
FEATURE EXTRACTION AND FUSION TECHNIQUES FOR

PATCH-BASED FACE RECOGNITION

by

BERKAY TOPÇU
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I would like to thank TÜBİTAK-BİDEB for providing the necessary financial sup-

port for my graduate education.

Many thanks to my thesis jury members, Özgür Gürbüz, Gözde Ünal, İlker Hamzaoğlu
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Abstract

Face recognition is one of the most addressed pattern recognition problems in

recent studies due to its importance in security applications and human computer

interfaces. After decades of research in the face recognition problem, feasible tech-

nologies are becoming available. However, there is still room for improvement for

challenging cases. As such, face recognition problem still attracts researchers from

image processing, pattern recognition and computer vision disciplines. Although

there exists other types of personal identification such as fingerprint recognition

and retinal/iris scans, all these methods require the collaboration of the subject.

However, face recognition differs from these systems as facial information can be

acquired without collaboration or knowledge of the subject of interest.

Feature extraction is a crucial issue in face recognition problem and the per-

formance of the face recognition systems depend on the reliability of the features

extracted. Previously, several dimensionality reduction methods were proposed for

feature extraction in the face recognition problem. In this thesis, in addition to

dimensionality reduction methods used previously for face recognition problem, we

have implemented recently proposed dimensionality reduction methods on a patch-

based face recognition system. Patch-based face recognition is a recent method

which uses the idea of analyzing face images locally instead of using global represen-

tation, in order to reduce the effects of illumination changes and partial occlusions.



Feature fusion and decision fusion are two distinct ways to make use of the

extracted local features. Apart from the well-known decision fusion methods, a novel

approach for calculating weights for the weighted sum rule is proposed in this thesis.

On two separate databases, we have conducted both feature fusion and decision

fusion experiments and presented recognition accuracies for different dimensionality

reduction and normalization methods. Improvements in recognition accuracies are

shown and superiority of decision fusion over feature fusion is advocated. Especially

in the more challenging AR database, we obtain significantly better results using

decision fusion as compared to conventional methods and feature fusion methods.
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YAMA-TABANLI YÜZ TANIMA İÇİN ÖZNİTELİK ÇIKARIMI VE

BİRLEŞTİRME TEKNİKLERİ
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Özet

Yüz tanıma, güvenlik uygulamaları ve insan bilgisayar arayüzündeki öneminden

dolayı, son dönemde en fazla incelenen örüntü tanıma problemlerinden biridir. Yüz

tanıma problemi üzerinde on yıllardır süre gelen araştırmalar sonucu, uygulanabilir

teknolojiler mevcut hale gelmiştir. Fakat, karşılaşılan zor durumlar için gelişime açık

bir konudur. Öyle ki, yüz tanıma problemi halen imge işleme, örüntü tanıma ve bil-

gisayarla görü gibi farklı disiplinlerden araştırmacıların ilgisini çekmektedir. Yüz

tanıma dışında, parmak izi tanıma ve retina/iris taraması gibi farklı kişisel kimlik

tanıma sistemleri bulunsa da, tüm bu sistemlerde kişinin işbirliğine ihtiyaç duyul-

maktadır. Yüz bilgisi ise kişinin işbirliği ya da bilgisi olmadan da elde edilebildiği

için, yüz tanıma sistemleri diğer sistemlerden ayrılmaktadır.

Öznitelik çıkarımı, yüz tanıma probleminde önemli bir yer teşkil eder ve yüz

tanıma sistemlerinin performansı, çıkarılan özniteliklerin güvenilirliğine dayanır.

Daha önce, yüz tanıma problemi için çeşitli boyut düşürme yöntemleri sunulmuştur.

Biz de bu tezde, daha önce yüz tanıma problemi için sunulmuş boyut düşürme

yöntemlerine ek olarak, yakın zamanda sunulan boyut düşürme yöntemlerini bir

yama-tabanlı yüz tanıma sistemi üzerinde uyguladık. Yama-tabanlı yüz tanıma,

yakın zamanda sunulmuş bir yüz tanıma yöntemidir. Yüz imgelerinin bütünsel

temsili yerine bölgesel analizi fikrine dayanarak, ışıklandırma değişimlerinin ve kısmi

kapatmaların (oklüzyon) etkisini azaltmayı amaçlar.



Öznitelik birleştirme ve karar birleştirme, çıkarılan özniteliklerin değerlerdirilmesi

için iki farklı yoldur. Bu tezde, herkesçe bilinen karar birleştirme yöntemlerinin

dışında, ağırlıklı toplam kuralı için ağırlık hesaplanması için yeni bir yaklaşım sun-

maktayız. İki farklı yüz veritabanı üzerinde, hem öznitelik birleştirme hem de

karar birleştirme deneyleri gerçekleştirdik ve farklı boyut düşürme ve normalizasyon

yöntemleri için tanıma oranlarını sunduk. Tanıma oranlarındaki artışları ve karar

birleştirmenin öznitelik birleştirmeye göre üstünlüğünü gösterdik. Özellikle, daha

zorlu AR veritabanı üzerinde, karar birletirme uygulayarak geleneksel yöntemlerden

ve öznitelik birleştirmeden, önemli bir şekilde daha yüksek tanıma oranları elde

ettik.
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Chapter 1

Introduction

1.1 Motivation

In today’s high capability of data capturing and collection, researchers from various

disciplines such as engineering, economics and biology, have to deal with large ob-

servations and simulations. These large observations are generally high dimensional

data which depends on several numbers of features measured in each observation. As

the number of features increase, it becomes harder to process this multi-dimensional

data. Dimensionality reduction is the process of decreasing the number of features

into a reasonable number so that the data can be analyzed much more easily. Also,

not all the features are independent from each other and sometimes some features

follow similar patterns. So, they bring computational complexity although they do

not carry any additional information.

One of the application areas of dimensionality reduction is face recognition prob-

lem. In face recognition problem observations are usually 2-D face images in which

features are equal to the number of pixels in the image. For a 64x64 image, 4096

pixels (features) make it hard for a recognition system to operate and as most of

the pixels are correlated with each other, some of the features do not carry any

additional information. Therefore, dimensionality reduction is essential for a face

recognition system.

Decision fusion is a relatively new research area that has attracted interest in the

last decade. It is a common method to increase reliability and accuracy of pattern

recognition systems by combining outputs of several classifiers. Instead of relying

on a single decision making scheme, multiple schemes can be combined using their

individual decisions [3].
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Figure 1.1: General face recognition scheme.

In this study, our main motivation is to overcome some of the difficulties that

face recognition systems face, especially illumination differences and partial occlu-

sion in face images, by applying different dimensionality reduction techniques that

are enhanced by image and feature normalization methods and by applying deci-

sion fusion techniques. To tackle these problems, instead of using a face image as

a whole, patch-based methods are proposed in [4]. In patch-based face recognition,

face images are divided into overlapping or non-overlapping blocks and feature ex-

traction and normalization methods are applied on these blocks. By dividing image

into different regions and handling each region separately brings some advantages

such as decreasing the effect of illumination changes and partial occlusions in face

images. One way to approach face recognition problem is to extract features from

separate blocks and then concatenate those features in order to use in the recogni-

tion system. In addition, features extracted from each block can be classified within

the same blocks of different images and by decision fusion, recognition results of

different blocks of a test sample can be combined in order to provide more accurate

decision. In our study, we examine each approach, feature fusion and decision fu-

sion, and present recognition rates for each dimensionality reduction technique and

normalization method.
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1.2 Literature Review

Face recognition is one of the most addressed pattern recognition problems in re-

cent studies due to its importance in security applications and human computer

interfaces. This is evidenced by the presence of face recognition conferences such as

the International Conference on Automatic Face and Gesture Recognition (AFGR),

evaluation standards of face recognition techniques such as FERET [5], FRVT [6]

and databases such as XM2VTS [7] and several commercial systems. One of the

main reason behind this attention on face recognition is the commercial and law

enforcement applications. An example to security applications of face recognition

is that the German Federal police use a face recognition system to allow voluntary

subscribers to pass fully automated border controls at Frankfurt Rhein-Main in-

ternational airport. Also in the 2000 president election, the Mexican government

employed facial recognition software to prevent voter fraud [8]. After decades of

research in face recognition problem, feasible technologies became available that at-

tract researchers from image processing, pattern recognition and computer vision

disciplines. The reasons behind this interest comes from the increase in commer-

cial opportunities, availability of real-time harware and the increasing importance

of surveillance-related applications [9].

A major application of a face recognition system is in the area of biometric

personal identification which can replace any password needed to protect privacy

such as ATM PIN, PC login and internet passwords. For instance, some laptop

companies implement face verification systems in their products. Although there

exists other type of personal identifications such as fingerprint recognition and reti-

nal/iris scans, all these methods require collaboration of the subjects. However, face

recognition differs from these systems as facial information can be acquired without

collaboration or knowledge of the subject of interest [10].

Face recognition can be briefly described as identifying or verifying a person

from an image or a sequence of images. Verification differs from identification in

a way that, both an identity and an image of the assumed identity is provided

to the system and a two class classification is done resulting in correct identity

or incorrect identity. Inputs to a face recognition system can be either 2-D images

and/or sequences of images (videos) or 3-D images. 2-D color or intensity images are

3



widely used in recent face recognition systems due to their availability. It is difficult

to capture 3-D images in order to use in face recognition and it is possible only

under controlled conditions. Although 2-D face images or video can be captured

easily even without the collaboration of the subject, to create a 3-D image, stereo

cameras are needed. When recorded from distance, stereo cameras are also incapable

of capturing enough information to reconstruct a face in 3-D as the view angle is

almost same for stereo cameras. So, most of the current face recognition systems

operate on 2-D color or intensity images, although 3-D images are beneficial as they

carry more information. Also, in 2-D images pose changes are problematic and affect

recognition rates negatively, whereas 3-D facial recognition is affected less by the

changes in pose and lighting. It can identify a face from a range of different viewing

angles.

Despite the intense research efforts on face recognition, it is still a difficult prob-

lem in real-world applications. Recognition of face images acquired in an outdoor

environment with changes in illumination and pose remains a largely unsolved prob-

lem [9]. These unavoidable problems occur when face images are acquired in an

uncontrolled and uncooperative environment. In addition, face images may be par-

tially occluded or taken some time ago which makes it difficult for the system to

recognize successfully. Prior to face recognition, face localization which is crucial

for face detection, is another challenge in outdoor images.

The history of face recognition dates back to 1950s in psychology [11]. This re-

search concerned with whether face recognition is a dedicated process and whether

it is done holistically or by local feature analysis. But research on automatic facial

recognition systems started in the 1970s in the engineering literature. In the early

studies, face recognition is treated as a typical pattern recognition problem in which

measured attributes of features in face images are used [12]. Parallel to develop-

ments in other pattern recognition and image processing disciplines such as design

of classifiers for accurate face recognition, i.e. neural networks, support vector ma-

chines, research has focused on making face recognition an automated process by

localizing a face, eyes, eyebrows, nose and mouth in an image and extraction of

meaningful features.

Feature extraction is an important issue in face classification problems. For
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example, a 64x64 face image has 4096 pixels which is a huge number of features for

the classifiers to operate. Apart from that, most of these pixels are highly correlated

with each other so all of the 4096 features do not provide beneficial information for

classification purposes. In order to reduce dimensionality of face images and obtain

meaningful feature vectors, several feature extraction methods are applied up to

now.

In 1990s, appearance-based holistic approaches are presented and their accuracies

in large databases are shown. In 1990, Kirby and Sirovich [13] and in 1991, Turk and

Pentland [14] introduced face recognition using eigenfaces. Following these studies

in 1997, Belhumeur [15], Etemad and Chelappa [16] presented usage of fisherfaces

in face recognition. Apart from holistic appearance-based methods, feature-based

approaches are also presented in 1990s and proved to be also successful. Feature-

based methods are advocated as being less sensitive to illumination changes and

pose differeneces [9]. But also there exists problems with the feature-based methods.

Feature extraction such as localization of eyes and mouth is problematic and does

not work always accurately for example when eyes are closed or mouth is wide

opened. Face recognition problem can be divided into three subtasks that need

to be completed in this order: detection of faces, extraction and normalization of

features and identification or verification. Earlier face detection techniques were

able to detect single faces or a few numbers of well-seperated frontal face images

with simple backgrounds [9]. Current face detectors can detect several faces and

their poses in complex backgrounds [17]. By extensive training, detection of faces

by computer has become very successful as the face images are very similar to each

other and different from non-face objects. In the study of Viola and Jones [17],

huge number of face and non-face objects are used to extract Haar-like features [18]

and fed into cascaded classifiers that allow background regions of the image to be

quickly discarded while spending more computation on promising face-like regions.

Next step following face detection is the feature extraction that is crucial for face

recognition system in addition to the holistic face. One class of feature extraction

is the accurate localization of eyes, nose and mouth. A statistical shape model,

Active Shape Model(ASM) [19] is proposed that matches a predefined template to a

face image. ASM is then expanded more robust and flexible statistical appearance
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models such as Flexible Appearance Model(FAM) [20] and Active Appearance Model

(AAM) [21]. Following the extraction of eyes, nose and mouth, a face recognition

system is built by using location and local statistics of these local features.

Apart from local feature extraction, features extracted from holistic view of faces

are also used as inputs to face recognition systems. PCA [13] and LDA [16] are two

well-known feature extraction methods which are proven to be successful for face

recognition problem. In a recent study, it is shown that use of eigenfaces and fish-

erfaces in deteriorated face images is also valid at some levels of different kind of

noise, such as salt and pepper, gaussian noise and blurring [22]. In addition to PCA

and LDA, Liu and Wechsler [23] presented use of Independent Component Analysis

(ICA) [24] together with extracted Gabor features from a set of downsampled Gabor

wavelet representations of face images. Integrating Gabor features and ICA brings

strong characteristics of spatial locality, scale and orientation selectivity providing

salient local features suitable for face recognition [23]. Another image based linear

projection used in face recognition is laplacianfaces. In [25], laplacianfaces which

has been shown to be successful despite the nonlinearity of image space for dimen-

sionality reduction, is used as a dimensionality reduction method that can preserve

the locality in face images. In contrast to eigenfaces and fisherfaces, which seek for

optimal projection by analyzing global patterns of data intensity, the laplacianfaces

find an optimal solution by examining the local geometry of the training data.

Effectiveness of support vector machines(SVM) for face recognition has been re-

ported in recent studies. In study of Hotta [26], together with local features, use of

SVM with local Gaussian summation kernel is shown to provide successful recog-

nition performances under partial occlusion. A single kernel is applied to global

features that are influenced easily by noise or occlusion but application of local ker-

nels to local features provides robustness to partial occlusion as only some of the

local features are affected by occlusion. However, the kernel based methods improve

the linear separability of the data at the cost of increasing dimensions and there-

fore high computational cost. Furthermore, how to select different kernels and how

to assign the optimal parameters remain unclear [27]. Unlike kernel-based meth-

ods, local linear embedding(LLE) is straightforward in finding the structure in the

obervation space. Several improved versions of LLEs are also used in face recog-
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nition problem. One modification on LLE, locally linear discriminant embedding

(LLDE) is proposed in [27], which is shown to increase class seperability and data

from the same class to be clustered closer. A marginal study on face recognition is

modelling face recognition algorithms. In [28], a linear transformation is sought to

model recognition algorithms based on match scores. In this study, transformation

of face images by PCA is followd by a nonrigid transformation that aims to preserve

pair-wise distances between face images.

Although there exists studies on variations in face images taken in uncontrolled

conditions such as illumination, pose and expression variations, most of the work

assume the existence of one challenge at a time. In study of Geng, Zhou and Miles

[29], all difficult problems of uncontrolled conditions are tackled together by using

individual stable space (ISS) and neural network. In addition, by synthesizing an

illumination normalized image, an illumination invariant representation of a face is

extracted from a raw facial image [30].

To tackle the general problems associated with holistic approaches, in 2003 mod-

ular PCA is presented [31]. In this method, face images are divided into subimages

and PCA is applied on these smaller images. Extracted features from each block

are then combined and fed into a classification system. As the face image is di-

vided into sub-images, the variations in pose or illumination will affect only some

of the sub-images and more accurate features will be extracted. In an earlier study

of Pentland et al. [32], a similar method is used by performing PCA on eyes and

nose of the face image. Following these studies, Ekenel and Stiefelhagen proposed

using Discrete Cosine Transform(DCT) on blocks of face images instead of PCA

[33]. In this study, feature fusion and block selection were proposed in addition to

two feature normalization methods. Use of DCT on holistic approach was presented

by Hafed and Levine in 2001 [34]. In our study, we have studied on the block-based

approach and improved this approach with the contributions listed as follows.

1.3 Contributions

In this thesis, we have developed a patch-based face recognition system and contri-

butions of this thesis can be listed as follows:

• We have applied recently proposed dimensionality reduction methods to patch-
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based face recognition.

• New image level and feature level normalization methods to be applied in

patch-based face recognition are introduced.

• We introduced the use of decision fusion techniques for patch-based face recog-

nition.

• We have estimated weights in ”weighted sum rule” decision fusion using a

novel method.

1.4 Outline

This thesis is organized in five chapters including the Introduction chapter. In

Chapter 2, feature extraction methods, dimensionality reduction and normalization

techniques for face recognition are given. Proposed feature fusion and decision fusion

types for patch-based face recognition are presented in Chapter 3. The experimental

results are provided and discussed in Chapter 4. In the last chapter, the conclusions

and future work are expressed.
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Chapter 2

Feature Extraction

In this chapter, feature extraction methods for face recognition are described. In

the first section, different dimensionality reduction methods are presented. In the

remaining sections of this chapter, image and feature normalization techniques are

introduced.

2.1 Dimensionality Reduction

Decreasing the number of features of a multidimensional data under some con-

straints is desired in many applications. One way of decreasing feature number is

to select some of the features and discard remaining features which are less relevant

or carry less information. This is called feature selection. Another way is linear or

nonlinear transform of the whole data into another feature set. This process is called

dimension reduction. For dimension reduction, multidimensional data is projected

or mapped into a space with less number of dimensions. Therefore, by applying a

dimension reduction method, a d-dimensional data is mapped or transformed into

a p-dimensional data, where p < d.

Parallel to improvements in data collection and storage capabilities, researchers

from various disciplines have to deal with large observations. By large observations,

we mean multidimensional data with high number of samples. As both dimension

and quantity of the data increase, it becomes harder for systems to analyze and

process these data. Dimensionality reduction is one of the essential methods which

aims to extract relevant structures and relationships from multidimensional data.

An important problem with the high dimensional data is that, some features may

be unimportant at describing the structure of data. Also, in some cases, features
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are highly correlated with each other and some of them do not carry additional

information. All dimension reduction methods aim to present high dimensional

data in a lower dimensional space, in a way that captures the desired structure

of the data [35]. Dimensionality reduction is a helpful tool for multidimensional

observations, that is applied prior to any analysis or processing application such as

clustering and classification.

In mathematical terms, the problem we investigate is: given the d-dimensional

sample x = [x1, x2, ..., xd]
T , we want to find a lower dimensional (p-dimensional)

representation of x, f = [f1, ..., fp]
T where p < d, that captures the content in the

original data, according to some criterion. This criterion can be lower dimensional

representation of a single class data, or separability of multi-class data in the reduced

dimensional space. For linear dimensionality reduction, we need to create a pxd

transformation matrix W = [w1,w2, ..., wp]
T , such that f = W T x. We need to

find d-dimensional column vectors wi’s (or so called basis) that will constitute the

rows of the transformation matrix W . Then we project our data x onto these basis

by multiplying with W .

W =




wT
1

wT
2

.

.

.

wT
p




.

Assuming orthonormality of the rows of W , we find the coefficients fi’s that

represent x as a linear combination of basis elements wi’s. We can calculate the

approximation of x, which is represented with x̂, by using basis coefficients, as

following:

x̂ ∼=
p∑

i=1

fiwi. (2.1)
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2.1.1 Discrete Cosine Transform (DCT)

Discrete Cosine Transform expresses a sequence of data points in terms of sum of

cosine functions oscillating at different frequencies and amplitudes. The 2D DCT

transform equation of an NxM image is given in Equation 2.2 where Ω(u) = 1 for

u 6= 0 and Ω(u) = 1√
2

for u = 0.

f(u, v) =
N−1∑
i=0

M−1∑
j=0

x(i, j)Ω(u)Ω(v) cos [
π

N
(i +

1

2
)u] cos [

π

M
(j +

1

2
)v]. (2.2)

Discrete Cosine Transform (DCT) uses an orthonormal basis and is widely used

in visual feature extraction as well as image compression. One of its advantages

is that, DCT has a strong energy compaction property so that most of the signal

information is concentrated in a few low frequency components. So, by using the

first low frequency components, most of the information in the data is captured.

In Figure 2.1, 8x8 DCT basis is illustrated. The first three DCT basis elements

contain general information about the global statistics of an image. The first basis

element represents the average intensity of the image and the second and third basis

elements represent the average horizontal and vertical intensity change in the image,

respectively. In addition, DCT has a fast implementation which is an advantage in

real time processing. Also, it requires no training data. In this study, we perform two

dimensional DCT on face images, remove the first three coefficients that correspond

to the first three basis elements and pick p low frequency components (coefficients

of p number of basis following the first three basis) to use them as visual features.

Note that, we order the 2D DCT basis vectors in zig-zag scan order starting from

top-left.

2.1.2 Principal Component Analysis (PCA)

DCT is preferred in image processing due to its approximation of the Karhunen-

Loeve Transform (KLT) for natural images. However, if there is enough training

data, one can obtain the data-dependent version of KLT, which is the principal

component analysis (PCA) transform. Principal component analysis (PCA) is an

orthogonal linear transformation that maps the data into a lower dimension by

preserving most of the variance in the data. PCA provides an orthonormal basis
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Figure 2.1: 8x8 DCT basis.

for the best subspace that gives minimum least squared error on training samples.

First principal component is in the direction of the maximum variance in the data

and the second component is in the direction of the second maximum variance in

the data and so on. In dimension reduction by using PCA, characteristics of the

data that contribute most to its variance are kept by keeping lower-order principal

components. So, by using less amount of information, most of the variance of the

data is captured. We select the rows of the transformation matrix, W , as the

eigenvectors that corresponds to the p highest eigenvalues of the scatter matrix S,

S =
n∑

k=1

(xk −m)(xk −m)T , (2.3)

where xk represents the kth sample and m is the sample mean.

The main weakness of PCA is that, it is lighting and background variant so

that changes in lighting conditions and background decreases the success of reliable

mapping and classification performance. However, advantages it brings are that it

is fast, computationally easy and needs less amount of memory. On the other hand,

PCA does not take class information into account, so there is no guarantee that the

direction of the maximum variance will contain good features for discrimination.
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Figure 2.2: First 16 principal components.

Figure 2.3: First 12 principal components for block corresponding to eye region.
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2.1.3 Linear Discriminant Analysis (LDA)

Linear discriminant analysis (LDA) is a method used to find the linear combination

of features which best separate two or more classes of objects. LDA finds the vectors

in the lower dimensional space that best discriminate among classes. In Figure 2.4,

a transformation from 3-dimensions to 2-dimensions is illustrated [1]. The goal is to

maximize between-class scatter while minimizing within-class scatter. Between-class

scatter and within-class scatter matrices are defined as follows:

SB =
N∑

i=1

pi(mi − m̂)(mi − m̂)T , (2.4)

SW =
N∑

i=1

piSi, (2.5)

where m̂ equals
∑N

i=1 mi and Si is the within-class covariance matrix of class i and

pi is the prior probability for the ith class. This goal can be achieved by maximizing

the ratio of the determinant of the between-class scatter SB and the determinant

of the within-class scatter SW in the projected space.

J(W ) =
|WSBW T |
|WSW W T | . (2.6)

We want to find the transformation W that maximizes the ratio of the between-

class scatter to the within-class scatter and rows of the transformation matrix, W ,

are eigenvectors that corresponds to the p highest eigenvalues of S−1
W SB [1].

One of the possible deficiencies of LDA is that there are computational difficul-

ties in a situation with large numbers of highly correlated feature values. In face

recognition case, as pixel values are highly related with the neighbor pixels, cor-

relation is high and scatter matrices might become singular. When there is little

data for each class, scatter matrices are not reliably estimated and there are also

numerical problems related to the singularity of scatter matrices.

2.1.4 Approximate Pairwise Accuracy Criterion (APAC)

One of the main drawbacks of LDA is that as it tries to maximize the squared dis-

tances between pairs of classes, outliers dominate the eigenvalue decomposition. So,

LDA tends to overweight the influence of classes that are already well separated. The
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Figure 2.4: LDA projection vectors (taken from [1]).

resulting transformation preserves the distances of already well-seperated classes,

causing a large overlap of neighboring classes, which decreases the classification

performance. Approximate pairwise accuracy criterion (APAC) method has been

proposed in order to prevent the domination of outliers [36]. Using the transforma-

tion matrix as W = [w1,w2, ..., wp]
T and pi and pj as prior probabilities of class i

and j respectively, overall criterion, Jw, to be maximized can be expressed as the

following:

Jw(W ) =

p∑
m=1

N−1∑
i=1

N∑
j=i+1

pipjw(∆ij)tr(wmSijw
T
m). (2.7)

N -class LDA can be decomposed into a sum of 1
2
N(N − 1) two-class LDA prob-

lems and contribution of each two-class LDA to the overall criterion is weighted by

w depending on the Mahanalobis distance (∆ij =
√

(mi −mj)T S−1
w (mi −mj))

between the classes i and j in the original space. Sij is the pairwise between-class

scatter matrix calculated as Sij = (mi −mj)(mi −mj)
T . Regular LDA is equiva-

lent to using SB =
∑

i

∑
j≥i pipjSij and the idea of APAC is to weight each pairwise

between-class scatters. In the study of Loog and Duin [36], weighting function is

expressed as w(∆ij) = 1
2∆2

ij
erf(

∆ij

2
√

2
). The solution that maximizes the above crite-

rion is the eigenvectors of
∑∑

pipjw(∆ij)S
− 1

2
w SijS

− 1
2

w where Sw =
∑

piSi is the

pooled within-class scatter given that Si is the within-class covariance matrix for

class i. Although this approach can be viewed as a generalization of LDA, it does
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not bring any additional computational complexity cost and it is designed to confine

the influence of outlier classes which makes it more robust than LDA.

2.1.5 Normalized PCA (NPCA)

Normalized PCA is a generalization of regular PCA. In [2], it is shown that PCA

maximizes the sum of all squared pairwise distances between the projected vectors.

So solving the maximization of this sum in the projected space yields the same result

with regular PCA. In regular PCA, an unweighted sum of the squared distances is

maximized and by introducing a weighting scheme, elements from different classes

can be placed further from each other in the projected space.

If we show the sum of squared distances in the projected space as
∑

i<j(distp
ij)

2

where distp
ij is the distance between elements i and j in the projected space, we seek

the projection that maximizes the weighted sum:

∑
i<j

dij(distp
ij)

2. (2.8)

dij’s are called pairwise dissimilarities, so by defining these pairwise dissimilarities,

we can place elements from different classes further from each other. If we set

dij = 1, we get the same result with regular PCA. In [2], pairwise dissimilarities

are introduced as dij = 1

distij
where distij is the distance between elements i and j

from different classes, in the original space. The rows of the transformation matrix,

W , are selected as the generalized eigenvectors that corresponds to the p highest

eigenvalues of (XT LdX,XT X), where Ld is a Laplacian matrix derived by pairwise

dissimilarities and X is data matrix (one sample in each row). What we are trying

to accomplish here is to place elements of different classes apart from each other.

By selecting pairwise dissimilarities as inversely proportional to their distances in

the original space, on the overall criterion we emphasize the elements that are close

to each other and give less importance to the elements that are already apart. If

elements i and j belong to same class, dij can be set to 0, which means we are

not interested in separating elements within the same class. So, normalized PCA

becomes able to discriminate classes in the projected space where PCA may fail as

it does not take class information into account.

In the Figure 2.5, a 2-D dataset is projected to 1-D by using both PCA and Nor-
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Figure 2.5: PCA vs Normalized PCA (taken from [2]).

malized PCA into two different directions. In PCA case, PCA fails to discriminate

classes in the projected space. However, by the introduction of pairwise dissimilar-

ities Normalized PCA is able to capture the class decomposition.

2.1.6 Normalized LDA (NLDA)

An improved version of Normalized PCA is Normalized LDA (NLDA), in which pair-

wise similarities (sij) are introduced in addition to pairwise dissimilarities (dij). The

maximization criterion of Normalized PCA which depends on the sum of pairwise

distances can also be written in a different way as
∑

i<j sij(distp
ij)

2 to be minimized.

In [2], pairwise similarities are introduced as sij = 1

distij
, inversely proportional

with the distance between elements i and j in the original space, for the elements of

the same class and 0 for the elements belonging to different classes. On the overall

criterion of the Normalized LDA, unlike the criterion of the Normalized PCA, we

emphasize the distance between elements of the same class that are apart from each

other and attach less importance to the elements of the same class that are already

close. When we combine the second criteria to be minimized with the first one to be
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Figure 2.6: LDA vs Normalized LDA (taken from [2]).

maximized (criteria of NPCA), we obtain the following problem to be maximized:

∑
i<j dij(distp

ij)
2

∑
i<j sij(distp

ij)
2
. (2.9)

The rows of the transformation matrix, W , are selected as the generalized eigen-

vectors that corresponds to the p highest eigenvalues of (XT LdX,XT LsX), where

Ld is a Laplacian matrix derived by pairwise dissimilarities, Ls is a Laplacian matrix

derived by pairwise similarities and X is data matrix (one sample in each row).

Therefore, the labeled data can be discriminated in the projected space, as Nor-

malized LDA can induce ”attraction” between elements of the same cluster, and ”re-

pulsion” between elements of different clusters [2]. Figure 2.6 illustrates an example

of a data with 10 different classes. As two classes are outlier classes with respect to

the remaining data, LDA fails to discriminate classes that are placed close to each

other in the original space. When Normalized LDA is applied on the data, the effect

of the outlier classes are normalized and the classes are well-separated.
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2.1.7 Nearest Neighbor Discriminant Analysis (NNDA)

Nearest neighbor discriminant analysis (NNDA) is a linear mapping that aims to

optimize nearest neighbor classification performance in the projected space [37]. We

seek to find the transformation W that maximizes the criterion below.

J(W ) = W (S
′
B − S

′
W )W T . (2.10)

S
′
B and S

′
W are nonparametric between-class and within-class scatter matrices, de-

fined as:

S
′
B =

N∑
n=1

wn(∆E
n )(∆E

n )T S
′
W =

N∑
n=1

wn(∆I
n)(∆I

n)T , (2.11)

where N is the number of samples and the other variables are described in the

following. Let xE and xI be extra-class nearest neighbor and intra-class nearest

neighbor for a sample x. The nonparametric extra-class differences ∆E, intra-class

differences ∆I and sample weight wn are defined as

∆E = x− xE, ∆I = x− xI and (2.12)

wn =
||∆I

n||α
||∆I

n||α + ||∆E
n ||α

, (2.13)

where α is a control parameter to deemphasize the samples in the class center

and give emphasis to the samples closer to the other classes. Notice that, the

nonparametric extra-class and intra-class differences are calculated in the original

high dimensional space, then projected to the low dimensional space, so that we

have no guarantee that these distances are preserved in the low dimensional space.

To solve this problem, the projection matrix W is calculated in a stepwise manner

such that, at each step dimensionality is reduced to a higher dimension than the

desired low dimension (at each step we decreased the dimensionality to half) and

we calculate the nonparametric extra-class and intra-class differences in its current

dimensionality at each step. The final projection matrix is the multiplication of

projection matrices calculated at each step.

NNDA is an extension of nonparametric discriminant analysis, but it does not

depend on the nonsingularity of the within-class scatter. Also unlike LDA, NNDA

does not assume normal class densities.
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2.2 Normalization Methods

In patch-based face recognition, every image is processed over non-overlapping

square blocks. We define an image in a vector form as xT = [xT
1 ...xT

B] where

B is the number of blocks and xb denotes the vectorized bth block of the image.

For dimension reduction, we try to find a linear transform matrix for each block,

W b, such that f b = W bxb. Then for each image, the feature vector is formed as

fT = [fT
1 ...fT

B]. On features extracted from separate blocks, we have applied some

normalization methods that are described below.

2.2.1 Image Domain Mean and Variance Normalization

Image domain mean and variance normalization is a preprocessing step that is ap-

plied on the images before any dimension reduction method is used. So, it is a

normalization of intensity values of pixels. In each block, mean intensity value of

the current block µb is subtracted and the result is divided by the standard deviation

σb in the block.

x̃b =
1

σb

(xb − µb). (2.14)

By image domain normalization, we aim to be able to extract similar visual

feature vectors from each block across sessions of the same subject. Figure 2.7

shows the resulting image before and after this normalization as well as the effects

of the normalization on one row of the image.

2.2.2 Feature Normalizations

As image domain normalization, feature normalizations may also be important in

a patch-based face recognition scheme to reduce inter-session variability and intra-

class variance. We have worked on different kinds of feature normalization methods

as detailed below.

Norm Division (ND):

f̃ = f/||f ||. In this method, we divide each feature vector to its Euclidean norm,

which makes the norm of the normalized vector one. Blocks with different brightness

levels lead to visual feature vectors with different value levels. To balance the effect
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Figure 2.7: Effect of image domain normalization on a face image (above) and on a

single row of the same image (below) using 16x16 blocks.

of features that come from blocks with higher or lower brightness levels, we divide

each feature vector to its norm.

Sample variance normalization (SVN):

f̃i = fi/σ(fi). Here, each feature vector component is divided by its sample standard

deviation computed over a training set. Due to the value range of visual feature

vectors, higher numbers in each feature vector dominates the classification results.

To balance the contribution of each value in a feature vector, each vector is divided

by its standard deviation.

Block mean and variance normalization (BMVN):

f̃
b

= 1
σb

f
(f b − µb

f ). The mean and variance normalization is done over the smaller

feature vectors corresponding to each block separately as in the image domain nor-

malization case. As each block corresponds to different parts in human face, bright-

ness levels of each block differs even for the same subject. Also due to lighting
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conditions, pixel values for each block differ greatly from pixel values of another

block. Therefore, resulting visual feature vectors of different samples from same

objects differ from each other which makes it impossible to classify correctly. To

overcome these effects, one way is to normalize each block in itself. This is a new

feature normalization technique proposed by us.

Feature vector mean and variance normalization (FMVN):

f̃ = 1
σf

(f − µf ). With the similar motivation as variance normalization, we in-

troduced another normalization method on feature vectors which we call feature

vector normalization. Here, the mean and standard deviation are computed over

the components of the overall feature vector. This is also a new feature normaliza-

tion method introduced by us.
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Chapter 3

Patch-Based Face Recognition

In this chapter, patch-based face recognition is introduced and its advantages are

discussed. Following the description of patch-based methods, feature fusion and

decision fusion methods for extracted local features are presented.

3.1 Patch-Based Methods

Variation on the facial appearance caused by illumination changes, occlusion and

expression changes, affect global transformation coefficients that represent the whole

face information. Instead of describing a face image as a whole, analyzing faces lo-

cally might be beneficial and improve recognition accuracies. As the local changes

will affect only the features extracted from the corresponding region of the face,

overall representation coefficients will not be changed completely. The main moti-

vation behind local appearance-based (or so called patch-based) face recognition is

to eliminate or lower the effects of illumination changes, occlusion and expression

changes by analyzing face images locally. The resulting outputs of this analysis is

then combined at the feature level or decision level [33].

As in [38], modular and component based approaches require detection of local

regions such as eyes and nose. However, patch-based face recognition is a generic

local approach. Patch-based face recognition can be briefly explained as follows: A

detected and normalized face image is divided into blocks of 16x16 or 8x8 pixels

size and dimensionality reduction techniques are applied on each block separately.

Selection of block size is important because blocks should be big enough to provide

sufficient information about the region it represents and should be small enough to

provide stationarity and to prevent complexity in dimensionality reduction. Two
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Figure 3.1: 16x16 blocks on a detected face.

examples of blocks with different block sizes (8 and 16) are illustrated in Figures 3.1

and 3.2.

Following the feature extraction process from blocks, one approach is to concate-

nate features from each block in order to create visual feature vector of an image

which is called as feature fusion. Another approach is to classify each block sepa-

rately and then combine individual recognition results of each block. This approach

is named as decision fusion.

The originating point of our study is that by using patch-based methods, we can

get recognition rates higher than the global eigenface approach. In global eigenface

approach, PCA is applied on the whole image and each image is reduced to 192

dimensions from 4096 dimensions. Eigenfaces are found from the training set. We

have chosen to reduce 4096 dimensions to 192 dimensions, so that we can capture

85% of the variance of the data. To preserve 85% of the variance, we have chosen

the lowest number, 192, that can be divided by 16 and 64 (number of blocks for

block sizes 16 and 8, respectively).

Comparison of global eigenface (PCA) and patch-based face recognition results

are given in Table 3.1. It can be seen that, patch-based methods have close recogni-

tion rates to global PCA but do not perform significantly better when no normaliza-

tion is applied to local visual feature vectors. However, experimental results show
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Figure 3.2: 8x8 blocks on a detected face.

Table 3.1: Global and block PCA results

Global PCA 83.45%

Block PCA (8x8) 83.78%

Block PCA (16x16) 83.78%

that, other dimensionality reduction and normalization methods improve recogni-

tion performance and patch-based methods have higher correct classification rates

than global eigenface method after normalization.

In addition to improvements from block based feature extraction and fusion

methods, decision fusion also provides higher correct classification rates. Experi-

mental results show that decision fusion outperforms feature fusion and global ap-

proaches.

3.2 Classification Method: Nearest Neighbor Classifier

In our face recognition experiments, we use nearest neighbor classification with one

nearest neighbor. The choice of nearest neighbor classifier instead of other type of

classifiers is due to the nature of the face recognition problem. Data obtained from
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face images are sparse therefore for other type of classifiers, extracting a statistical

pattern that represents the nature of training data, is a difficult task.

For nearest neighbor classification, distances between samples are to be calcu-

lated and there exists several distance metrics. One of the most commonly used

metrics is the Lp-norm between d-dimensional training sample, ftrain, and test

sample, ftest, which is defined as:

Lp = (
d∑

n=1

(ftrain,n − ftest,n)p)
1
p . (3.1)

In our experiments we have used nearest neighbor classifier with L2-norm as

the distance metric. Apart from that, for some of the successful methods, we have

evaluated also effects of different distance metrics: L1-norm and cosine angle, which

is defined as:

COS =
fT

trainftest
||ftrain||.||ftest||

. (3.2)

Decision fusion requires extraction of class posterior probabilities p(Ci|x) for

the classifiers used. For nearest neighbor classifier, it is not immediately clear how

to assign posterior probabilities. Following [39], we calculated the class posterior

probabilities depending on the distance of x to the nearest training sample from each

class. If we denote this distance vector as D = [D(1),D(2), ..., D(N)], posterior

probabilities associated with class i is calculated as:

p(Ci|x) = norm(sigm(log(

∑
j 6=i D(j)

D(i)
))), where (3.3)

sigm(x) =
1

1 + e−x
. (3.4)
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Figure 3.3: Sigmoid function.

In this calculation, sigmoid function which nonlinearly maps −∞ to 0 and +∞ to

1, is used. After calculating posterior probability for each class, they are normalized

to sum up to 1.

3.3 Feature Fusion

Figure 3.4: General schema for the proposed patch-based face recognition feature

fusion system.

Following the feature extraction (dimension reduction and normalization), local vi-

sual feature vectors are obtained. In holistic approaches such as global PCA, a

single feature vector is obtained for each sample, and this feature vector is used

either in training or testing stage. Unlike holistic approaches, in patch-based face
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recognition, several (equal to the number of blocks) local features are extracted and

we need to combine these feature vectors.

One way of combining these feature vectors is to concatenate vectors extracted

from an image. In patch-based face recognition, every image is processed over non-

overlapping square blocks. We define an image in a vector form as xT = [xT
1 ...xT

B]

where B is the number of blocks and xb denotes the vectorized bth block of the

image. For dimension reduction, we try to find a linear transform matrix for each

block, W b, such that f b = W bxb. Then for each image, the feature vector is formed

as fT = [fT
1 ...fT

B].

In our system, we use images of size 64x64 which corresponds to 4096 pixels.

Dividing an image into blocks of 16x16 provides 16 blocks each having 256 pixels.

By applying dimensionality reduction methods, we decrease these number, 256 pix-

els/dimensions, into 12 dimensions for each block. Similarly, by using 8x8 blocks we

obtain 64 blocks with 64 pixels and reduce 64 pixels/dimensions to 3 for each block.

Therefore, by concatenating these local feature vectors, for each block size either 16

or 8, we end up with a 192 dimensional (number of blocks x feature vector dimen-

sion) feature vector for each sample in the database (16x12=192 or 64x3=192). So,

by applying dimension reduction on blocks separately, we reduce the dimension of

each image from 4096 to 192.

Once the feature vectors for train and test images are created, we perform clas-

sification using nearest neighbor classifier using Euclidean distance.

3.4 Decision Fusion

Decision fusion or classifier combination can be interpreted as making a decision by

combining the outputs of different classifiers for a test image. One of the methods

to combine outputs of multiple classifiers is by majority voting. In our case, instead

of different type of classifiers, we combined outputs of nearest neighbor classifiers

trained by different blocks that correspond to different regions on a face image.

For 16x16 blocks, we have 16 different block positions and we evaluate each block

separately. For every block position, a separate nearest neighbor classifier is trained

by using the features extracted over the training data for that block. From a given

test image, 16 feature vectors each corresponding to a different block are extracted,
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f b representing the feature vector extracted from the bth block. For each test image,

local feature vector is given to the corresponding classifier and the outputs of the

classifiers are then combined to make an ultimate decision for the test image.

In a classification system, output of a classifier for a test sample is the label of the

decided class. For a given test dataset, we come up with a recognition rate if the true

labels of test samples are provided. The decision of a Bayesian classifier depends on

the posterior probabilities of classes given the sample, x, denoted as p(C|x), where

C is the label of a class. For other classifiers, it is possible to estimate posterior

probabilities as well. These posterior probabilities adds up to 1 and the class with

the highest posterior probability is the decision of the classifier.

Two well-studied ways of combining outputs of several classifiers are fixed and

trainable combiners. Fixed combiners operate directly on the outputs of the clas-

sifiers. Fixed combination rules can be listed as maximum, median, mean, mini-

mum, sum, product and majority voting. Decision fusion with fixed combination

for b = 1 : B (number of blocks) and i = 1 : N (number of classes) can be formulated

as:

î = argmaxiP (Ci|x) = rule({P (Ci|xb) : b = 1...B}), (3.5)

where rule can be taking the mean, maximum, minimum, median, sum, product

of the argument set. Majority voting does not work with posterior probabilities

but decides on the classifier decision output by majority voting of the individual

classifier decisions.

Unlike fixed combination methods, trainable combiners use the outputs of the

classifier, class posterior probabilities, as a feature set. From the class posterior

probabilities of several classifiers each corresponding to a block, a new classifier

is trained to provide an ultimate decision by combining the posteriors of separate

classifiers. To train a combiner, training dataset is divided into two parts as train

and validation data. Validation data is tested by the classifiers trained by train

data part of the training dataset. Another type of partitioning the database for

calculating posterior probabilities is illustrated in Figure 3.5. This process is called

stacked generalization [40]. The database is divided into several partitions, first

level classifier is trained with some partitions and tested with validation part of the
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Figure 3.5: Partition of the database for stacked generalization.

data. This process is repeated by changing the validation part and training first

level classifiers with remaining data. At the last stage, outputs of the first level

classifiers, class posterior probabilities are stacked as in Figure 3.5. This data is

used for training the combiner

The resulting class posterior probabilities of the classifiers are then trained by a

separate classifier. The last level classifier that is trained from the posterior proba-

bilities, does not need to be the same type of classifiers that are used for calculating

posterior probabilities. Once the class posterior probabilities for each block are cal-

culated from validation data, these posterior probabilities are concatenated into a

long vector ( [p(C1|x1), p(C2|x1), ..., p(CN−1|xB), p(CN |xB)]T ) which is then used

to train the combiner. However, the length of input feature vectors of the combiner,
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makes it difficult to train a classifier for multi-class classification problems. The

length of the class posterior probabilities from each classifier are equal to the num-

ber of classes (N). As each classifier is trained by features extracted from separate

blocks, classifier number is equal to the number of blocks (B). So, input feature

set of the last level classifier is (NxB)-dimensional. Therefore, we did not prefer to

build a conventional trainable combiner for decision fusion.

In sum rule, the posterior probabilities for one class from each classifier are

summed. Similar to the sum rule, one can also perform weighted summation of

posterior probabilities. Intuitively, we would like to weight successful classifiers

more. It is not clear how to learn those weights. So, we developed methods to

determine those weights in a weighted sum rule in this thesis.

If we denote the contribution or weight of each block with wb and for a given

sample x posterior probability of ith class for the bth block as p(Ci|xb), weighted

sum of posterior probabilities for class i is given by:

p(Ci|x) =
B∑

b=1

wbp(Ci|xb). (3.6)

In the remaining part of this chapter, several weighting schemes are presented

to combine outputs of classifiers for decision fusion. Note that this method can also

be considered under the umbrella of trainable combiners since the weights can be

learned from data as we show in the following. However, it is not a conventional

trainable combiner.

3.4.1 Block Weighting

In block weighting, weights calculated from the whole training dataset are used for

all samples of test dataset which means we assume contribution of blocks to the

recognition performance is constant and independent from the variations in the test

samples. For a block size of 16x16, 16 weights are found for all blocks and for each

sample in the test dataset, posterior probabilities of blocks are multiplied by these

weights. Final decision is given depending on the value of the summation of these

weighted posterior probabilities. In our study, we use several different weighting

methods.
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Equal Weights (EW)

One of the weighting schemes is to assign equal weight to all blocks. This is equiva-

lent to the sum rule or mean rule of fixed combiners. So, contribution of each block

is assumed to be the same and equal to 1/number of blocks.

wb =
1

B
. (3.7)

For the other methods that are described in the following parts, we employ

stacked generalization on the M2VTS database to train the weights. For the AR

database, training dataset is partitioned into two as train and validation. Using

train part, classifiers are trained and by using validation part as input, class poste-

rior probabilities from first level classifiers are obtained in order to calculate block

weights.

Score Weighting (SW)

The first weighting scheme, which we name as score weighting, depends on the

posterior probability distribution of true and wrong labels on 16 blocks. In this

method, for a single sample in the validation dataset, class posterior probabilities

are calculated and posterior probability of the true class (let’s say true class is i) at

each block, (p(Ci|xb)), (16x1 vector) is labeled as positive score. For a sample x in

the validation data, positive score vector is shown as:

PS =
[

p(Ci|x1) p(Ci|x2) ... p(Ci|xB)
]
.

Remaining posterior probabilities of wrong classes, where j = 1 : N and j 6= i,

[p(Cj|x1), p(Cj|x2), ..., p(Cj|xB)] are labeled as negative score vectors.

For each sample, this procedure is repeated and positive score and negative score

matrices are combined in order to create two datasets which consist of class posterior

probabilities of blocks.

Our aim is to find a weight for each block so that successful blocks are weighted

more. Linear Discriminant Analysis (LDA) finds the linear combination of vectors,

such that these vectors are most separated in the projected space. If we successfully

project our positive score and negative score vectors to 1-dimension where they can
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Figure 3.6: Distribution of positive scores (on the right handside) and negative

scores (on the left handside) in 1-dimension. Note that, there are more negatives

than positives.

be separated, we can use the coefficients used for this mapping as our weights for

each block.

By combining these two datasets, we get a 16-dimensional and two-class dataset.

Then the dimension of this dataset is reduced to one from 16 by using LDA and

elements of the resulting dimension reduction vector of LDA are used as block

weights. Distribution of positive scores and negative scores, after projecting to 1-

dimension is presented in Figure 3.6. Note that, in this example, positive scores

are projected to the right side and negative scores are projected to the left side.

However, LDA may have projected these two classes in an opposite way, so that

negative scores are higher than in the projected space and this is not the case we

seek for. Therefore, in the projected space positive scores should be higher than

negative scores and if the projection results in the opposite way, a change of signs

on the weights is required. Note that, this procedure may yield negative weights for

some blocks which may be counter-intuitive. In practice, we observed some small

negative weights in the weight vector, but this did not cause any problems.
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Validation Accuracy Weighting (VAW)

Another weighting scheme, which we name as validation accuracy, depends on in-

dividual recognition rates of each block on validation data. Using training data, a

single classifier is trained for each block and each block of a sample in the valida-

tion data is classified using the classifier that corresponds to the block of interest.

Individual block recognition rates for all samples in the validation data are acquired

separately and weights are assigned proportional to the recognition accuracy of each

block. If acc(k) denotes the recognition accuracy for the kth block, weight of the bth

block is given as:

wb =
acc(b)∑B

k=1 acc(k)
. (3.8)

Therefore, blocks are weighted depending on their recognition capacity indepen-

dently from each other. In addition to weights that are calculated proportionally

to the validation accuracy, their second or higher powers might also be assigned as

weights if we want to attach more importance to the blocks that are more accurate

at recognition.

However, the most trusted blocks in the validation data might not contain that

much information in a test image. Because, that blocks in a test sample can be

partially or fully occluded and by assigning higher weights to these blocks may lead

to misclassification. Therefore, a weighting scheme that depends on the training

dataset may not be trustworthy and a more interactive scheme that is related with

the test sample is believed to provide better weight assignments to blocks.

3.4.2 Confidence Weighting and Block Selection

Confidence weighting differs from block weighting in the sense that, in block weight-

ing, weights are fixed and for all test samples, same weights for blocks are used. In

confidence weighting, each test sample is treated separately and individual block

weights for each test sample is calculated. Two weighting schemes can be termed

as offline weighting and online weighting. In online weighting, we would like to

estimate block weights from features extracted from current testing data. For each

block of data, we would like to determine the reliability or confidence of that block
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online. For that purpose, we would like to define some ”confidence features” which

could be used to determine the reliability of each block. Still, for learning, we use

noisy validation data (with artificially added noise) to determine the online weights

from confidence featurs.

As in the block weighting, training dataset is divided into train and valida-

tion parts but instead of class posterior probabilities, class distances are used in

confidence weighting as decision criteria. As we use nearest neighbor classifier for

training, the distance used is the distance of a feature vector to the nearest feature

vector belonging to each class.

By using the validation data, class distances are calculated and several different

confidence features are extracted from these distances. We have used the following

confidence features:

1. First feature is the distance of a feature vector of a block to the mean feature

vector of the corresponding block. Representing a normalized feature vector as

f̃ b and mean block feature vector of that block as µb, first feature is ||f̃ b−µb||.

f1 = ||f̃ b − µb||. (3.9)

This first feature provides information about the closeness of the current block

to the mean block. If the block of interest is close to the mean block, it can

be concluded that this block is useful and carries information for recognition.

2. Second feature is extracted from class distances and it is the difference between

the distance of the feature vector to the closest class and to the second closest

class.

f2 = (D(2)−D(1)). (3.10)

This feature gives idea about how close is the closest class and whether that

distance is reliable in deciding the true class. If the difference between these

two distances is not small, then the effect of block of interest is positive and

weight of this block should be accordingly high.
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3. The third feature is similar to the second one. It is the difference between the

distance of the feature vector to the closest class and to the furthest class.

f3 = (D(N)−D(1)). (3.11)

Having the same motivation as previous feature, this difference also provides

information about the reliability of the block. If this difference is small,it can

be said that the block of interest is not useful in deciding the true class.

4. The final feature is named as similarity and is a measure of closeness of a block

to the mean block as in the first feature.

f4 =
(f̃

b

test)
T µb

||f̃ b

test||.||µb||
. (3.12)

From validation data, class distances are calculated and for each block of every

sample in the validation data, these four confidence features are extracted. We

concatenate these four features, create a 4-dimensional feature vector and label each

vector as correctly classified or misclassified according to the individual classification

result of that block.

f = [f1, f2, f3, f4]. (3.13)

With this 4-dimensional dataset a 2-class linear discriminant classifier (ldc) is

trained. For each block of a test sample, same 4 features are extracted and tested

by this classifier. The output of the classifier is two posterior probabilities for two

classes: correct or incorrect classification. If the extracted features of the current

block is similar to the features extracted from validation data, the block will be

helpful in recognition process and vice versa. So, for a block of a test sample, the

posterior probability of correct classification is assigned as the weight of that block.

In addition to the confidence weighting on blocks, applying block selection may

be beneficial against the problem of facial occlusion. According to some criteria, we

can sort the blocks depending on their importance and select the first few blocks

which are thought to be important. This is equivalent to using a weight of zero for
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the discarded blocks. This way, both the performance and speed of face recognition

can be increased by using only important local regions.

For the criteria to sort blocks according to their importance, we use block simi-

larity (f4) which is introduced in confidence weighting. These calculated similarity

scores are ordered and the blocks that have higher scores are used for face recogni-

tion. Although confidence weighting scheme is a reasonable method, it is a difficult

problem to learn confidence or reliability of a block. Therefore, it does not provide

promising recognition accuracies as discussed in Chapter 4.
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Chapter 4

Experimental Results and Discussions

4.1 Databases and Experiment Set-Up

For experiments, we used two different face databases, the M2VTS and the AR face

database. Details regarding each database will be presented in the remaining of this

chapter. Face images are detected from databases using Viola-Jones face detector

[17] and no human interaction is required such as marking eye centers. Therefore

all experiments implement a fully automatic face recognizer. For classification, we

used the nearest neighbor classifier with Euclidean distance. In our experiments,

we analyzed the effects of different block sizes (8 and 16), several dimensionality

reduction and normalization techniques and decision fusion methods.

Figure 4.1: Sample face images from M2VTS database. In each column, there are

sample images from the same subject.
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4.1.1 M2VTS - Multi Modal Verification for Teleservices and Security

applications

The M2VTS database is made up from faces of 37 different people and provides 5

video shots for each person. These shots were taken at different times and drastic

face changes occurred in this period. The database consists of two different videos

of 37 people in 5 different tapes and we used few frames extracted from the videos.

During each session, people have been asked to count from ’0’ to ’9’ in their native

language in the first video and rotate their head from 0 to -90 degrees, again to 0,

then to +90 and back to 0 degrees in the second video. We only used the counting

videos. For each person in the database, the most difficult tape is the fifth one in

which several variations exist. In the fifth tape variations such as tilted head, closed

eyes, different hairstyle and accessories such as hat or scarf are present.

Apart from the fifth tape, the database can be considered as having been pro-

duced under ideal shooting conditions such as good picture quality, nearly constant

lighting and uniform background. However, some impairments that are not expected

can be noticed.

This kind of imperfections together with the occlusions and lighting variation

are present in real life problems and will appear when implementing a practical face

recognition system. In addition, people will expect the recognition algorithms to

be able to deal with such problems and require this kind of databases to test the

robustness of their recognition algorithms on these imperfections.

The M2VTS database consists of five videos of 37 subject recorded at different

times. We selected random 8 frames from each video, so a total of 40 images are

extracted for each subject. The first four sessions (tapes) are used as training data

(8x4=32 images for each subject) and the last tape which includes variation such as

different hairstyles, hats and scarfs, is used as test data (8 images for each subject).

Thus, in our dataset we have 1184 (37x32) training images and 296 (37x8) test

images. For validation purposes, we use 1 tape in the training data as validation

tape and the remaining 3 tapes as train data and we repeat this step for each tape

in the training data.
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Figure 4.2: Sample images of a subject for tape number 1 (from the M2VTS

database).

Figure 4.3: Sample images of a subject for tape number 5 (from the M2VTS

database).

4.1.2 AR Face Database

This face database was created by Aleix Martinez and Robert Benavente in the Com-

puter Vision Center (CVC) at the U.A.B [41]. It contains over 4,000 color images

corresponding to 126 people’s faces (70 men and 56 women). Images feature frontal

view faces with different facial expressions, illumination conditions, and occlusions

(sun glasses and scarf). Each person participated in two sessions, separated by two

weeks (14 days) time. The same pictures were taken in both sessions. Figures 4.4

and 4.5 illustrates images of the same subject in both sessions. In each session,

there are 13 images of the subject and each subject has 26 face images totally in
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Figure 4.4: Sample images of a subject for first session (from the AR database).

two sessions. We have selected 65 male and 55 female subjects within 126 people

due to some missing images. Totally there are 120 subjects in the subset of the

AR database that we use and each subject have 26 images taken in two different

sessions.

In each session, first 7 images are faces with different facial expressions and

illumination conditions and remaining 6 images are partially occluded images (either

wearing sun glasses or scarf). We separated our database into two as training and

testing. In training dataset, we have the first 7 images of each subject for both

sessions (7x2=14 images for each subject) and remaining 6 images are reserved

as test dataset (6x2=12 images for each subject). Therefore, in this dataset we

have 1680 (120x14) training images and 1440 (120x12) test images. For validation

purposes, we use the first 7 images of the first session as validation data and the

first 7 images of the second session as train data.
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Figure 4.5: Sample images of a subject for second session (from the AR database).

Figure 4.6: Effect of image domain normalization on a face image (above) and on

a single row of the same image (below) using 16x16 blocks (image from the AR

database).
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4.2 Closed Set Identification

Face recognition process of identifying an unknown individual if the individual is

known to be in the database is called closed set identification. The term ”face

recognition” is mostly used to mean closed set identification in the literature. Most of

our results are closed set identification accuracies as well. For both of the databases,

we performed closed set identification by either feature fusion or decision fusion.

4.2.1 Experiments with the M2VTS Database

On the M2VTS database, we have performed both feature fusion experiments and

decision fusion experiments and we present the effects of different block sizes, di-

mensionality reduction and normalization techniques.

Feature Fusion Experiments

First set of experiments are done on the database to see the effect of image domain

mean and variance normalization. As this normalization is supposed to eliminate

illumination differences across sessions, recognition rates are expected to increase.

For 16x16 blocks a comparison of recognition rates without and with image domain

normalization can be found in Table 4.1.

Table 4.1: Effect of image domain normalization for 16x16 blocks (on the M2VTS

database)

w/o image domain with image domain

normalization normalization

DCT 85.47% 87.84%

PCA 83.78% 87.50%

LDA 84.80% 84.46%

APAC 86.15% 86.15%

NPCA 83.78% 87.50%

NLDA 87.16% 83.11%

NNDA 85.47% 87.84%
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Table 4.2: Feature fusion results on the M2VTS database for all normalization

methods with image normalization on 16x16 blocks

NN ND SVN BMVN FMVN

DCT 87.16% 88.18% 83.11% 89.19% 87.16%

PCA 87.50% 86.15% 85.47% 86.82% 86.49%

LDA 84.46% 92.23% 83.78% 91.89% 88.51%

APAC 86.15% 91.55% 85.14% 90.20% 90.88%

NPCA 87.50% 86.82% 87.16% 84.80% 86.82%

NLDA 83.11% 82.43% 78.38% 82.77% 93.45%

NNDA 87.84% 87.16% 85.47% 85.47% 86.15%

Test results indicate that image domain normalization indeed increases recogni-

tion performance. It can be seen as a preprocessing step before feature extraction

and normalization and it has a positive effect on the success of other procedures

and methods. For all dimensionality reduction and feature normalization methods,

results are presented in Table 4.2.

In Table 4.2, recognition rates with 16x16 blocks are shown in the presence of

image domain normalization. Results of DCT and PCA follow a similar pattern and

they both produce mediocre results. But, in some cases PCA’s accuracies are slightly

higher than DCT. NPCA and NNDA provide similar results to those two methods.

Although LDA does not perform well in the absence of image domain normalization,

together with image domain normalization, LDA provided recognition rates as high

as APAC and in some cases outperform APAC with accuracies such as 92.23% and

91.98%. The highest recognition rate is again obtained by NLDA with 93.45%.

For 16x16 blocks with image domain normalization, ND and BMVN are helpful

for recognition performance especially for LDA and APAC. In addition, FMVN pro-

vides high recognition rates when combined with LDA and APAC, and the highest

recognition rate is again obtained by FMVN.

When we consider the 16x16 block size, image domain normalization has posi-

tive effect and improves recognition rates of all dimensionality reduction methods.
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APAC and NLDA are the two dimensionality reduction methods which provide the

highest recognition accuracies. In the presence of image domain normalization, LDA

also performs well. Due to the fact that, there are enough training samples from

each class for LDA and its derivatives, APAC and NLDA, these methods are very

helpful in discriminating classes in the projected space. When we consider feature

normalization methods, FMVN is a helpful tool that increases recognition rates and

for both block sizes and whether image domain normalization is applied or not, high-

est recognition rates are provided in the presence of FMVN. In addition, although

other feature normalization methods perform inconsistently, image domain normal-

ization also increases their performances. Recognition results for all block sizes and

normalization methods on the M2VTS database are presented in Appendix A.

Decision Fusion Experiments

We have conducted several experiments on the M2VTS database that shows the

effects of decision fusion methods. After concluding that using 16x16 blocks performs

better than using 8x8 blocks, we have tried several fusion methods on 16x16 blocks

for different dimensionality reduction and normalization methods. We do not include

the recognition results for all cases for brevity but accuracies for all dimensionality

reduction and normalization methods are presented in Appendix B.

In Tables 4.3 and 4.4, decision fusion accuracies both in the absence and presence

of image domain normalization are presented. In both tables, results when no

feature normalization method is applied are given. Except DCT, image domain

normalization plays a positive role in increasing recognition accuracies of different

dimensionality reduction techniques.

The most successful dimensionality reduction methods for block weighting are

DCT and NNDA. DCT, independent of any normalization method, always provide

high recognition rates for both score weighting (SW) and validation accuracy weight-

ing (VAW). The highest recognition rate of 97.30% is provided by DCT with ND

(Table 4.5). In the absence of normalization methods, NNDA does not perform sig-

nificantly but with or without image domain normalization, NNDA performs close

results to DCT in most of the cases. The second highest recognition rate which is

96.96% is provided by NNDA when SVN (Table 4.6) is used. Other dimensionality
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Table 4.3: Decision fusion results on the M2VTS database without any feature

normalization on 16x16 blocks - without image domain normalization

EW SW VAW VAW2 VAW1/2

DCT 96.28% 96.96% 96.28% 93.58% 96.62%

PCA 88.85% 88.51% 88.85% 88.18% 88.85%

LDA 85.81% 86.15% 85.81% 85.47% 85.47%

APAC 86.15% 88.18% 86.82% 87.16% 86.82%

NPCA 88.85% 88.85% 89.19% 88.51% 88.85%

NLDA 89.19% 89.53% 89.19% 89.53% 89.19%

NNDA 89.19% 89.19% 89.19% 89.53% 89.19%

Table 4.4: Decision fusion results on the M2VTS database without any feature

normalization on 16x16 blocks - with image domain normalization

EW SW VAW VAW2 VAW1/2

DCT 92.91% 94.26% 94.26% 94.26% 94.26%

PCA 90.54% 92.57% 91.55% 91.22% 91.55%

LDA 86.82% 90.20% 88.18% 90.20% 86.82%

APAC 87.50% 90.54% 88.51% 89.86% 88.18%

NPCA 91.22% 93.24% 91.55% 91.22% 91.55%

NLDA 87.84% 87.84% 88.85% 91.22% 88.85%

NNDA 93.92% 95.27% 94.93% 94.59% 94.93%
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reduction methods perform inconsistently and in some cases, they provide accura-

cies as high as 94.93% for PCA with SVN (Table 4.6) and 93.92% (Table B.10)

for LDA with FMVN. However, dimensionality reduction methods apart from DCT

and NNDA, do not perform significantly higher for all normalization and weighting

methods. In addition, it can be said that all normalization methods are useful on

the M2VTS database and increase recognition performances.

Table 4.5: Decision fusion results on the M2VTS database with norm division on

16x16 blocks - without image domain normalization

EW SW VAW VAW2 VAW1/2

DCT 95.95% 96.96% 97.30% 96.96% 96.96%

PCA 88.51% 88.85% 88.85% 89.19% 88.85%

LDA 85.47% 84.80% 84.80% 83.78% 85.47%

APAC 91.22% 90.20% 90.54% 90.54% 90.88%

NPCA 88.51% 89.19% 88.85% 89.19% 89.19%

NLDA 92.57% 90.88% 92.91% 92.57% 92.91%

NNDA 89.19% 89.19% 89.19% 89.19% 89.19%

Table 4.6: Decision fusion results on the M2VTS database with sample variance

normalization on 16x16 blocks - with image domain normalization

EW SW VAW VAW2 VAW1/2

DCT 93.92% 94.26% 96.28% 95.61% 94.59%

PCA 94.59% 92.57% 94.29% 93.24% 94.93%

LDA 86.15% 89.19% 88.85% 90.20% 87.50%

APAC 86.82% 90.88% 89.19% 88.15% 88.85%

NPCA 94.26% 92.91% 94.93% 92.91% 94.26%

NLDA 92.23% 90.54% 92.23% 92.93% 92.23%

NNDA 94.59% 96.96% 95.61% 95.61% 95.95%
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By block weighting, we aim to find the contribution of each block to the recogni-

tion. Therefore, our goal is to find weights that result in a performance better than

using equal weights. Although there are few exceptions, in almost all cases, using

the weights we have calculated, provide higher recognition rates than using equal

weights. As an example, weights for 16x16 blocks when DCT and ND is applied on

the M2VTS database, are illustrated for SW and WAV.

wSW =




0.0632 0.0699 0.0811 0.0480

0.0737 0.1126 0.0790 0.0553

0.0426 0.0654 0.1035 0.0502

0.0027 0.0738 0.0851 − 0.0062




.

wV AW =




0.0569 0.0853 0.0707 0.0642

0.0646 0.0890 0.0866 0.0589

0.0459 0.0715 0.0744 0.0459

0.0232 0.0618 0.0731 0.0280




.

After presenting and discussing feature and decision fusion results on the M2VTS

database, it is evident that although feature fusion provides promising results as high

as 93.45%, decision fusion outpowers feature fusion and provide higher accuracies

such as 97.30% and 96.96%.

4.2.2 Experiments with the AR Database

Same set of experiments are also conducted on the AR database and the results are

presented.

When compared with the M2VTS database, the AR database has almost four

times more subjects and training sample/subject ratio is much smaller for the AR

database (this ratio is 32 in the M2VTS for 37 subjects and 14 in the AR for

120 subjects). Illumination changes are much more drastic in the AR database.

In addition, wide variety of accessories are present in the AR database where the

M2VTS database does not include that much variation. As a result, recognition

rates for the AR database is much lower than accuracies obtained in the M2VTS

database.
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Table 4.7: Feature fusion results on the AR database for all normalization methods

without image normalization on 16x16 blocks

NN ND SVN BMVN FMVN

DCT 41.35% 46.15% 41.28% 45.26% 43.91%

PCA 45.32% 45.71% 42.18% 45.19% 44.55%

LDA 31.09% 27.88% 24.36% 27.63% 31.35%

APAC 31.86% 26.22% 29.74% 24.87% 31.92%

NPCA 45.32% 45.71% 42.24% 44.74% 44.04%

NLDA 32.76% 35.58% 27.88% 35.19% 33.33%

NNDA 42.31% 48.08% 39.81% 47.24% 43.40%

Feature Fusion Experiments

If we analyze the performance of dimension reduction methods for the AR database,

we can say that less data dependent transforms such as DCT, PCA and NNDA

generally provide higher recognition rates. Also, a generalized version PCA, NPCA

performs better than LDA, APAC and NLDA. DCT is independent from the nature

of the data and its performance is not affected by the lack of training data. However,

LDA and its derivatives, APAC and NLDA, face problems when there is not enough

training sample for each class.

In Table 4.7, recognition rates with 16x16 blocks when image normalization is

not applied, are given. DCT, PCA, NPCA and NNDA performs better than LDA,

APAC and NLDA for all situations. The highest recognition rates are provided by

NNDA for two different normalization methods.

In Table 4.8, recognition rates with 16x16 blocks when image normalization is

applied, are given and the recognition rates follow similar patterns. Again DCT,

PCA, NPCA and NNDA provide higher accuracies than LDA, APAC and NLDA

due to the fact that is mentioned before.

For both cases, whether image domain normalization is applied or not, recog-

nition rates are very close to each other, which shows that image domain normal-

ization is not working for the AR database and oppose to its functionality in the
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Table 4.8: Feature fusion results on the AR database for all normalization methods

with image normalization on 16x16 blocks

NN ND SVN BMVN FMVN

DCT 44.62% 46.15% 43.97% 45.26% 45.19%

PCA 42.95% 41.92% 43.72% 42.05% 42.76%

LDA 30.19% 42.05% 29.29% 41.67% 36.86%

APAC 30.45% 36.92% 29.74% 35.51% 37.05%

NPCA 43.01% 41.86% 43.85% 42.69% 42.56%

NLDA 29.62% 37.76% 26.99% 37.82% 33.08%

NNDA 41.54% 43.72% 39.55% 42.56% 41.60%

M2VTS database, it decrease recognition rates for the AR database. We attribute

this situation to the function and aim of image domain normalization. By image

domain normalization, we aim to decrease variations between images of the same

subject. Images of the subjects are taken in different sessions and inside a session,

there are illumination differences across images. Image domain normalization tries

to makes image of same subject as close to each other. This idea works for the

M2VTS database because the images of the same subject are very apart from each

other across sessions. Illumination changes are high across sessions and image do-

main normalization decreases these variations to some degree and its positive effect

is proved in the recognition results of the M2VTS database. However, in the AR

database train and test data have almost identical illuminations. If we analyze the

images of same person shown in Figure 4.4, we see that test images (last two rows

with sun glasses and scarf) has three types of illuminations, none, light from right

and left. In the training data, we have similar images of the subject having none

illumination and light from left and right. Therefore, nearest neighbor classifier is

able to match the test images with train images. In the presence of image domain

normalization (an example for the AR database is provided in Figure 4.6), train and

test images become similar in terms of illumination, which is almost uniform, but

this does not help in recognition success of nearest neighbor classifier as it helps in
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the M2VTS database.

Almost for all dimensionality reduction methods, ND has a positive influence

and the highest recognition rates are provided by DCT and NNDA when combined

with ND. Also, BMVN affects DCT and NNDA in a good way, increasing their

accuracies.

Recognition results for all blocks sizes and normalization methods on the AR

database are presented in Appendix A.

Decision Fusion Experiments

Same set of experiments which are conducted on the M2VTS database are also con-

ducted on the AR database. We have seen that 16x16 blocks provide higher recog-

nition rates than 8x8 blocks on the AR database, similar to the M2VTS database.

Therefore, we have tried decision fusion methods on 16x16 blocks for different dimen-

sionality reduction and normalization methods. We do not include the recognition

results for all cases for brevity but accuracies for all dimensionality reduction and

normalization methods are presented in Appendix B.

In Table 4.9, decision fusion results on the AR database without any normaliza-

tion is presented. Similar to feature fusion, image domain normalization does not

affect decision fusion results in a positive way due to the reason discussed above.

However, feature normalization methods increase recognition rates most of the time.

The most successful dimensionality reduction methods that provide higher recog-

nition rates are DCT, PCA and NNDA. The highest recognition rate of 85.90% and

85.97% (Table 4.10) are obtained by NNDA. In any case, NNDA provides higher

results than other dimensionality reduction. However, there are some exceptions

where DCT and PCA performs slightly better than NNDA. The second highest ac-

curacies after NNDA are provided by DCT as 84.65% and by PCA as 84.58% in the

presence of SVN (Table 4.11).

When the decision fusion results on the AR database are analyzed, it is clear

that, both weighting schemes (SW and VAW) are successful. For all dimensional-

ity reduction and normalization methods, both weighting schemes provide higher

accuracies than equal weights for each block.

In addition to these experiments, we have also conducted experiments with single
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Table 4.9: Decision fusion results on the AR database without any feature normal-

ization on 16x16 blocks - without image domain normalization

EW SW VAW VAW2 VAW1/2

DCT 74.58% 74.86% 76.74% 76.11% 76.11%

PCA 65.49% 65.90% 67.57% 65.63% 66.81%

LDA 55.35% 57.85% 64.24% 67.43% 61.18%

APAC 65.83% 66.60% 69.10% 68.96% 68.26%

NPCA 65.35% 65.97% 67.64% 65.90% 66.94%

NLDA 69.79% 70.28% 74.72% 77.01% 72.29%

NNDA 75.76% 76.60% 77.85% 78.82% 77.29%

Table 4.10: Decision fusion results on the AR database with norm division on 16x16

blocks - without image domain normalization

EW SW VAW VAW2 VAW1/2

DCT 75.90% 76.18% 77.57% 77.29% 76.94%

PCA 78.82% 79.58% 80.83% 81.25% 80.21%

LDA 66.32% 66.60% 69.79% 71.67% 68.61%

APAC 67.78% 70.21% 71.39% 70.90% 70.56%

NPCA 78.54% 79.86% 80.49% 81.04% 80.28%

NLDA 73.40% 76.74% 77.99% 79.86% 76.74%

NNDA 83.75% 83.75% 85.90% 85.97% 85.14%
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Table 4.11: Decision fusion results on the AR database with sample variance nor-

malization on 16x16 blocks - with image domain normalization

EW SW VAW VAW2 VAW1/2

DCT 82.71% 83.96% 84.65% 83.89% 83.82%

PCA 81.67% 84.58% 83.96% 82.78% 83.82%

LDA 62.08% 66.25% 67.57% 68.89% 65.83%

APAC 63.47% 66.67% 68.75% 69.72% 67.57%

NPCA 82.01% 84.79% 84.38% 82.99% 84.10%

NLDA 69.72% 72.99% 74.10% 75.97% 72.57%

NNDA 79.24% 82.92% 82.43% 82.01% 81.39%

Table 4.12: Accuracy of single training data experiment on the AR database

NN 42.36%

ND 44.03%

BMVN 43.82%

FMVN 45.14%

training data from each class. The aim of this experiment is to see the effects of

normalization methods which are not helpful for the AR database, in both feature

fusion and decision fusion experiments. As mentioned before, training dataset of

the AR database consists of images with similar illumination conditions as test

dataset of the AR database. By using a single training sample for each subject,

we expect different normalization methods to make difference. By using DCT, we

have conducted decision fusion experiment and we have used EW for weighting

as we cannot compute any weights due to absence of validation data in training

dataset. Recognition accuracies are presented in Table 4.12. It is clear that feature

normalization methods increase recognition rates. The accuracy of 42.36% increases

to 45.14% when FMVN is applied and other normalization techniques perform better

than no normalization.
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After presenting and discussing feature fusion and decision fusion recognition

results on the AR database, similar to the M2VTS database, it is evident that

decision fusion is much more successful than feature fusion. The highest recognition

rate obtained by feature fusion is 48.08% where as with decision fusion recognition

rates as high as 85.97% and 85.56% are obtained.

4.2.3 Confidence Weighting and Block Selection

Although confidence weighting seems a reasonable and a promising method for face

recognition, recognition accuracies that we obtained were not satisfactory. The

weights calculated are very close to each other and confidence weighting provides

lower results than using EW. Confidence weighting is a difficult problem in our case

and is not helpful, however, it might be helpful for other cases.

Figure 4.7: Confidence Weighting and Block Selection on 16x16 blocks

As an example to confidence weighting and block selection, we present a single

case on the AR database. We have conducted confidence weighting and block se-

lection with PCA in the absence of all normalization methods for block sizes of 16

and 8 in Figures 4.7 and 4.8.
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Figure 4.8: Confidence Weighting and Block Selection on 8x8 blocks

On 16x16 blocks, we have obtained accuracy of 65.49% with using EW. However,

block selection does not work and for each additional block, recognition accuracy

increases and the accuracy cannot reach the result of 65.49%. For 8x8 blocks, after

the 49th block, recognition rate begin to decrease, which means the remaining 15

blocks do not bring any additional information for classification and have negative

influence. However, the accuracy reached when 49 blocks are used is lower than the

accuracy of using EW.

4.2.4 Different Distance Metrics

Apart from L2-norm for distance calculation in nearest neighbor classification, we

have also conducted experiments with L1-norm and cosine angle (COS) distance

metrics. For some of the cases that provide highest recognition rates on the M2VTS

database and the AR database, we also present recognition accuracies of other dis-

tance metrics in Table 4.13.

Although on the M2VTS database, other distance metrics do not increase recog-

nition rates, on the AR database, L1-norm and cosine angle provide slightly higher
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Table 4.13: Accuracies using different distance metrics

L2-norm L1-norm COS

M2VTS DCT 97.30% 96.62% 93.92%

M2VTS NNDA 96.96% 87.16% 91.55%

AR NNDA 85.90% 88.47% 89.10%

AR DCT 84.65% 85.53% 86.39%

recognition rates and the highest recognition rate is obtained by cosine angle for

NNDA, which is 89.10%.

4.2.5 Comparison With Other Techniques

For closed set identification, we have compared our accuracies with some of the

previously used baseline techniques which are implemented commonly.

The first set of algorithms that we have tried on our two databases is provided

by CSU Face Identification Evaluation System [42]. It is a package that contains a

standard PCA (Eigenfaces) algorithm, a combination of PCA and LDA algorithms

and a Bayesian Intrapersonal/Extrapersonal Image Difference Classifier. Prior to

these face recognition algorithms, a normalization is applied on face images as a

preprocessing. This four step normalization consists of geometric normalization

that lines up human chosen eye coordinates, masking that crops image using an

elliptical mask such that only the face from forehead to chin and cheek is visible,

histogram equalization and pixel normalization which is similar to our image domain

normalization except it is applied on whole image instead of blocks. The recognition

accuracies of these algorithms on both databases are presented in Table 4.14

In addition to CSU Face Identification evaluation system we have also conducted

a set of experiments on our database in the following set up. A previously presented

illumination correction algorithm which is proposed in [43], is applied on face images

and global DCT and global PCA are applied on both databases. Recognition results

are presented in Table 4.15.

The highest recognition rate we obtained on the M2VTS database is 97.30% and
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Table 4.14: Accuracies of CSU Face Identification Evaluation System

M2VTS AR

PCA Euclidean 86.48% 22.15%

PCA Mahalinobis 88.17% 42.56%

LDA 100.00% 21.94%

Bayesian ML 91.89% 23.95%

Bayesian MAP 92.56% 27.84%

Table 4.15: Accuracies of Global DCT and PCA with illumination correction

M2VTS AR

DCT 93.58% 47.54%

PCA 89.53% 48.46%

only CSU Face Identification Evaluation System PCA + LDA algorithm provides

higher recognition result higher than 97.30%, which is 100%. However, we have

obtained the accuracy of 97.30% by using DCT which is computationally faster

than both PCA and LDA, and also does not require training data. For the AR

database, in which there is less amount of training data from each class, the highest

accuracy obtained by CSU Face Identification Evaluation system is 42.56%. On

the other hand, illumination correction + global PCA provide 48.46% accuracy on

the AR database whereas the highest recognition rate we have obtained on the AR

database is 89.10%.

4.3 Open Set Identification

Open set identification refers to face recognition process when it is unknown if a

subject belongs to the database or not. So, open set identification first determines if

the unknown face belongs to the database and then finds the identity of the subject

from the database. Typically, if the score of the best match is not higher than a
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Figure 4.9: Open Set Identification Accuracy for DCT with norm division on the

M2VTS

pre-determined threshold, the subject is rejected.

For some of the decision fusion experiments, in which the highest recognition

rates are obtained for closed set identification, we conducted open set identification

experiments. Although our databases were not designed for open-set identification

experiments, we can use them in such experiments using the technique presented in

[44]. ROC curve on false accept rate (FAR) versus false reject rate (FRR) plus false

classification rate (FCR) (FAR vs. FRR+FRC) is plotted for these cases. For each

database, we present open set identification performance of two cases.

The first case on the M2VTS database is the performance of DCT applied with

ND which provides 97.30% close set recognition accuracy. In Figure 4.9, equal error

rate (EER), where FAR = FRR + FRC is calculated as 14.89%.

The second case on the M2VTS database is the performance of NNDA applied

with SVN and image domain normalization which provides 96.96% closed set recog-

nition accuracy. In Figure 4.10, EER is calculated as 11.01%.

The first case on the AR database is the performance of NNDA applied with

ND which provides 85.90% closed set recognition accuracy. In Figure 4.11, EER is
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Figure 4.10: Open Set Identification Accuracy for NNDA with sample variance

normalization and image domain normalization on the M2VTS database

calculated as 22.60%.

The second case on the AR database is the performance of DCT applied with

SVN and image domain normalization which provides 85.90% closed set recognition

accuracy. In Figure 4.11, EER is calculated as 22.04%.

4.4 Verification

Verification is the process of confirming or rejecting an individual’s claimed identity.

Unlike closed or open set identification, face verification deals with a two class

problem, accept or reject.

For the same cases with open set identification, in which the highest recognition

rates are obtained for closed set identification, we conducted face verification exper-

iments. ROC curve on false accept rate (FAR) versus false reject rate (FRR) (FAR

vs. FRR) is plotted for these cases.

The first case on the M2VTS database is the performance of DCT applied with

ND which provides 97.30% close set recognition accuracy. In Figure 4.13, equal
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Figure 4.11: Open Set Identification Accuracy for NNDA with norm division on the

AR database

Figure 4.12: Open Set Identification Accuracy for DCT with sample variance nor-

malization and image domain normalization on the AR database
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error rate (EER), where FAR = FRR is calculated as 5.74%.

Figure 4.13: Verification Accuracy for DCT with norm division on the M2VTS

database

The second case on the M2VTS database is the performance of NNDA applied

with SVN and image domain normalization which provides 96.96% closed set recog-

nition accuracy. In Figure 4.14, EER is calculated as 4.05%.

The first case on the AR database is the performance of NNDA applied with

ND which provides 85.90% closed set recognition accuracy. In Figure 4.15, EER is

calculated as 8.40%.

The second case on the AR database is the performance of DCT applied with

SVN and image domain normalization which provides 85.90% closed set recognition

accuracy. In Figure 4.16, EER is calculated as 5.97%.
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Figure 4.14: Verification Accuracy for NNDA with sample variance normalization

and image domain normalization on the M2VTS database

Figure 4.15: Verification Accuracy for NNDA with norm division on the AR

database
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Figure 4.16: Verification Accuracy for DCT with sample variance normalization and

image domain normalization on the AR database
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, we have investigated different dimensionality reduction, normalization

methods and decision fusion techniques for patch-based face recognition. Several

experiments are conducted on two separate databases and recognition accuracies

are presented. In addition to closed set identification, we have also performed open

set identification and verification experiments using methods which had promising

closed set identification accuracies.

One conclusion that can be made following several experiments is the superiority

of patch-based recognition over global approaches. In patch-based face recognition,

we have used non-overlapping blocks and extracted features using these indepen-

dent blocks. By applying both feature fusion and decision fusion methods, we have

outperformed previously proposed global methods. On M2VTS database, we have

achieved a recognition rate of 93.45% by feature fusion and 97.30% by decision

fusion. The only highest recognition rate that exceeds these two rates is the em-

ployement of PCA+LDA algorithm by CSU Face Identification Evaluation System

which is 100%. However, the same method provides a recognition rate of 21.94%

on the AR database, in which we reach recognition accuracies of 48.08% by feature

fusion and 89.10% by decision fusion. We attribute the success of PCA+LDA algo-

rithm on M2VTS database to the high number of training samples for each subject

in M2VTS database. When there is not enough training sample for each subject, as

in the AR database, PCA+LDA algorithm fails to classify face images. Apart from

CSU Face Identification Evaluation System, global PCA and DCT algorithms en-

hanced by illumination correction provide 93.58% accuracy on the M2VTS database
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and 48.46% accuracy on the AR database. We have also outperformed these two

methods with our decision fusion methods.

For decision fusion, we have used weighted sum rule over class posterior proba-

bilities of blocks. For choice of weights, we have proposed a novel methods which

we name as score weighting. Also we have experimented with using validation accu-

racies for weight assignment. With both of these methods, we obtained recognition

rates slightly higher than using equal block weights.

In addition to block weighting, we have also derived a method to assign weights

to blocks of test images independently (or online), which we named as confidence

weighting. This method aims to discard (or weight less) the face blocks that are

occluded. As this information cannot be learned offline, we need to learn this online

during testing. However by using confidence weighting and block selection using

confidence weights, we could not improve the recognition accuracy obtained using

equal weights. It appears it is very hard for the recognizer to not believe itself and

give low confidence to its decisions, when its role is to give the best result in the

first place.

We can categorize dimension reduction methods according to their dependency

on training data. When there is less training data per subject, DCT, PCA, NPCA

and NNDA perform better than LDA, APAC and NLDA. However, in the presence

of enough number of training samples, LDA, APAC and NLDA may be superior at

discriminating classes. Therefore, on the M2VTS database, LDA, APAC and NLDA

perform better, providing higher recognition rates and on the AR database, due to

lack of training data, highest recognition rates are obtained by DCT, PCA, NPCA

and NNDA.

Influence of normalization methods depend on the nature of images. In the

M2VTS database, normalization methods usually increase recognition rates as there

are variations in illumination across sessions. Normalization methods strive to elim-

inate illumination changes and images of the same subject from different sessions

become closer to each other. However, in the AR database, train and test images

are taken in similar lighting conditions, so, normalization methods seem to slightly

hurt the recognition process instead of improving. To illustrate this situation, we

have performed face recognition on the AR database with a single training data per
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subject. When normalization methods are applied, test images become closer to

training images and recognition rates increase.

5.2 Future Work

As a continuation of this research, in the future, one can pursue some of the following

avenues:

• Moving block centers so that each block corresponds to same location on the

face for all images of all subjects.

• Using color information in addition to gray scale intensity values.

• More accurate distance to posterior probability conversion for nearest neighbor

classification.

• Better dimensionality reduction techniques.

• More intelligent decision fusion methods suited to the problem, particularly

better ways to estimate the weights in the weighted sum rule.
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Appendix A

Feature Fusion Experiments

Table A.1: Feature fusion results on the M2VTS database for all normalization
methods without image normalization on 16x16 blocks

NN ND SVN BMVN FMVN

DCT 85.47% 88.18% 83.11% 89.19% 89.19%
PCA 83.78% 81.08% 78.04% 82.09% 84.46%
LDA 84.80% 76.35% 79.39% 75.68% 86.49%

APAC 86.15% 86.49% 82.77% 84.46% 91.22%
NPCA 83.78% 81.76% 78.38% 81.42% 84.46%
NLDA 87.16% 87.50% 78.04% 88.51% 90.54%
NNDA 85.47% 81.08% 83.11% 81.42% 85.81%

Table A.2: Feature fusion results on the M2VTS database for all normalization
methods without image normalization on 8x8 blocks

NN ND SVN BMVN FMVN

DCT 73.99% 84.80% 74.66% 79.39% 77.70%
PCA 83.78% 71.62% 80.41% 59.46% 84.46%
LDA 82.77% 61.82% 75.68% 56.08% 84.46%

APAC 88.18% 77.36% 86.15% 73.99% 90.54%
NPCA 83.78% 72.30% 80.07% 65.54% 84.46%
NLDA 87.16% 81.76% 82.77% 75.00% 87.84%
NNDA 79.05% 53.04% 76.01% 38.18% 78.04%
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Table A.3: Feature fusion results on the M2VTS database for all normalization
methods with image normalization on 16x16 blocks

NN ND SVN BMVN FMVN

DCT 87.16% 88.18% 83.11% 89.19% 87.16%
PCA 87.50% 86.15% 85.47% 86.82% 86.49%
LDA 84.46% 92.23% 83.78% 91.89% 88.51%

APAC 86.15% 91.55% 85.14% 90.20% 90.88%
NPCA 87.50% 86.82% 87.16% 84.80% 86.82%
NLDA 83.11% 82.43% 78.38% 82.77% 93.45%
NNDA 87.84% 87.16% 85.47% 85.47% 86.15%

Table A.4: Feature fusion results on the M2VTS database for all normalization
methods with image normalization on 8x8 blocks

NN ND SVN BMVN FMVN

DCT 87.84% 84.46% 87.84% 79.39% 84.12%
PCA 89.19% 85.14% 89.86% 78.38% 86.49%
LDA 88.51% 87.50% 88.18% 85.14% 88.85%

APAC 90.88% 91.89% 91.55% 85.14% 93.58%
NPCA 88.85% 86.49% 89.86% 83.11% 86.15%
NLDA 89.19% 80.74% 88.51% 82.43% 90.54%
NNDA 89.53% 82.43% 89.86% 72.97% 89.86%

Table A.5: Feature fusion results on the AR database for all normalization methods
without image normalization on 16x16 blocks

NN ND SVN BMVN FMVN

DCT 41.35% 46.15% 41.28% 45.26% 43.91%
PCA 45.32% 45.71% 42.18% 45.19% 44.55%
LDA 31.09% 27.88% 24.36% 27.63% 31.35%

APAC 31.86% 26.22% 29.74% 24.87% 31.92%
NPCA 45.32% 45.71% 42.24% 44.74% 44.04%
NLDA 32.76% 35.58% 27.88% 35.19% 33.33%
NNDA 42.31% 48.08% 39.81% 47.24% 43.40%
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Table A.6: Feature fusion results results on the AR database for all normalization
methods without image normalization on 8x8 blocks

NN ND SVN BMVN FMVN

DCT 33.53% 42.18% 33.78% 36.35% 36.73%
PCA 44.81% 43.27% 42.31% 33.21% 44.23%
LDA 35.90% 30.06% 26.73% 24.68% 36.92%

APAC 38.27% 28.59% 37.88% 20.38% 39.94%
NPCA 44.94% 43.59% 41.79% 31.78% 44.04%
NLDA 38.33% 35.90% 38.33% 30.51% 39.87%
NNDA 21.47% 17.95% 20.38% 11.60% 21.67%

Table A.7: Feature fusion results results on the AR database for all normalization
methods with image normalization on 16x16 blocks

NN ND SVN BMVN FMVN

DCT 44.62% 46.15% 43.97% 45.26% 45.19%
PCA 42.95% 41.92% 43.72% 42.05% 42.76%
LDA 30.19% 42.05% 29.29% 41.67% 36.86%

APAC 30.45% 36.92% 29.74% 35.51% 37.05%
NPCA 43.01% 41.86% 43.85% 42.69% 42.56%
NLDA 29.62% 37.76% 26.99% 37.82% 33.08%
NNDA 41.54% 43.72% 39.55% 42.56% 41.60%

Table A.8: Feature fusion results results on the AR database for all normalization
methods with image normalization on 8x8 blocks

NN ND SVN BMVN FMVN

DCT 44.04% 44.49% 43.91% 36.35% 44.04%
PCA 47.05% 43.40% 47.50% 40.19% 46.60%
LDA 42.24% 41.92% 39.94% 42.05% 44.10%

APAC 39.42% 44.36% 38.21% 33.91% 42.24%
NPCA 47.05% 34.10% 46.99% 41.09% 46.03%
NLDA 28.91% 37.76% 27.05% 32.95% 29.87%
NNDA 14.36% 13.97% 14.10% 10.51% 16.15%
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Appendix B

Decision Fusion Experiments

Table B.1: Decision fusion results on the M2VTS database without any feature
normalization on 16x16 blocks - without image domain normalization

EW SW VAW VAW2 VAW1/2

DCT 96.28% 96.96% 96.28% 93.58% 96.62%
PCA 88.85% 88.51% 88.85% 88.18% 88.85%
LDA 85.81% 86.15% 85.81% 85.47% 85.47%

APAC 86.15% 88.18% 86.82% 87.16% 86.82%
NPCA 88.85% 88.85% 89.19% 88.51% 88.85%
NLDA 89.19% 89.53% 89.19% 89.53% 89.19%
NNDA 89.19% 89.19% 89.19% 89.53% 89.19%

Table B.2: Decision fusion results on the M2VTS database with norm division on
16x16 blocks - without image domain normalization

EW SW VAW VAW2 VAW1/2

DCT 95.95% 96.96% 97.30% 96.96% 96.96%
PCA 88.51% 88.85% 88.85% 89.19% 88.85%
LDA 85.47% 84.80% 84.80% 83.78% 85.47%

APAC 91.22% 90.20% 90.54% 90.54% 90.88%
NPCA 88.51% 89.19% 88.85% 89.19% 89.19%
NLDA 92.57% 90.88% 92.91% 92.57% 92.91%
NNDA 89.19% 89.19% 89.19% 89.19% 89.19%
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Table B.3: Decision fusion results on the M2VTS database with sample variance
division on 16x16 blocks - without image domain normalization

EW SW VAW VAW2 VAW1/2

DCT 95.27% 95.27% 95.95% 95.95% 95.95%
PCA 91.55% 92.23% 92.23% 90.54% 91.89%
LDA 84.12% 84.12% 84.80% 84.46% 84.46%

APAC 85.47% 86.49% 85.47% 85.81% 85.47%
NPCA 91.22% 91.89% 91.55% 90.54% 91.89%
NLDA 89.19% 90.20% 89.19% 89.53% 89.53%
NNDA 90.20% 89.19% 89.53% 89.53% 90.20%

Table B.4: Decision fusion results on the M2VTS database with block mean and
variance normalization on 16x16 blocks - without image domain normalization

EW SW VAW VAW2 VAW1/2

DCT 91.22% 93.24% 92.23% 91.89% 91.89%
PCA 91.55% 91.89% 90.88% 91.22% 90.88%
LDA 81.08% 81.76% 81.42% 81.76% 82.09%

APAC 86.49% 88.18% 87.16% 87.84% 87.16%
NPCA 92.57% 92.23% 90.54% 90.20% 90.54%
NLDA 89.19% 91.22% 89.53% 89.86% 89.53%
NNDA 96.28% 94.93% 93.92% 93.24% 95.27%

Table B.5: Decision fusion results on the M2VTS database with feature vector mean
and variance normalization on 16x16 blocks - without image domain normalization

EW SW VAW VAW2 VAW1/2

DCT 94.93% 95.95% 95.61% 95.61% 95.95%
PCA 91.55% 91.55% 91.55% 91.22% 91.55%
LDA 86.82% 86.49% 86.49% 85.81% 86.82%

APAC 88.51% 89.53% 89.19% 89.53% 88.85%
NPCA 91.55% 91.55% 91.55% 91.22% 91.55%
NLDA 91.89% 91.22% 91.55% 90.88% 91.89%
NNDA 91.55% 91.89% 91.89% 91.55% 91.89%
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Table B.6: Decision fusion results on the M2VTS database without any feature
normalization on 16x16 blocks - with image domain normalization

EW SW VAW VAW2 VAW1/2

DCT 92.91% 94.26% 94.26% 94.26% 94.26%
PCA 90.54% 92.57% 91.55% 91.22% 91.55%
LDA 86.82% 90.20% 88.18% 90.20% 86.82%

APAC 87.50% 90.54% 88.51% 89.86% 88.18%
NPCA 91.22% 93.24% 91.55% 91.22% 91.55%
NLDA 87.84% 87.84% 88.85% 91.22% 88.85%
NNDA 93.92% 95.27% 94.93% 94.59% 94.93%

Table B.7: Decision fusion results on the M2VTS database with norm division on
16x16 blocks - with image domain normalization

EW SW VAW VAW2 VAW1/2

DCT 93.92% 95.27% 93.92% 94.59% 94.26%
PCA 90.88% 91.55% 91.22% 90.20% 91.89%
LDA 91.55% 93.24% 91.55% 91.55% 91.55%

APAC 90.20% 91.22% 90.88% 91.22% 90.88%
NPCA 91.22% 92.23% 91.22% 90.20% 92.23%
NLDA 90.54% 91.22% 91.22% 92.91% 90.20%
NNDA 92.91% 94.59% 94.26% 94.26% 94.93%

Table B.8: Decision fusion results on the M2VTS database with sample variance
normalization on 16x16 blocks - with image domain normalization

EW SW VAW VAW2 VAW1/2

DCT 93.92% 94.26% 96.28% 95.61% 94.59%
PCA 94.59% 92.57% 94.29% 93.24% 94.93%
LDA 86.15% 89.19% 88.85% 90.20% 87.50%

APAC 86.82% 90.88% 89.19% 88.15% 88.85%
NPCA 94.26% 92.91% 94.93% 92.91% 94.26%
NLDA 92.23% 90.54% 92.23% 92.93% 92.23%
NNDA 94.59% 96.96% 95.61% 95.61% 95.95%
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Table B.9: Decision fusion results on the M2VTS database with block mean and
variance normalization on 16x16 blocks - with image domain normalization

EW SW VAW VAW2 VAW1/2

DCT 91.22% 93.24% 92.23% 91.89% 91.89%
PCA 90.20% 91.89% 91.89% 90.88% 91.55%
LDA 89.86% 91.55% 90.88% 91.55% 90.20%

APAC 87.16% 88.85% 87.84% 88.85% 87.50%
NPCA 90.88% 92.91% 92.57% 90.88% 92.57%
NLDA 87.84% 87.50% 87.84% 86.82% 87.84%
NNDA 93.58% 93.92% 94.59% 94.26% 94.59%

Table B.10: Decision fusion results on the M2VTS database with feature vector
mean and variance normalization on 16x16 blocks - with image domain normaliza-
tion

EW SW VAW VAW2 VAW1/2

DCT 92.57% 93.24% 94.26% 92.57% 94.26%
PCA 91.22% 92.91% 91.89% 90.20% 91.55%
LDA 92.23% 93.92% 92.57% 93.24% 91.89%

APAC 89.19% 90.88% 89.53% 89.86% 89.53%
NPCA 91.55% 92.91% 91.89% 90.54% 91.89%
NLDA 87.84% 90.20% 91.22% 91.22% 90.54%
NNDA 92.91% 94.26% 94.26% 94.26% 94.93%

Table B.11: Decision fusion results on the AR database without any feature nor-
malization on 16x16 blocks - without image domain normalization

EW SW VAW VAW2 VAW1/2

DCT 74.58% 74.86% 76.74% 76.11% 76.11%
PCA 65.49% 65.90% 67.57% 65.63% 66.81%
LDA 55.35% 57.85% 64.24% 67.43% 61.18%

APAC 65.83% 66.60% 69.10% 68.96% 68.26%
NPCA 65.35% 65.97% 67.64% 65.90% 66.94%
NLDA 69.79% 70.28% 74.72% 77.01% 72.29%
NNDA 75.76% 76.60% 77.85% 78.82% 77.29%
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Table B.12: Decision fusion results on the AR database with norm division on 16x16
blocks - without image domain normalization

EW SW VAW VAW2 VAW1/2

DCT 75.90% 76.18% 77.57% 77.29% 76.94%
PCA 78.82% 79.58% 80.83% 81.25% 80.21%
LDA 66.32% 66.60% 69.79% 71.67% 68.61%

APAC 67.78% 70.21% 71.39% 70.90% 70.56%
NPCA 78.54% 79.86% 80.49% 81.04% 80.28%
NLDA 73.40% 76.74% 77.99% 79.86% 76.74%
NNDA 83.75% 83.75% 85.90% 85.97% 85.14%

Table B.13: Decision fusion results on the AR database with sample variance division
on 16x16 blocks - without image domain normalization

EW SW VAW VAW2 VAW1/2

DCT 78.68% 79.10% 82.01% 82.29% 81.04%
PCA 82.36% 82.01% 83.75% 83.96% 83.54%
LDA 65.00% 66.39% 70.69% 72.22% 68.40%

APAC 66.04% 66.25% 69.10% 70.14% 68.26%
NPCA 82.36% 82.08% 83.40% 83.89% 83.68%
NLDA 75.07% 76.39% 79.17% 80.83% 77.64%
NNDA 78.96% 79.51% 80.97% 82.99% 79.72%

Table B.14: Decision fusion results on the AR database with block mean and vari-
ance normalization on 16x16 blocks - without image domain normalization

EW SW VAW VAW2 VAW1/2

DCT 74.58% 74.86% 76.74% 76.11% 76.11%
PCA 77.64% 78.33% 79.93% 79.72% 79.03%
LDA 64.58% 64.65% 68.61% 69.72% 66.53%

APAC 64.24% 68.26% 69.65% 70.35% 67.92%
NPCA 77.43% 78.61% 79.38% 79.86% 78.89%
NLDA 72.57% 75.49% 77.22% 78.33% 75.90%
NNDA 83.33% 83.54% 85.86% 85.86% 84.58%
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Table B.15: Decision fusion results on the AR database with feature vector mean
and variance normalization on 16x16 blocks - without image domain normalization

EW SW VAW VAW2 VAW1/2

DCT 74.03% 74.17% 76.39% 76.18% 75.56%
PCA 63.61% 64.58% 66.94% 67.36% 65.83%
LDA 56.60% 58.13% 63.68% 66.81% 61.39%

APAC 67.29% 68.13% 70.56% 71.39% 70.07%
NPCA 64.24% 64.58% 66.53% 67.01% 65.69%
NLDA 70.56% 71.74% 73.26% 74.72% 72.08%
NNDA 75.69% 75.14% 77.78% 78.19% 77.08%

Table B.16: Decision fusion results on the AR database without any feature nor-
malization on 16x16 blocks - with image domain normalization

EW SW VAW VAW2 VAW1/2

DCT 77.08% 78.13% 79.10% 77.01% 78.68%
PCA 72.85% 77.57% 76.94% 74.17% 76.25%
LDA 60.76% 64.86% 66.94% 69.58% 64.38%

APAC 62.15% 65.83% 68.26% 69.24% 66.11%
NPCA 72.99% 77.64% 76.94% 74.31% 76.46%
NLDA 63.06% 66.39% 70.63% 72.92% 67.92%
NNDA 77.92% 81.32% 80.90% 80.21% 80.07%

Table B.17: Decision fusion results on the AR database with norm division on 16x16
blocks - with image domain normalization

EW SW VAW VAW2 VAW1/2

DCT 75.90% 76.18% 77.57% 77.29% 76.94%
PCA 72.85% 76.25% 75.69% 73.06% 74.93%
LDA 65.00% 68.82% 68.75% 69.58% 67.43%

APAC 65.35% 69.24% 71.39% 72.01% 68.61%
NPCA 72.85% 76.18% 75.42% 73.40% 74.79%
NLDA 63.89% 68.54% 71.32% 75.00% 68.96%
NNDA 79.24% 81.81% 81.32% 81.39% 80.69%
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Table B.18: Decision fusion results on the AR database with sample variance nor-
malization on 16x16 blocks - with image domain normalization

EW SW VAW VAW2 VAW1/2

DCT 82.71% 83.96% 84.65% 83.89% 83.82%
PCA 81.67% 84.58% 83.96% 82.78% 83.82%
LDA 62.08% 66.25% 67.57% 68.89% 65.83%

APAC 63.47% 66.67% 68.75% 69.72% 67.57%
NPCA 82.01% 84.79% 84.38% 82.99% 84.10%
NLDA 69.72% 72.99% 74.10% 75.97% 72.57%
NNDA 79.24% 82.92% 82.43% 82.01% 81.39%

Table B.19: Decision fusion results on the AR database with block mean and vari-
ance normalization on 16x16 blocks - with image domain normalization

EW SW VAW VAW2 VAW1/2

DCT 74.44% 75.63% 75.63% 74.31% 76.39%
PCA 72.43% 76.04% 74.79% 72.08% 75.14%
LDA 63.40% 67.08% 67.50% 67.78% 65.76%

APAC 63.89% 67.99% 70.56% 71.94% 67.71%
NPCA 71.53% 75.49% 75.56% 73.47% 73.89%
NLDA 63.13% 67.36% 71.04% 73.96% 67.85%
NNDA 77.78% 81.18% 80.56% 80.56% 79.58%

Table B.20: Decision fusion results on the AR database with feature vector mean
and variance normalization on 16x16 blocks - with image domain normalization

EW SW VAW VAW2 VAW1/2

DCT 76.74% 78.13% 79.86% 77.15% 78.82%
PCA 72.85% 77.22% 76.67% 74.65% 75.76%
LDA 62.29% 64.86% 66.81% 68.40% 64.86%

APAC 66.74% 70.07% 71.74% 73.40% 70.00%
NPCA 73.13% 77.22% 76.53% 73.68% 75.49%
NLDA 64.44% 66.88% 70.83% 73.54% 68.33%
NNDA 79.44% 82.01% 81.67% 81.32% 81.39%
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