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Abstract - A reconfigurable microstrip patch antenna with RF pin diode switches is implemented 

for dual band of 2.4 GHz and 5.6 GHz WLAN Software Defined Radio (SDR) applications.  For 

the dual band SDR system, the use of a single antenna with a wide bandwidth to cover both of 

the bands can be limiting for low power level signal applications due to wideband noise as well 

as changing radiation pattern at different frequencies. A reconfigurable nested microstrip patch 

antenna is designed on a Rogers 5880 RT/DUROID substrate which is fed by a coaxial probe 

from the back side of the grounded substrate. RF switching circuitry involves four RF pin diodes 

at each side of the inner patch. The dual bands of 2.4 GHz and 5.6 GHz frequency operation can 

be simply obtained by switching the PIN diodes on and off. The antenna is well matched and 

achieves approximately 7 dBi gain at both frequency bands. Simulation and measurement results 

show that the nested patch antenna is suitable for dual band WLAN SDR applications.  
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1. Introduction 

In this paper, the design of a reconfigurable microstrip patch antenna with RF pin diode switches 

is presented for WLAN SDR applications. There have been many examples of antennas for SDR 

and multi frequency and frequency reconfigurable antennas for different applications [1-2]. 

However, these antennas are optimized for one of the frequency bands and may require 

additional reconfigurable tuning circuits for good impedance matching [3]. Dual frequency 

microstrip patch antennas have been the subject of many research papers for different 

applications.  A pin diode switchable triangular microstrip patch antennas is described in [4] for 

SAR/GPS/WLAN applications. The dual frequency operation of the microstrip antenna with a 

stub embedded in the patch was also reported in [5]. The dual band microstrip structure in [6] 

consists of two stacked quarter wave elements. However, the radiation patterns are quite different 

at the two frequencies. At the lower frequency, beam is located at 45 degrees at the lower 

frequency and at 0 degrees for the upper frequency. Multimoding approach can be employed for 

multi frequency operation, the stacked patch and coplanar parasitic configurations have been 

extensively used for this purpose with different radiation characteristics, [7]. The PIN diode 

based, MEMS based switches are used for frequency tuning for microstrip patch antennas in 

[8,9] as well as varactor loading is employed for tuning/radiation pattern control of patch/wire 

antenna elements in [10,11].  We propose a reconfigurable microstrip patch antenna with no 

additional matching circuits for WLAN systems at 2.4 GHz and 5.6 GHz with alike radiation 

patterns at both frequencies. Most of the dual band antennas will have the impedance matching 

for the desired bands, but will not pay that much attention to radiation pattern. For the proposed 

structure, the radiation pattern will remain the same at the two frequencies of operation.  
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The 2.4 GHz band is commonly used by many WLAN systems. However, with many deployed 

systems at 2.4 GHz band, RF interference and noise level can be much higher at this band. There 

is also 5.6 GHz band available for WLAN and in general, use of the systems at this band is not 

that widespread as the use of 2.4 GHz systems. The proposed reconfigurable antenna will pave 

the way for an SDR or cognitive radio application where both frequency bands can be chosen to 

operate depending on the interference level for WLAN with the same coverage area due to the 

same radiation patterns at dual bands.   

 

In this paper, design methodology of reconfigurable microstrip patch antenna is presented with 

simulation and measurement results of fabricated SDR antenna. The rest of the paper will be 

organized as follows: in Section 2, reconfigurable microstrip nested patch antenna design will be 

explained, in Section 3, simulation and measurement results will be presented, and finally the 

paper will be concluded. 

 

2. Reconfigurable microstrip patch antenna 

A schematic view of the proposed antenna is plotted in Figure 1. The antenna has two microstrip 

nested patches with sizes L1, W1 designed to operate at 2.4 GHz, and L2, W2 designed to 

operate at 5.6 GHz. The nested patches are connected or disconnected electrically using RF pin 

diodes located on each side of the inner patch. RF pin diode connections will ensure the 

formation of x and y current densities on the inner and outer patches. To complete the return of 

the RF PIN diodes current, a ground return is supplied on the outer patch corners using four 

quarter wavelength shorted stubs which are short circuits for DC bias and open circuits at 2.4 

GHz at the edges of the outer patch.   
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                                 Fig. 1 Dual band 2.4/5.6 GHz reconfigurable patch antenna 

 

The patch antennas are fed with a coaxial probe which is also optimized such that a good 

impedance matching is obtained for both of the patches. By the nested patch design as shown in 

Figure 1, one can obtain a good impedance match for any two different frequencies by adjusting 

the relative position of one microstrip patch with respect to the other patch as well as optimizing 

the single feed location.  DC bias for all RF pin diodes are supplied from one source with a bias 

tee connected at the input port of the antenna. If the antenna is to operate at 5.6 GHz, the RF pin 

diodes will be reverse-biased so that the inner and outer patches are disconnected. Note that 

reverse bias capacitance of the pin diodes may change the resonance frequency of the inner 

patch. For an operation at 2.4 GHz, the pin diodes will be turned on and the inner and outer 

patches will be connected electrically and again note that the series resistance of the pin diodes 

may degrade the antenna gain at  this frequency.  
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One of the features of this antenna is that by changing the relative position of the patches, a good 

impedance matching and the same radiation pattern can be obtained for both of the frequencies 

2.4/5.6 GHz. The same radiation pattern is obtained due to the excitation of the same patch 

TM01 mode at two different frequencies. For dual frequency operation, one can design a single 

fixed antenna with two bands such as a dipole antenna with parasitic elements  having two 

resonances at f1 and f2 frequencies as shown in Figure 2.  

 

                           Fig. 2 A single fixed antenna with two resonances at f1 and f2 

 

For the type of antennas with multiple resonances, additional impedance matching circuitry as 

shown in Figure 2 is needed since the matching and gain of the antenna at both frequencies can’t 

be optimized simultaneously. Further, gain and radiation pattern control is limited as the 

matching circuit is not optimized for both of the frequencies, the currents on the antenna and 

hence the radition patterns will be determined by the currents. Note that the impedance matching 

circuitry with discrete components will also deteriorate the antenna gain performance due to loss 

of the elements. Alternative to dual frequency operating antenna, a broadband/wideband antenna 

or an UWB antenna such as TEM antenna as shown in Figure 3 working from f1 to f2 

frequencies can also be used to cover  dual frequencies of interest.  
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                 Fig. 3 An UWB parallel plate TEM antenna operating from f1 to f2 frequency 

 

Use of  such wideband antennas will require additional filtering for band selectivity. Also,  wider 

noise bandwidth will result in smaller RF signal sensitivity for the overall system in addition to 

unavailability of control of radiation patterns at the two frequencies f1and f2. An antenna 

configuration wihich may solve above mentioned shortcomings is a reconfigurable antenna with 

switched resonance as shown in Figure 4. 

 

                 Fig. 4 Return loss of a reconfigurable antenna with switchable resonances f1 and f2  
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In this configuration, the antenna operates at one of the frequencies f1 or f2. No impedance 

matching circuitry is required since the antenna is optimized for both of the frequencies,  antenna 

gain and impedance matching of the antenna can be optimized individually at both frequencies. 

Radiation pattern can be controlled independently at two different frequencies, which can be 

designed to be the same with some additional simple RF switching circuitry, RF pin diodes or RF 

MEMS capacitive/resistive swithces. 

 

In the design procedure of the reconfigurable patch antenna, first, the inner patch antenna at 5.6 

GHz is designed by optimizing its probe feed location for a good impedance matching well 

below 10 dB return loss. This can be done easily by commercially available EM software such as 

ADS Momentum. Once, a good matching is obtained for the inner patch, 5.6 GHz patch is 

designed independently by optimizing its probe feed location for a good impedance matching 

that is below 10 dB return loss, too. To combine these two antennas at 2.4/5.6 GHz into one 

antenna, the two separately designed antennas can be overlapped from their feed points and by 

opening a thin slot around the edges of the smaller of the microstrip patch antennas as shown in 

Figure 5.  Finally, PIN diodes are placed across the slot for electrical connection between the 

inner and the outer patch for band selection. With nested patch antenna, a good impedance 

matching can be obtained for both of the frequencies independently. More importantly, the same 

radiation pattern can be obtained for both of the two frequencies which may not be available for 

other dual band fixed antenna designs. 
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                 Fig. 5  Dual frequency antenna evolved from 2.4 and 5.6 GHz  patch antennas  

 

The reconfigurable dual band nested microstrip patch antenna is designed on an Rogers 5880 

RT/DUROID substrate with a relative dielectric constant of 2.2=
r
ε  and that has a thickness of 

0.78 mm as shown in Figure 6. The antenna is fed by a coaxial probe from the back side of the 

grounded substrate. RF switching circuitry involves four RF pin diodes at each side of the inner 

patch that require three volts for biasing. The dual bands of 2.4 GHz and 5.6 GHz frequency 

operation can be simply obtained by switching the PIN diodes on and off. The RF pin diodes are 

MMP7000 series from Aeroflex corporation, which requires around 3 mA of forward current for 

bias per diode. The antenna dimensions for 2.4/5.6 GHz operations are optimized using ADS 

momentum with following dimensions: the inner patch dimensions are W1 = 15.9 mm and L1 = 

17.3 mm. Outer patch dimensions are W2 = 39.8 mm and L2 = 41.3 mm. The short circuited stub 

width is 2 mm and the length is D1= 21.1 mm. The gap between inner and outer patch is 1.1 mm. 

The coaxial probe is connected to a point which is 6.7 mm from the left side of the inner patch 

and 7.1 mm from the bottom edge of the inner patch. DC bias for the RF PIN diodes and the RF 
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signals are fed from the same port by using a Bias Tee. Note that the DC return path is provided 

by a quarter wavelength shorted transmission lines at the corners of the outer patch.  

 

           
 

     Fig. 6   Reconfigurable patch antenna with PIN diodes and its DC + RF feed circuit  

 

3. Simulation and Measurement Results 

 

The antenna is simulated using ADS Momentum tool for its return loss and radiation patterns. In 

Figure 7, the simulated and measured return losses of the antenna are shown for 2-7 GHz band 

for antenna operating at 2.4 GHz. For this case, PIN diodes are biased and total current through 

the circuit is 12 mA at 3 V. The main radiation mechanism is the outer microstrip patch antenna 

and the spurious radaiton from the quarter wavelength stubs. The simulation and measurement 

results are in good agreement, and for the 2.4 GHz band, the antenna achieves a -10 dB measured 

bandwidth of 15 MHz. Also, notice  that higher order modes of the patch antenna are also excited 

at higher frequency band (4-7 GHz) for the 2.4 GHz band mode, however, these higher order 

modes can be easily filtered out.  
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    Fig. 7   S11 - Input return loss versus frequency (dB) - Simulated and measured  

                 (PIN diodes are ON) 

 

Note that wider  bandwidths can easily be obtained by using a thicker substrate. In Figure 8, the 

simulated and measured return losses of the antenna are shown for the band of 5.6 GHz. For this 

case, the RF PIN diodes are reverse biased and main radiation mechanism is the inner patch 

antenna. The antenna achieves a -10 dB measured bandwidth of 90 MHz. The minimum of S11 

is measured to be -22 dB at 5.54 GHz, achieving a value of -16 dB at 5.6 GHz.  
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Fig. 8   S11 - Input return loss versus frequency (dB) - Simulated and measured –  

             (PIN diodes are OFF) 

 

Radiation patterns for the 2.4 GHz band are simulated and measured at 2.337 GHz where the 

simulated and the measured return losses has the minimum value.  For the 5.6 GHz, 

simulation of the radiation pattern is performed at 5.6 GHz and measurement of the radiation 

pattern is obtained at 5.54 GHz where the return loss achieves its minimum. Simulated 

radiation patterns at 2.337 GHz (frequency of smallest return loss of -25 dB - co and cross 

polarizations) of the nested patch antenna for E plane and H plane are given in Figures 9 and 

10, respectively.  For the E-plane, antenna is linearly polarized with co/cross pol. ratio of 

20.5 dB, and half power beamwidth is obtained as 98 degrees. 
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Fig. 9   E-plane radiation pattern at 2.337 GHz for co. pol. and cross polarizations  

 

Fig. 10   H-plane radiation pattern at 2.337 GHz for co. pol. and cross polarizations  
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For the H-plane, antenna is linearly polarized with co/cross pol. ratio of 20 dB, and half power 

beamwidth is 80 degrees. For the 2.337 GHz, the antenna gain is calculated as 7.26 dBi. 

Simulated radiation patterns at 5.6 GHz of the nested patch antenna for E plane and H plane are 

given in Figures 11 and 12, respectively.  For the E-plane, antenna is linearly polarized with 

co/cross pol. ratio of 44 dB, half power beamwidth is 96 degrees. Note that the half power 

beamwidth for the 2.337 Ghz band is simulated as 98 degrees. 

 

 

Fig. 11   E-plane radiation pattern at 5.6 GHz for co. pol. and cross polarizations  

 

 

-80 -60 -40 -20 0 20 40 60 80-100 100

-50

-40

-30

-20

-10

0

-60

10

THETA

M
a
g
. 
[d
B
]

dB(Eco)

dB(Ecross)



 14 

 

Fig. 12   H-plane radiation pattern at 5.6 GHz for co. pol. and cross polarizations  

 

In H-plane, the antenna has a co/cross pol. ratio of almost 45 dB at 5.6 GHz with 86 degree half 

power beamwidth. The calculated gain is 6.93 dBi, which is very close to calculated gain at 

2.337 GHz which is 7.26 dBi. The co/cross pol. ratio is higher at 5.6 GHz compared to 2.337 

GHz band. This may be caused by the radiation from the quarter wave short circuited stubs 

which are used for RF pin diodes biasing.  Radiation patterns are measured at NJIT anechoic 

chamber for the frequencies of 2.337 Ghz, 2.4 GHz, 5.54 GHz and 5.6 GHz. As a transmitter, for 

the 2.337 GHz, 2.4 GHz, Standard horn antenna is used, and the nested patch antenna is used as 

the receiver. For the 5.6 GHz, a conmercially available 2.4/5.6 GHz dual band WLAN antenna is 

used. The transmitter is an Agilent RF signal generator and the receieved power by the nested 

patch antenna is measured with an Boonton Microwave RF power meter. For the 2.337 GHz, the 

measured E and H-plane patterns are shown in Figures 13 and 14, respectively.   Half power 

beamwidths are measured as 104 degrees (98 degrees simulated) in E-plane, 84 degrees (80 
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degrees simulated) in H-plane. Polarization ratios are measured as 10 and 11 dB for the E and H-

planes. Simulated results for the co/cross polarization ratios were around 20 dB.  
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Fig. 13   E-plane measured radiation pattern at 2.337 GHz for co. pol. and cross polarizations  
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Fig. 14   H-plane measured radiation pattern at 2.337 GHz for co. pol. and cross polarizations  

 

 

For the 2.4 GHz, the measured E and H-plane patterns are shown in Figures 15 and 16, 

respectively.   Half power beamwidths are measured as 98 degrees in E-plane, 64 degrees in H-

plane. Polarization ratios are measured as 16 and 14 dB for the E and H-planes. Simulated results 
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for the co/cross polarization ratios were around 20 dB. For this frequency, the antenna gain is 

measured as 6.5 dBi with repspect to a standard gain antenna. 
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Fig. 15   E-plane measured radiation pattern at 2.4 GHz for co. pol. and cross polarizations  
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Fig. 16   H-plane measured radiation pattern at 2.4 GHz for co. pol. and cross polarizations  

 

For the 5.54 GHz, the measured E and H-plane patterns are shown in Figures 17 and 18, 

respectively.   Half power beamwidths are measured as 116 degrees in E-plane, 100 degrees in 

H-plane. Polarization ratios are measured as 8 and 8.5 dB for the E and H-planes. Note that for 
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the 5.54 GHz, radiation patterns have very similar shape as in 2.7 GHz with very similar 

measured beamwidths.  
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Fig. 17   E-plane measured radiation pattern at 5.54 GHz for co. pol. and cross polarizations  
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Fig. 18   H-plane measured radiation pattern at 5.54 GHz for co. pol. and cross polarizations  

 

For the 5.6 GHz, the measured E and H-plane patterns are shown in Figures 19 and 20, 

respectively.   Half power beamwidths are measured as 112 degrees (96 degrees simulated) in E-

plane, 104 degrees (84 degrees simulated) in H-plane. Polarization ratios are measured as 10 and 
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9.5 dB for the E and H-planes. Note that for the 5.6 GHz, radiation patterns have very similar 

shape as in 5.54 GHz with very similar measured beamwidths. . For this frequency, the antenna 

gain is measured as 7 dBi with repspect to a standard gain antenna. 
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Fig. 19   E-plane measured radiation pattern at 5.6 GHz for co. pol. and cross polarizations  
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Fig. 20   H-plane measured radiation pattern at 5.6 GHz for co. pol. and cross polarizations  
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4. Conclusion and Future Work 

A reconfigurable microstrip patch antenna with RF pin diode switches are presented for dual 

band of 2.4 GHz and 5.6 GHz SDR applications. Band switching is simply obtained by biasing 

the four RF pin diodes. The antenna is well matched and achieves a gain of approximately 7 dBi 

at both WLAN bands with very similar radiation patterns. Antenna have very similar 

characteristics at both frequencies in terms of impedance, radiation patterns, polarization and 

gain. As a future work, tunable bandwidth for each frequency and obtaining wider bandwidth 

using a thick substrate can be investigated. 
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