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Abstract
This paper introduces a speaker adaptation algorithm for non-
negative matrix factorization (NMF) models. The proposed
adaptation algorithm is a combination of Bayesian and subspace
model adaptation. The adapted model is used to separate speech
signal from a background music signal in a single record. Train-
ing speech data for multiple speakers is used with NMF to train
a set of basis vectors as a general model for speech signals. The
probabilistic interpretation of NMF is used to achieve Bayesian
adaptation to adjust the general model with respect to the actual
properties of the speech signals that is observed in the mixed
signal. The Bayesian adapted model is adapted again by a lin-
ear transform, which changes the subspace that the Bayesian
adapted model spans to better match the speech signal that is
in the mixed signal. The experimental results show that com-
bining Bayesian with linear transform adaptation improves the
separation results.
Index Terms: Model adaptation, single channel source separa-
tion, source separation, speech music separation, and nonnega-
tive matrix factorization.

1. Introduction
Model adaptation is usually an alternative approach that is used
to overcome the problem of the lack of enough training data
to accurately model the actual characteristics of any signal. A
general model is built first from general training data, then this
model is adapted to capture the properties of the target data.

In speech recognition, adaptation is used intensively to
adapt the parameters of the speech models [1]. Model adapta-
tion is also used in single channel source separation applications
to adapt the source signal models to better represent the actual
properties of the observed signals in the mixed signal. In [2],
Bayesian adaptation was used to adapt the GMM model for each
source signal. The data that was used to adapt the models is es-
timated from the observed mixed signal directly. In [3, 4], the
adaptation of the set of basis vectors that models every source
signal was introduced, and the adaptation is done within the sep-
aration process without any need for an extra adaptation stage.

Most algorithms that use NMF to separate source signals
from a mixture of source signals assume that, there is enough
training data available for each source. NMF uses these data
in magnitude spectral domain to train a set of basis vectors for
each source. These sets of bases are used with NMF to estimate
the source signals from the mixture. This kind of algorithms
produce good results when enough training data is available,
and the spectral characteristics of the training data are similar
to those of the data in the mixture. In speech-music separa-
tion, sometimes finding enough training speech data for a spe-

cific speaker that is in the mixture signal is not easy. Building
a source model using little training data leads to a poor model
that is incapable of capturing the actual characteristics of the
source signal. Also using other speakers speech signals that are
not in the mixture as a training data leads to mismatch between
training and target data, which decreases the quality of the ob-
tained solution. The key idea in this paper is, rather than using
the small training data for a specific speaker to train a set of
basis vectors with more entries to estimate, we train a general
set of basis vectors using enough speech signals from multiple
speakers. Then we adapt these basis vectors to better match the
target data. First, we use NMF and training speech data of many
speakers to train a general set of basis vectors. Second, we adapt
these bases using a small amount of training data of a specific
speaker to get speaker-specific bases. The adapted bases are
used to separate the speech signal of the same speaker from
the background music. Here we assume that there is a small
amount of isolated training speech signal of the speaker that is
in the mixture signal. To use the adaptation data optimally we
propose to adapt the general model twice. First, we adapt the
general model using Bayesian adaptation which relies on the
probabilistic interpretation of the standard NMF that is repre-
sented in [5, 6]. Second, the resulting adapted model is adapted
again by a linear transformation similar to MLLR [7]. This lin-
ear transform is found by using NMF and the adaptation data.
The novelty of this work is in combining the Bayesian and lin-
ear regression adaptations to adapt a set of speech basis vectors,
and also in introducing the update rules for the multiplicative
adaptation matrix.

The remainder of this paper is organized as follows: Sec-
tion 2 shows a mathematical description of the source separa-
tion problem. In section 3, a brief explanation about NMF and
how we use it to train the basis vectors for each source is given.
In section 4, the two adaptation algorithms are proposed and
bases adaptation is explained. Section 5 shows the separation
process. In the remaining sections, we present our observations
and the results of our experiments.

2. Problem formulation
Given an observed mixed signal x(t) which is a mixture of
speech s(t) and music signals m(t), the single channel source
separation techniques aim to find estimates for s(t) and m(t)
from x(t). We propose to solve this problem in the short time
Fourier transform (STFT) domain. Let X(t, f) be the STFT of
x(t), where t represents the frame index and f is the frequency-
index. Due to the linearity of the STFT, we have:

X(t, f) = S(t, f) +M(t, f), (1)



|X(t, f)| ejφX (t,f) = |S(t, f)| ejφS(t,f)+|M(t, f)| ejφM (t,f).
(2)

In this work, it is assumed that all phase angles are the same,
that is φS(t, f) = φM (t, f) = φX(t, f). Hence, we can write
the magnitude spectrogram of the measured signal as the sum
of source signals’ magnitude spectrograms.

X = S + M .1 (3)

S and M are unknown magnitude spectrograms, and need to
be estimated using observed data and training speech and mu-
sic spectra. The magnitude spectrogram for the observed signal
x(t) is obtained by taking the magnitude of the DFT of the win-
dowed signal.

3. Non-negative matrix factorization
Non-negative matrix factorization is used to decompose any
nonnegative matrix V into a nonnegative basis vectors matrix
B and a nonnegative weights matrix W .

V ≈ BW . (4)

The matrices B and W can be found by solving the divergence
cost function [8] which is preferred to be used in audio source
separation applications [9]. The divergence cost function yields
the following optimization problem:

min
B,W

D (V ||BW ) , (5)

where

D (V ||BW ) =
∑
i,j

(
V i,j log

V i,j

(BW )i,j
− V i,j + (BW )i,j

)
,

subject to elements of B,W ≥ 0. The solution for equation (5)
can be computed by alternating updates of B and W as follows:

B ← B ⊗
V

BW W T

1W T
, (6)

W ←W ⊗
BT V

BW
BT1

, (7)

where 1 is a matrix of ones with the same size of V , the oper-
ations ⊗ and all divisions are element wise multiplication and
division respectively.

3.1. Probabilistic perspective of NMF

As shown in [5, 6], each entry vk,j of the matrix V can be
modelled by Poisson distribution as follows:

p(vk,j |bk,1:I , w1:I,j) = PO(vk,j ;

I∑
i

bk,iwi,j), (8)

where bk,1:I denotes the kth column of B, w1:I,j the jth row
of W , respectively, and the Poisson distribution defined as

PO(v;λ) =
e−λλv

Γ (v + 1)
, (9)

1The notations here are as follows: bold capital letters are for matri-
ces, bold small letters are for vectors others are for scalars.

where Γ (v) is the gamma function. Assuming that each entry
vk,j is statistically independent conditional on B and W , the
model can be denoted by:

p(V |B,W ) =
∏
k,j

e−[BW ]k,j [BW ]
[V ]k,j

k,j

Γ([V ]k,j + 1)
. (10)

The maximum likelihood solution is found by

(B,W ) = arg max
B,W

log p(V |B,W ), (11)

where
log p(V |B,W ) =∑
k,j

−[BW ]k,j+[V ]k,j log([BW ]k,j)− log(Γ([V ]k,j+1)).

We can see that finding the maximum likelihood solution is
equivalent to solving the objective function (5). The advantage
of using NMF in probabilistic framework is the ability to put
priors on every entry of the matrices B and W [6]. In this
work, we will use the advantage of putting priors only on the
entries of the bases matrix B as we will show in next sections.

3.2. Basis vectors matrix prior p(B)

In [6], the prior on each basis vector matrix entry is assumed to
be independently drawn from a Gamma distribution:

p(bk,i) = g(bk,i;αk,i, β
−1
k,i ) =

b
αk,i−1

k,i β
αk,i

k,i e
−bk,iβk,i

Γ(αk,i)
.

(12)
The hyperparameters αk,i and βk,i of the model can be selected
individually for each bases matrix entry. It is also assumed that
p(B) =

∏I
i=1

∏F
k=1 p(bk,i) then we have

log p(B) =+
I∑
i=1

F∑
k=1

(αk,i − 1) log(bk,i)− bk,iβk,i. (13)

Here =+ denotes equal up to irrelevant constant terms (i.e. p ∝
q ⇐⇒ log p =+ log q). The joint posterior distribution is given
by Bayes rule p(B,W |V ) ∝ p(V |B,W )P (B,W ) which
factorises to p(V |B,W )P (B)P (W ). The MAP estimate can
be found as

arg max
B,W

[log p(V |B,W ) + log p(W ) + log p(B)] . (14)

In this work, we do not use prior on the gain matrix p(W ). We
substitute the terms in (14) with the equation (11) and (13). The
MAP estimator can be derived [6], and the update rules for each
element in the bases matrix B and the gain matrix W is given
as

bk,i ← bk,i

(αk,i−1)

bk,i
+
∑K
j=1 wi,j

vk,j∑I
i=1 bk,iwi,j

βk,i +
∑K
j′=1 wi,j′

, (15)

W ←W ⊗
BT V

BW
BT1

. (16)

Notice that the update rule (15) differs from the basic NMF up-
date (6) only by additive terms in the numerator and denomina-
tor, which are due to the priors.



3.3. Training the bases

Given a set of training data for music and speech of multiple
speakers signals, The STFT is computed for each signal, and the
magnitude spectrogram Strain and M train of speech and music
respectively are calculated. Then NMF is used to decompose
these spectrograms into bases and weights matrices as follows:

Strain ≈ BspeechW speech. (17)

M train ≈ BmusicW music. (18)

We use the update rules in equations (6) and (7) to solve equa-
tions (17) and (18). S and M have normalized columns, and
after each iteration, we normalize the columns of Bspeech and
Bmusic. All the matrices B and W are initialized by positive
random noise. We call the trained bases matrix Bspeech a gen-
eral model for multiple speakers speech signals, and this matrix
needs to be adapted to specific speaker speech signals.

4. Speech model adaptation
Given the general speech model which represents multiple
speakers speech signals Bspeech, the goal now is to adapt this
model using a small amount of a specific-speaker speech sig-
nals to better match the target speech signal that is in the mix-
ture. We combine two adaptation techniques to adapt the speech
model. First adaptation algorithm is the Bayesian adaption,
which is driven from the probabilistic framework of NMF in
equation (15). Second adaptation algorithm which we intro-
duce in this paper is driven from linear regression, which aims
to change the subspace of the model to better match the target
data.

4.1. Speech bases adaptation

In this work, we assume that we have a small adaptation data of
speaker-specific speech signal sadapt. The goal now is to use the
spectrogram of this new data Sadapt to adapt the general bases
matrix Bspeech to become speaker specific bases matrix Bs.
We will use first the Bayesian adaptation in equation (15) by re-
placing β−1 values with the entries of Bspeech, and α = 2 ev-
erywhere inspired from [6]. This choice makes the mode of the
Gamma distribution equal to the general model bases Bspeech.
Which means that the general model is used as a prior for Bs,
so the update rules will be as follows:

Bs ← Bs ⊗
1′

Bs
+

Sadapt
BsW a

W T
a

1′

Bspeech
+ 1W T

a

, (19)

W a ←W a ⊗
BT
s

Sadapt
BsW a

BT
s 1

. (20)

The matrix Bs is initialized with Bspeech and W a is initialized
by positive random noise. Here every division is element wise
and 1′ is a matrix of ones of the same size of Bspeech.

To use the adaptation data optimally, we use an extra step
to adapt the bases matrix Bs by multiplying it with an adapta-
tion matrix A. The final user specific bases matrix is found as
Bsf = ABs, A is the adaptation matrix which is unknown
and needs to be calculated as follows:

D
(
Sadapt‖BsfW a2

)
= D

(
Sadapt‖ (ABs) W a2

)
, (21)

A,W a2 = arg min
A,W a2

D(Sadapt‖ABsW a2). (22)

We employ alternating minimization for equation (22) by fixing
BsW a2 as one matrix and first update A using equation (6) as
follows:

A← A⊗

Sadapt
A(BsW a2)

(BsW a2)T

1 (BsW a2)T
, (23)

then we fix ABs as one matrix and find W a2 using equation
(7) as follows:

W a2 ←W a2 ⊗
(ABs)

T
Sadapt

ABsW a2

(ABs)
T 1

, (24)

Bs always fixed in both equations. We need only to use A to
find the final adapted bases matrix as

Bsf = ABs. (25)

Since we assume that, the adaptation data is small then it is bet-
ter if there are fewer values to be estimated in the matrix A. We
enforce the adaptation matrix A to be diagonal with extra non-
zero column by initializing it this way since the update rule for
A in equation (23) is element-wise multiplication. We also add
an extra row in matrix Bs with ones to enable a bias term simi-
lar to MLLR. By multiplying the adaptation matrix A with Bs

the columns of the adapted matrix Bsf can span any other sub-
spaces that the adaptation data may lie on which the columns of
Bs can not span. We achieved that by estimating fewer param-
eters for the matrix A rather than using speaker specific data
to train the bases matrix with more parameters, especially since
the speaker specific training data “adaptation data” is small. Af-
ter finding the bases matrix Bsf which is close to be a speaker
specific bases matrix, we use it to separate speech signal of the
same speaker from the background music signal.

5. Signal separation and reconstruction
After observing the mixed signal x(t), the magnitude spectro-
gram X of the mixed signal is computed using STFT. NMF is
used to decompose the magnitude spectrogram X of the mixed
signal as a linear combination with the trained basis vectors in
Bsf and Bmusic as follows:

X ≈ [Bsf Bmusic] W , (26)

where Bsf and Bmusic are obtained from equations (25) and
(18). Here only the update rule in equation (7) is used to solve
equation (26), and the bases matrix is fixed. W is initialized
by positive random noise. The initial spectrograms estimate for
speech and music signals are respectively calculated as follows:
S̃ = BsfW S and M̃ = BmusicWM . Where W S and WM

are submatrices in matrix W that correspond to the speech and
music components respectively in equation (26). The final esti-
mate of the speech signal spectrogram is found as follows:

Ŝ = H ⊗X, (27)

where ⊗ is element-wise multiplication, and H is the Wiener
filter which is defined as follows:

H =
S̃

2

S̃
2

+ M̃
2 . (28)



Where (.)2 and division are element-wise operations. Wiener
filter works here as a soft mask for the observed mixed signal,
which scales the magnitude of the mixed signal at every fre-
quency component with values between 0 and 1 to find their cor-
responding frequency component values in the estimated speech
signal. After finding the contribution of the speech signal in the
mixed signal, the estimated speech signal ŝ(t) can be found by
using inverse STFT to the estimated speech spectrogram Ŝ with
the phase angle of the mixed signal.

6. Experiments and Results
We simulated the proposed algorithms on a collection of speech
and piano music data at 16kHz sampling rate. For the general
training speech data, we used 1000 utterances from multiple
male speakers from the Timit database. For testing, we applied
the proposed algorithm on 20 different speakers, and we av-
eraged the results. We used 20 utterances from different 20
speakers that are not included in the training data for testing
and adaptation. We used around 12 seconds for each speaker
as adaptation data to adapt the general bases matrix for each
speaker individually, which means we got 20 adapted models,
one for each speaker. All the speech signals that were used
in our experiments are for male speakers. For music data, we
downloaded piano music from piano society web site [10]. We
used 38 pieces from different composers but from a single artist
for training and left out one piece for the testing stage. The
magnitude spectrograms for the training speech and music data
are calculated by using the STFT, a Hamming window was used
and the FFT was taken at 512 points, the first 257 FFT points
only were used since the remaining points are the conjugate of
the first 257 points. We trained the general speech bases ma-
trix using 32 basis vectors and the same for the music signal.
The test data was formed by adding random portions of the test
music file to the 20 speech utterance files at different speech
to music ratio (SMR) values in dB. The audio power levels
of each file were found using the ”audio voltmeter” program
from the G.191 ITU-T STL software suite [11]. For each SMR
value, we obtained 20 test utterances of different 20 speakers
this way. Performance measurement of the separation algo-
rithms was done using signal to noise ratio in the time domain.

We tried to separate the speech signal from the music back-
ground using different experiments. In every experiment, we
use a different bases matrix for the speech signal. In the first
experiment, we tried to separate the mixture using only the gen-
eral bases matrix Bspeech without any adaptation. In the sec-
ond experiment, we used the adaptation data, which is a speaker
specific signal with duration 12 seconds only to train the bases
matrix Bspeaker from scratch without using the general bases
matrix at all. In the third experiment, we used the Bayesian
adaptation only to find Bs without the multiplication adapta-
tion. In the fourth experiment, we used the two adaptation algo-
rithms first with Bayesian adaptation to find Bs then we applied
the multiplicative adaptation to find Bsf . Table 1 shows the re-
sults of these experiments. These results are the average over
20 different speakers. The results show that using Bayesian
adaptation improves the results compared with using the gen-
eral model directly. Also using multiplication adaptation after
Bayesian adaptation improves the results even more than using
the Bayesian adaptation only. For the second experiment that
uses the small speaker-specific training speech data only to train
the bases matrix model without using the general model, we get
the worst results in most of SMR except at -5dB case. These
results show that if we need to separate a mixture of speech and

music signals, and we have a small amount of training speech
data of the speaker that is in the mixed signal, the better way
to build a speech model is to train a general model using plenty
amount of multiple speakers training data, then use the small
amount of the speaker specific data to adapt the general model.
Audio demonstrations of our experiments are available at
http://students.sabanciuniv.edu/grais/speech/assbnmfscsms/

Table 1: Signal to Noise Ratio (SNR) in dB for the separated speech
signal for every experiment.

SMR Using Using Using Using
dB only Bspeech only Bspeaker only Bs Bsf

-5 3.15 3.43 3.17 3.26
0 4.92 4.76 5.26 5.29
5 6.32 5.88 6.83 6.85
10 7.33 6.43 8.00 8.05
15 7.79 6.81 8.57 8.72
20 7.97 7.00 8.92 9.03

7. CONCLUSION
In this work, we proposed a model adaptation algorithm to adapt
the NMF basis vectors for a speech signal. The proposed al-
gorithm uses adaptation data to adapt the basis vectors twice.
Bayesian adaptation is followed by a linear transformation of
basis vectors. We applied the proposed adaptation algorithm to
separate a speech signal from a background music signal when
no enough training data for the speech signal that is in the mix-
ture is available.
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