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NON-COOPERATIVE GAMES ON DYNAMIC CLAIMS PROBLEMS

Ercan Aslan

Economics, M.A. Thesis, 2010

Supervisor: Özgür K¬br¬s

Abstract

In the present thesis, we analyze the Subgame Perfect Nash Equilibria

(SPNE) of two di¤erent non-cooperative games. These games involve dynamic

bankruptcy situations where agents have linear preferences over the set of

possible allocations. We �rst consider a case where there are two agents and

two periods (2� 2) and, then, N agents and T periods (N � T ). For the �rst

game (the Steel Game) we characterize the equilibria under the renowned CEA

rule. For the second game (the Hospital Game), we consider a more general

set of rules. Namely, we prove that a certain strategy pro�le is an equilibrium

under the rules that satisfy bounded impact of transfers and weak (strong)

claims monotonicity for 2� 2 (N � T ) model and the payo¤s of all equilibria

are unique and equal to those of this pro�le�s.

Keywords: Dynamic Claims Problems, Bankruptcy Rules, Non-cooperative

Claims Game, Bounded Impact of Transfers, Weak (Strong) ClaimsMonotonic-

ity.
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D·INAM·IK ALACAKLAR PROBLEMLER·I ÜZER·INE ·IŞB·IRL·IKÇ·I

OLMAYAN OYUNLAR

Ercan Aslan

Ekonomi Yüksek Lisans Tezi, 2010

Tez Dan¬̧sman¬: Özgür K¬br¬s

Özet

Bu tezde, iki farkl¬i̧sbirlikçi olmayan oyunun Alt-Oyun Yetkin Nash Den-

gesi�ni analiz ettik. Bu oyunlar, ajanlar¬n olas¬paylaş¬mlar üzerinde do¼grusal

tercihlere sahip oldu¼gu i�as durumlar¬n¬kapsamaktad¬r. Öncelikle, iki ajan¬n

ve iki dönemin varoldu¼gu (2 � 2) durumu ele ald¬k, sonrada N ajan¬n ve T

dönemin varoldu¼gu durumu (N � T ). ·Ilk oyunumuzda (Çelik Oyunu) meşhur
CEA kural¬alt¬nda oluşan dengeleri karakterize ettik. ·Ikinci oyun (Hastane

Oyunu) içinse daha genel bir oyunlar kümesini ele ald¬k. Şöyle ki, 2 � 2
(N � T ) model için belli bir strateji pro�linin, transferlerin s¬n¬rl¬etkisini ve

zay¬f (güçlü) alacaklar¬n tekdüzeli¼gini sa¼glayan kurallar alt¬ndaki oyunlar için

denge oldu¼gunu ve bu oyunlar için denge ödüllerinin yegane ve bu pro�linkine

eşit oldu¼gunu gösterdik.

Anahtar Kelimeler: Dinamik Alacaklar Problemleri, ·I�as Kurallar¬, ·I̧sbir-

likçi Olmayan Alacak Oyunlar¬, Transferlerin S¬n¬rl¬Etkisi, Zay¬f (Güçlü) Ala-

caklar¬n Tekdüzeli¼gi.
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1 Introduction

A claims problem is a very simple allocation problem in which there is an

endowment to be allocated among some agents, each characterized by a claim

on the endowment. In real life, many examples of this problem exist. For

instance, liquidation of a bankrupt �rm among its creditors, how a state should

allocate its budget based on the needs of public institutions are often times

observed.

The �rst example is the so called bankruptcy problem. Firms raise funds

from investors which can provide them with the working capital they need

for their operations and let them undertake long-term investments. We care

for them because many important ventures are impossible at the lack of these

funds. In return, they pay the creditors the principal plus some interest. Firms

depend on their cash �ows to ful�ll this obligation. However, there are times

things go wrong and projected cash �ows don�t occur on time. This kind of

situation may prevent the payment of the debt. Whenever a �rm is insu¢ cient

to pay its creditors, there are two possible actions. It can either reorganize or

go bankrupt. Reorganization, which is not the interest of the present thesis, is

the act that changes the ownership structure of the �rm and the maturity of

the loans to let the �rm stay in business and, as a result, continue to pay its

debt. On the other hand, bankruptcy is the legal diagnose and declaration of

a �rm�s insolvency. When a �rm goes bankrupt, it has a liquidation value E. E

is to be allocated among the creditors based on the amount due that must be

paid to each creditor. Therefore, each amount due is the claim of a creditor.

The problem is how to allocate this scarce value E based on the amount due

of each creditor.

The second example is the so called rationing problem. It involves a central

authority, most often some state department(Devlet Planlama Teşkilat¬), and
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public institutions such as hospitals or universities. These institutions need

funding from the state budget in order to �nance their expenditures. The state

has a pre-determined budget at each time period. However, the total amount

an institution can demand depends on the proof of need. In this sense, the

amount each can demand is limited. Nevertheless, each can report its claim

strategically across the periods. In addition, the unpaid portion of the need

can be reclaimed. Notice that the latter example includes time dimension and

strategic choice of the claims reported. In this case, the allocation is repeated

more than once.

The literature contains several prominent solutions to these problems. Among

those, the most widely used rules are .Proportional Rule(PRO hereafter), Con-

strained Equal Awards(CEA hereafter), Constrained Equal Losses(CEL here-

after) and the Talmud Rule(TAL hereafter). As the name itself suggests, the

PRO allocates the estate proportionally to agents�claims. For each problem,

CEA comes up with a � and o¤ers this to each agent. The agent gets this � if

it is equal to or smaller than his claim. Otherwise, he gets his claim. In other

words, CEA determines an upper bound on the payo¤s and applies this upper

bound anonymously. CEL works in a similar way. It uniquely determines a

� and subtracts this from each agents�claim. Each agent gets the remaining

amount if it is non-negative. Otherwise, he gets zero. Finally, TAL operates

in two di¤erent ways in two di¤erent situations. If the half-sum of the claims

exceeds the endowment, it creates the same allocation as if CEA is applied to

the half-claims. Otherwise, it works in two di¤erent steps. Firstly, everybody

receives a share as much as his half-claim. Then, CEL is applied to the residual

claims. These rules are discussed in detail in the following subsection.

Mainly, there are three di¤erent approaches to claims problem. : axiomatic,

direct and game-theoretic approaches.(For a detailed discussion see Thom-

son(2003)) In the present thesis, we are interested in the game-theoretic one.
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We construct a non-cooperative game in which each agent strategically allo-

cates his claim over �nite number of periods. At each period, agents move

simultaneously and the game is played under complete information.

On the other hand, the current literature mainly concentrates on the char-

acterization of the static rules. That is, the research is about some rules

uniquely satisfying some properties or satisfying di¤erent desirable combina-

tions of those. There isn�t much discussion about the situations where the

same allocation problem is repeated over time.

It is reasonable to perceive these repeated problems as a single allocation

problem with time dimension if the agents subject to this problem are the same

set of agents receiving shares in each period. In such a situation, all the current

literature can do is to apply the same rule in each period. However, some

previously-not-considered problems may arise, then. In the present thesis, we

are investigating a problem of that kind. Namely, if the agents are capable

of adjusting the spread of their claims strategically, then they can manipulate

the payo¤s using this knowledge. To investigate this, we design two distinct

kinds of non-cooperative games and �nd out their equilibria. We are doing the

same analysis both for the two agents-two periods case and for the arbitrary

number of agents-arbitrary number of periods case. In the �rst model, the

agents allot their claims to time periods. The level of the allotted claim to

each period does not necessarily depend on other agents�claims. That is, If

some agent i is playing a certain strategy, say strategy si; then the level of

claim he uses at each period does not change with respect to other agents�

claims at those periods, i.e., with respect to others�strategies. In addition,

at none of the periods agents can reuse the claims that they have already

used at the preceding periods, regardless of the level of the shares they have

received for those claims. There is an abundance of real life examples for such

a situation. To illustrate, an important one is the scarce steel production in

3



US during WWII. In 1943, 85% of the total steel production in US was used

for war e¤ort. As a result, there was a limited supply and only a small part of

it could be used for agricultural machinery and equipment production. Most

of the time, agents had to trade in their worn-out machinery. However, in such

situations the state can give the farmers somewhat less than what they brought

in and take the whole machinery they brought for the steel needs. The details

of this example can be found in the Sears Application (1942). Referring to this

renowned example, we will call our �rst game the Steel Game. In the second

model, agents choose how much they will claim in the �rst period, just like

the �rst one. Yet, unlike the former one, in the second period their remaining

claims are determined by subtracting the �rst period�s share from the total

claims available at the beginning of the game. If there is a third period, the

maximum amount that an agent can claim in that period is determined by

subtracting the �rst and the second period�s shares of the agent from the total

claim available at the beginning of the game and so on. Since our example

regarding this model involves partitioning of a budget to hospitals, we will

call it the Hospital Game hereafter. For the steel model, we focus on the

well-known and intuitive rule CEA. As for the hospital model, we consider

a broader class of rules including CEA. Namely, they are the rules satisfying

bounded impact of transfers and claims monotonicity. When we extend our

setting to an arbitrary number of agents and periods, we require the strong

version of claims monotonicity. Fortunately, these properties are satis�ed by

a wide range of rules including PRO, CEA, CEL and TAL.

In both settings, our �nding yield a multiplicity of equilibria but unique

payo¤s. In any equilibria of the steel game, based on the total claims of agents,

each period has a certain parameter. If the total claim of an agent exceeds the

sum of the parameters running from the �rst period to the last, then he claims

at least as much as the relevant period�s parameter at each period. Otherwise,
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the agent compares the parameter with his remaining claim. Then, he claims

the minimum of those two. In the equilibria of the hospital game, all agents

claim the maximum amount permitted by the remaining claims in hand at

each period. Note that these results are due to our assumption that agents

prefer the former periods to the latter ones.

1.1 Literature Review

There are very old historical examples of the claims problem. One of the earli-

est manuscripts where such a problem is addressed is the Babylonian Talmud.

In the Talmud, there are two problems of this kind considered. The �rst one

is called the contested garment problem. It involves two men having a con-

�ict on how to share the worth of the garment. The second is the marriage

contract problem. It involves a man and his three wives, each of which have

signed a marriage contract with him. However, there isn�t a general solution

to such problems in Talmud. It only speci�es a solution to a single problem.

That is, for a unique set of numbers indicating the claims and the endow-

ment. In the past, many scholars proposed allocation rules that generate the

numbers in the Talmud. An allocation rule takes the claims of the agents and

the endowment as input and allocates the endowment to the agents based on

the claims. It is plausible to assume that if the sum of the claims doesn�t

exceed the endowment, then the rule gives everybody as much as his claim.

The one that we use as the Talmud Rule in this thesis is proposed by Au-

mann and Maschler (1985). It is widely accepted in the literature because

it is the unique rule which generates the numbers in the Talmud and at the

same time satis�es some nice properties. On the other hand, this does not

mean that it is the most desirable rule in each situation. For normative rea-

sons, in many di¤erent situations many di¤erent rules are used. To illustrate,

Gächter and Riedl (2006) shows us that proportional rule is considered as the
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fairest rule by most of the people. Their work supplements the literature by

empirical evidence on three di¤erent solution concepts. Since the desirable

rules proposed in the literature all rely on di¤erent properties, they claim that

the attractiveness of a rule does not only depend on the theoretical aspects

but also the actual perceived appeal by people once they face the problem in

real life. They employ a vignette technique to observe impartial participants�

perception on fairness and �nd out the result we mentioned above about PRO

Secondly, they design a laboratory experiment where the agents with self-

interests and claims bargain on allocation. They show that this game leads

to an allocation similar to that of CEA�s. This experiment shows us that

the allocation in an equilibrium of a game might be di¤erent from normative

judgements about the same situation. In order to understand this kind of

actual behaviors, many authors designed di¤erent games. Garcia-Jurado et

al., (2006) propose a one shot game in which each agent chooses his claim.

Although claiming more generates a higher payo¤ in many contexts, since in

their setting the agents with a lower claim has a priority over the others, each

agent claims the same amount in equilibrium. Thus, the resulting allocation

is the equal division. They show that all the Nash equilibria of their game

yield the same payo¤ vector. Furthermore, one can show that in a game of

that form with n agents, the strategy pro�le in which all agents claim E
n
is

the unique Nash equilibrium. The game they formulate is a simple one in the

sense that it�s not sequential. Also, since an agent might lose priority and,

hence, decrease his share by increasing his claim, the allocations that are pro-

posed to di¤erent claims vectors by this game can not coincide with those of

a claims monotonic rule. On the contrary, we have a sequential game and we

impose claims monotonicity to the rules we use in our setting. In the seminal

paper, O�Neill (1982), where the simple claims problems in the literature are

�rst originated, a problem of n heirs and n corresponding wills is addressed.
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(In other words, Rabbi Abraham Ibn Ezra�s proposal about a man who dies

leaving inconsistent wills to his sons) Similar to our work, the utilities of the

heirs are assumed to be linear with the bequests they receive. He criticizes

Ibn Ezra�s premises, mainly premise 2 stating that the claims of the heirs fully

overlap, and proposes and discusses alternative solutions with their pros and

cons. Still, the alternatives he proposes keep the other premises. (premise 1

and premise 3) As one of the alternatives, he also proposes a non-cooperative

game in which the four sons choose what part of the endowment they claim as

the strategy variable. He characterizes the minimal overlap rule as the Nash

equilibrium of the non-cooperative game.

Kar and K¬br¬s (2008) construct a model which involves multiple endow-

ments. In their model, however, each agent can receive share from at most one

endowment. If the preferences are single peaked and symmetric, they show

that any e¢ cient single-endowment rule can be combined by a matching rule

to construct a multi-endowment e¢ cient allocation rule. In their mechanism,

�rstly the matching rule assigns agents to endowments. Then, in the second

stage, the single-endowment rationing rule applies to each endowment and its

assigned agents. In addition, they establish two impossibility results when the

domain of the single-peaked preferences is extended to asymmetric ones.

There is also a drastically growing literature on manipulation. For instance,

Thomson (1984) show that given a choice correspondence and all associated

manipulation games, any equilibrium allocation of such manipulation games

is an equilibrium allocation of the Walrasian manipulation game. In a static

bankruptcy setting, it is interesting to inquire whether a given simple claims

problem embodies manipulation. As a matter of fact Ju (2003) analyzes immu-

nity of bankruptcy rules to manipulation via splitting and merging. That work

characterizes the domain of rules that satisfy equal treatment of equals, consis-

tency, continuity and are non-manipulable via pairwise splitting and pairwise
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merging. ( Namely, rules with superadditive and subadditive representations,

respectively) Moreno-Ternero (2007) restricts attention to TAL-family of rules

(for a detailed discussion on this family see Moreno-Ternero and Villar (2006)

). For each member of the family, they identify on which problems it satis-

�es either non-manipulability via merging or non-manipulability via splitting.

Moreno-Ternero (2006) provides an alternative proof to the fact that non-

manipulability and PRO imply each other in an unrestricted domain. He also

shows that this result continues to hold in some restricted domains.

K¬br¬s and K¬br¬s (2009) design a non-cooperative game so as to explain

why proportional rule is the most widely used rule in real life bankruptcy

situations. They show that the answer lies in the investment implications of the

rule. Karagözo¼glu (2008) supports PRO by means of a di¤erent investment-

bankruptcy game

2 The 2� 2 Steel Game

Let N = f1; 2g be the set of agents and let Et 2 R+ be a social endowment
to be allocated among members of N . For each i 2 N , let ci 2 R+ be

agent i�s claim on the social endowment. Assume c1 + c2 � Et: Let c =

(c1; c2) : We call (c; Et) a static claims problem. Denote the class of all

static claims problems byßSTAT : Then F :ßSTAT ! RN+ is a claims rule if for
each (c; Et) 2ßSTAT ;

P
i2N

Fi (c; E
t) = Et and 0 6 F (c; Et) 6 c. In words, given

a static claims problem, F distributes the endowment among the agents.

We are interested in a framework where a group of agents have to share two

social endowments that arrive in two di¤erent periods. To model this situation,

denote the set of periods by T = f1; 2g : Let E =

"
E1

E2

#
be the vector of

endowments to be divided in periods 1 and 2, respectively. We assume that
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each agent prefers shares from period 1 endowment over period 2 endowment.

Each agent i discounts period 2 endowment with a given discount factor

�i 2 (0; 1) : Suppose that � =

"
�1

�2

#
is the vector of discount factors of

agents. We represent the agent i0s share by xi = (x1i ; x
2
i ); where x

t
i represent

his share in period t 2 T . We assume that the utility of agent i from xi is of

the form ui = x1i + �ix
2
i for i = 1; 2:

A claims problem with time preferences is a triple (c; E; �) such that

for each t 2 T; (c; Et) 2ßSTAT is a static claims problem and � is the vector

that represents agents�discount factors.

We next introduce a non-cooperative game where each agent strategically

decides on how to allocate his total claim ci between the two periods. To model

this, let agent i�s strategy set be Si = [0; ci] : A typical strategy of i is si 2 Si
and it is interpreted as the part of i�s claim used in period 1. Her remaining

claim ci� si is used in the second period. Given a problem (c; E; �) and a rule
F; let d = (c; E; �; F ): Agent i�s payo¤ from a strategy pro�le s = (s1; s2) is

then udi (s) = Fi(s1; s2; E
1)+ �iFi(c1� s1; c2� s2; E2): Observe that we assume

that the same rule is applied in both periods.

De�nition 1 A claims game with respect to d = (c; E; �; F ) is

Gd =


N;S1; S2; u

d
1; u

d
2

�
satis�es E1; E2 � 0; � 2 [0; 1]2,

2P
i=1

ci > max fE1; E2g :

2.1 Equilibria Under The CEA Rule

De�nition 2 (CEA) For each (c; Et) 2ßSTAT and each i 2 N; CEAi(c; Et) �
min

�
ci; �

t
	
where �t satis�es

P
j2N

min
�
cj; �

t
	
= Et:

CEA advocates the idea of equal division (ED hereafter), yet respecting

the di¤erences in claims, at least in some cases. Under equal division, some
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agents might receive more than their claims. For this reason, ED is not an

allocation rule. In contrast, under CEA each agent�s claim is an upper bound

for his share. Accordingly, under CEA, agents will receive the same shares as

under ED as long as this amount does not exceed their claims.

Example 1 i) (c1; c2) = (7; 9) and Et = 10 implies �t = 5 and CEA1(c; Et) =

5; CEA2(c; Et) = 5 and ED1(c; Et) = 5; ED2(c; Et) = 5: Both rules lead to

the same allocation and allocate the same amount to each agent ignoring the

di¤erence in claims. ii) (c1; c2) = (3; 9) and Et = 10 implies �t = 7 and

CEA1(c; Et) = 3; CEA2(c; Et) = 7 and ED1(c; Et) = 5; ED2(c; Et) = 5: CEA

recognizes the di¤erence in claims to some extend but ED not. Furthermore,

ED awards agent 1 with a higher share than CEA.

The allocation method used by CEA can also be explained by means of an

algorithm. The algorithm works as follows:

Firstly, let everyone receive the same share, that is, start with ED. If no

agent receives more than his claim, then CEA leads to ED. Otherwise, let

the agents, who receive more than their claims, receive just as much as their

claims and allocate the resulting surplus equally among others. After that, if

no agent�s share exceeds his claim, then that�s the allocation. Otherwise, let

the agents, who receive more than their claims, receive just as much as their

claims and rearrange the resulting surplus so that the remaining agents receive

equal shares from the surplus. Proceed this way until no one receives more

than his claim.

Remark 1 Let (c; Et) 2ßSTAT be given. Assume that c1 + c2 > Et: If the

endowment is to be distributed among the agents using CEA rule, then there

exists a unique � which satis�es min f�; c1g+min f�; c2g = Et: Note that the

previous statement remains valid if the number of agents is n > 2:
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For each s 2 S; de�ne �1 (s) 2 R+ as follows

�1 (s)

8><>: uniquely solves
2P
i=1

min
�
si; �

1 (s)
	
= E1 if

PN
i=1 si > E1

max fs1; s2g if
PN

i=1 si � E1

and �2 (s) 2 R+ as

�2 (s)

8><>: uniquely solves
2P
i=1

min
�
si; �

2 (s)
	
= E2 if

PN
i=1 si > E2

max fc1 � s1; c2 � s2g if
PN

i=1 si � E2

Consider d = (c; E; �; F ) and Gd =


N;S1; S2; u

d
1; u

d
2

�
where c1 + c2 > E1 +

E2: In this situation, the game will lead to multiple equilibria but a unique

payo¤ vector. This multiple equilibria will be result of redundant claims. Any

agent i 2 N with ci > E1+E2

2
is endowed with a level of claim more than the

amount su¢ cient to obtain the same payo¤. However, having a higher level

of claim does not lead to a better payo¤ vector. Thus, we will restrict our

attention to the case where c1 + c2 � E1 + E2:

Example 2 Consider any game under CEA with c = (160; 160) and E =

(100; 100): Let 110 � s1; s2 � 50: One can see that for each player any selection
of the strategy pro�le (s1; s2) constitute a Nash Equilibrium. Furthermore, the

unique payo¤ vector is (x11; x
2
1; x

1
2; x

2
2) = (50; 50; 50; 50):

Proposition 1 Let d = (c; E; �; F ) and Gd =


N;S1; S2; u

d
1; u

d
2

�
such that c1+

c2 � E1 + E2: Then, the unique Nash Equilibrium of Gd is s� de�ned as(
s�i = s�j =

E1

2
if ci; cj > E1

2

s�i = E1 � cj; s
�
j = cj if ci > E1

2
and cj � E1

2
for i; j 2 N

Proof. First note that for each strategy pro�le s 2 S such that
2P
i=1

si <

E1, there exists i 2 N and si 2 Si such that udi (si + �; sj) > udi (si; sj)

11



for some � > 0: To see this, notice that if
2P
i=1

si < E1 then there exists

si 2 Si such that si < ci: Then, there exists � > 0 and (si + �) 2 Si

such that si + � + sj � E1: Then, CEAi (si + �; sj; E
1) = si + �: In addi-

tion, CEAi (ci � si; cj � sj; E
2) � � � CEAi (ci � si � �; cj � sj; E

2) : There-

fore, CEAi (si; sj; E1)+ �iCEAi (ci � si; cj � sj; E
2) � CEAi (si + �; sj; E

1)+

�iCEAi (ci � si � �; cj � sj; E
2), that is, such strategy pro�les can not be a

Nash Equilibrium

Case 1: ci � E1

2
and cj � E1

2
: Let s 2 S be such that

P2
i=1 si � E1:

Then, by de�nition, �1(s) � E1

2
: Thus, for each si 2 Si; CEAj (si; cj; E1) = cj,

That is, Agent j can receive her full claim in the �rst period. Notice that

his shares from s�j = cj are CEAj (si; cj; E1) = cj in the �rst period and

CEAj (ci � si; 0; E
2) = 0 in the second. Let s0j = cj � � for some � 2 (0; cj] :

Then, his shares from s0j are CEAj (si; cj � �; E1) = cj�� in the �rst period and
CEAj (ci � si; �; E

2) � � in the second. Since �j < 1; comparing the utilities

of the shares generated by s�j and s
0
j, we have u

d
j (si; s

�
j) = CEAj (si; cj; E

1) +

�jCEAj (ci � si; 0; E
2) = cj > cj � �+ �j� � CEAj (si; cj � �; E1)+

�jCEAj (ci � si; �; E
2) = udj (si; s

0
j) Hence s

�
j = cj is the dominant strategy

for agent j:

We next claim that s�i = E1 � cj is the unique best response of agent i

against s�j = cj: To see this, �rst note that his shares from s�i are CEAi(E
1 �

cj; cj; E
1) = E1 � cj and CEAi(ci � (E1 � cj); 0; E

2) = ci � (E1 � cj) from

the �rst and second periods respectively. Let s0i = s�i � � for � 2 (0; E1 � cj] :

Then his shares from s0i are CEAi(E
1 � cj � �; cj; E

1) = E1 � cj � � and

CEAi(ci � (E1 � cj) + �; 0; E
2) � ci � (E1 � cj) + � from the �rst and second

periods respectively. Since �i < 1; comparing the two we have, udi (s
�
i ; s

�
j) =

E1 � cj + �i(ci � (E1 � cj)) > E1 � cj � �+ �i(ci � (E1 � cj) + �) � udi (s
0
i; s

�
j).

Now let s0i = s�i + �: Then his shares are CEAi(E1 � cj + �; cj; E
1) = E1 � cj

and CEAi(ci � (E1 � cj + �); 0; E2) = ci � (E1 � cj)� �: We have udi (s�i ; s�j) =
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E1 � cj + �i(ci � (E1 � cj)) > E1 � cj + �i(ci � (E1 � cj)� �) = udi (s
0
i; s

�
j) as

desired.

Case 2: ci; cj > E1

2
: We have shown that strategies such that

2P
i=1

si < E1

can not be a Nash Equilibrium. Thus, we restrict our attention to
2P
i=1

si �

E1: Then there exists i 2 N such that si � E1

2
: Consider j 2 Nni: Let

s0j =
E1

2
+ �, � > 0: Then, since

2P
i=1

ci � E1 + E2; we have
2P
i=1

ci � si � E2

and CEAi(ci � si; cj � sj; E2) = ci � si for each i 2 N: Therefore, udj (si; s0j) =
CEAj(si;

E1

2
+�; E1)+�jCEAj(ci�si; cj� E1

2
��; E2) = E1

2
+�j(cj� E1

2
��): On

the other hand, udj (si;
E1

2
) = CEAj(si;

E1

2
; E1)+�jCEAj(ci�si; cj� E1

2
; E2) =

E1

2
+ �j(cj � E1

2
): Clearly, udj (si;

E1

2
) > udj (si; s

0
j): Now let s

0
j =

E1

2
� �: Since

2P
i=1

si � E1 we have �1(s) � E1

2
and min

�
s0j; �

1(s)
	
= s0j Then, u

d
j (si; s

0
j) =

CEAj(si;
E1

2
��; E1)+�jCEAj(ci�si; cj�E1

2
+�; E2) = E1

2
��+�j(cj�E1

2
)+�j�:

Hence udj (si;
E1

2
) > udj (si; s

0
j): Therefore, s

�
j =

E1

2
is the unique best response

of agent j that can be in any equilibrium. Now, consider the best response

of agent i against s�j =
E1

2
among the strategies such that si � E1

2
:: We have

udi (s
�
i ;
E1

2
) = CEAi(

E1

2
; E

1

2
; E1)+�iCEAi(ci�E1

2
; cj�E1

2
; E2) = E1

2
+�i(ci�E1

2
):

Let s0i =
E1

2
+ �: Then, udi (

E1

2
+ �; E

1

2
) = CEAi(

E1

2
+ �; E

1

2
; E1) + �iCEAi(ci �

E1

2
� �; cj � E1

2
; E2) = E1

2
+ �i(ci� E1

2
)� �i�: Then, udi (s�i ; E

1

2
) > udi (

E1

2
+ �; E

1

2
):

Hence, s�i = s�j =
E1

2
is the unique equilibrium, as desired.

Proposition 2 Let d = (c; E; �; F ) and Gd =


N;S1; S2; u

d
1; u

d
2

�
: Assume that

c1 + c2 > E1 + E2: Then, the following is a Nash Equilibrium: s� de�ned as(
s�i = s�j =

E1

2
if ci; cj > E1

2

s�i = E1 � cj; s
�
j = cj if ci > E1

2
and cj � E1

2

: Also, if s is a Nash Equi-

librium, then it creates the same allocation as s�, that is, CEA (s; E1) =

CEA (s�; E1) and CEA (c� s; E2) = CEA (c� s�; E2).

Proof. Case 1) ci; cj > E1

2
: Let s0i =

E1

2
+�: Then we have CEAi(E

1

2
; E

1

2
; E1) =
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E1

2
and CEAi(

E1

2
+ �; E

1

2
; E1) = E1

2
then udi (s

�
i ; s

�
j) = CEAi(

E1

2
; E

1

2
; E1) +

�iCEAi(ci� E1

2
; cj� E1

2
; E2) = E1

2
+�iCEAi(ci� E1

2
; cj� E1

2
; E2) � CEAi(

E1

2
+

�; E
1

2
; E1) + �iCEAi(ci � E1

2
� �; cj � E1

2
; E2) = udi (s

0
i; s

�
j): Conversely, let

s0i =
E1

2
��: Then, CEAi(E

1

2
��; E1

2
; E1) = E1

2
��: Thus, udi (s0i; s�j) = CEAi(

E1

2
�

�; E
1

2
; E1)+�iCEAi(ci� E1

2
+�; cj� E1

2
; E2) = E1

2
� �+ �iCEAi(ci� E1

2
+�; cj�

E1

2
; E2) < E1

2
+ �iCEAi(ci � E1

2
+ �; cj � E1

2
; E2) � �i� � E1

2
+ �iCEAi(ci �

E1

2
; cj � E1

2
; E2) = udi (s

�
i ; s

�
j): From the symmetry of claims (ci; cj > E1

2
) the

same argument applies for agent j:

For the uniqueness part, we know that in any equilibrium si � E1 for each

i 2 N: In this case, CEAi(si; sj; E1) = CEAj(si; sj; E
1) = E1

2
: Given that

si � E1; since CEAi(ci � si; cj � sj; E
2) is a non-decreasing function of sj for

all i 2 N; for each si 2 Si the lowest CEAi(ci�si; cj�sj; E2) is obtained when
sj =

E1

2
: On the other hand, since CEAi(ci�si; cj�sj; E2) is a non-increasing

function of si, for each sj 2 Sj; the highest CEAi(ci�si; cj�sj; E2) is obtained
when si = E1

2
: As a result, they yield the lowest CEAi(ci � si; cj � sj; E

2) in

any equilibrium. Since the same argument holds for agent j and CEAi(ci �
E1

2
; cj � E1

2
; E2) +CEAj(ci� E1

2
; cj � E1

2
; E2) = E2, this lowest shares can not

be increased. Thus, the payo¤ vector generated by s� is unique.

Case2) ci > E1

2
and cj � E1

2
: We are going to show that udj (si; cj) >

udj (si; cj � �); for � 2 (0; cj] and for all si 2 Si: Then, we are going to show

that udi (E
1 � cj; cj) � udi (si; cj) for all si 2 Si: First we have udj (si; cj) =

CEAj(si; cj; E
1) + �jCEAj(ci � si; 0; E2) = cj > cj � �+ �j� � CEAj(si; cj �

�; E1) +�jCEAj(ci � si; �; E
2) for � 2 (0; cj] for all si 2 Si: Namely, s�j = cj is

the dominant strategy of agent j: Now, we will check for agent i0s best response

against this strategy. Playing s�i , his shares from the �rst and the second

periods are CEAi(E1� cj; cj; E1) = E1� cj and CEAi(ci� (E1� cj); 0; E2) =
E2; respectively, since ci � (E1 � cj) > E2 by the assumption of the present

proposition. Therefore, udi (E
1 � cj; cj) = E1 � cj + �iE

2: Let s0i = E1 � cj � �
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for � 2 (0; E1 � cj] : Playing s0i, his shares are CEAi(E
1 � cj � �; cj; E

1) =

E1 � cj � � and CEAi(ci � (E1 � cj � �); 0; E2) = E2 from the �rst and the

second periods, respectively. Hence, udi (s
0
i; cj) = E1 � cj � � + �iE

2: Then,

we have udi (E
1 � cj; cj) > udi (s

0
i; cj). Conversely, let s

0
i = E1 � cj + � for

� 2 (0; ci � (E1 � cj)]. Then his shares are CEAi(E1�cj+ �; cj; E1) = E1�cj
and CEAi(ci� (E1� cj+ �); 0; E2) � E2: Thus, we have udi (s

0
i; cj) � E1� cj+

�iE
2 = udi (E

1 � cj; cj): Moreover, since s�j is the dominant strategy of agent

j and udi (si; cj) = cj for all si 2 Si, then it is also true in any equilibrium.

As a result, agent i can have all the remaining shares. Hence, s� is a Nash

Equilibrium and if s is a Nash Equilibrium, then it creates the same allocation

as s�:

3 The N � T Steel Game

Let N = f1; 2; :::; Ng be the set of agents and T = f1; 2; :::; Tg be the set of
periods. For each t 2 T; Et is the social endowment to be allocated among

the agents at period t: Let E = E1 E2 : ET be the vector of endowments

to be divided in periods 1; 2; :::; T , respectively. For each i 2 N; let ci 2 R+
be agent i�s total claim to be allocated among E:1 Denote c = (c1; c2; :::; cN):

We assume that
P
i2N

ci � max
�
E1; :::; ET

	
: Each agent prefers shares from Et

over shares from Et+k; where k 2 N+ and t; t + k 2 T: That is, The agents

prefer preceding periods to the succeeding ones. We denote the agent i�s share

by xi(x1i ; :::; x
T
i ): where x

t
i represents his share from Et: Agents might have

di¤erent discount factors from each others�, however, the discount factor of

an arbitrary agent for di¤erent time periods is �xed. Therefore, the utilities

are of the form ui =
TP
t=1

�t�1xti: We preserve the de�nition of a claims problem

1We assume that the number of elements in T is T:
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with time preferences that is given in the 2 � 2 model. That is, A claims

problem with time preferences is a triple (c; E; �) such that for each t 2 T;
(c; Et) 2ßSTAT is a static claims problem and � is the vector that represents

agents�discount factors. We denote the action pro�le at t by st; agent i�s

strategy by si and the strategy pro�le of the whole game by s:

Steel Game: We construct a game where agents simultaneously choose

how much to allocate at each period, observing which strategies are played by

the players of N in the preceding periods. In this game, agent i0s strategy

set is Si = fsi(s1i ; s2i ; :::; sTi ) : 0 � sti(s
1; s2; :::; st�1) � ci �

t�1P
t=1

sti for each

t 2 f2; 3; :::; Tg and 0 � s1i � ci where
P
t2T

sti = cig: Once a player uses some

portion of his total claim at some period, then this portion is subtracted from

the total remaining claim of the agent when determining his action set for the

next period. That is, the claims are perishable.

For each s 2 S; de�ne �t (s) 2 R+ as follows

�t (s)

8<: uniquely solves
P
i2N

min
�
sti; �

t (s)
	
= Et if

P
i2N

sti > Et

max fst1; st2; :::; stNg if otherwise.

3.1 Equilibria

Theorem 1 De�ne s0i = 0: Let d = (c; E; �; F ): Then, the following strategy

pro�le s� is a Subgame Perfect Nash Equilibrium of

Gd: s�ti = min
�
ci � s0i � s�1i � :::� s�t�1i ; ��ti

	
for t = 1; 2; :::; T � 1 and

i = 1; :::; N: We denote �t(c1 � s01 � s11 � ::: � st�11 ; :::; ci � s0i � s�1i � ::: �
s�t�1i ; :::; cN � s0N � s1N � :::� st�1N ) by ��ti : Moreover, the payo¤s generated by

this pro�le is unique for all SPNE and if
NP
i=1

ci �
TP
t=1

Et, then s� is the unique

Subgame Perfect Nash Equilibrium of Gd:

Proof. We �rst show that �t is non-increasing in claims for
P
i2N

ci � Et: Let

16



P
i2N

ci � Et and let c = (c1; :::; cN), c0 = (c1; :::; ci + �; :::; cN): Assume that

�t(c0) > �t(c): We have c0i � ci for all i 2 N and, hence,
P
i2N

ci � Et impliesP
i2N

c0i > Et: Then, there exists k 2 N such that ck > �t(c0) because, otherwise,

Et =
P
i2N

Fi(c
0; Et) =

P
i2N

c0i; which is not the case. Also, there exists j such

that cj � �t(c) by de�nition of �t(:): Since c0i � ci for all i 2 N and �t(c0) >

�t(c); we have min
�
c0i; �

t(c0)
	
� min

�
ci; �

t(c)
	
for all i 2 N . If cj > �t(c);

then min
�
cj; �

t(c)
	
= �t(c) < min

�
c0j; �

t(c)
	
: Hence,

P
k2N

min
�
c0k; �

t(c0)
	
>P

k2N
min

�
ck; �

t(c)
	
= Et. Contradiction. If cj = �t(c) and there does not

exist any l 2 N such that cl > �t(c); then
P
i2N

ci = Et: This implies that

Fi(c; E
t) = ci for all i 2 N: Then, Fi(c0; Et) = min

�
ci + �; �t(c0)

	
> ci =

Fi(c; E
t) for that particular i 2 N: Then,

P
i2N

Fi(c
0; Et) =

P
i2N

min
�
c0i; �

t(c)
	
>P

i2N
min

�
ci; �

t(c)
	
= Et: Contradiction. Hence, �t(c0) � �t(c): As a result,

given any st�i; �
�t
i = min

sti

�t(sti; s
t
�i): Then,

min
�
min

�
ci � s0i � s�1i � :::� s�t�1i ; ��ti

	
; ��ti

	
=

min
�
ci � s0i � s�1i � :::� s�t�1i ; ��ti

	
= s�ti : That is, . Fi(s

�t
i ; s�i; E

t) = s�ti

(1)

By a similar argument, we have Fi(sti; s�i; E
t) = sti where s

t
i = s�ti � �;

for some � > 0: Since CEA satis�es BIT, which is discussed in the next

section, CEAi(ci + �; cj � �; c�fi;jg; E
t) � CEAi(c; E

t) � �: Since CEA sat-

is�es strong claims monotonicity because of non-increasing �t(:); we have

CEAi(ci+�; cj; c�fi;jg; E
t) � CEAi(ci+�; cj��; c�fi;jg; Et). Hence, CEAi(ci+

�; cj; c�fi;jg; E
t)� CEAi(c; E

t) � � (2)

>From (1) and (2) we have
P
t2T

F ti (s
�
i ; s�i; E

t) >
P
t2T

F ti (si; s�i; E
t) for all

s�i 2 S�i where s�i is the strategy consisting of s
�t
i ; t 2 T , si includes sti and

F ti (:) is agent i
0s period t share. Therefore, any sti < s�ti is strictly dominated.
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Considering sums over t 2 fT �K; :::; Tg ; one can see that such strategies
are strictly dominated in any subgame consisting of the last K periods of the

game. Once the strictly dominated strategies are eliminated at each subgame,

the remaining strategies sti are such that for all i 2 N sti � s�ti ; for all t 2 T

and for each (s1�i; :::; s
t�1
�i ): s

t
i > s�ti implies �

t(s�ti ; s�i) < sti and �
t(s�ti ; s�i) <

ci� s1i � :::� st�1i That is, s�ti = �t(s�ti ; s�i): Since �
t(st) = �t(s�t) for st � s�t;

we have F t(st; Et) = min
�
st; �t(st)

	
= �t(st) = �t(s�t) = s�ti = F ti (s

�t; Et):

Therefore, any such sti yields the same shares as s
�t
i : Then, s

� is a SPNE.

Moreover, if
P
i2N

ci �
P
t2T

Et; the unique such sti is s
�t
i for all t 2 T: Hence s� is

the unique SPNE for that case. The proof is complete.

4 The Hospital Game

Hospital Game: Similarly, the agents simultaneously decide on how much

to allocate at each period, observing which strategies are played by the players

of N in the preceding periods. Yet, unlike the steel game, the claims are not

always perishable. In the hospital game, to determine the action set of an agent

at some t 2 T; we subtract the shares he received in the preceding periods from
his total claim ci, instead of subtracting the claims he used in the previous

periods. Therefore, the agent i�s strategy set is Si = fsi(s1i ; s2i ; :::; sTi ) : 0 �

sti(s
1; s2; :::; st�1) � ci �

t�1P
t=1

Fi(s
t; Et) for each t 2 f2; :::; Tg and 0 � s1i � ci

where
P
t2T

sti = cig:

We adapt the following de�nition from Thomson (2007):

De�nition 3 "Bounded Impact of Transfers" : A rule F (:) satis�es

"Bounded Impact of Transfers" (BIT hereafter) if for each (c;E t) 2ßSTAT and
each pair fi; jg � N; each c0i > ci and each c0j < cj; if ci + cj = c0i + c0j; then

Fi(c
0
i; c

0
j; cN=fi;jg; E

t)�Fi(c; Et) � c0i�ci and Fj(c; Et)�Fj(c0i; c0j; cN=fi;jg; Et) �
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cj � c0j

By BIT, we consider a static situation where an agent transfers some part

of his claim to some other agent. Under a rule satisfying BIT, the change in

agents�after-transfer-shares must be less than the transferred amount of claim.

Note that in this de�nition, checking for BIT involves the transfer between two

agents. However, by lemma 1, we will show that if BIT holds for a rule, then

so does an extended version of it. In other words, even if an agent transfers

some part of his claim to more than one agent, the change in each agents share

will be less than the change in his claim.

Remark 2 We don�t impose BIT as a normative criteria. That is to say, we

don�t claim that the rules satisfying BIT have a superiority or an inferiority

over the other rules. On the other hand, BIT is satis�ed by a wide range of

rules. We want to show that the strategy pro�le we de�ned in theorem 3, is an

equilibrium for a large number of rules. Since requiring BIT and strong claims

monotonicity is enough to prove that theorem and most of the renowned rules

satisfy them, we are able to obtain our results.

Remark 3 It is known that the class of rules that satisfy claims monotonicity

is very large, including PRO, CEA, CEL and TAL. Moreover, the class of

rules that satisfy BIT is also large and contains PRO, CEA, CEL and TAL

as well.

Proposition 3 PRO, CEA, CEL and TAL satisfy BIT

Proof. A somewhat weaker statement of BIT implies the original version of

it. However, it is easier to use the weaker version in some proofs. Then, we

start our proof by showing this relation.
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Assume
P
k2N

ck � Et: Then, coi + c0j +
P

k2Nnfi;jg
ck =

P
k2N

ck � Et where

c0i = ci � � and c0j = cj + �: Then, any F :ßSTAT ! RN+ with an enlarged

domain to pairs (c; Et) =2ßSTAT satis�es BIT and the relation that we show
below for any pairs (c; Et); (co; Et) =2ßSTAT : Thus, we show the relation when
(c; Et); (co; Et) 2ßSTAT :
Let (c; Et); (co; Et) 2ßSTAT such that c0i = ci � � and c0j = cj + � for

some i; j 2 N and cok = ck for all k 2 Nnfi; jg; for some � > 0: We want to

show that Fj(c0i ; c
0
j ; E

t) � Fj(ci; cj; E
t) � � for all such (c; Et); (co; Et) ()

Fi(ci; cj; E
t)� Fi(c

0
i ; c

0
j ; E

t) � � for all such (c; Et); (co; Et):

( =) ) Assume Fj(c0i ; c
0
j ; E

t)�Fj(ci; cj; Et) � � for all such (c; Et); (co; Et):

Let c0i = coi+� and c
0
j = coj�� for some i; j 2 N and c0k = c0k for all k 2 Nnfi; jg;

for some � > 0: (That is, (c; Et) = (c0; Et)) Then, we have Fi(c0i; c
0
j; E

t) �
Fi(c

0
i ; c

0
j ; E

t) � � by our assumption. Since, c0i = ci and c0j = cj we have

Fi(ci; cj; E
t)� Fi(c

0
i ; c

0
j ; E

t) � � as desired.

Conversely, assume Fi(ci; cj; Et)�Fi(c0i ; c0j ; Et) � � for all such (c; Et); (co; Et):

Let c0i = coi+� and c
0
j = coj�� for some i; j 2 N and c0k = c0k for all k 2 Nnfi; jg;

for some � > 0: Then, we have Fj(c0i ; c
0
j ; E

t) � Fj(c
0
i; c

0
j; E

t) � �.That is,

Fj(c
0
i ; c

0
j ; E

t) � Fj(ci; cj; E
t) � � for all such (c; Et); (co; Et): As a result, it

is enough to show that one side of this relation is satis�ed by a rule F to show

that it satis�es BIT as well.

Let (c; Et); (co; Et) 2ßSTAT such that c0i = ci � � and c0j = cj + � for some

i; j 2 N and cok = ck for all k 2 Nnfi; jg; for some � > 0; for the following

cases:

PRO: Since
P
k2N

ck =
P
k2N

cok; Fj(c
o; Et) � Fj(c; E

t) =
EtcojP
k2N

cok
� EtcjP

k2N
ck
=

EtP
k2N

ck
(coj � cj) =

EtP
k2N

ck
� � � since EtP

k2N
ck
� 1: Hence, PRO satis�es BIT.

CEA: Let �t = �t(c; Et) and �ot = �t(co; Et): There are 2 possible cases:

Case i) �ot � �t: Fi(c
o; Et) = min

�
c0i ; �

ot
	
= min

�
ci � �; �ot

	
�
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min
�
ci � �; �t � �

	
= Fi(c; E

t) � � That is, Along with the relation we

showed above, CEA satis�es BIT in this case.

Case ii) �ot < �t: Since we are checking for the case
P
k2N

ck > Et, there

exists at least one z 2 N such that cz > �t: We might have either ci � �t or

ci > �t: Assume ci � �t: Then, z 6= i: min
�
cz; �

ot
	
= �ot < �t = min

�
cz; �

t
	
:

Agent j�s share can increase at most �: That is, Fj(co; Et) = min
�
c0j ; �

ot
	
=

min
�
cj + �; �ot

	
� min

�
cj + �; �t

	
� min

�
cj; �

t
	
+ � = Fj(c; E

t) + �: Hence,

since Fi(co; Et) = min
�
c0i ; �

ot
	
= min

�
ci � �; �ot

	
� min

�
ci � �; �t � �

	
=

min
�
ci; �

t
	
�� = Fi(c; E

t)��; we have
P
k2N

Fk(c
o; Et) = Fi(c

o; Et)+Fj(c
o; Et)+

�ot+
P

k2Nnfi;j;zg
Fk(c

o; Et) < Fi(c; E
t)��+Fj(c; Et)+�+�t+

P
k2Nnfi;j;zg

Fk(c; E
t) =

Et That is, ci � �t violates e¢ ciency. Contradiction.

Thus, we must have ci > �t: We might have either �t � �ot � � or

�t � �ot > �: Assume �t � �ot > �: Fi(c
o; Et) = min

�
c0i ; �

ot
	
= �ot <

�t � � = min
�
ci; �

t
	
� � = Fi(c; E

t) � �: Moreover, as we showed above,

Fj(c
o; Et) � Fj(c; E

t) + �: Since
P

k2Nnfi;jg
Fk(c

o; Et) �
P

k2Nnfi;jg
Fk(c; E

t); we

have
P
k2N

Fk(c
o; Et) = Fi(c

o; Et)+Fj(c
o; Et)+

P
k2Nnfi;jg

Fk(c
o; Et) < Fi(c; E

t)�

� + Fj(c; E
t) + � +

P
k2Nnfi;jg

Fk(c; E
t) =

P
k2N

Fk(c; E
t) = Et That is, �t �

�ot > � violates e¢ ciency. Hence, we have �t � �ot � �: Then, Fi(co; Et) =

min
�
c0i ; �

ot
	
� min

�
ci � �; �t � �

	
= Fi(c; E

t) � � as desired. Combining

Case i) and Case ii), we have Fi(c; Et) � Fi(c
o; Et) � � for all such

(c; Et); (co; Et). Hence, by using the relation we found above, CEA satis�es

BIT.

CEL: There are 2 possible cases.

Case i) �ot � �t: Fj(c; E
t)+� = max

�
cj � �t; 0

	
+� = max

�
cj � �t + �; �

	
�

max
�
cj � �t + �; 0

	
� max

�
coj � �ot; 0

	
= Fj(c

o; Et):

Case ii) �ot < �:t Fi(c; E
t)� � = max

�
ci � �t; 0

	
� � =
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max
�
ci � �t � �;��

	
� max

�
coi � �ot; 0

	
= Fi(c

o; Et):
P

k2Nnfi;jg
Fk(c; E

t) =P
k2Nnfi;jg

max
�
ck � �t; 0

	
�

P
k2Nnfi;jg

max
�
cok � �ot; 0

	
(1)

Since
P
k2N

Fk(c; E
t) =

P
k2Nnfi;jg

max
�
ck � �t; 0

	
+max

�
ci � �t; 0

	
+

max
�
cj � �t; 0

	
=P

k2Nnfi;jg
max

�
cok � �ot; 0

	
+max

�
coi � �ot; 0

	
+max

�
coj � �ot; 0

	
=P

k2N
Fk(c

o; Et): Together with (1), we havemax
�
ci � �t; 0

	
+max

�
cj � �t; 0

	
�

max
�
coi � �ot; 0

	
+max

�
coj � �ot; 0

	
That is, max

�
ci � �t; 0

	
�max

�
coi � �ot; 0

	
�

max
�
coj � �ot; 0

	
�max

�
cj � �t; 0

	
(2)

max
�
ci � �t; 0

	
� � = max

�
ci � �t � �;��

	
� max

�
coi � �ot; 0

	
That is,

� � max
�
ci � �t; 0

	
�max

�
coi � �ot; 0

	
� max

�
coj � �ot; 0

	
�max

�
cj � �t; 0

	
=

Fj(c
o; Et)� Fj(c; E

t) as desired.

Combining Case i) and Case ii), we have Fj(co; Et)� Fj(c; E
t) � � for

all such (c; Et); (co; Et): Thus, CEL satis�es BIT.

TAL: Since
P
k2N

ck =
P
k2N

cok; which part of TAL will be applied before

and after the transfer is �xed. Assume
P
k2N

ck
2
� Et: Then, Fk(c; Et) =

min
�
ck
2
; �t
	
= CEAk(

c
2
; Et) for all k 2 N and Fk(co; Et) = min

n
cok
2
; �t
o
=

CEAk(
co

2
; Et) for all k 2 N: Hence, Fj(co; Et) � Fj(c; E

t) = CEAk(
co

2
; Et) �

CEAk(
c
2
; Et) � �

2
since CEA satis�es BIT.

Let
P
k2N

ck
2
< Et: Then, Fj(c; Et) = cj�min

� cj
2
; �t
	
= max

� cj
2
; cj � �t

	
=

cj
2
+ max

�
0;

cj
2
� �t

	
: We also have

coj
2
=

cj+�

2
. Since we are checking for the

case
P
k2N

ck > Et; we have
P
k2N

Fk(c; E
t) = Et: Then,

P
k2N
( ck
2
+max

�
0; ck

2
� �t

	
) =

Et;
P
k2N

max
�
0; ck

2
� �t

	
= Et �

P
k2N

ck
2
: Hence, cj

2
+ max

�
0;

cj
2
� �t

	
=

cj
2
+

CELj(
c
2
; Et�

P
k2N

ck
2
), Fj(co; Et)�Fj(c; Et) =

coj
2
� cj

2
+CELj(

co

2
; Et�

P
k2N

cok
2
)�

CELj(
c
2
; Et�

P
k2N

ck
2
) � �

2
+ �
2
= �; since CEL satis�es BIT. Since in both cases
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of TAL, we showed that the required condition for agent j is satis�ed for all

such (c; Et); (co; Et), the required condition for agent i is also satis�ed for all

such (c; Et); (co; Et): Hence, TAL satis�es BIT.

The following de�nitions are from Thomson, (2003):

De�nition 4 (Weak Claims Monotonicity): A rule F (:) satis�es weak

claims monotonicity if for each (c;E t) 2ßSTAT ; each i 2 N , and each c0i > ci;

we have Fi(c0i; c�i; E
t) � Fi(c; E

t): A rule F (:) is said to be strongly claims

monotonic if it is weakly claims monotonic and for each (c;E t) 2ßSTAT ;
each i 2 N , and each c0i > ci; we have F�i(c0i; c�i; E

t) � F�i(c; E
t) for each

�i 2 Nn fig :

Next, we will present an example to show that we can not make a conclusion

using only claims monotonicity, but not BIT.

Example 3 Consider the rule F de�ned by the following algorithm: Let K1 =

fk 2 N such that ck = max fc1; c2; :::; cNgg : If
P
k2K1

ck � Et, then Fk(c; Et) =

Et

K1

2: If
P
k2K1

ck < Et, then Fk(c; Et) = ck and for

K2 = fz 2 NnK1 such that cz = maxNnK1g if
P

z2NnK1

cz � Et; Fz(c; E
t) =

Et�
P

k2K1
Fk(c;E

t)

K2
and if otherwise, F proceeds the same way until the entire en-

dowment is allocated or there is no claim left. Since nobody can lose his priority

ranking, (i.e., to which Kt he belongs) by increasing his claim, F is strongly

claims monotonic. Nevertheless, it is easy to check that F does not satisfy

BIT by considering the following case: c1 = 90; c2 = 80; co1 = 80; co2 = 90;

Et = 100: One can see that our equilibrium pro�le is not an equilibrium for F

under at least some parameters by checking the following example: Let c1 = 90;

c2 = 80; �1 = 0:9; E
1 = 55; E2 = 60; E3 = 55: Assume agent 2 plays 80 at

2We assume that number of elements in Kt is Kt
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t = 1 and then, his entire remaining claim at each period. Against this strat-

egy, if agent 1 plays 90 at t = 1 and then, his entire remaining claim at each

period, he gets: u1(90; :) = 83:35: Instead, if he plays 80 at t = 1 and then,

his entire remaining claim at each period, he gets: u1(80; :) = 83:525 > 83:35:

Therefore, the strategy pro�le we speci�ed as equilibrium is no more so in this

example.

Theorem 2 Let Gd be a 2 � 2 hospital game. Assume c1 + c2 � E1 + E2:

Then, if F is claims monotonic, then the pro�le s� such that si = ci for all

i 2 N is an equilibrium of Gd and, moreover, if s is an equilibrium of Gd then

it generates the same payo¤s as s�: Assume c1 + c2 > E1 + E2: Then, if F

satis�es claims monotonicity and BIT, then the pro�le s� such that si = ci for

all i 2 N is an equilibrium of Gd and, moreover, if s is an equilibrium of Gd

then it generates the same payo¤s as s�:

Proof. We denote x1i = Fi(si; sj; E
1); xo1i = Fi(s

o
i ; sj; E

1); x�1i = Fi(s
�
i ; sj; E

1);

x2i = Fi(ci � Fi(si; sj; E
1); cj � Fj(si; sj; E

1); E2) and so on. We �rst show

that ,given c1+ c2 > E1+E2, at equilibrium s1+ s2 < E1 is not possible. The

same argument also applies when c1+c2 � E1+E2; however, we don�t use that

in our proof. Given s1+s2 < E1 there exists an agent i with si < ci: Otherwise,

we would have ci + cj < E1 which is contradictory to our assumption. With

the same sj; consider a pro�le such that soi + sj = E1 or (soi + sj < E1 and

soi = ci): If the latter is true, then since it�s the highest possible utility with

parameter ci; soi = ci is a best response of agent i: Assume soi + sj = E1. Let

soi � si = �: Then, soi = xo1i and si = x1i ; hence (ci � x1i ) � (ci � xo1i ) = �:

If (cj � x1j) � (cj � x�1j ) = �� then by BIT, x2i � x�2i � �: Furthermore, we

have (cj�x1j) = (cj�xo1j ): By claims monotonicity, we have xo2i � x�2i : Hence,

x2i �xo2i � �::We also have xo1i �x1i = �: Therefore, xo1i +�ix
o2
i > x1i +�ix

2
i That

is, agent i has an incentive to deviate. The same argument applies for agent j
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when si = ci and si + sj < E1: Hence, at equilibrium, we have s1 + s2 � E1:

Case i) c1 + c2 � E1 + E2: By our assumption on F , x1i + x2i � ci for

all s 2 S: Consider si = ci and some sj 2 Sj. If ci + sj � E1; then x1i = ci;

which gives the highest possible utility with parameter ci: If si+sj > E1 then,

x1i+x
1
j = E1: Together with ci+cj � E1+E2; we have (ci�x1i )+(cj�x1j) � E2:

Thus, x2i = (ci�x1i ) and x2j = (cj�x1j) That is, x1i +x2i = ci for i 2 N: Consider
soi < si: By claims monotonicity, xo1i � x1i : If x

o1
i = x1i ; then u

o
i = ui: Assume

xo1i < x1i and x
1
i � xo1i = �: Since xo1i + xo2i � ci; we have xo2i � x2i � �: Then,

ui � uoi = (x
1
i � xo1i ) + �i(x

2
i � xo2i ) � �� �i� > 0: Hence, si = ci is the weakly

dominant strategy for both players. Thus, s� such that si = ci for all i 2 N is

an equilibrium and at any equilibrium s we have the same payo¤s as that of

s�0s:

Case ii) Again, consider si = ci and some sj 2 Sj: If ci + sj � E1;

then x1i = ci; which gives the highest possible utility with parameter ci: Let

si + sj > E1: Then, we have x1i + x1j = E1: Consider any soi 2 Si such that

soi < si = ci: By claims monotonicity, xo1i � x1i : If x
o1
i = x1i ; then u

o
i = ui:

Assume xo1i < x1i and x
1
i �xo1i = �:We have already shown that if soi +sj < E1

then agent i has an incentive to deviate and increase soi until s
o
i + sj = E1 is

satis�ed. Let soi+sj � E1: Again, xo1i +x
1
j = E1: Therefore, xo1j �x1j = �: Then,

(ci�x1i )� (ci�xo1i ) = �� and (cj �x1j)� (cj �xo1j ) = �: By BIT, xo2i �x2i � �:

ui � uoi = (x
1
i � xo1i ) + �i(x

2
i � xo2i ) � � � �i� > 0 since �i < 1: Hence, si = ci

is the weakly dominant strategy of agent i: Since the same argument applies

for agent j; the payo¤s of s� is unique at any equilibrium s: Thus, the proof is

complete.

Theorem 3 (N � T Hospital Model) Let Gd be an N � T hospital game.

Then, if F is strongly claims monotonic and satis�es BIT, the strategy pro�le

s� such that s1k = ck; s
2
k = ck � Fk(c; E

1); s3k = ck � Fk(c; E
1) � Fk(c �

Fk(c; E
1); E2);..., sNk = ck � Fk(c; E

1) � ::: � Fk(c � F (c; E1) � ::: � F (c �
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F (c; E1)�:::�F (:::); EN): (That is, each agent k 2 N uses his entire remaining

claim at each of the periods) is a SPNE and any SPNE s generates the same

payo¤s as s�:

We�rst prove that BIT implies an extended version of itself by the following

lemma.

Lemma 1 Let (c; Et); (co; Et) 2ßSTAT : BIT implies that the following state-
ment is true: Let c0i = ci � �; cok = ck + �k for k 2 Nn fig where

P
k2Nnfig

�k = �:

Then, we have Fi(c; Et)�Fi(co; Et) � � and Fk(co; Et)�Fk(c; Et) � �k for all

k 2 Nn fig :

Proof. De�ne �0 = 0:We have Fi(c1+�1;c2+�2; :::; ck+�k; :::; ci�
kP
j=0

�j; :::; cN)�

Fi(c1 + �1;:::; ck+1 + �k+1; :::; ci �
k+1P
j=0

�j; :::; cN) � �k+1 for k = f0; 1; :::; N � 1g

by BIT. Then we have,
N�1P
k=0

Fi(c1+ �1;c2+ �2; :::; ck + �k; :::; ci�
kP
j=0

�j; :::; cN)�

Fi(c1 + �1;:::; ck+1 + �k+1; :::; ci �
k+1P
j=0

�j; :::; cN) =

= Fi(c; E
t)�Fi(c1+ �1;:::; ci�

NP
j=1

�j; :::; cN + �N) �
NP
j=1

�j = � as desired.

Now, we are checking for the �rst group of subgames of the hospital game,

namely for the last two periods.

Lemma 2 (N�2 Equilibrium) For a N�2 hospital game, the strategy pro�le
s� such that sk = ck for each k 2 N is a Nash equilibrium and any Nash

equilibrium s yields the same payo¤s as s�:

Proof. By claims monotonicity, all the remaining claims are used in the last

period. As a consequence, we can write the strategies as a function of only the

�rst period�s claims so that we don�t use superscripts for notational simplicity.
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Consider any Fk(ck; s�k; E1) � Fk(sk; s�k; E
1) = � > 0 for some s�k 2 S�k:P

�k2Nnfkg
F�k(sk; s�k; E

1) � F�k(ck; s�k; E
1) =

P
�k2Nnfkg

��k = �. Hence, (ck �

Fk(sk; s�k; E
1)) � (ck � Fk(ck; s�k; E

1)) = � and (c�k � F�k(ck; s�k; E
1)) �

(c�k�F�k(sk; s�k; E1)) = ��k for all�k 2 Nn fkg : From BIT we have Fk((ck�
Fk(sk; s�k; E

1)); (c�k�F�k(sk; s�k; E1)); E2)�Fk((ck�Fk(ck; s�k; E1)); (c�k�
F�k(ck; s�k; E

1)); E2) � �

Hence, Fk(ck; s�k; E1)+�kFk((ck�Fk(ck; s�k; E1)); (c�k�F�k(ck; s�k; E1)); E2)
> Fk(sk; s�k; E

1)+�kFk((ck�Fk(sk; s�k; E1)); (c�k�F�k(sk; s�k; E1)); E2)
for all s�k 2 S�k: Hence, sk = ck is a weakly dominant strategy for agent k:

Since this is true for all k 2 N; we have the desired result.
Proof. (of the theorem 3 )We have proved our claimed for T = 2 by the above

lemma. Now, we are going to prove it for arbitrary T , by assuming it for T�1:
Notice that by this assumption, we can write the strategies as a function of

only the actions in the �rst period. We denote Fk(sk; s�k; Et) = xtk(sk; s�k)

and Fk(ck; s�k; Et) = xtk(ck; s�k) for k 2 N and t 2 T: Let sk < ck be such that

x1k(ck; s�k)� x1k(sk; s�k) = � > 0 for some s�k 2 S�k and for some k 2 N: By
strong claims monotonicity we have x1�k(sk; s�k)� x1�k(ck; s�k) = ��k for each

�k 2 Nn fkg where
P

�k2Nnfkg
��k = �: Here, by stk(sk; s�k) for t = f2; :::; Tg we

denote the SPNE of the subgames where each agent uses his entire remaining

claim at each of the remaining periods after playing (sk; s�k) at t = 1:

s2�k(ck; s�k) � s2�k(sk; s�k) = ��k and s2k(sk; s�k) � s2k(ck; s�k) = �: Denote

x2k(sk; s�k) � x2k(ck; s�k) =  2k and x
2
�k(ck; s�k) � x2�k(sk; s�k) =  2�k:

3From

BIT, we have  2�k � ��k and  
2
k � �: From e¢ ciency and claims boundedness,P

�k2Nnfkg
x2�k(ck; s�k) + x2k(ck; s�k) =

P
�k2Nnfkg

x2�k(sk; s�k) + x2k(sk; s�k) That

is,
P

�k2Nnfkg
 2�k =  2k

3 2�k and  
2
k are functions of (sk; s�k). However, since we �xed a strategy pro�le begining

with (sk; s�k); we won�t write this each time for simplicity.
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We then have s3�k(ck; s�k) � s3�k(sk; s�k) = ��k �  2�k and s
3
k(sk; s�k) �

s3k(ck; s�k) = ��  2k:

 3�k = x3�k(ck; s�k)�x3�k(sk; s�k) � ��k� 2�k,  3k = x3k(sk; s�k)�x3k(ck; s�k) �
��  2k and

s4�k(ck; s�k)�s4�k(sk; s�k) = ��k� 2�k� 3�k and s4k(sk; s�k)�s4k(ck; s�k) =
�� 2k� 3k; proceeding the same way we have,  Tk = xTk (sk; s�k)�xTk (ck; s�k)
and  T�k = xT�k(ck; s�k) � xT�k(sk; s�k); then  

T
k � � �  2k �  3k � ::: �  T�1k

That is, � �
TP
t=2

 tk: Therefore, since �k < 1;
TP
t=1

xtk(ck; s�k) �
TP
t=1

xtk(sk; s�k) >

TP
t=1

�t�1k xtk(sk; s�k) as desired. As a result, using the entire available claim

at each period of each subgame is a weakly dominant strategy. Therefore,

everyone playing s� is a SPNE and every SPNE s must generate the same

payo¤s. Thus, the proof is complete.

5 Conclusion

Both for the steel and the hospital games, we have showed that if the agents are

impatient, that is, ., they care more for the previous periods, then they tend

to claim higher at those periods as long as claiming higher generates returns.

This is also a consequence of the fact that the extra returns and the extra

perished claims are at the same amount in our models. We found to what

extend claiming higher generates returns in the steel game. For the hospital

game, we have showed that, since the agents don�t lose the claims for which

they don�t receive shares in return, each uses his entire (remaining) claim at

each period. Note that this is also due to the fact that decreasing the share

at some period, don�t yield a higher share in the succeeding periods. (BIT)

Fortunately, the class of rules that satisfy strong claims monotonicity and BIT

is very large and our analysis includes them.
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One can further inquire whether there is any possibility for cooperation.

First note that there is a basis for cooperation only if the pro�le of utilities at

the cooperation strategies satis�es some two conditions. The �rst one requires

the existence of an agent who bene�ts from this cooperation. The second

condition says that no player in the cooperation should end up with a utility

less than the utility he receives if he doesn�t cooperate. Notice that these two

conditions together form the weakest requirement for such a cooperation. If

one of these conditions does not hold, then either one agent gets worse-o¤ or

each cooperating agent gets the same utility he gets in the non-cooperating

equilibrium. As a result, there is no cooperation at the absence of a such

a utility pro�le. For a dynamic situation with two agents and two periods,

Turhan (2009) has showed that given that the discount factors of the agents are

not equal to each other and at each period each agent has a claim less or equal

to the endowment of that period, an allocation is Pareto optimal if and only

if the agent with the lower discount factor receives his entire claim at the �rst

period and the other agent receives his at the second period. This is, however,

not the case in many equilibria of our games. For instance consider the 2� 2
Hospital Game under CEA where (c1; c2; E1; E2) = (100; 100; 100; 100): In any

equilibrium of the game, we have (x11; x
2
1; x

1
2; x

2
2) = (50; 50; 50; 50): Given that

�1 = 0:8 and �2 = 0:4; the allocation (70; 20; 30; 80) Pareto dominates the

allocation (50; 50; 50; 50): In addition, we know that in the equilibria of the

games we constructed, the payo¤s are unique. Therefore, at the absence of

binding agreements, any cooperation is not sustainable. On the other hand, if

there are binding agreements to sustain such a cooperation, then the strategy

pro�les they involve are not SPNE.

Secondly, it is natural to ask whether a central authority, say government,

can achieve a Pareto optimal outcome as an equilibrium of the Hospital Game,

if he is able to change the allocation rule at each period. In such a setting,
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the agents either know which rule will be used at each period certainly before

the game starts or the government chooses the rule at each period without

informing the agents. As a third alternative, at each period the government

might announce only that period�s rule before the agents choose their strate-

gies. If the government doesn�t inform the agents before the game starts, at

each period he can either choose the rule with observing the agents�claims for

that period or without observing them. However, in each of these settings, if

we assume that the government chooses the rule among a set of rules satisfying

BIT and strong claims monotonicity, then our results are still valid. That is,

the government can not create a Pareto dominating outcome. As a matter of

fact, most of the rules satisfying some "desirable" properties also satisfy BIT

and strong claims monotonicity. As a consequence, the government�s choices

won�t change the agents�behavior in equilibrium.

Finally, another open question is how the government would behave if he

could determine the endowment at each period given the total endowment

to be allocated among the periods. For a government caring for the agents�

utilities, we expect him to allocate the entire endowment to the �rst period

because we assume that all agents prefer the �rst period over the others.

There are instances where
P
i2N

ci �
T�1P
t=1

Et: In those cases some of the

periods at the end are idle. In other words, it is obvious that in any equilibrium

there won�t be any claim in those periods. Our analysis is valid for such games

as well.

As a future research question, one can extend the preferences to single-

peaked ones which are also very common in the literature. Another interesting

open question involves the equilibrium if there are multi-issue endowments at

the periods. That is, agents might receive shares from di¤erent endowments

at the same period. It�s interesting to ask under what conditions agents tend

to claim from the same endowment and under what conditions they rather
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prefer di¤erent endowments
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