype;             
TS, sensitive  wild emmer wheat genotype; Kz, modern durum variety Kızıltan;        
Control, reaction control with no template) 

  
 

An important outcome of RT-PCR experiments was that there is no induction of 

HVA22-like protein in control group root tissue samples of drought-tolerant genotype 

which further consolidates the claim that the cloned gene of interest in current study is 

indeed a drought-inducible gene. However lower amounts compared to drought-tolerant 

genotype; there is also an induction of HVA22-like protein in the water deficit stressed 

root tissue of sensitive genotype. It suggests that the wild relative still retains the wild 

variation in its genotype although it does not confer significant amounts of resistance to 

drought. 

 

 

 

 



 

 

4.4 Transformation, Colony Screening, Restriction Digestion Confirmation of 
insertion 

The extracted bands of interest, amplified with gene-specific primers, were 

ligated into pGEM®-T Easy vector via T-A cloning strategy and transformed to E. coli 

DH5α cells. True white colonies were selected for insertion confirmation of fragment of 

interest using restriction digestion. Restriction digestion reactions using EcoRI 

(Fermentas) were performed following plasmid isolation in order to check and confirm 

that the white colonies truly contain the vectors with the fragment band of interest.  

 

Products of the restriction reactions were separated in 1 % agarose gel at 100V 

for 35 minutes, as illustrated in Figure 4.6. Observation of the bands with desired 

molecular weights confirmed that HVA22-like protein coding fragment was cloned into 

DH5α cells successfully.The concentrations of isolated plasmids were measured prior to 

restriction digestion using Nanodrop spectrophotometer in order to ensure the correct 

amount of substrates. Colonies circled in Figure 4.6 confirmed to containing of the 

fragment of interest and the colony that yielded the proper concentration of plasmid was 

chosen to be sent for commercial sequence analysis. 

 
 

Figure 4.6 AGE gel image of confirmation digestion of successful insertion. 
Confirmation of insertion was performed with restriction enzyme digestion with EcoRI. 

 

4.5 Sequence Analysis 

 Isolated plasmids obtained after the first cloning, were sent REFGEN 

Biotechnology Company, ANKARA to be sequenced using both M13 forward and 



 

 

reverse primers. Sequence results were first processed with VecScreen algorithm of 

NCBI in order to remove the vector contamination. This process yielded a 660 bp ORF 

which translated into a 219 amino acid residue protein hypothetically with a theoretical 

average molecular weight of ~25kDa and theoretical pI value of 9.6. The insert 

sequence was then compared to the nucleotide and protein sequences available at the 

Entrez nucleotide and protein databases using the BLASTN and BLASTP algorithms 

because the result obtained yielded an open reading frame (ORF) strictly starting with a 

start codon and ending with a stop codon.  

 

In order to confirm that the sequence being expressed was same as the initially 

cloned sequence, expression vector containing HVA22-like protein clone in it was also 

sent to be sequenced with the original gene-specific primers. Expressed construct was 

also sequenced using commercial T7 terminator primer which was included in the 

pET22b(+) sequence. Results obtained were compared to that of the initial cloning 

sequence analysis results using nucleotide BLAST algorithm and it was shown that the 

two sequences shared 98% identity most probably due to technical reasons caused by 

the fact that two constructs were sent to be sequenced separately. Consequently 

conditions for both sequencing reactions were not identical. 

 

4.5.1 Conserved domain search and conserved domain architecture retrieval tool 

 In order to investigate the possible conserved domains present in the HVA22-

like protein sequence, tools presented at the NCBI webpage was used as mentioned 

earlier. The results indicated that the HVA22-like protein from wild emmer wheat had a 

region called TMPIT-like protein domain and a number of proteins which are 

considered as members of this family were annotated as “transmembrane proteins 

induced by tumour necrosis factor alpha”. This result is important since as the previous 

studies (Shen et al., 2001; Guo and Ho, 2008; Brands and Ho, 2002; Nziengui and 

Schoefs, 2009) has shown that HVA22-like protein is involved both in initial signal 

transduction and in establishing the stress responses later on upon drought stress 

detection. Proteins that have TMPIT-like domain in their structure, such as 

phosphoinositide PI4, 5P(2) from S. cerevisiae, are known to be involved in stress 

responses (Goffeau et al., 1996; Philippsen et al., 1997; Novo et al., 2009). This result 



 

 

consolidates that the sequence cloned and expressed in this study is indeed a HVA22-

like protein which was not previously studied and shown in wild emmer wheat. 

 

 4.5.2 BLAST( 

 The most significant BLASTN alignment result returned as a Triticum 

aestivum cDNA clone cultivar Chinese Spring with a probability (e-value) of 0.0  and a 

sequence identity of 97%  covering a region of 96% of the sequence (Accession 

Number: AK331663) . Although this sequence has not been annotated, this result is 

both meaningful since wild emmer wheat is the progenitor of modern bread wheat as 

mentioned previously and it is most probable that the gene cloned in the current study is 

a homologue of the aforementioned sequence. 

 

4.6 Secondary Structure Prediction, Modeling and Membrane Topology 

4.6.1 Prediction of secondary structure using HMMTOP v2.0 server 

 HMMTOP server uses an algorithm for determination of the topology of 

membrane proteins. It is important to note that it is not an algorithm for predicting 

whether a protein sequence belongs to membrane proteins or not. HMMTOP server is 

used with high reliability after determining whether a certain protein is a membrane 

associated protein either with prior experimental knowledge or by the help of other 

available algorithms used in predicting the structure or localization of the protein. Since 

HVA22-like protein family members are known to be transmembrane proteins (Guo and 

Ho, 2008) HMMTOP server v2.0 was used for the prediction of membrane topology of 

the HVA22-like protein isolated from wild emmer wheat. Algorithm predicted four 

transmembrane domains with N-terminus of the protein inside the cell. Results are 

given in Figure 4.7. 

 

 

 

 



 

 

 

 

 

Figure 4.7 Secondary structure prediction of HVA22-like protein. HMMTOP server 
v2.0 was used to predict the membrane topology of translated amino acid sequence of 
HVA22-like protein. (Predictions are indicated in red: H= membrane helix, I=inside, i= 
inside helix t ail, o= outside helix tail) 

 

TMHMM server was used with the same 219 amino acid residue HVA22-like 

protein for confirmation of the prediction with HMMTOP algorithm prediction and 

results obtained were in agreement suggesting four potential transmembrane domains 

for the given sequence.  

 

 

 

 

 

 

 

 



 

 

 

 

Figure 4.8 Graphical representation of membrane topology prediction. TMHMM 
program was used to show the graphical representation of predicted membrane topology 
of translated amino acid sequence of HVA22-like protein. 

 

4.6.2 Graphical representation of predicted membrane topology usingTMRPres2D 

 Prediction and graphical representation of the cloned sequence was performed 

using TMRPres2D (TransMembrane protein Re-Presentation in 2 Dimensions) server. 

Results obtained were in agreement with the previous number of predicted 

transmembrane domains and N-terminal of the protein was again shown to be inside the 

cell. 

 



 

 

 
 

Figure 4.9 Two dimensional depiction of membrane topology prediction. Membrane 
Topology using TMRPres2D prediction server suggested that the N-terminal of the 
protein was inside the cell and the C-terminal protruded outwards. 

 
4.6.3 Prediction of three-dimensional structure using Modweb and visualization by 
Pymol  

Another structural prediction was run using Modweb algorithm in order to 

visualize the possible three dimensional structure of the cloned sequence and the 

resulting pdb file (protein data bank format) was visualized using a commonly used 

visualization tool Pymol. Modweb was used for ab initio structural modeling of the 

sequence although template data set based predictions are also available via Modweb 

server. Predicted three dimensional structure of the cloned HVA22-like protein is given 

below in Figure 4.10. 

 

    



 

 

 
 
Figure 4.10 Pymol image of HVA22-like protein structure predictions. Structural 
prediction by Modweb was visualized using Pymol program. 

 
4.7 Protein Expression 

4.7.1 Restriction digestion of expression vector and cloning vector containing 
fragment of interest 

In order to construct the expression vector containing the HVA22-like protein 

ORF; first the empty expression vector and cloning vector containing fragment of 

interest was digested with EcoRI restriction enzyme. Digestion with EcoRI provided the 

compatible ends required for the following ligation reaction. However the lack of two 

different restriction sites prevented the directional cloning scheme which could be 

obtained by using two different restriction enzymes. This problem was overcome as 

explained in ORF orientation determination section (4.7.4). AGE analysis results of the 

restriction digestions are given in Figure 4.11 below.  



 

 

 
Figure 4.11 AGE gel image of restriction digestion. Gel extraction of HVA22-like 
protein ORF from cloning vector pGEM®-T Easy with EcoRI digestion (shown in red 
circle) together with the digestion of expression vector pET22b(+) with EcoRI (shown 
in blue) for subcloning purposes was performed. 

4.7.2 Quality Control of Gel Extraction by AGE  

 

 
 

Figure 4.12 AGE gel image of gel extraction. Further AGE analysis of extracted 
digestion products which was shown in red and blue circles in Figure 4.11 confirmed 
the purity of fragments prior to ligation. 



 

 

Before being used in ligation, restriction digestion products were extracted from 

agarose gel (1.5%) after ensuring the efficient digestion by agarose gel electrophoresis. 

The purity and concentration of the gel extracts were then determined again using 1 µl 

of samples in agarose gel electrophoresis. 

 
4.7.3 Colony PCR 

Colony PCR was performed with the original gene-specific primers in order to 

determine whether the selection of true positive colonies were successful. As can be 

seen in Figure 4.12, except two lanes which had technical problems, all analyzed 

colonies confirmed the successful cloning of HVA22-like protein ORF into pET22b(+) 

expression vector. 

  

 
 

Figure 4.13 Figure 4.13 AGE gel image of colony PCR confirmation. Colony PCR 
bands of expected size with 660bp clearly indicated the successful cloning of HVA22-
like protein ORF into the expression vector pET22b(+). 

4.7.4 ORF Orientation determination 

Due to the lack of restriction sites at both ends of the original primer pair, the 

insertion of ORF into expression vector was done using only a single, EcoRI, restriction 

enzyme. However this prevented the directional cloning which would facilitate the 

expression of protein once the fragment of interest was inserted. In order to check the 

orientation of insert for correct direction, so that the expression of the protein product 

could take place, another restriction enzyme, XhoI, was selected. Original cloned 



 

 

sequence of the HVA22-like protein contained an XhoI cut site, and the expression 

vector also had XhoI cut site in its multiple cloning site. The fragment that had the 

correct orientation for expression would yield a 286bp fragment. Fragments  with the 

wrong orientation yielded bands of a larger size (~400bp) since XhoI site corresponded 

to the farther end of the cloned sequence in reference to the cut site that was present in 

the original empty pET22b(+) vector. Only one of the colonies had the insert in correct 

orientation as circled in yellow in Figure 4.14. 

 

 
 

Figure 4.14 AGE gel image of orientation determination of the fragment of interest. 
ORF orientation determination was performed using restriction digestion by XhoI. 

 

4.7.5 Growth Curve Construction of Rosettagami2™ and BL21(DE3) cells 

In HVA22-like protein expression analysis two different strains of E. coli, 

namely Rosettagami2™ and BL21(DE3) strains, were used in order to show that the 

results were not depended on the bacterial strain. Varying concentrations of IPTG (i.e. 

0.5 mM, 0.7 mM, 1 mM) were also used to investigate whether the concentration of 

IPTG used for induction had any effect in expression.  

HVA22-like protein, which was formerly shown to be an exclusively eukaryotic 

protein with no known prokaryotic homologues to date, retarded the growth of both 

bacterial strains. This response can be observed from the representative graphs of OD600 

measurement data collected in various time intervals from growing cultures. 

Representative graphs also indicated that bacteria could probably have a survival 

mechanism against the protein’s negative effect possibly using its proteases to degrade 

the protein and eliminating it from the environment since bacterial cells showed a 

dramatic increase in their cell density after a certain time which is more obvious in 



 

 

BL21(DE3) cells. In addition, increasing concentration of IPTG, from 0.5 mM to 1 mM, 

had a further negative effect growth although it was not very significant. 

 

 

Figure 4.15 Growth curve of Rosettagami2™ cells expressing HVA22-like protein 
Growth curve constructed using OD600 measurement data obtained from 
Rosettagami2™ cells expressing HVA22-like protein upon induction with IPTG 
indicated that the protein had a retarding effect on growth of bacterial cells. 

 



 

 

 
Figure 4.16 Growth curve of BL21(DE3) cells expressing HVA22-like protein. Growth 
curve constructed using OD600 measurement data obtained from BL21(DE3) E.coli cells 
expressing HVA22-like protein upon induction with IPTG indicated that the protein had 
a dramatic retarding effect on growth for both bacterial cells. 

 

4.7.6 SDS-PAGE analysis  

SDS-PAGE analysis of the samples containing HVA22-like proteins which were 

extracted from either Rosettagami2™ or BL21(DE3) cells upon induction with varying 

concentrations of IPTG (0.5 mM, 0.7 mM, 1 mM) showed that there was a production 

of a protein with a molecular weight of ~25kDa, which was in agreement with the 

calculated theoretical molecular weight of in silico translated HVA22-like protein 

(~25128 daltons) sequence obtained by commercial sequencing. SDS-PAGE gel images 

also suggested that there was an elimination of the aforementioned protein product 

indicated by the diminishing bands of the ~25kDa bands. This interpretation is  

consistent with the results obtained by construction of growth curves of bacterial cells 

as mentioned the previous section. 

 



 

 

 
 
Figure 4.17 SDS-PAGE gel image of Rosettagami2™ cells. SDS-PAGE analyses of the 
samples containing HVA22-like proteins extracted from Rosettagami2™ cells upon 
induction with 0.7mM IPTG showed the expression of the protein as indicated with the 
arrow. Cell pellets were collected in one hour intervals; i.e t=0 just before induction; t=1 
one hour after induction, t=2 two hours after induction etc. 
 

 

 

 

Figure 4.18 SDS-PAGE gel image of BL21(DE3) cells. SDS-PAGE analyses of the 
samples containing HVA22-like proteins extracted from BL21(DE3) cells upon 
induction with 0.5mM IPTG showed the expression of the protein as indicated with red 



 

 

circles. Cell pellets were collected in one hour intervals; i.e t=0 just before induction; 
t=1 one hour after induction, t=2 two hours after induction etc. 
 

4.7.7 Sequence analysis of pET22b(+) vector containing expressed coding sequence 

Comparison of the expression vector construct sequence with the cloning vector 

construct which was previously shown to contain the coding sequence for HVA22-like 

protein utilizing BLASTN algorithm further confirmed the expression of correct coding 

sequence with a sequence identity of 98% and with a coverage value of 95%. 

 

4.8 Cellular localization of HVA22-like protein 

4.8.1 Amplification of HVA22-like protein ORF with homologous recombination 
compatible gene-specific primers 

 Prior to transformation of yeast cells with yEGFP vector consisting of HVA22-

like protein open reading frame, PCR amplification was performed using pfu 

polymerase in order to obtain the coding sequence containing homologous 

recombination sites compatible with the ones present in the yEGFP vector. Three 

different annealing temperatures were tested using gradient PCR. Expected  amplicon 

size was 720bp and results were checked using AGE. 

 

Figure 4.19 AGE gel image of HVA22-like protein amplification with primers designed 
for homologous recombination. Analysis of PCR by AGE showed the successful 
amplification of HVA22-like protein coding sequence including homologous 
recombination sites. 



 

 

4.8.2 Quality control of gel extraction  

After extraction of PCR products of HVA22-like protein and restriction digestion 

product of  empty yEGFP vector from agarose gels (1.5%) purity of the gel extracts and 

relative concentrations were checked using AGE with 1 µl samples. Results indicated 

that all samples had the required concentration and purity for homologous 

recombination. Lanes labeled 1-4 depicted in Figure 4.20 contained the amplicons 

obtained at different annealing temperatures which was explained in the previous 

section and virtually they all had the same sequence due to being amplified with the 

same primer pairs. 

 

 
 

Figure 4.20 AGE gel image of HVA22-like protein amplicon and digested yEGFP 
vector gel extracts. Bands pointed with an arrow were confirmed to have the proper 
purity and concentration required for homologous recombination reaction prior to 
transformation. 

 
4.8.3 Confirmation of successful transformation of yeast cells with colony PCR 

Colony PCR was performed using gene-specific primers given in Table 3.2 in 

order to select the true positive colonies. Bands shown in red circles belonged to true 

positive colonies. Colonies which yielded the brightest bands were chosen for 

downstream expression and confocal microscopy visualization analyses.  



 

 

A very faint  bands of expected sizes   were observed even where the yeast cells 

were transformed with empty vector (circled in blue). As mentioned earlier, this was 

because the HVA22-like protein has homologs in diverse organisms and it also has a 

homologue in yeast cells, namely Yop1p, which was discovered in some earlier studies 

(Brands and Ho, 2002; Calero et al., 2001). However for ensuring that was the actual 

reason for obtaining bands where they were not expected, a PCR reaction was set up 

using the empty vector as template and the primers given in Table 3.2 and results were 

analyzed using AGE which is presented in Figure 4.22. Results proved that empty 

yEGFP vector did not contain the HVA22-like protein ORF sequence in its structure.  

 

 
 

Figure 4.21 AGE analysis of colony PCR. True positive transformant colonies (circled 
in red) of INVSc1 yeast cells were selected using colony PCR. 

 



 

 

 
 

Figure 4.22 AGE gel image of empty yEGFP vector amplification by PCR.              
AGE analysis of PCR reaction performed using empty yEGFP vector as a template and 
gene-specific primers for homologous recombination proved that empty yEGFP vector 
did not have the potential to yield false positive results. 

 

4.8.4 Confocal laser microscopy 

Images were obtained by confocal laser miscrocope from two different channels; 

one was the signal coming from emission of GFP protein only and the other one was the 

phase contrast image of the yeast cells confirming that the signal coming from GFP 

channel was not due to a possible artifact caused by slide preparation or any other 

technical problems. Then the images coming from these two different channels were 

merged manually to display the localization of GFP only and HVA22-like protein 

tagged with GFP within the cell.  Here it is important to note that C-terminal membrane 

protein-GFP fusions were fluorescent in all yeast cellular compartments (Huh et al., 

2003) in contrast to E. coli, in which GFP was shown to be inactively fused to 

periplasmic segments of inner-membrane proteins (Drew et al, 2002). In our construct, 

HVA22-like protein is tagged with GFP at its C-terminal. 

 



 

 

   
        
 

 

 

 
 

Figure 4.23 Merged image of signal coming from GFP only and phase contrast image of 
the yeast cells showing the localization of GFP without the HVA22-like protein with a 
homogeneous distribution throughout the yeast cells (63X magnification). 

 

Signal coming from GFP only     
(63X Magnification) 

Phase contrast image of yeast cells 
(63X Magnification) 



 

 

As seen from the images obtained by confocal laser microscope, expression of 

empty yEGFP vector without the presence HVA22-like ORF in it yielded a 

homogeneous distribution pattern of the signal upon excitation with laser at 488 nm and 

the localization image was captured with emission detection around 505-535 nm.  

 

  

  
 
 
 
        

 
 

Figure 4.24 Merged image of signal coming from signal coming from GFP-tagged 
HVA22-like protein  and phase contrast image of the yeast cells showing the 
localization of GFP-tagged HVA22-like protein with a more punctuate distribution 
throughout the yeast cells (63X magnification). 

 
As seen from the images obtained by confocal laser microscope, expression of 

vector construct which consisted of HVA22-like ORF tagged with C-terminal GFP 

Signal coming from HVA22-like 
protein tagged with GFP 
(63X magnification) 

Phase contrast image of yeast cells 
(63X magnification) 
 



 

 

yielded a more localized pattern of the signal upon excitation with laser at at 488 nm 

and the localization image was captured with emission detection around 505-535 nm.  

 

4.9 Western Blotting 

Samples from which the protein extraction was performed were harvested 22 

hours after induction as suggested by Drew et al., 2008. Signal detection using ECL 

western blotting substrates was proved to be successful however the signal coming from 

HVA22-like protein isolated from yeast cells was very weak as displayed in Figure 

4.25. Possible reasons might be inefficient protein extraction from yeast cells due to 

their robust cell wall structure or the insufficient amount of starting cell amount in 

extraction process although the former seems more likely. In contrast, purified GFP 

which was used as a positive control yielded a very strong signal indicating the 

adequacy of chemicals and materials used in blotting and signal detection steps.  

As seen from the Figure 4.25, the only obtained signal was coming from the 

soluble fraction of induced cell samples expressing HVA22-like protein tagged with 

GFP. It is most likely that we could not receive any signal from insoluble fraction 

samples since solubilization of those using 2X SDS sample loading buffer was not 

efficient and there were too much cell debris remaining which also prevented the proper 

loading of samples into wells due to their high viscosity and sticky nature that further 

minimized the effective concentration of extracted protein. 

Expected band size of the expressed HVA22-like protein tagged with GFP was 

~50kDa since they both have an average molecular weight of ~25kDa. However the 

observed band had a size of ~40kDa. This is probably due to fact that the mobility of 

membrane proteins in gels also depends on their shapes.  Experimental approach should 

be used rather than just considering the amino acid composition and the length of the 

protein for determination of the actual molecular weight of membrane proteins. For 

example sedimentation equilibrium analytical ultracentrifugation is a preferred 

technique when one is concerned with the molecular weights of membrane proteins 

(Fleming, 2008; Lustig et al., 2000).  

 



 

 

 

 

 

 

Figure 4.25 Western blotting result. Signal detection obtained upon treatment with ECL 
western blotting substrates indicated a successful blotting and antibody treatment 
process and also confirmed the expression of HVA22-like protein in yeast cells. 

 

 

 

 

 

 

 



 

 

 

 

 

 

5. DISCUSSIO( 

In order to survive, an organism should have adequate response and defense 

mechanisms against threats caused by the physical environment in which the organism 

exists. Some organisms respond to threatening environmental stress conditions by 

avoidance and ability to move away. However, some organisms, such as plants, should 

have intricate and well-developed defense mechanisms against those harsh conditions in 

order to survive due to their lack of ability to move. Although wild progenitors of the 

modern cultivated crops have such resistance mechanisms and genetic variation suited 

to those needs, modern crops have lost most of those versatile properties in their genetic 

make-up in order to acquire properties to provide higher yields by means of agricultural 

practices. 

The aim of this study was to show that an HVA22-like protein was involved in 

prolonged drought stress in wild emmer wheat. Analyses indicated that it was 

differentially expressed significantly in root tissue under prolonged (nine days) water-

deficit conditions.  For this purpose, standard greenhouse experiments were designed 

and a screening was performed among wild emmer drought-tolerant genotype, drought-

sensitive genotype and modern durum wheat variety Kızıltan. This screening was a 

repetition of an early screening experiment of our group in order to ensure the original 

work (Ergen and Budak, 2009) which utilized these three genotypes in construction of 

subtractive cDNA libraries and sequencing of ESTs was in agreement with the current 

work. For that purpose,  data was obtained using a chlorophyll-meter (SPAD meter) for 

determination of the relative chlorophyll content of the plants which is an important 

indicator of the health status of the plants during screening process (Kumar et al., 2002). 

A SPAD meter is a commonly used device in especially experiments conducted under 

abiotic stress conditions for determination of the detrimental effect levels of the stress of 

interest (Chubachi et al. 1986; Jiang and Vergara 1986; Yadava, 1986; Zhao et al., 

2007).  



 

 

Following the screening experiments, standard cloning procedures starting with 

the extraction of total RNA from samples that were obtained from root and leaf tissues 

of both stress and control group plants were used as described in Sambrook et al, 2001. 

As a result, an open reading frame (ORF) which belonged to an HVA22-like protein 

whose EST was identified in the early work (Ergen and Budak, 2009) was cloned, 

characterized and also shown to be existent at the protein level. 

After cloning and sequencing the coding region of HVA22-like protein, 

extensive in silico analysis of that sequence was performed utilizing a variety of 

bioinformatics tools. HVA22 protein which was first isolated from barley was shown to 

have several homologues in other organisms such as maize and Arabidopsis as well 

(Brands and Ho, 2002; Shen et al., 2001). HVA22-like protein family members are 

known to be transmembrane proteins that are thought to play a role in vesicular 

trafficking besides having a role in drought tolerance (Guo and Ho, 2008; Shen et al., 

2001) and our results were consistent with these findings. Secondary structure 

predictions together with the membrane topology prediction analysis of cloned 

sequence results predicted HVA22-like protein from wild emmer wheat to have four 

transmembrane domains. In addition, subcellular localization prediction of HVA22-like 

protein was performed utilizing Plant-mPloc server used 

(http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/) and results suggested that this protein 

was highly likely to be localized in chloroplast (Chou and Shen, 2008; Chou and Shen, 

2007; Shen and Chou, 2006; Chou, 2005). This finding does not necessarily contradict 

with the earlier works by several different groups in which the HVA22 protein was 

shown to be localized in endoplasmic reticulum and Golgi (Guo and Ho, 2008). 

Because, the protein sequence of HVA22-like protein from Triticum aestivum is also 

predicted to be localized both in mitochondria and chloroplast by the same algorithm. 

All these findings suggest that HVA22-like proteins are most likely to be localized in 

different compartments of cells and they do not need to be localized at the same specific 

compartment in different organisms. This makes sense since different members of 

HVA22-like protein family members were shown to be involved in different kind of 

stress responses although they are all induced under stress (Chen et al., 2002). 

Interproscan (http://www.ebi.ac.uk/Tools/InterProScan/) results also yielded an 

interesting point of view indicating that the translated amino acid sequence of the 

cloned fragment contains a TMPIT-like protein domain and a number of proteins which 



 

 

are considered as members of this family are annotated as “transmembrane proteins 

induced by tumour necrosis factor alpha”. This result is highly intriguing because some 

of the HVA22-like protein family members are previously shown to play a role in 

inhibition of programmed cell death (Guo and Ho, 2008) while having a role in 

vesicular trafficking.  Having a predicted TMPIT-like protein domain in our cloned 

protein sequence also seems to be in agreement with these findings because the proteins 

those have the TMPIT-like protein domain are said to be induced by tumour necrosis 

factor alpha and they are also known to be induced under stress conditions. This result 

increases the possibility of protein product of our cloned sequence having a defensive 

role under stress conditions as inferred from the previous results (Ergen et al., 2009; 

Ergen and Budak, 2009; Guo and Ho, 2008).  

In protein expression study that was performed utilizing both Rosettagami2™ 

and BL21(DE3) strains of E. coli, we were able to confirm the presence of the protein 

which had a theoretical molecular weight of ~25kDa. A growth curve for each of the 

strains was also constructed by the cell density data obtained with a spectrophotometer 

at OD600. We observed a dramatic retardation in growth of the bacterial cells compared 

to expected reduced growth rates. This dramatic retardation was probably due to the fact 

that, HVA22-like protein is an exclusively eukaryotic protein (Shen et al., 2001; Guo 

and Ho, 2008) and its overexpression in a prokaryotic cell caused a more dramatic 

effect. However, bacterial cells seemed to have survival mechanism that resulted in the 

elimination of the protein from the environment possibly with proteosomal degradation 

which was reflected both by the increased rates of growth of cells after a time point 

(Figure 4.15 & Figure 4.16) and also the disappearance of the protein bands in SDS-

PAGE gel images (Figure 4.17 & Figure 4.18).  

When performing confocal laser microscopy imaging in cellular localization 

experiments green fluorescent emission caused between 505nm and 535nm by the 

presence of green fluorescent protein (GFP) enabled us to make a comparison between 

cells expressing the empty vector whose product is only GFP as and cells expressing the 

HVA22-like protein tagged with GFP at its C-terminal. The results indicated that 

HVA22-like protein expressed in yeast cells displayed punctuate and network-like 

distribution within the cells whereas the distribution of the GFP protein by itself was 

homogeneous. This result confirmed that cloned HVA22-like protein sequence from 

wild emmer wheat was a membrane associated protein which had predicted 



 

 

transmembrane domains. Although localization of the HVA22-like protein could be 

demonstrated to some extent, we were not able show the specific cellular compartment 

in which it was localized. In order to be able to assign a certain subcellular localization 

for the HVA22-like protein from wild emmer wheat, a colocalization experiment using 

specific organellar markers should be performed (Guo and Ho, 2008; Waller et al., 

2010). 

Here in this work, we identified a novel drought stress response protein for the 

first time in Triticum turgidum ssp. dicoccoides and a deeper analysis and understanding 

of this gene in wild emmer wheat would present rich opportunities for improving the 

resistance and tolerance of modern bread wheat to water deficit conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

6. CO(CLUSIO( 

Using standard cloning and expression techniques, this study for the first time 

and clearly demonstrated that a novel HVA22-like protein is also present in wild emmer 

wheat and is differentially expressed in root tissue of the wild emmer wheat resistant 

genotype under prolonged drought stress conditions compared to its modern relative, 

the durum wheat.  

 Further functional and structural studies will provide a better 

understanding of this protein. Since our protein is a drought-responsive protein and does 

not have any detectable activity using standard assay procedures, transforming this gene 

into a sensitive genotype of wild emmer wheat under the same drought conditions will 

be a beneficial plan. In addition, since the successful cloning of HVA22-like protein into 

a vector containing two different tags was achieved, structural characterization studies 

using biophysical techniques such as dynamic light scattering (DLS) on purified protein 

products might be another alley for further investigation. Predicted pI value of the 

protein will also facilitate the purification of the protein. 

 Barley HVA22 protein was shown to be localized in the Golgi and endoplasmic 

reticulum, and the subcellular localization prediction performed using Plant-mPloc 

server suggests that our HVA22-like protein is most probably localized in chloroplast. 

This finding also could be tested using chloroplast-specific antibodies and the 

investigation of co-localization could again be visualized using confocal laser 

microscopy. 

 In conclusion, utilizing the aforementioned approaches, the cloned HVA22-like 

protein coding sequence would provide many new opportunities for further 

experimental investigation of drought stress responses in wild emmer wheat with a 

complete characterization of protein since to our best knowledge there is no previous 

study regarding the HVA22-like protein in Triticum turgidum spp. dicoccoides. Here we 

show that HVA22-like protein isolated from this species plays a key role in prolonged 



 

 

drought stress response. Further characterization of this protein will be useful for 

improvement of wheat genotypes. 
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APPE(DIX A  

 

VECTOR MAPS A(D SEQUE(CES 

 

 

 

 

 

 



 

 

 

 



 

 

 

yEGFP vector 

 

 

Cloning by homologous recombination into 2 µ Saccharomyces cerevisiae GFP-fusion 

vector. 

 

 

 

 

 

 

 



 

 

APPE(DIX B  

 

MOLECULAR WEIGHT MARKERS 

 

D(A Molecular Weight Marker, Fermentas 1Kb Plus Ladder 

 

 

Protein Molecular Weight Markers,  

 

      

SDS-PAGE analysis            Western Blotting 

 



 

 

APPE(DIX C  

LIST OF EQUIPME(T 

 

Autoclave:                      Hirayama, Hiclave HV-110, JAPAN 

 

                                        Nüve, OT 032, TURKEY 

 

Balance:                          Sartorius, BP 221 S,  

     

                                        Schimadzu, Libror EB-3200 HU, JAPAN 

 

Centrifuge:                      Beckman Coultier ™ Microfuge® 18 Centrifuge, USA 

 

                                         

 

Cassette:                           Kodak Biomax MS casette, USA 

 

Confocal Laser Microscope    Leica, Germany 

 

Deep-freeze:                      -80ºC, Thermo Electron Corporation, USA                        

 

                                         -20ºC, Bosch, TURKEY 

 

Deionized water:              Millipore, MilliQ Academic, FRANCE 

 

Electrophoresis:      Biogen Inc., USA 

 

                                         Biorad Inc., USA 

 

                                         SCIE-PLAS, TURKEY 

 

Gel documentation:         UVITEC, UVIdoc Gel Documentation System,UK 



 

 

 

                                         BIO-RAD, UV-Transilluminator 2000, USA 

 

Heating block:                   Bioblock Scientific, FRANCE 

                                             

                                         Bio TDB-100 Dry Block Heating Thermostat, HVD Life 

                                            

                                        Sciences, AUSTRIA 

  

Ice machine:                       Scotsman Inc., AF20, USA 

 

Incubator:                  Memmert, Modell 300, GERMANY 

 

                                           Memmert, Modell 600, GERMANY 

 

                                            Nüve EN 120, TURKEY 

 

Laminar flow:                 Kendro Lab. Prod., Heraeus, Herasafe HS12,      

GERMANY 

 

Magnetic stirrer:               VELP Scientifica, ARE Heating Magnetic Stirrer, ITALY 

 

                                VELP Scientifica, Microstirrer, ITALY 

 

Micropipette:                 Gilson, Pipetman, FRANCE 

 

                                          Eppendorf, GERMANY 

 

Microwave Oven:             Bosch, TURKEY 

 

pH meter:                          WTW, pH540 GLP Multical®, GERMANY 

 

                                           HANNA, pH213 microprocessor pH meter, GERMANY 



 

 

 

Power Supply:                   Wealtec, Elite 300, USA 

                                          Biogen, AELEX, USA 

 

Refrigerator:                    +4ºC, Bosch, TURKEY 

 

Shaker:                   Excella E24 Shaker Series, New Brunswick Sci., USA 

 

                                         GFL, Shaker 3011, USA 

 

                                         Innova™ 4330, New Brunswick Sci., USA   

 

Spectrophotometer:          BIO-RAD, SmartSpec™ 3000, USA 

 

                                         VARIAN, Cary 300 Bio Uvi-visible spec., AUSTRALIA 

 

Speed vacuum:     Savant, Refrigerated Vapor Trap RVT 400, USA 

 

Thermocycler:                   MJ Research, PTC-100, USA 

 

                                       TECHNE, TC 512, UK 

 

Water bath:                      TECHNE, Refrigerated Bath RB-5A, UK 

 

                                            JULABO, TW 20, USA 

 

 

 

 

 

 

 

 



 

 

APPE(DIX D  

LIST OF SEQUE(CES 

 

1. TR7RS-293 TR7RS Triticum turgidum ssp. dicoccoides cD(A similar to 
HVA22-Like protein K, mR(A sequence (Accession# FK827962) 

 

Wqeqweqweqwe 

 

dbEST Id:         59260512 
EST name:         TR7RS-293 
GenBank Acc:    FK827962 
GenBank gi:     197668173 
 
CLO(E I(FO 
DNA type:       cDNA 
 
PRIMERS 
PolyA Tail:     Unknown 
 
SEQUE(CE 
                
GACACATCTTGCGGGGAGACTGGCAAGTGTGGCAACCAAGCTCATGTTTCA
ACTCCTAGGTGTGTCTGGCTCTTCTGTCGGAGTTGAATTTGGGTCTTCAGTC
ACGCTAACTTCTTCTGATTGTCCAGGTTGGTCAAGCCCATTTACGATGTAAT
TTGCTGTTGTAGCACCCCTGATGGCCATGTTCTCTACAAAACGAATTTCATC
TTCATGGTTGCTCACGAACTTTGTAAGTTCCTTGGACAAAATATTCAGGATT
CTATCAATTTTTGCTCGATGCTTCCGGAAAAACGGGCGCAGGTATCTTCTGT
A            
    
Entry Created:  Aug 30 2008 
Last Updated:   Aug 31 2008 
 
PUTATIVE ID     Assigned by submitter 
                              HVA22-Like protein K 
 
LIBRARY 
Lib Name:        TR7RS 
Organism:        Triticum turgidum subsp. dicoccoides 
Cultivar:           TR 39477 
Subspecies:       dicoccoides 
Tissue type:       Roots 
Develop. stage: 5 weeks after germination 
Lab host:            E. coli 



 

 

Vector:               pGemT-Easy 
R. Site 1:            EcoRI 
Description:    Suppression-subtractive hybridization was performed using  the PCR-     
Select cDNA Subtraction Kit (Clontech) according to the manufacturer's protocol. 
Approximately 100ng PCR-amplified cDNA were ligated without further purification 
into 50ng pGEM-T Easy vector (Promega). 
 
CITATIO(S 
Title:          Constructing and sequencing cDNA libraries from contrasting 
                wild emmer wheats in response to drought stress 
Authors:        Budak,H. 
Year:           2008 
Status:         Unpublished 
 

 

2. Zea mays clone 241353 receptor expression-enhancing protein 6 mR(A 
(Acccession# EU962261) 

 

LOCUS       EU962261      1108 bp    mRNA    linear   PLN 10-DEC-2008 
DEFINITION  Zea mays clone 241353 receptor expression-enhancing          protein 6 
mRNA, complete cds. 
ACCESSION   EU962261 
VERSION        EU962261.1  GI:195625097 
KEYWORDS   FLI_CDNA. 
SOURCE          Zea mays 
ORGANISM     Zea mays 
                          Eukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta; 
                          Spermatophyta; Magnoliophyta; Liliopsida; Poales; Poaceae; PACCAD 
                         clade; Panicoideae; Andropogoneae; Zea. 
REFERENCE   1  (bases 1 to 1108) 
 AUTHORS      Alexandrov,N.N., Brover,V.V., Freidin,S., Troukhan,M.E., 
                          Tatarinova,T.V., Zhang,H., Swaller,T.J., Lu,Y.P., Bouck,J., 
                          Flavell,R.B. and Feldmann,K.A. 
 TITLE              Insights into corn genes derived from large-scale cDNA sequencing 
 JOURNAL       Plant Mol. Biol. 69 (1-2), 179-194 (2009) 
 PUBMED        18937034 
REFERENCE    2  (bases 1 to 1108) 
 AUTHORS      Alexandrov,N.N., Brover,V.V., Freidin,S., Troukhan,M.E., 
                          Tatarinova,T.V., Zhang,H., Swaller,T.J., Lu,Y.-P., Bouck J.,  
                          Flavell,R.B. and Feldmann,K.A.              
TITLE               Direct Submission 
JOURNAL        Submitted (04-AUG-2008) Ceres, Inc., 1535 Rancho Conejo Blvd., 
                          Thousand Oaks, CA 91320, USA 
FEATURES      Location/Qualifiers 
     source           1..1108 
                          /organism="Zea mays" 
                          /mol_type="mRNA" 



 

 

                       /db_xref="taxon:4577" 
                       /clone="241353" 
     CDS           223..813 
                       /note="similar to NP_001060029.1" 
                       /codon_start=1 
                       /product="receptor expression-enhancing protein 6" 
                       /protein_id="ACG34379.1" 
                       /db_xref="GI:195625098" 
                     
/translation="MALLAPAISGEVGLRLLLAPLSSNIVMRTASCAVGIGLPVYSTF               
RAIEKKDEQEKERMLLYWAAYGSFSIAEVFADKLLSSVPLYYHVKFAILVWLQ
FPSNSGSKHVYKRYLRPFFLKHQAKIDRFLNILSKELTKFVSSHEDEIRFIENMAI
RGATTAN HIVNGLDQPEETQAVNTIEGPNTTVTEEAGVSGTET"            
 
ORIGIN 
 

1    aaaataacca tcctccctag ctttcccgtt ccagccgtcg cgttgagttg ctgccgcctc 

61   ccccggtccc cccacctccc gccccggcgc ccctctctct ctctctcttc tgccgcacag 

121  agcccaaatc gcggcggatc cctcgctctc cagggagccg ctgcggcgcc gggttttgta 

181  caccgacttg tttgcctacc tccagctcct cctcggcgac ccatggctct cctcgccccc 

241  gccatctccg gcgaggttgg tctgcggctc ttattggcac cgctaagctc taacatagtc 

301  atgcgtacag ccagttgtgc tgttgggatt ggtctacctg tatactccac tttcagagct 

361  atagagaaga aggatgaaca agagaaagag cggatgcttt tgtattgggc agcatatgga 

421  tcttttagca ttgctgaagt gtttgcagat aagcttcttt caagtgttcc tctctattat 

481  catgtgaagt ttgctatcct tgtgtggctc cagttccctt caaacagtgg atcaaagcat 

541  gtatacaaaa gatacctgcg cccatttttc ctgaaacatc aagcaaaaat tgataggttt 

601  ctgaatattc tgtcaaagga acttacgaag tttgtgagca gccatgaaga tgaaattcgt 

661  tttatagaaa atatggctat cagaggggct acaacagcaa accacatcgt aaatggcctc 

721  gaccaacctg aagaaacaca agcggttaat acaattgaag gtccaaatac aactgtgaca 

781  gaagaagctg gtgtgtcggg aactgaaact taagcaaaac tttctatctc tgctcatgat 

841  cccagacgct gcttcaaaat tgttgttgag gtcacccagc ttgtttggat tgtgaatact 

901  actgttcctg aaaggctaga tctagaggca atgttttagc tttaactaga tattcatata 

961  gcaagtaaaa tcggtgttgg acaaatttat tacagtgtaa aaatgacccg gtgtggaatg 

1021 cagttcccag caatgttgtc atttttcacg tgggaataat ttgaagtctg cgatgaagaa 

1081 tctttctaaa gcaaaaaaaa aaaaaaaa 

 

 

3. Triticum turgidum ssp. dicoccoides HVA22-like protein Sequencing Results 
(provided by Refgen, Ankara) 

 
LOCUS        
DEFINITION  Triticum dicoccoides HVA22-like protein, complete cds. 
ACCESSION    
VERSION      
KEYWORDS    
SOURCE        Triticum dicoccoides (emmer wheat) 
ORGANISM   Triticum dicoccoides  
                        Eukaryota; Viridiplantae; Streptophyta; Embryophyta;   Tracheophyta; 
                        Spermatophyta; Magnoliophyta; Liliopsida; Poales; Poaceae; BEP 
                        clade; Pooideae; Triticeae; Triticum. 



 

 

REFERENCE   1  (bases 1 to 660) 
AUTHORS   Esen, Doğan, Hikmet Budak 
TITLE     Cloning and characterization of a novel abscisic acid (ABA)-induced HVA22-
liklike protein from Triticum turgidum spp. dicoccoides in response to drought stress 
JOURNAL   Unpublished 
REFERENCE   2  (bases 1 to 660) 
AUTHORS    
TITLE      
JOURNAL    
 
FEATURES    Location/Qualifiers 
    source          1..660 
                    /organism="Triticum dicoccoides" 
                    /mol_type="mRNA" 
                    /db_xref="taxon:4565" 
    CDS         1..660 
                    /codon_start=1 
                    /product="HVA22-like protein" 
                    /protein_id=" " 
                    /db_xref=" " 
/translation="MALLAPLDPATLDKVEEELERARAAILDGDVAAFLPSKGNGKFLKKFVG
PVNVRVARKEEKLKVKDEYNNYRDRAAYMFLLFPSTLLLLRWWVWDGCLPALAVQV
YQAWLLFLYTSFALRENVLLVNGSDIRPWWIYHHYLAMLMALVSLTWEIKGQPDCSS
KQRGVQLFLRWAIMQGIAMHLQNRYQRQRLRTRIALGKAKRMDVVAGETAGVSGTE
T" 
 
ORIGIN 
 
1   atggctctcc tcgcccccct cgaccccgcc acgctcgaca aggtcgagga ggaactggag 

61  cgtgccaggg cagcaatctt agacggcgac gtggctgcgt ttctcccaag caagggaaac 

121 ggaaagttcc tcaagaagtt tgttggccct gtgaatgtgc gggtggcaag gaaggaggaa 

181 aagctcaaag tgaaggacga gtacaacaat tatagggata gggctgccta tatgttcctg 

241 ttgttcccat ccactctcct cttactgaga tggtgggtgt gggatgggtg ccttccagca 

301 ttggcagttc aggtgtacca ggcttggtta ttattcctct acacaagttt tgctttgagg 

361 gagaatgtgt tgcttgtaaa tggaagcgat atccgtcctt ggtggatata ccaccactat 

421 ttagcaatgc taatggctct tgttagcctt acatgggaga taaagggaca gcctgattgc 

481 tcgagtaagc agagaggggt acagcttttc ttgcgttggg caatcatgca aggaattgca 

541 atgcatctcc agaataggta ccagcgtcaa agattacgca cccgaattgc tctgggaaag 

601 gctaaaagaa tggatgtcgt cgctggagaa acagctggtg tgtcgggaac tgaaacttaa 

 

 

 

 

 

 

 



 

 

4. Primer Design Scheme 

 


