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Abstract

In this thesis, an application of content-based image retrieval is proposed for

plant identification, along with a preliminary implementation. The system takes

a plant image as input and finds the matching plant from a plant image database

and is intended to provide users a simple method to locate information about their

plants. With a larger database, the system might be used by biologists, as an easy

way to access to plant databases.

Max-flow min-cut technique is used as the image segmentation method to sep-

arate the plant from the background of the image, so as to extract the general

structure of the plant. Various color, texture and shape features extracted from the

segmented plant region are used in matching images to the database. Color and

texture analysis are based on commonly used features, namely color histograms in

different color spaces, color co-occurrence matrices and Gabor texture maps. As

for shape, we introduce some new descriptors to capture the outer contour char-

acteristics of a plant. While color is very useful in many CBIR problems, in this

particular problem, it introduces some challenges as well, since many plants just

differ in the particular hue of the green color. As for shape and texture analysis, the

difficulty stems from the fact that the plant is composed of many leaves, resulting

in a complex and variable outer contour and texture. For texture analysis, we tried

to capture leaf-level information using smaller shape regions or patches. Patch size

is designed to contain a leaf structure approximately.
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Results show that for 54% of the queries, the correct plant image is retrieved

among the top-15 results, using our database of 380 plants from 78 different plant

types. Moreover, the tests are also performed on a clean database in which all the

plant images have smooth shape descriptors and are among the 380 images. The test

results obtained using this clean database increased the top-15 retrieval probability

to 68%.
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Özet

Bu tez çalışmasında, bitki tanımaya yönelik bir İçerik Tabanlı Görüntü Bulma

sistemi önerildi ve bu sistemin başlangıç uygulaması geliştirildi. Kullanıcılara kendi

bitkileri hakkında çeşitli bilgiler sunmayı amaçlayan sistem, oluşturulmuş bitki veri-

tabanı içerisinden, kullanıcıdan aldığı bitki resmiyle eşleşen bitkiyi bulur. Hazırlanan

sistem, daha geniş ve kapsamlı bir veritabanıyla birlikte biyologlar tarafından bitki

veritabanlarına daha kolay erişim sağlamak için de kullanılabilir.

Görüntüdeki bitkiyi görüntünün arkaplanından ayırmak, böylece bitkinin yapısını

çıkarabilmek için görüntü bölütleme yöntemi olarak maksimum-akı minimum-kesik

yöntemi kullanıldı. Çeşitli renk, doku ve şekil öznitelikleri, girdi olarak alınan

görüntüleri veritabanındakilerle eşleştirmede kullanılmak üzere, bölütlenmiş bitki

bölgesinden çıkarıldı. Renk ve doku analizi için kullanılan yöntemler, bilinen ve

çoğunlukla tercih edilen özniteliklere dayanıyor. Bu öznitelikler: renk histogram-

ları, renk eş görülme matrisleri ve Gabor doku haritalarıdır. Şekil öznitelikleri için

ise bitkinin dış hatlarını ve özelliklerini ifade edebilecek bazı yeni şekil açıklayıcıları

sunuldu. Renk, görüntü bulma sistemlerinde çok etkili bir öznitelik olmasına rağmen,

bu problemde çoğu bitkilerin birbirinden yalnızca yeşilin tonlarıyla farklılık göstermesi

renk analizi konusunda bir zorluk olarak görüldü. Şekil ve doku analizindeki zor-

luk ise, bitkilerin pek çok yapraktan oluşması ve bu sebeple bitki doku ve dış hat

görüntüsünün karmaşık ve değişken olmasıdır. Doku analizinde yaprak seviyesindeki
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görüntü bilgisini yakalayabilmek için küçük şekil parçaları ve yamalar kullanıldı. Her

bir yamanın bitkinin yaprağını ifade edebilecek büyüklükte olması amaçlandı.

78 farklı bitki tipinden 380 görüntü barındıran bitki veritabanımızda yaptığımız

testler sonucu, doğru bitki %54 olasılıkla eşleşen ilk 15 bitki arasında yer aldı. Bunun

yanında, sadece bu veritabanındaki şekil öznitellikleri iyi olan görüntülerin olduğu

132 görüntüden oluşan veritabanından alınan sonuçlar, doğru bitkinin ilk 15 bitki

arasında olma olasılığını %68’e çıkarmıştır.
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Chapter 1

INTRODUCTION

Due to the rapid improvement in technology -especially related to the Internet- and

spread in usage of digital cameras, the number of images in digital platforms has

increased tremendously in the last decades. Websites devoted to images also increase

in number everyday; e-newspapers, digital image libraries, photo sharing websites,

personal web albums are some examples showing the prevalent usage of digital

images today. Frequent and common use of digital images and the sheer number

of images have brought the need for efficient indexing, classifying and searching

algorithms. The earliest image search applications used the text on websites and in

the image filenames, to extend text search capabilities for image searching. Since the

performance of text-based image retrieval depends on the existence and relevance

of text, this approach is often insufficient in finding desired images.

Image annotation or tagging is also used to help image retrieval systems. This

method is still widely used in photo sharing systems such as Flickr; digital art sharing

websites such as deviantart; social networks such as facebook and by Google. All of

these applications have huge amounts of digital images and manage them in some

form of tagging. Some of these systems offer web-based games to encourage image

annotation, for instance the Google Image Labeler 1 is played by two parties where

1http://images.google.com/imagelabeler/
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each person tries to label the same image appropriately at the same time. These

annotation systems are based on manual tagging which is very slow with respect to

the increase in the number of images. Studies conducted to encounter that problem

brought a new subject to agenda: automatic annotation, which is in a different

context than text-based approaches.

The problem with the aforementioned methods is that they do not use the visual

information of images. While Image Retrieval (IR) refers to the general problem of

searching and retrieving images, Content based image retrieval (CBIR) is the prob-

lem of retrieving relevant images based on their content. CBIR offers efficient search

and retrieval of images based on their content. Two important query categories can

be distinguished: i) query by example and ii) semantic retrieval using a description

of the search concept (e.g. find images containing bicycles). Query by example is

often executed by comparing images with respect to low level features obtained from

the whole image, such as color, texture or shape features. Semantic retrieval on the

other hand requires higher level understanding of the image contents which requires

a more local approach. For instance, local features such as scale-invariant feature

transform (SIFT) descriptors can be used in locating objects within complex scenes.

These two broad categories can be further subdivided. For instance the query by

example can be done by providing a sketch or a template, instead of an image.

Similarly, the semantic retrieval can be made in different levels of abstraction of the

query concept (e.g. bicycle) [4].

Research on CBIR has shown its first significant results with feature-based sys-

tems in early 1990s [5–7]. Commonly used features can be grouped as color, texture,

shape, and location features. Examining images based on color is one of the most

widely used technique, partly due to its simplicity. Color matching between two

images can be done simply by using a color histogram over the whole image or

over a fixed region of the image (e.g. find sky in the top half of images). More

complex color features may involve looking into spatial relationship of multiple col-

ors or looking at the color histograms in automatically segmented regions of the
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image. Other widely used features can be grouped as texture features and shape

features. Texture can be described as spatial patterns formed by color or grayscale

variations that are often uniform over a region. Texture analysis and matching can

be done using various techniques such as Gabor filter which are linear image filters

in the form of a wavelet convolving a Gaussian and a harmonic function, and local

binary patterns (LBP) which describes the texture in terms of small pixel intensity

groups and their relative position statistics by focusing on a local neighborhood in

the image. Finally, shape measures may be used to find a particular shape in the

queried images. Shape measures often use segmentation and edge detection, as they

refer to objects within the image. Recent research on CBIR moved more towards

semantic analysis of content (e.g. [8]) from low level features. Also, in order to im-

prove usability, relevance feedback was later developed to give the system feedback

from the user. Recent survey articles summarize the latest research activities in the

field [8–10].

While there are some plant images in the commonly used image retrieval databases

(e.g. the Corel database) 2, we are not aware of a CBIR system geared specifically

towards house plant retrieval. However, there are some related work in the areas

of plant classification and identification that are developed for botanical or agricul-

tural needs. In systems geared towards botanical applications [11–18], clean leaf

images are used to identify unknown plant varieties, using features obtained from

the leaf contour. Yahiaoui et.al. proposed an image retrieval system for identifying

plant genes by using contour-based shape features in [11]. The extracted shape de-

scriptors in this study include the length histogram of contour segments in different

directions. Another work on plant image retrieval ( [13,14]) focused on the leaf im-

age retrieval problem using features such as centroid-contour distance (CCD) curve,

eccentricity, and angle code histograms (ACH). These features are extracted from

the leaf edge contour after some preprocessing (e.g. scale normalization). In some

recent work ( [12, 15]), the retrieval algorithm is supported with machine learning

2Besides Corel database, Caltech vision group has a Leaves database containing 186 images of
3 species only http://www.vision.caltech.edu/html-files/archive.html
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techniques. In [12], plant leaves are classified based on their texture features: LBP,

and Gabor wavelets are used together. Local texture features of plant leaves are

extracted with the LBP operator using the Gabor filtered image. Then extracted

texture features (spatial histograms) are fed to support vector machine (SVM) clas-

sifier. The study in [15], combined color and texture features (i.e. color moments

and wavelet transform) after a preprocessing task which normalized the rotation of

leaves (all looking to the same direction). SVM classifier is trained with extracted

color and texture features, then used to recognize plants.

Systems geared towards agricultural applications include detecting weeds in the

field [19], detecting position of specific plants [20], and deciding whether or not a

plant is damaged by a specified illness [21] are frequent applications in this area.

In [19] color and shape information is used to detect weeds in the field. Sena’s

work [21] on identifying damaged maize plants proposes a segmentation step to be

used first. Leaf segmentation is done by thresholding the monochrome images that

are converted from RGB using a transformation called the normalized excess green

index (2g − r − b, where g, r, and b are corresponding RGB color channels [22]) to

distinguish weeds from soil regions. In [20], position of a maize plant on the field

is located by finding the center of the plant by intersecting the detected main vein

lines of leaves. Vein lines in turn are detected by using reflectance difference of veins

and leaves.

The aim of aforementioned agricultural image retrieval applications typically is

to detect position of a plant or an illness on the plant which is different from our

intention. While the botanical image retrieval systems stated above use various

descriptors extracted only from the plant leaf, in contrast, in our system, we use the

overall plant information.

In this thesis, we present a CBIR system for identifying a plant. The system

works by matching a query image to all the plant images in the database, after

background segmentation. The system can be used as a web service by people who
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may want to obtain information about their house plants. The future web service

may be designed to work by receiving a sample plant image from the user, then using

the image as the query to search images from the same plant type. The system works

by receiving a sample plant image from the user, then using the image as the query

to search images from the same plant type. At the end of the search process, images

of most similar plants are provided on the user interface. Ideally, in identification

problems one would like to retrieve only the searched plant; however, since this is

often not possible, the top-N images are returned to the user. In order to have more

realistic and user-friendly system, top-15 plants are provided to the user which can

easily fit into the applications’ browsing area. In the envisioned application, the

user will then browse the 1-page returned images and pick the correct plant, which

in turn will bring information about that plant. The plant information might be

collected from trusted botanic resources.

As humans perceive and identify plants by high level features (e.g. one can say:

chlorophytum comosum (spider plant) has long leaves with green and white stripes),

image retrieval systems intend to acquire high level features by referring to the low

level features extracted from the images. In order to extract the general structure of

the plant, max-flow min-cut technique, which is a fast and satisfying method, is used

as the image segmentation method to separate the plant from the background of the

image. Common feature extraction methods are used for color and texture analysis.

However, a new shape descriptor is proposed in this work which represents the outer

shape of the plant region. In order to provide the sufficiency of image descriptors,

various color, texture and shape features extracted from the segmented plant region

are used in matching images to the database. In other words, color information of

the plant is complemented with the texture and the shape information. For example,

the stripes on the leaves of the spider plant are captured by Gabor texture analysis,

while white and green color values of spider plant leaves are represented in color

histograms. The plant body structure which is characterized with the name spider,

is represented by the structure and spread of leaves with our shape-based features.
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Contributions of this thesis can be summarized as follows:

• development of a plant identification problem as a particular application of

CBIR,

• using the segmented plant region for feature extraction that removes the noise

effect created by the background, which increases the quality of the extracted

features,

• evaluating different features for their effect on overall system performance,

• proposing some new shape descriptors that provide the outer contour charac-

teristics of a plant.

The outline of this thesis is as follows. The segmentation algorithm used for

separating the background is Boykov and Kolmogorov’s graph-based segmentation

technique which is explained in Chapter 2, along with our implementation specifi-

cations. Chapter 3 gives an overview of various color, texture and shape features

which are used in this thesis. In addition to basic features such as color histograms,

we present our new shape features which are extracted from the overall contour of a

plant. Besides general information on these features, our approaches are expanded

by also considering the problems we have encountered. How image features are used

to compute a similarity between two images is explained in Chapter 4. In Chapter

5, our plant image database is introduced. The database consists of 530 images,

of which 380 of them are manually segmented by our project workers . Chapter

6 presents the results of evaluations of various feature combinations. The success

rates, average minimum correct retrieval ranks are provided for different test meth-

ods. Finally, we conclude with a discussion of this work and its success in Chapter

7, along with future work ideas.
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Chapter 2

IMAGE SEGMENTATION

Image segmentation is the task of subdividing an image into its constituent regions or

objects [23]. Segmentation is necessary to separate the foreground from background

and is used in wide variety of recognition and retrieval problems, such as optical

character recognition (OCR) or medical imaging [24]. Figure 2.1 shows results of

segmentation showing the object boundaries.

Figure 2.1: Segmented image examples from [1]

This is done in order to extract more significant low-level information (color, tex-

ture), as well as to extract the object contour which is used in calculating the shape

features. As mentioned before, segmentation is an important part of our proposed

system since background regions affect the quality of the extracted features. Both

the images in our database and the query plant images (may) contain background
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information. With a segmentation preprocess, only characteristic information of the

plant is used in matching.

While different in their approaches, all segmentation algorithms use low-level

information such as color, texture or intensity changes. There are two contrasting

approaches to segmentation. In the first one, regions showing high variations, such

as edges, are detected and used in locating object/region boundaries. In the second

approach, similar or homogenic regions are expanded, combining similar pixels to

form larger segments. Edge linking, edge following, thresholding are examples that

use discontinuity, while region growing, region merging are characteristic examples

that use similarity of pixels.

We mentioned that color and texture information are the most common visual in-

formation used in image segmentation, but the way they are used changes. In terms

of the segmentation methodology, the techniques can be grouped as: i) Histogram-

based ii) Clustering-based, iii) Region growing, iv) Split-and-merge, v) Morpholog-

ical and vi) Graph-based. Histogram-based approaches use intensity distribution of

pixels in order to find regions of uniform histogram characteristics. Clustering-based

approaches feed the pixel intensity values to a clustering algorithm and produce re-

gion clusters on the image. Blobworld [25] is the most famous implementation of

this method. In region growing, homogenic pixels are connected to form a segment

and growing is stopped when irrelevancy reaches a specified limit. Graph-based seg-

mentation techniques represent the image as an arc-weighted directed graph where

pixels are graph nodes and pixel intensities are edges of the graph. Segmentation

is completed by labelling all graph nodes as one of the two classes: background

and foreground. The segmentation method we use (max-flow min-cut method) is a

special method of graph-based image segmentation as explained in Section 2.1.
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2.1 Max-Flow Min-Cut Method

Consider a directed graph G(V,E) where V indicates the vertices and E indicates

the edges between the vertices. The cut operation splits the graph nodes into two

disjoint sets S and T . Capacity of a cut is defined as:

c(S, T ) =
∑

u∈S,v∈T |(u,v)∈E

c(u, v)

where u and v indicate the edges in S and T respectively, and c(u, v) denotes the

capacity between u and v.

The max-flow min-cut algorithm considers an image as a finite graph in which

pixels form the nodes or vertices of the graph and neighboring pixels are connected

with an edge. The intensity difference between two neighboring pixels u and v

determine the edge weight, or c(u, v).

The algorithm requires seed plant and background pixels (sink and source respec-

tively) to be specified. The selected seeds form the initial values of the sets S and

T . The max-flow min-cut segmentation algorithm splits the graph into two disjoint

sets S (source) and T (sink) minimizing a cost functional. The output corresponds

to a binary labelling of the image with foreground and background regions. The

functional is based on two values: i) a spatial smoothness term which measures the

cost of assigning the same label (e.g. foreground or background) to adjacent pixels,

and ii) an observed data term that measures the cost of assigning a label to each

pixel. The graph cut algorithm maximizes the flow between the source and sink

nodes or equivalently finds a cut through the graph which minimizes the total cost

of the graph edges on the cut as explained. This graph cut technique is derived from

Megner’s theorem [26], which proves that maximum amount of flow in a graph (or

network) equals the capacity of the minimum cut in that graph.

Max-flow min-cut graph cut technique is one of the most preferred segmentation
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approach in vision problems. An important feature of this segmentation method is

the fact that minimizing energy functions is easy and efficient. In terms of implemen-

tation, there are various approaches for solving the max-flow min-cut problems on

directed weighted graphs such as the augmenting path proposed by Ford-Fulkerson,

the push-relabel method and a new method proposed by Boykov and Kolmogorov [2]

which is a modified version of the augmenting path method. In this thesis, Boykov

and Kolmogorov’s technique is used, as it is the most efficient, hence the most

preferred method today.

Figure 2.2: Example search tree of algorithm given in [2] at the end of growth stage.

Figure 2.2, which is adapted from the Boykov and Kolmogorov’s paper [2], is used

to explain the algorithm. The nodes s and t (source and target nodes respectively)

are the roots of S and T trees which are grown. Red or blue colored nodes indicate

that they are elements of either trees. The unlabeled nodes are the free nodes that

can be labeled by either sets. The active nodes (expressed by A) are in the active

growth stage in which the neighboring nodes will be visited. The nodes labeled as

P are the passive nodes that are labeled in either trees and will not grow. The free

nodes will be labelled iteratively through active nodes, so S and T trees will be grown

till an s − t path occurs. This step is named as growth stage which is followed by

augmentation stage. Path found in the growth stage is augmented. Since maximum

flow is tried to be achieved, some edges in the path may become orphans and trees

may be divided into pieces. In order to reconstruct the tree structures of S and

T correctly, a third step is designed that is named as adoption stage. One of the
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important reasons of why this new method is better than standard ones is that a

dynamic tree algorithm is designed which grows in two directions (from both source

and target). Currently, max-flow min-cut method gives the best performance for

vision problems.

Figure 2.3: Segmentation examples from our database: The input image, the seed (sink
and source) map and the segmented image result are shown. (Sink seed regions are
displayed as red, source seed regions are displayed as white.)

Figure 2.3 shows sample segmentation results on two plant images from our

database. Source and target seed points are marked by drawing closed regions by

clicking region edges. Currently the seed and background selection is carried out

manually, using a MATLAB GUI program we have implemented. In this system,

defining 5 seed regions on the average requires to select 15 points that define the

closed regions. As a future work, we aim to develop automatic or semi-automatic

approaches for the segmentation or the selection process.

The output of the segmentation is an image where the non-plant regions are

marked as black pixels (RGB(0,0,0)), to be discarded in feature extraction step,

while the plant region retains the original image pixels. Prior to segmentation, the

black pixels in the image is assigned with the color value RGB(1,1,1), so as to allow

11



for this efficient in-place segmentation. Note that this modification is harmless since

it is a small change and occurs in all images to be compared.

2.2 Challenges

a b c

d e f

Figure 2.4: Noisy segmentation examples from our database. The main difficulty of the
first plant image is, the plant region on the background of the main plant, while the
difficulty in second image is, close representations of leaf and rock regions in gray-scale.

Noisy image characteristics present one of the major challenges to the plant image

segmentation problem. Challenging cases are due to a textured background or a

continuous plant region. In order to prevent this, we can define some constraints for

input (query) images from users. Secondly, the implemented method of Boykov and

Kolmogorov uses gray-scale color information and 256 intensity values is inadequate

in several cases. For instance, the plant and the background regions may have

close intensities such as in a dark-leaf-plant standing in front of a dark wall, or
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even various real colors having the same intensity in gray-scale. Using RGB or HSI

color models and measuring the energy values between pixels according to 3D color

information (24 bits rather than 8 bits) might increase the accuracy of segmentation.

Although this modification will not make the segmentation of green plants within

a green region easier (i.e. Figure 2.4 a,b,c), it is expected to improve the quality

of segmentation in other cases such as the example shown in Figure 2.4 d,e,f. In

conclusion, for further study, a similar graph cut method might be implemented

in 3D data using RGB or HSI channel values of each pixel rather than gray-level.

Having RGB or HSI values will increase the data three times, hence increase the

accuracy.
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Chapter 3

FEATURE EXTRACTION

In the system we developed, images are analyzed using various color, texture, and

shape features. Color, is an important feature in all CBIR applications and the

same applies for plant image retrieval problem as well. However, the use of color

in plant retrieval is more complicated compared to most other CBIR applications,

since most plants have green tones as their main color.Furthermore, the color of

the flowering problems also poses a challenge: a flowering plant should be matched

despite differences in flower colors. For instance given an orchid of a certain color,

one ideally should find its exact match from the database, as well as other orchid

plants with different flower colors. The texture information due to colors and veins

of the plants, is also important in plant identification. In the current system, we

experimented with different Gabor wavelets in order to extract texture information.

Third important core feature for the plant images is shape-based features. The outer

contour of the plant is extracted using a contour tracing algorithm, starting from

the segmented image. Using this extracted contour, several features are extracted

about the shape of the plant and its leaves. This section details the feature extraction

process.
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3.1 Color Analysis Techniques

Color is the most important, common, and primary feature of an image. That is why

the earliest image retrieval studies used color as distinguishing comparing feature

between images [10,27,28]. Certain objects or scenes have particular colors: e.g. sky

is blue, grass is green, or lemon is yellow. If the problem is to distinguish whether

an image has sky as part of it, blue values of the color histograms give information

about this existence. On the other hand, other entities, buildings, cars, or flowers

may also have the blue color. Another complication is that images do not consist

of one object and one color, but of many elements usually. Even the image is a

photograph of the seaside, it may additionally have trees, sand, rocks, animals, or

people. The seaside images in Figure 3.1 have different sub-elements, hence they

consist of different colors beside blue.

The color histogram shows the color spectrum of the image, or the distribution

(in terms of frequency) of various colors [23]. To compute the histogram, we first

decide on the number of bins to represent the colors. A higher number of bins

represent the distribution in a higher color resolution, but a lower number of bins

is more robust to small color variations. Color sensitivity of color histograms varies

and they are called as n-bin color histogram if the color map is quantized to n

distinct regions. Histograms are typically normalized by the total number of pixels

in the image, so as to represent the color distribution as a percentage of the number

of pixels in the image.

Figure 3.1: Various images having similar content but different color distributions.
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Another point of consideration is the representation in different of color formats.

Black & White images are represented by binary representation, while gray images

are represented by 8 bit representation (256 different colors) and color images are

represented by 24 or 32 bits of information. RGB, the current standard format for

computers and TV screens, generate colors by combining red, green and blue lights.

Another color format, CMYK, is designed for printing purposes. In addition, there

exist other color spaces that are modelled for specific purposes. Hence, each color

model has some usage advantages. Likewise, normalized-RGB (nRGB) and HSI

color models are examples that are often used in CBIR problems.

3.1.1 RGB Color Space

Many systems such as cameras, televisions, monitors use the RGB color space where

the letters R, G, B stand for Red, Green, Blue color channels. By using separate

red, green, and blue channels as light sources, color display systems on other colors

represent by mixing a weighted combination of these three components. Figure 3.2

depicts the 3D RGB color space where black and white points are also marked.

While commonly used, the RGB color space has some well-known shortcomings

(e.g. sensitivity to illumination changes); in fact, different color spaces may be suit-

able in different applications. Alternative color spaces include the normalized RGB

(nRGB) and the HSI color spaces. Both color spaces are often used in order to

obtain robustness against illumination differences. Because of this property, both

color models are appropriate for CBIR studies and are often preferred to the RGB

model. The nRGB color model is a derivation of the RGB model in which each

channel value is normalized with the total intensity of all channels. The normaliza-

tion process discards different illumination conditions. In the HSI (Hue Saturation

Intensity) color model, which is also called as HSL (Hue Saturation Luminance)

or HLS, luminance of color is represented separately from the chromaticity. An-

other color space that is similar to HSI is YIQ which is originally designed for TV
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Figure 3.2: 3D RGB cube: illustrating RGB color space. Any color can be represented as a
point in the color cube by (R, G, B). For example, red is (255, 0, 0), green is (0,255,0), and blue
is (0, 0, 255).

broadcasting, but also used in CBIR [28]. Due to the separation of the intensity

component(Y), the YIQ color space is also robust to illumination variations.

3.1.2 nRGB Color Model

The nRGB color model is a derivation of RGB model in which each channel value

is normalized with the total value of three channels (R,G,B). The normalization

process effectively normalizes for different illumination conditions. The colors are

represented by three normalized color values (nR, nG, nB), which indicate the red,

green, and blue color ratio in a specific pixel. The normalization computation for red

and green channels are formulated as: nR = R/(R+G+B) and nG = R/(R+G+B).

The efficiency of this color space is due to its robustness to the illumination changes.

Humans are robust to these changes, perceiving for instance a red object similarly in
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difficult illumination conditions. For the color spaces, the image of the same object

or location taken in different illumination conditions correspond to widely differ-

ent RGB values while they show similar normalized channel values. For example;

both RGB(150,150,150) and RGB(75,75,75) colors are gray with different brightness

levels. On the other hand colors are represented as nRGB(0.33,0.33,0.33) which in-

dicate their equality as the same color. Note on the other hand that converting

an RGB image into nRGB removes the effect of any intensity variations, thus it is

preferred in CBIR problems.

3.1.3 HSI Color Space

HSI stands for Hue, Saturation and Intensity, which is also called HLS and HSL

(for Hue, Lumination & Saturation). The motivation of the HSI color-system is to

imitate the human perception better than the RGB model. Similar to the RGB

and nRGB color models, color is represented by three channels in the HSI color

space as well. However, in the HSI color-system, colors are not combinations of

three colors, but the juncture of three different visual factors such as color, density,

and intensity. Namely, in the HSI color space, color is represented using its Hue,

Saturation and Intensity values. The important novelty is that brightness factor of

light is considered apart from the color itself. For instance, while dark blue and

light blue colors have different R, G, and B values in RGB space, both have the

same hue values in HSI space. The saturation value depicts the density of the color.

Therefore, having same hue and intensity values, the different tones of blue can be

represented by changing the saturation. This condition indicates the closeness of

HSI space to human perception. We humans perceive and also name the shades of

green as light green, pale green, green, dark green i.e., as the same green color with

different amounts of saturation. As mentioned above, by separating intensity, the

false effect of different light sources and angles is discarded.
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3.1.4 Color Feature Extraction

Color is an important feature in all CBIR applications and the same applies for plant

image retrieval problem. However, the use of color in plant retrieval is in a way more

complicated compared to other CBIR applications, since most plants have green as

their main color with subtle differences. Furthermore, flowering plants should be

successfully matched despite differences in flower colors. For instance given an orchid

of a certain color, ideally one should find its exact match from the database, but

also other orchid plants with different flower colors.

As in many other studies [28–31], we used color histograms and color co-occurrence

matrices to assess the similarity between two images. If the occurrences of colors or

color pairs in two images are close, the images will be matched as similar in terms

of their color distributions. Three different color spaces are used to produce color

histograms; namely RGB, normalized RGB (nRGB), and HSI. In order to obtain

a histogram robust to normal variations in plant images, the 24-bit RGB informa-

tion is quantized into a 9-bit representation (for a total of 512 bits, using 3 bits for

each color channel), before calculating the RGB color histogram. For the nRGB

representation, one of the channels can be deduced from the normalized value of the

other two (nR+nG+nB=1); therefore we compute the nRGB color histogram using

only the values of two normalized channels, which affords more bins (for a total

of 256 bins, using 4-bit for each of the nR and nG values). In the HSI space, the

360 different hue values which indicate the color are quantized to 10, 30 or 90 bins.

Intensity value is intentionally discarded, while saturation is not used for simplic-

ity. Prior to histogram matching, we smooth the computed histograms by taking

weighted averages of the consecutive bin values, so as to obtain some robustness

against quantization problems.

As an extension of the color histogram, a color co-occurrence matrix gives in-

formation about the color distribution in neighboring image pixels. Although color

co-occurrence is generally mentioned as a texture analysis method, it primarily indi-
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cates the distribution and sequentiality of color pairs. We use a 30x30 co-occurrence

matrix computed from the HSI color space, where C[i][j] stores the number of neigh-

boring image pixels having the hue values i and j. We generate the co-occurrence

matrix using three different methods: i) considering only four neighboring pixels (i.e.

top, bottom, right, and left neighbors); ii) considering all eight neighboring pixels

and iii) using 8-neighbors but ignoring the diagonal elements of the co-occurrence

matrix. Diagonal elements store the number of neighboring pixels having the same

quantized color and dominate the matching process since they correspond to large

uniform color regions in the image. This last method aims to capture color change

information, rather then uniform areas.

3.1.5 Challenges

The primary challenge we have encountered in color analysis is caused indirectly

by the insufficient segmentation results. When background region is not cleaned up

smoothly, these regions effect and bias the generated color histograms. Additionally

in hue histograms, we have encountered the undefined saturation and meaningless

hue values. Meaningless hue values are obtained in two cases; i) singularity prob-

lem causes zero saturation and undefined hue, ii) very dark and very bright points

have saturation values of 0 and 1, respectively, while their hue values vary widely.

To avoid undefined hue and saturation values, the system may be enhanced with

additional controls on singularity points, as well as very dark or bright points. For

instance RGB, or intensity values may be used as a color feature in such cases as

proposed in [32]. In fact, we implemented a modification to ignore pixels with unde-

fined or problematic values, but this attempt was not very successful, partly due to

ignoring the white areas inside the plants. Another study has evaluated the success

of different color spaces and transformations on skin detection [33] with similar re-

sults, concluding that removing illumination information may reduce performance,

a finding in line with our experience.
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3.2 Texture Analysis Techniques

Texture is another low-level property of images. The structure of the image, actually

structure or surface [34] of the object/region in the image can be expressed as image’s

texture. Texture patterns on the image are important as a characteristic of the

object or region and that is the property aimed to be extracted. As in real life, real

objects have different visual patterns; for instance grass and stone appearances are

distinct. Other typical texture examples are shown in Figure 3.3. Although these

examples are ideal and specifically aim to express the various texture types, every

object has some texture information even though it has plain surface. Similarly,

objects may display different texture characteristics in different areas.

Figure 3.3: Various texture samples taken from the Brodatz collection

Texture of a plant leaf is one of the most important distinguishing feature in plant

images. It may be due to having many veins in different directions or parallel lines

of different colors. In addition to the single leaf texture, a global texture information

is extracted in this thesis, since the whole picture of plants are used rather than only

a single leaf. This includes the frequency of leaves, their orientation and curvature.

In the general CBIR research, various approaches to retrieve texture features are

used both in spatial and frequency domain. The simultaneous auto-regressive (SAR)

model, gray-level co-occurrence (GLC) matrices, Markov random field (MRF), pyramid-

structured wavelet transform (PWT), tree-structured wavelet transform (TWT)

and Wold decomposition are some examples for spatial-domain methods [35–37].
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In addition, one of the most preferred methods for texture analysis is the Gabor

wavelets [35,38,39]. The following section explains Gabor wavelets in detail.

3.2.1 Gabor Wavelets

Gabor wavelets in different scales and orientations are suitable for texture analysis,

since texture depends on scale.

It is easy to understand Gabor wavelets starting from 1D Gabor filters. Gabor

filter is generated by convolving a Gaussian curve and a sinusoid function. Figure 3.4

nicely illustrates this concept. Gabor filter consists of two parts, real and imaginary

as depicted in Figure 3.4c and d respectively. While the real part indicates the

Gabor filter generated by cosine function, the imaginary part carries the Gabor

filter by sine function. This double design can be understood in Equation 3.3.

Figure 3.4: 1D composition of a Gabor filter a) A sinusoid b) A Gaussian c) Resulting
Gabor filter(real part) d) Resulting Gabor filter(imaginary part)

Since images are 2-dimensional, 2D Gabor filters are used in image recognition

and retrieval. A 2D filter window is slided on the image to measure the local

responses. High-response means that the texture of that region is aligned with that

filter. A 2D Gabor filter is not very different than in 1D: the Gaussian is a 2D

Gaussian kernel as shown in Figure 3.5a and sinusoid function is a sinusoidal curve

repeated in the second dimension (see Figure 3.5b). The composition of a 2D Gabor
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filter is depicted in Figure 3.5c. While sinusoid function helps to retrieve the texture

pattern in the image, Gaussian kernel smooths the filter to adjust the effect of points

according to their distance to the center (i.e. points that are corresponding to the

outer regions of the filter will have less effect on the total response).

Figure 3.5: 2D composition of a Gabor filter (taken from [3]) a) A sinusoid b) A Gaussian
c) Resulting 2D Gabor filter(wavelet)

The response of a Gabor filter on an image I(x, y) is the convolution of the image

(I(x, y)) and the Gabor filter. The convolution is expressed below:

Rmn(x, y) =
∑
s

∑
t

I(x− s, y − t)gmn(s, t)

where g(s, t) denotes the Gabor function, s and t are variables that are corresponding

to Gabor filter window’s size and m,n are scale and orientation variables of the

Gabor wavelet function.

The mathematical basis of Gabor functions is based on wavelets. 2D Gabor

functions are expressed with the following equation in several papers [35–38] -with

a few different notations only- as:

g(x, y) =
1

2πσxσy
e
− 1

2
( x

2

σ2
x

+ y2

σ2
y

)
e2πiWx (3.1)

The first term; 1
2πσxσy

e
− 1

2
( x

2

σ2
x

+ y2

σ2
y

)
is the 2D Gaussian function with different stan-
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dard deviations in both dimensions and the rest of the Gabor function is the com-

plex sinusoid. The complex sinusoidal function can be seen if the Gabor function is

transformed using Euler’s formula which is:

e2πiθ = cos 2πθ + i sin 2πθ (3.2)

then the Gabor function can be written as:

g(x, y) =
1

2πσxσy
e
− 1

2
( x

2

σ2
x

+ y2

σ2
y

)
(cos 2πWx+ i sin 2πWx) (3.3)

Here, W denotes the window size of the filter [38], while the standard deviations

of Gaussian kernel in x and y dimension are expressed by σx and σy respectively. The

Gabor function given above is defined as mother wavelet function (i.e. in [36–38]),

from which Gabor wavelets with various parameters are generated. A Gabor wavelet

is generated by:

gmn(x, y) = a−mg(x′, y′), a > 1 (3.4)

where

x′ = a−m(x cos θ + y sin θ)

y′ = a−m(−x sin θ + y cos θ)

a−m =

(
Ul
Uh

) −m
S−1

The parameters, m and n specify the dilation (scale) and orientation of the

wavelet. The angle, θ, is defined by the parameter n which has values between 0 to

K−1 where K is the total number of orientations used. In other words, θn = nπ/K

and n = 0...K−1. Likewise, a−m determines the scale of the wavelet in which Ul and

Uh denote the minimum and maximum filter sizes respectively and m = 0...S − 1
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where S is the number of scales.

3.2.2 Texture Feature Extraction

In this thesis, Gabor filters in different orientations are used to detect textures

in different directions, while the use of different scales aims to detect textures in

different scales. The Gabor function we used is given below:

g(x, y, f, u, σ) =
1

2πσ2
e−

x′2+y′2

σ2 (cos(
2πx′

λ
) + i sin(

2πx′

λ
)) (3.5)

where

x′ = x cos(θ) + y sin(θ)

y′ = −x sin(θ) + y cos(θ)

Here x and y indicate the coordinate on the Gabor wavelet. Equation 3.5 is a

special case of Equation 3.3 with σx = σy. Hence, we denoted the standard deviation

of Gaussian kernel with only one variable σ. Besides, we have taken a−m as 1 and we

did not specify the dilation of wavelet with W . Instead we used 1/λ = f/C which

expresses the spatial frequency of the sinusoid proportional to the filter window size

in x-dimension: C. It should be emphasized that σ is related with dilation of the

sinusoid and changes with the frequency, f (number of sinusoid peaks on the filter

exactly). The last parameter, u, indicates the chosen orientation number that finds

the angle θ by θ = uπ/4. We multiply u with π/4, since unit orientation difference

is taken as π/4. u can take values between 0 and K − 1 where K is the number of

orientations.

In this thesis, Gabor filters in four different orientations and scales are used

(K=4, S=4). With 4 scales (k1−4) and 4 orientations (θ1−4), a total of 16 Gabor

wavelets are applied to each image, resulting in 16 different Gabor response images.
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Figure 3.6 offers response images of a sample plant image in K=1 (f=3 in a 40x40

filter), S=0...3, where texture patterns and their orientations are evident. We use

the mean (µi) and standard deviation (σi) of these maps in comparing the texture

differences between two images.

When comparing the texture similarity of two images, often the comparison is

done using the Gabor responses in all scales. This is called the default texture

feature. An alternative is to use the most dominant scale for each image. This

is called the max-scale texture feature and is meant to deal with scale difference

across images of the same plant. We introduced a third approach which is called

patch-based, to provide rotational invariance on a leaf level, as explained in Section

3.2.3. In addition, two other methods are proposed which produce new response

maps using the Gabor response images. Maxima over scales method selects the

dominant response of a pixel among all scales and generates a new response map

by performing this selection for all pixels. The final method (sum of orientations),

provides a new image as well. However, the new pixel values are computed by

summing the response values of corresponding pixels in all orientations, to provide

rotation invariance.

Figure 3.6: The original image and four different maps show the texture energy in different
orientations (0, 45, 90, 135 from vertical, from left to right). Note that the texture in
different leaves of this plant are captured in different orientations.
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Rotation Invariance

When a uniformly textured object (e.g. straw or fabric) is rotated, its Gabor re-

sponse within the same scale but in different orientations are circularly shifted. For

instance, when an object with a dominant texture along the x-axis (0 degree) ro-

tates at 45 degrees, the response of the rotated image is dominant on the 45-degree

Gabor response. Hence, if we represent the feature vector starting with the angle

having the maximum response (a canonical representation) and in increasing angu-

lar order, we can match the corresponding maps. In the given example, the initial

texture feature vector:

{(µ0, σ0), (µ45, σ45), (µ90, σ90), (µ135, σ135)}

would be matched to the circularly shifted feature vector of the rotated image

by 45 degrees:

{(µ45, σ45), (µ90, σ90), (µ135, σ135), (µ0, σ0)}

3.2.3 Patch-Based Approach

The situation is more complex in plant images than in general CBIR problems.

Even if the texture in a plant little varies across the leaves of the plant, the fact

that the leaves are often oriented in different directions makes the above method

inapplicable (see Fig. 3.6 for an example). For this problem, the ultimate solution

is to go down to the leaf level and compare the texture responses of individual

leaves. This thesis attempts to approximate this approach by using a patch-based

approach where we obtain uniformly distributed patches on the image and rotate

each of them to a canonical orientation (in angular order, starting with the most

dominant response) by rotating each patch individually. While this attempt is not
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guaranteed to provide full (leaf level) rotation invariance, the experimental results

show that it does help with the texture analysis. We have implemented a patch-

based method considering Gabor response images in one scale only. Hence, there

are 4×2 patch-based texture features with K = 4 and S = 1. Feature extraction for

the patch-based method is performed as follows. First, the plant region bounding

box is detected since it is an efficient size measure than the image size. Then,

corresponding Gabor response image is divided into 20× 20 distinct patches. Mean

intensity and standard deviation values (µ, σ) are calculated for all patches. At the

end, the mean and standard deviation of these 400 patches is computed. Hence,

for each response image one µ and one σ values are produced. With four different

orientations, we reach 8 feature values.

3.2.4 Challenges

The main challenge we have encountered is image resolution which causes texture

to appear in different Gabor responses. Although we have produced Gabor response

images in S = 4 different scales, since they are compared one-by-one on the same

scale, the amount of plant detail that belongs to the sub-image on the same size

with Gabor filter window. Figure 3.7 depicts this effect on a cymbidium orchid

image which was originally in 1280 × 1024 pixels size. The comparison is done

with a subsample of the original (larger) image in size 600 × 480. While Gabor

response map of the original image has more details, the response of the smaller one

lacks details since some texture patterns are missing. Hence, comparing images by

disregarding their image resolutions is not very sufficient. A simpler solution may

be to use response images in scales that are adaptive to image size.

Although image size seems a problematic issue, our proposed texture analysis

methods are two alternative solutions. Max-scale and patch-based methods over-

come both orientation and scale variance problems. The max-scale approach as-

sumes that the highest response of gabor filter is obtained from the most fitting
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Figure 3.7: The effect of image resolution to the Gabor response images and retrieved
texture patterns. a) Plant image b) Gabor response image of the image in size 1280x1024
c) Gabor response image of the image in size 600x480 d) Detailed view of b focused on
some pattern e) Detailed view of c focused on the same pattern with d.
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filter scale, because it retrieves most of the patterns. In the max-scale texture anal-

ysis technique, we have used texture feature values (σ and µ) of the scale that has

given the highest-response (as the only texture feature). In patch-based approach,

images are partitioned into fix number of patches. This approach overcomes the im-

age resolution variety problem stated above. Although the same plant is shot with

a 1280× 800 and a 600× 375 pixels resolution, since both images will be separated

into an equal number of patches, the patches have identical patterns in both images.

Hence, as expected, the texture similarity of both images are very high in patch-

based method. Moreover, this method overcomes the rotation variance problem of

leaves as well, by rotation all patches to a canonical orientation.

The common assumption of photographs taken for the purpose of identifying

an object is that such images are to clearly indicate the general structure and/or

outline of the object. Therefore, we can expect the input plant images show the

plants from a distance where all parts of the plants are seen. Most of our plant

image database contains this kind of photos, but there are few close-ups also. If

a constraint is defined to regulate the plant position in the image, scale invariance

problems will only depend on image size and can be easily handled.
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3.3 Shape Analysis Techniques

Shape information is probably the best distinguishing characteristic of a plant, hence

shape features are used in image retrieval systems frequently. In shape-based CBIR,

two basic approaches exist: region-based and boundary-based (contour-based) [40].

Region-based systems typically use moment descriptors [41] that include geometrical

moments, Zernike moments and Legendre moments [40]. Boundary-based systems

use the contour of the objects and usually give better results on images that are

distinguishable according to their shape outlines. Fourier descriptors [40,41], curva-

ture scale space [18, 42] are some commonly used contour-based methods for shape

feature extraction.

3.3.1 Contour-Based Shape Analysis

Contour-based shape analysis techniques are built on the fact that images express

more descriptive shape information on their outer boundary compared to their in-

ternal content. In this aspect, when dealing with such images, the boundary of

the object or region is the most important shape descriptor for this type of shape-

based image analysis. There are several steps to analyze the shape of a region using

its contour. The initial step is extraction and quantification of the contour. The

second step is evaluating this contour to extract the feature values describing the

contour. Different contour-based shape analysis methods mostly vary in the second

step, while they commonly use chain code descriptors for the contours.

A common representation of the image contour is the chain code. Chain code is

the representation of the contour by a series of enumerated direction codes which

are in the interval of [1-8] 1 and depicted in Figure 3.8.

In such a contour system, if you know the starting point position and the chain

1The most common case of chain codes has 8 directions. The other alternative is using 4
directions. Pixels have a neighbor at each eight directions which means there are eight possible
directions to move from a pixel.
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Figure 3.8: 8-directions that are used in the chain code and their corresponding enumer-
ators

code, you can follow the changes in the direction and draw the contour of the

object. This method also makes it possible to measure direction changes on the

object boundary very easily that we can observe smoothness and roughness of the

object shape. Therefore, we have preferred to use a contour-based shape analysis

method.

3.3.2 Contour Tracing

For plant image retrieval, the outline of a plant image is considered as an appropriate

shape descriptor, since plant leaves are recognizable on outer regions of the plant

(see Figure 3.9).

In this thesis, the shape feature of the plant images are extracted with a contour-

based approach. In order to retrieve shape information of the plants, plant bound-

aries need to be recognized and quantized as image contours. How we have traced

the plant boundaries is explained in this section. The pseudo-code of the algorithm

is given in Appendix B.1.

Most of the contour tracing algorithms are based on following the boundary of

the objects, the way bugs find their ways around objects. In this analogy, when the

bug follows the contour from the outside, it tries to advance and keep the object

on its left, turning clockwise when necessary. There is also an alternative where the

contour is followed from the inside. Since, images are segmented in our system, they
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Figure 3.9: An example for contour tracing. Left: Original segmented image where back-
ground pixel value of 0 while foreground is non-zero, Center: traced contour of the image,
Right: Detailed view of the contour focused on the marked region where concave and
convex points are marked as red and blue.

have background value of 0. Hence, the background is easily detected when a black

pixel (intensity = 0) is found.

For contour tracing, we have used the first method (tracing from outside) which

is expected to more robustly draw the plant contour. Although using segmented

plant images would be also sufficient as input, we have used their segmentation

maps, thinking that using the PNG image would be more efficient 2.

To find the first edge point, we have proposed a different procedure rather than

starting from the (0,0) point and continuing to find a plant-region point. In our

algorithm, the starting points are specified in the beginning by approaching the

image from four different directions: east, north, west, and south.

After finding an initial point, the plant is started to be encircled by approxi-

2We have stored the segmentation maps in the PNG format, while segmented images are in
the JPG format. Since JPG is a compressed image format, usually it causes slight changes in
pixel intensities which effect our plant region outline, which is why PNG is preferred for segmented
maps.
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mating that it has a roughly circular shape. For example, if the bug starts to trace

from the first point on the left, you know that the bug has to move right from

either above or below pixels. Since directions are altered counter-clockwise in our

approach and the first direction is east (1 in Figure 3.8), then the next direction

becomes northeast (0). If the point on the northeast is an edge point, then the bug

starts to round the boundary from the top. In the next iteration, the bug attempts

to turn left again trying to move the above point (in direction 7). However if that

point is not an edge (plant) point, then the bug is forced to turn right. Since the

bug will turn right when it sees non-plant regions, it follows the path attached to

the object boundary and also moves on the possible left points. At the end, the bug

completes the path when returning to the starting position. Additionally, special

conditions exist such as attempting to move to a point out of the image; we change

the direction of the bug in such cases. All these controls and direction changes can

be seen in the above contour tracing algorithm given in Appendix B.1.

3.3.3 Interest Point Detection from Contours

The interest points in contour-based shape analysis are sharp points of the contour.

Since the contour is stored/quantized as chain code, then sharp points can be easily

detected by measuring direction changes in the chain coded-contour. In our problem,

sharp points are expected to be the tip and base points of leaves or small leaf

structures (juts) which can be detected by directional changes (see Figure 3.9,3.13

for an example).

In our system, the interest points are specified during the main contour tracing

operation. While tracing a new contour point, the direction change around that

point is numerically measured. To decrease the effect of noise on the contour, as

a smoothing factor, we have considered direction difference between two n-pixel

contour segments rather than only two pixels. The variable n is a parameter called

as trace run steps and had two values: 5 and 10 in our experiments. The sharpness
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is measured as the difference of the average directions of these two contour segments.

Then if this measured direction change (sharpness) is above a predefined limit, the

corresponding breakpoint is labelled as a sharp point. Algorithm that is used to

detect sharp points depending on their sharpness is provided in Appendix B.2.

The sharpness limit is defined as acute angles. Since the 8-direction chain code is

used (see direction enumerators in Figure 3.8), 90 degrees numerically corresponds

to a direction difference (sharpness measure) of 2.

Figure 3.10: Illustration of direction change in the contour. Left: Example for wide-acute
angle comparison. Direction change from 1 to 7 gives sharpness measure 2 (abs(1-7)=6≡2).
Right: The highest sharpness is obtained when an opposite direction is followed another
(abs(3-7)=4)

Consider direction change from 7 to 1 illustrated in Figure 3.10. Here the dif-

ference is +6 which corresponds to 270 degrees of difference, but the real angular

difference is 90 degrees. In order to solve this problem and use the acute angle

defined by two directions, we use:

diff = abs(dir_1-dir_2);

if (diff>4)

diff=8-diff;

At the end of the contour tracing process, a list of interest points is produced.

The next step is labelling these sharp points as convex or concave. Figure 3.11 is

explains the heuristic under this labelling task. Concave points are placed in the
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Figure 3.11: Illustration of the heuristic that labels the sharp points as concave or convex

inner parts of the shape and if contour approaching on that point is elongated on

this direction, this extended partition will continue on the inner part of the shape

(see point C in Figure 3.11). The reverse is true for the convex points. If the contour

approaching to B is continued, the lines like z or t will be drawn depending on the

tracing direction you are following.

In our system, an imaginary line is drawn on the same direction of the sharp

point and the first non-contour point of the line is checked if it belongs to the

inner or outer part of the region. Since the segmentation maps of the images are

used as input images for shape analysis, it is easy to decide if the points are in or

out of the plant region. Please refer to Appendix B.3 for the pseudo-code of the

convex/concave point differentiation algorithm. At the end of detecting convex and

concave points, the feature values are measured. That step is explained in Section

3.3.4.

3.3.4 Extracted Features/Shape Descriptors

For plant image retrieval, the outline of a plant image is considered as appropriate

shape descriptor, since plant leaves are recognizable on the outer regions of plant.

36



Figure 3.12: Illustration of the sharp-based feature measures on a plant contour

Therefore, features extracted from the overall plant contour are used in this

thesis. The contour of the plant is extracted by tracing the segmented plant image

and represented as a chain code in 8 directions (i.e. one enumerator for each 45

degrees). Then, six features are extracted from this contour:

1. Number of Concave Points (e.g.A,C,D,F)

2. Number of Convex Points (e.g.B,E)

3. Leaf Arc Length (ÂBC)

4. Normalized Leaf Arc Length (nÂBC)

5. Leaf Base Distance (AC)

6. Leaf Tip Distance (BE)

In order to extract these features, we first extract sharp (edge) points by analyzing

direction changes on the contour. These points are labeled as convex or concave

depending on their position and direction (or curvature of the contour). All these

measures are depicted in Figure 3.12. Given concave and convex points, the corre-

sponding leaf arc length is measured as the arc distance between two consecutive

concave points (ÂBC). The leaf base distance (AC) is measured as the straight
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line distance between them. Similarly, leaf tip distance is the distance between two

consecutive convex points (BE).

For robustness, we obtain the median value of these features from the whole plant

region. Assume that n distinct leaf structures have been found, then n different

leaf tip distances are measured. The feature value is computed with the following

operation:

median(l0, l1, ..., ln−1)

Extracted shape features that are listed above can be grouped to three, according

to the information they represent. Number of concave and convex points indicate

the sharp point distribution when they are proportioned to the contour length.

While leaf tip distance represents leaf distribution, the remaining three features

(namely leaf arc length, leaf base distance, and normalized leaf arc length) provide

information about the leaf structure.

For this thesis, we designed shape features that describe the overall contour of the

plant. Local features such as scale-invariant feature transform (SIFT) features have

been successfully used in many recognition and retrieval problems. SIFT method

locates key points or interest points in the images and matches the descriptors that

are collected at these interest points in order to match two images. Since a plant

image consists of a collection of leaves which are not very distinguishing object parts,

our initial attempts in using the SIFT features for this problem have not been very

successful. In the future, we intend to use the SIFT features to identify interest

points that indicate leaf boundaries, by modifying the standard SIFT algorithm to

be more suitable for our problem. Since, SIFT is a local descriptor, leaf boundaries

in the inner plant regions would also be captured.
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3.3.5 Challenges

As also mentioned in early sections, accuracy of image segmentation and smoothness

of segmented image part is the most important factor directly affecting the success

of shape-based image analysis. Erroneous, jaggy regions in the contour is a very

common problem which leads to faulty feature extraction. Here is an example for

an inaccurate segmentation and its corresponding noisy contour that shows the plant

as if it had very small frequent leaves, while in reality the plant has a few long and

smooth leaves (see Figure 3.13).

Figure 3.13: Example for a jaggy (noisy) plant contour caused by insufficient segmentation.
Left: Segmented image, Middle: Segmentation map to see the segmentation faults, Right:
Traced contour of the image with convex and concave points marked as blue and red,
respectively

In such a problematic case, since our system considers the direction changes on

the contour, many points are labelled as sharp points. However, most are fake and

would not be labelled as sharp if segmentation had been more robust. In conclusion,

the fake sharp points are also used in evaluation of shape features such as normalized

leaf arc length. While leaf base distance and leaf tip distance measures decrease,

number of concave and convex points increase drastically. To apply a smoothing

filter or using longer run steps may be a solution. However, applying a filter will also

bring some extra image processing such as edge detection, line following. Tracing

the contour with larger run steps may decrease the noise effect. However detecting

if an image needs this adjustment is another issue.
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Figure 3.14: Example of a segmented plant image with three separate plant regions and
its corresponding plant contour. By a small modification on contour tracing algorithm,
two regions are retrieved and added to the contour.

Although our contour tracing algorithm is generally satisfactory, some conditions

can cause contour tracing to be hard or incomplete. If a segmented map consists of

several plant region segments as in Figure 3.14, since the algorithm designed to trace

only one closed area, it is not possible to catch all these partitions. To overcome

this problem, we have designed the system which starts tracing from four different

directions. So, it is possible to retrieve four different contour segments. However, if

these contour segments are not meaningful or long enough (if they are smaller plant

parts spread to the outer parts of the image, while the main part is in the middle),

the actual shape information will not be extracted. Note that in our current system

contour parts shorter than 4×run steps are discarded and not added to the resulting

contour.
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Chapter 4

MATCHING CRITERIA

At the end of the feature extraction stage, there are several features extracted from

the query images such as color, texture and shape features. The corresponding fea-

tures are also precomputed for the images in the database. Identification techniques

based on similarity matching depend on distance between feature vectors of images.

Therefore, the success of identification systems strongly depends on how the fea-

tures are accurately extracted and how the feature vectors are compared. Feature

extraction step was explained in Chapter 2 and this chapter explains the matching

step using the extracted features.

Given a query image, the database images are matched to the query image ac-

cording to their similarity. After the similarity of all images in the database are

measured, a similarity ranking is generated with respect to these values. As a re-

sult, the image at the top of the ranking list is the top-match among the database.

The similarity and dissimilarity of two images are complementary scores: if they

are 60% similar, this also means they are 40% dissimilar. Since measuring the

dissimilarity of images is easier, to understand that is the common procedure fol-

lowed in recognition/identification problems. The simplest method is to measure

the Manhattan distance (also called as L1-distance) between feature vectors. The
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Manhattan distance of two vectors: p and q is computed as:

||p− q||1 =
n∑
i=1

|pi − qi| , p = (p1, p2, ..., pn), q = (q1, q2, ..., qn)

In our system, given a query image, the dissimilarity between the query im-

age and each image in the database is assessed according to the used feature(s).

Histograms and co-occurrence matrices in different color spaces (RGB, nRGB and

HSI), Gabor texture features and shape features such as frequency of sharp points,

structure of leaves (leaf boundary length, leaf width, leaf length/width ratio) and

distinct leaf distance comprise the individual features, while some combinations of

these features are also tested.

Dissimilarity scores using different individual features are given in the follow-

ing equations. The RGB color dissimilarity score of two images Q (query) and

I (database image) is calculated using the L1 norm of the difference between the

histograms of the two images, according to the formula:

δRGB(Q, I) =
512∑
i=1

|hQ(i)− hI(i)|

Here each histograms has 512 bins and hQ(i) is the value of ith bin of Q’s his-

togram.

The other color features, namely nRGB and hue histograms and the HSI based

color co-occurrence matrix are matched similarly. In those cases, the summation is

done over 256, 30/90 and 900 (30x30) elements, respectively.

Prior to the hue histogram matching, as a different calculation method, we

smooth the computed histograms by taking weighted averages of the consecutive bin

values, so as to obtain some robustness against quantization problems. Smoothed

90-bin hue histogram matching is computed by the following formula:
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δHueSmooth(Q, I) =
1

4

90∑
i=1

∣∣h′Q(i)− h′I(i)
∣∣

where 1
4

is a normalization factor and hQ(i) is the smoothed value of ith bin of

Q’s histogram:

h′Q(i) = hQ(i− 1) + 2× hQ(i) + hQ(i+ 1)

For the modified color co-occurrence matrix, the distance of non-diagonal ele-

ments are taken into account as:

δCo−oc(Q, I) =
30∑
i=1

30∑
j=1

|ccQ(i)− ccI(i)| , i 6= j

where the condition i 6= j eliminates the diagonal values.

The (default) texture dissimilarity of two images is calculated by summing the

dissimilarity of each of the s×u Gabor response features as displayed in the following

two equations. Here s denotes the scale, u denotes the orientation and δsu(Q, I)

denotes the dissimilarity in the given scale and orientation (s,u):

δGabor(Q, I) =
∑
s

∑
u

δsu(Q, I) , s = 1 . . . 4 , u = 1 . . . 4 (4.1)

where

δsu(Q, I) =
√

(µsu(Q)− µsu(I))2 + (σsu(Q)− σsu(I))2.

We also compare texture features of two images using two other approaches.

One is called the Max Scale method, where the texture of two images are matched

in the dominant scale, as:

δGabor(Q, I) = max
s

∑
u

δsu(Q, I) , s = 1 . . . 4 , u = 1 . . . 4
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The dissimilarity of the patch-based texture method is the same as the default,

while the computation of the Gabor response images differ. As stated above, there

are s × u default texture features for each image in the default method. However,

the patch-based method uses the Gabor response images in one scale only (since the

fixed number of patches resolve the resolution and scale problems to some extent),

hence there are u patch-based texture features and Equation 4.1 is computed with

s = 1.

Besides color and texture-based dissimilarity scores, shape-based dissimilarity is

measured as L1-distance of shape feature vectors of two images, Q and I, as:

δShape(Q, I) =
1

n
|FQ − FI | =

1

n

n∑
i=1

wi
∣∣fiQ − fiI ∣∣ , n : num.offeatures in F

where FQ can be expanded as: FQ = f1Q , . . . , fnQ . Although shape-based dissim-

ilarity is treated as one score while combining with color or texture methods, we

have also made tests by separating it to three shape feature types such as frequency

of sharp points, structure of leaves and leaf distribution.

Sharp point counts is calculated as L1-distance of number of concave and convex

points:

δFreqSharp(Q, I) = |concQ − concI |+ |convQ − convI |

The dissimilarity of leaf structures is computed according to three different fea-

ture values; leaf base distance (dbase), leaf arc length (dArcLen) and normalized leaf

arc length (dnArcLen = dArcLen
dbase

)

δLeaf (Q, I) =
∣∣dbaseQ − dbaseI ∣∣+

∣∣dArcLenQ − dArcLenI ∣∣+
∣∣dnArcLenQ − dnArcLenI ∣∣
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Finally the dissimilarity of leaf tip distances (dtipQ) is computed as:

δLeafDistr(Q, I) =
∣∣dtipQ − dtipI ∣∣

Contrary to texture-based features, features in different scales are not used to-

gether in shape-based dissimilarity scores. Rather, the appropriate scale is chosen

according to the image size and those features are used in computation.

In addition to these similarity measures involving single features, we also exper-

imented with combination methods, as done in various other studies [43,44]. In this

case, the overall dissimilarity score is the average of the individual scores.

δComb(Q, I) =
1

n

n∑
i=0

δmi(Q, I) , n : num.offeatures

where n is number of available feature analysis methods, mi is the ith method and i

indicates the index for the ith method. The outcome of various method combinations

are presented in Section 6.
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Chapter 5

PLANT DATABASE

Currently, we have 380 plant images from 78 different plant types in our database,

but the data collection is ongoing, with the aim of extending the variety to a mini-

mum of 100 different house plants as a future work. The number of images for each

plant type varies from type to type; while, there are only 3 images of a plant type,

another plant has 14 different images. The average number of images per plant

type is 4.87. Images are mainly retrieved from the internet, but also collected by

taking pictures of available house plants. All the images are segmented to remove

the background. The created house plant image database is publicly available 1.

In the database the plant images are named following a standard notation: a

number prefix indicating the plant type, the Latin name, an optional sample number

and a postfix as ”-segmImg” to indicate that the image is segmented. For example;

52-kentia2-segmImg.jpg is a segmented plant image file where 52 denotes the plant

type (kentia), 2 is the sample number among kentia plants, and ”segmImg” shows

that the image is segmented. A list of plant types and number of images present at

each plant type is also available in Appendix A.

A general gallery view of our implemented system is depicted in Figure 5.1,

displaying original images currently in the database.

1See http : //students.sabanciuniv.edu/hkebapci/SUP lants/
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Figure 5.1: Some of the plant images are displayed in the gallery page of the implemented
system to show the variety of the plants.

Besides the plant image database collection, we use MySql database table to in-

dex the images with precomputed features, which are used in matching the database

images with a query image. The precomputed information for each plant image is

stored in a table including filename, width, height, rgb histogram with 512 bins,

hue histogram with 90 bins, color co-occurrence matrix of 30×30, 32 gabor features

(consisting of 16 µ and 16 σ values), and six shape features indicating sharpness of

the plant contour, leaf structure, and leaf distribution. In the beginning, each image

is indexed and inserted to the database. During this data insertion process, all color

and texture features are calculated and stored. At the end of insertion, all features

of every image are accessible directly with an sql query. When a query image is
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uploaded to the system, the query image will also be indexed and compared with

existing images according to their stored feature values.
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Chapter 6

EXPERIMENTAL RESULTS

The performance of the system is evaluated by running tests over our plant image

database that consists of 380 plant images from 78 distinct plant types. About 1/3

of the database consists of clean images showing a clear plant outer contour and

removed background. Each test is applied as one versus the rest test (also called as

leave-one-out cross-validation) and run 380 times querying each one of the 380 plant

images for the full database. Unless otherwise indicated, the full database is only

used in the tests. The clean database is used in shape related tests which require a

clear outer boundary for the plants.

The main metric used in assessing performance is the portion of query images

that return a correct image in the top-10 and top-15 returned images. We assume

that a user can easily and quickly identify the correct image among 10-15 returned

images. In addition to the top-10 and top-15 results, the average minimum rank

value indicating the rank order of the best matching image of the correct plant

is also presented. All three feature classes (color, texture, and shape) are tested

with all possible parameters and retrieval methods that we proposed. In addition

to these individual tests, several combined methods are run in tests as well. In

conclusion, test results showed that the performance of the system is increased with

these combined methods that consider several classes of features. The following
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sections present the test results with comments on the performance of the retrieval

methods.

6.1 Results Using Color Features

Among distinct color feature analysis approaches, the RGB histogram provides the

best top-10 and top-15 rates of 42% and 50%, respectively. It is followed by the color

co-occurrence matrix and the nRGB histogram methods with 48% and 46% as top-

15 rates. However, as shown in Table 6.1, the accuracy difference among these color

analysis methods is not very significant. Even though, due to the illumination factor,

the RGB color histogram is expected to be less efficient than the nRGB and hue

color histograms, it performed better. The reason might be the lack of illumination

variations of the database images or possibly the fact that illumiation difference

somehow helped in identification performance. The best top-15 retrieval rate of the

Hue histogram methods is 44%, while the remaining Hue histogram methods are

around 43%. The reason for the lower performance of the Hue histogram can be

the existence of white flower regions in the plant image and quantification of these

pixels in unstable hue values. White and black pixels have various, unstable hue

values in the HSI color space, since they are lack of chromaticity (see Section 3.1.4).

In addition, little modifications applied on nRGB and color co-occurrence meth-

ods improved the performance of these method. The modified color co-occurrence

method, which ignores diagonal entries in the co-occurrence matrix as mentioned

in Section 3.1.4, outperforms the conventional color co-occurrence method (48% vs

39%). In order to represent each color channel with 23 values as in the RGB his-

togram, rather than 24, 256 bins of nRGB histogram is shrinked to 64 bins. The

64-bin nRGB color histogram performed better than 256-bin with top-15 rates of

46% and 43% respectively.
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Table 6.1: Color Analysis Results

Method Top-10% Top-15% Avg.Min.Rank
RGB Histogram 0.42 0.50 36.9
nRGB Histogram 0.35 0.43 38.4
nRGB Histogram(64-bin) 0.37 0.46 39.4
Hue Histogram(10-bin) 0.32 0.43 42.9
Hue Histogram(30-bin) 0.34 0.42 42.3
Hue Histogram(90-bin) 0.32 0.43 42.2
Hue Histogram(30-bin smooth) 0.32 0.44 41.2
Hue Histogram(90-bin smooth) 0.33 0.41 42.1
Color co-occurrence 0.31 0.39 48.4
Color co-occurrence(off-diag) 0.39 0.48 38.8

6.2 Results Using Texture Features

We compared the results of i) the default approach where two images are compared

in all scales, ii) only the maximum scale (the one with the highest energy) is used in

the comparison, iii) patch-based comparison where individual patches are rotated

before comparing as in default. These three methods are explained in Section 3.2.2.

The default and patch-based approaches are the best performing texture analysis

methods according to their accuracy rates. Both methods achieved 30% at top-10

and 36% at top-15 retrieval accuracy. Although the top-N rates of both methods are

the same, patch-based approach retrieves the correct plants in higher ranks; at rank

50 rather than 53.2. With a 28% retrieval rate at top-15, Max scale comparison

method is less successful than the previous two methods.

Table 6.2: Texture Analysis Results

Method Top-10% Top-15% Avg.Min.Rank
Default (All scales & orientations) 0.27 0.36 53.2
Max Scale 0.19 0.28 61.8
Patch-based 0.27 0.36 50.0
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Although the performance of the texture-based approaches are not satisfactory

by themselves, as shown in Table 6.2, they provide better results when combined

with a color-based approach (see Table 6.5). Among the different texture matching

methods, it seems that there may be a slight advantage of using patch based and

default methods, over the max scale, as indicated in Table 6.5. In addition to three

outstanding texture methods presented in Table 6.2, two different texture methods

are also tested (see Section 3.2.2 for explanation). Sum of orientations method is

not sufficient in terms of the retrieval rate it obtains. The other method, maxima

over scales, performes better than the max scale method in individual tests (i.e.

33% in top-15 rate). However, since maxima over scales method is not sufficient in

combined approaches, we do not present its results in either tests.

6.3 Results Using Shape Features

As explained in Section 3.3.4, six different shape features are extracted characterising

sharp point distribution, leaf structure and leaf distribution. Individual Top-10%

and Top-15% retrieval rates of these six features are presented in Table 6.3. Number

of convex and concave points are used together, since they are closely related. In

addition, they turn out to be the best individual shape features with a 28% retrieval

rate at top-15. Remaining individual shape features obtained 21% and 22% top-15

accuracy rates. Hence, the number of convex and concave points feature is obviusly

more effective than the other shape features. Referring to Section 3.3.4 again, we

have stated that leaf structure is represented with features: leaf arc length, leaf base

distance, and normalized leaf arc length (i.e. measures indicate the leaf boundary

length, leaf width, and leaf boundary length normalized with its width respectively).

The combined method joining these three features achieved a 24% probability at

top-15 with a slight improvement with respect to the methods using these features

individually. Similarly, using the number of concave and convex point features

jointly with other shape features improved the accuracy as well with 30% and 31%
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top-15 return rate. Since different shape features support each other and combining

them constitute a more comprehensive shape descriptor, we also measured all shape

features together. This method achieved 26% top-10, and 31% top-15 rate in which

the top-10 accuracy is slightly lower than the best texture method (See Table 6.2).

However, the existing database images are not very suitable to be used in shape

analysis, since many of them do not have smooth shape contours by various reasons.

For example, only 333 of the 380 images have plant region contours, others are

mostly close-up images. Moreover, plant images with bad segmentation have noisy

contours. Therefore, to measure the success of shape descriptors sufficiently, the

shape features are tested on a clean database of 132 images from 32 plant types.

The clean database is a segment of the 380 image-database in which each plant type

has at least three images with smooth shape contours.

Table 6.3: Shape Analysis Results(Full Database)

Ref. Method Top-10%% Top-15%% Avg.Min.Rank
1 Num. of Convex-Concave Pts. 0.22 0.28 75.9
2 Leaf arc length 0.15 0.21 86.9
3 Leaf base dist. 0.18 0.22 86.7
4 Leaf tip dist. 0.18 0.22 86.9
5 Norm. leaf arc length 0.15 0.21 88.1

6 Leaf Structure(2 + 3 + 5) 0.18 0.24 85.0
7 1 + 2 + 3 + 5 0.25 0.31 79.6
8 1 + 4 0.22 0.30 81.1
9 All (1-5) 0.26 0.31 79.9

The shape analysis results on clean database is given in Table 6.4. The maximum

top-15 accuracy rate is achieved by number of concave and convex points among

the individual shape features, as was the case in Table 6.3. In contrast with the

results on 380-image database, leaf base distance and leaf tip distance features are

efficient and their accuracy rates are very close to the best method’s with 38% and

39% top-15 probabilities respectively. While leaf structure features (leaf arc length +

normalized leaf arc length + leaf base distance) did not achieve a satisfactory result,
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using these features together with number of concave and convex point features

increase the top-15 accuracy from 38% to 47%. As on the 380-image full database,

combining all shape features provided the best accuracy rate on clean database as

well. The top-10 and top-15 probabilities are 40% and 49% respectively.

Table 6.4: Shape Analysis Results (Clean Database)

Ref. Method Top-10%% Top-15%% Avg.Min.Rank
1 Num. of Convex-Concave Pts. 0.30 0.41 41.3
2 Leaf arc length 0.19 0.31 50.2
3 Leaf base dist. 0.33 0.38 43.8
4 Leaf tip dist. 0.31 0.39 47.1
5 Norm. leaf arc length 0.21 0.28 53.5

6 Leaf Structure(2 + 3 + 5) 0.31 0.38 45.2
7 1 + 2 + 3 + 5 0.41 0.47 38.7
8 1 + 4 0.34 0.44 40.4
9 All (1-5) 0.40 0.49 39.0

6.4 Results of Combined Techniques

As the combined methods take into account color, texture and shape-based features,

they enhance the overall information and improve the result, hence correct retrieval

probability as expected. Table 6.5 indicates the results of the tests combining out-

standing color and texture methods.

RGB was the best individual color feature (see Table 6.1) and its combination

with different texture methods performed better than combinations with the nRGB

and the hue histograms. The combination of RGB and texture methods improved

the RGB results from 50% to 55%. As for texture features, even though results of the

combined tests using different three texture methods (i.e. accuracy of RGB+default,

RGB+maxscale, or RGB+patch-based) are very close, patch-based is typically the

most accurate one. Although patch-based texture analysis technique is not very sat-
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Table 6.5: Color + Texture Analysis Results

Color Texture Top-10% Top-15% Avg.Min.Rank
Default 0.45 0.55 30.9

RGB Max Scale 0.41 0.53 32.6
Patch Based 0.48 0.54 31.6
Default 0.40 0.50 31.9

nRGB Max Scale 0.41 0.50 33.6
Patch Based 0.44 0.52 30.6
Default 0.39 0.46 35.4

HSI(90 bins) Max Scale 0.39 0.47 37.4
Patch Based 0.42 0.51 34.6

isfactory individually, it has increased the accuracy when it is combined with a color

method. The combination of patch-based and nRGB features shows an improved

result as 52%, while individual patch-based and nRGB methods had achieved 36%

and 43% respectively at top-15.

The third image feature family, shape-based features, is also combined with

several color and texture features to expand and improve our similarity analysis

method. The most powerful shape analysis method is found to be using the full

set of features together (see Table 6.3 and 6.4). Therefore, we have chosen this

combined shape method as the shape analysis technique while combining shape

with color or texture features. Results of shape+color analysis is presented in Table

6.6. The best two methods are using the RGB and nRGB histograms which are

followed by several hue histograms and the color co-occurrence matrix at last. The

hue histograms perform close to each other, around 45% top-15 probability. Similar

to the individual color analysis results, the RGB histogram outperforms the nRGB

histogram with a slight difference when the color histograms are combined with the

shape features. The top-15 rate of RGB+shape and nRGB+shape analysis are 51%

and 49% respectively. On the other hand, combining shape and texture features did

not obtain a satisfactory result with respect to the other combined methods. The

highest top-15 accuracy rate is achieved by using patch-based texture and all shape

features as 39%.
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Table 6.6: Shape (full set) + Color Analysis Results

Color Method Top-10% Top-15% Avg.Min.Rank
RGB 0.43 0.51 43.8
nRGB(64-bin) 0.39 0.49 43.7
nRGB 0.39 0.46 43.7
HSI(10-bin) 0.37 0.45 46.5
HSI(90-bin) 0.37 0.44 45.7
HSI(30-bin smooth) 0.36 0.46 44.6
Color co-occurrence 0.31 0.40 52.5

The next step was to combine features from all three classes: color, texture,

and shape. In these tests, shape features are included to the methods that are

presented in Table 6.5, and the results are given in Table 6.7. The most successful

method is to combine RGB, patch-based, and shape features. This best method re-

sults 46% and 54% as top-10 and top-15 accuracy rates. Other methods containing

the RGB histogram features, follow this best method with 53% top-15 probability.

Shape+nRGB+texture methods come after shape+RGB+texture methods. For in-

stance, shape+nRGB+patch-based method achieved 50% rate at top-15. Methods

using the hue histogram are in the lowest order in terms of top-15 rates. For exam-

ple, shape+hue+patch-based method results 49% probability at top-15. According

to the average minimum ranking results, shape+nRGB+patch-based method is the

best method giving an average rank of 37.3. Furthermore, although the nRGB

histogram features seems worse than the RGB histogram according to the top-15

accuracy rates, the nRGB histogram method results better in terms of the average

minimum rank metric. The comparison between combined methods including dif-

ferent texture methods shows that patch-based texture analysis method is the best

one and followed by default texture method (see Table 6.5).

Although it seems that using all three feature classes (see Table 6.5) gained no

improvement with respect to the color+texture methods, the results are closely re-

lated with the database image quality. As indicated in Section 6.3, shape descriptors

of most of the plant images are not suitable for shape analysis. In order to express
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Table 6.7: Shape + Color + Texture Analysis Results

Shape M. Color Method Texture Method Top-10% Top-15% Avg.Min.Rank
Default 0.46 0.53 39.7

RGB Max Scale 0.43 0.53 41.2
Patch Based 0.46 0.54 38.5
Default 0.42 0.50 38.9

All nRGB Max Scale 0.40 0.48 40.5
Patch Based 0.41 0.50 37.3
Default 0.40 0.49 39.6

HSI(30-bin smooth) Max Scale 0.40 0.48 41.3
Patch Based 0.42 0.49 39.7

the shape descriptors’ quality, new combined tests including shape features are per-

formed on clean database. The test results are provided in Table 6.8. In order to

make the comparison easy, two test results are presented at each line: the first one

is of the original method without shape, the second one is of the new method with

shape (i.e. original method combined with shape features). As depicted in the ta-

ble, each color and texture method accuracy improved by combining shape features

with. Both top-10 and top-15 accuracy rates increased. The highest top-15 rates

are achieved by three color histograms: RGB with 61%, nRGB with 60%, and Hue

histogram with 60%. The best method after the color histograms is patch-based

texture analysis method. With 54% probability this method retrieves the correct

plant image at top-15 results.

Finally, to measure the gain of combining all three classes of image features (i.e.

color, texture, and shape), we need to test the analysis methods on quality plant

images (in terms of image descriptors they have). Therefore, the latest combined

tests are run on our 132-image clean database. The test results given in Table 6.9 are

the highest accuracy rates among all results and they indicate that database quality

has important role on accuracy of the system. While almost each color, texture,

and shape feature combinations are tested, only outstanding methods are displayed

in the table. The only shape feature used contains all individual shape features and

uses scale invariant comparison technique. Scale invariant technique which matches
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Table 6.8: Contribution of Shape Features (Clean Database)

Without Shape With Shape
Method Top-10% Top-15% Top-10% Top-15%
RGB Histogram 0.50 0.58 0.55 0.61
nRGB Histogram 0.41 0.46 0.46 0.53
nRGB Histogram(64 bin) 0.43 0.50 0.50 0.60
Hue Histogram(10 bin) 0.40 0.53 0.50 0.60
Hue Histogram(90 bin) 0.36 0.50 0.50 0.58
Hue Histogram(30 bin smooth) 0.35 0.49 0.47 0.58
Color co-occurrence 0.37 0.43 0.38 0.50
Color co-occurrence(off-diag) 0.39 0.48 0.42 0.50
Default 0.31 0.40 0.40 0.49
Max Scale 0.22 0.34 0.34 0.43
Patch Based 0.38 0.47 0.44 0.54

the image shape features according to the image sizes, performed better than the

default one-to-one match. With respect to the top-15 accuracy rates, the best per-

forming method is shape+RGB+patch-based method. The highest top-15 rate of

68% is attained by this method. The second best performance is achieved with 65%

top-15 rate by shape+nRGB+default method. On the other hand, with respect to

the top-10 accuracy metric, the best performing method is shape+nRGB+default

texture method with 54%. However, each feature combination perform similarly for

top-10 performance: for instance, shape+nRGB+patch-based, shape+RGB+patch-

based, and shape+RGB+default give 53% top-10 rate. Moreover, according to the

average minimum ranking the best two methods use shape and patch-based texture

features together with the RGB or nRGB histograms. Average rank values are 22.9

and 23.6 respectively which are not very far than the top-15 goal. Consequently,

combining different image features improves the system performance rather than

using individual features. On the other hand, the significance of the image descrip-

tors (in other meaning quality of the images) is very important for accuracy of the

system as well.

The results of CBIR studies are normally evaluated based on precision and recall
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Table 6.9: Shape + Color + Texture Analysis Results (Clean Database)

Shape Color Texture Top-10% Top-15% Avg.Min.Rank
Default 0.52 0.62 24.2

RGB Max Scale 0.53 0.63 24.5
Patch Based 0.53 0.68 22.9
Default 0.54 0.65 24.0

All (Scale Inv) nRGB Max Scale 0.51 0.61 25.5
Patch Based 0.53 0.59 23.6
Default 0.51 0.62 27.5

HSI(10) Max Scale 0.49 0.57 28.5
Patch Based 0.49 0.57 25.2

rates. Precision is defined to be the ratio of the relevant images in all of the returned

images. Recall is defined to be the ratio of retrieved relevant images to all relevant

images. These metrics are not very suitable in identification problems where higher

precision values are desired, but it is sufficient to have only one relevant image

among all the returned images. For identification problems, top-N results are often

reported. Furthermore, we also plot the probability of having a relevant result in

the top-N, for changing N values.

Figure 6.1 displays the top-N accuracy of each color, texture, and shape method.

It is seen that color and shape methods performs similar among themselves and all

color methods are better than texture and shape methods. Patch-based approach is

more accurate than the default texture method especially between N=20 and N=120.

For N < 40 the full shape feature method including all the shape features outper-

forms the number of concave and convex method. Among color methods, nRGB

seems to be the best in general; its accuracy is the largest after N=50 but for smaller

N values, RGB and color co-occurrence perform better. In Figure 6.2, outstanding

individual and combined methods are compared on the clean database. Accuracy

curves of two combined methods (RGB+patch+shape and nRGB+default+shape)

are indistinguishable and outperform the separate texture and shape methods. Only

the RGB histogram among the individual methods has higher accuracy curve. The

third combined method, RGB+shape, seems worse after N=10, however it is the
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Figure 6.1: Accuracy graph for each color and texture method

best among all for N<10. Considering best methods in Figure 6.1 and 6.2, 50%,

60%, 70% and 90% accuracy rates are achieved on N=8, 12, 15 and 100, respectively.

While a direct comparison is not meaningful, the fact that many CBIR problems

report precision values around 50−60% [8,9,43,45], can give an idea of the difficulty

of the CBIR problem. Shape-based retrieval in botanical collections [11], which is

the closest study to our problem, reports precision rates as 0.92 at top-5 and 0.88 at

top-10 retrieval ranks. These results are obtained on the public Swedish tree leaves

database. The database consists of 1125 isolated leaves (single leaves on a plain

background) from 15 different Swedish trees species. We can think that the current

problem is at least as difficult, since identifying the plant based on its leaf shape is

a subset of our problem.
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Figure 6.2: Accuracy graph for outstanding color, texture and combined methods
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Chapter 7

CONCLUSION

In this thesis, we present a content-based image retrieval system, combining various

content-based image retrieval approaches, with a segmentation preprocessing step.

Separating the plant from the background using the max-flow min-cut segmentation

technique has given us an opportunity to focus solely on the plant, which increased

the consistency of the retrieved global features. Furthermore, combining different

color, texture, and shape features extracted from the plant region enhances the ac-

curacy of the system. Common techniques are used in color and texture feature

extraction steps. Specifically, global color features of plant regions are extracted

in the form of color histograms and color co-occurrence matrices. Similarly, global

texture features are extracted by Gabor filters which are commonly used in tex-

ture analysis. Shape-based features are extracted using the plant contour which is

obtained by tracing the outer plant boundary. These shape features are sharpness

of the plant contour, structure of plant leaves (leaf arc length, normalized leaf arc

length, and leaf base distance), and distribution of leaves in the plant region.

One of the contributions of the thesis is a modification of the default texture

analysis, where we focus on the local features obtained from (sub)leaf regions. The

proposed patch-based approach represents an image with m × n patches in which

each patch is roughly expected to correspond to a plant leaf or leaf structure. The
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novelty of this technique is that, rotating the approximated leaf patches to a canon-

ical direction provides the effect of rotating the plant leaves to the same orientation.

Consequently, by rotating these patches to a canonical direction, we obtain some

invariance towards the rotation of the individual leaves. The contribution on shape

descriptors is two new shape features: i) sharpness of the plant contour, ii) distri-

bution of the plant leaves. Sharpness of the plant contour signifies the count of

sharp leaf tips and thorn-like structures. Leaf structures are recognized and their

structural information is obtained around these sharp points. The distribution of

the plant leaves is measured by the distance between sharp points.

The evaluation of the system using the top-N identification rate shows the best

top-15 performance of 68% on the clean database and 54% on the full database using

all the features. Since, the full database with 380 images contains some low-quality

images that are useless for shape analysis, plant images with smooth shape contours

are selected among this full database and the clean database has emerged. The best

accuracy within individual color methods is obtained using the RGB histogram,

with a 50% top-15 rate. Although, individual texture analysis methods do not

give sufficient results, combining a texture method with color methods increase the

accuracy of the color method drastically. Using color, texture, and shape features

together has improved the system performance as well. For example, integrating

the patch-based texture features to the shape+RGB test has increased the top-10

rate from 61% to 68% on the clean database (see Table 6.9). Similarly, the best

result on the full database (54% top-15 retrieval rate) is achieved with a combined

method -of color, texture, and shape analysis techniques- as well.

Our studies demonstrated that the method we proposed has promising results

in the plant retrieval problem, however the work is still preliminary. Further studies

might extend and improve the proposed system by integrating additional features

such as sharpness histogram, color distribution with spatial information, and so on.

The size of the database and the number of plant types in it are intended to be

increased. In addition, the system might be finalized by integrating the implemen-
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tation as a web service.

The contributions of this thesis are:

• development of a plant identification problem as a particular application of

CBIR,

• using the segmented plant region for feature extraction to remove the back-

ground and increase the quality of the extracted features,

• evaluating different features for their effect on overall system performance,

• proposing new texture matching technique to provide invariance and some new

shape descriptors that provide the outer contour characteristics of a plant.

7.1 Future Work

Insufficiency of segmentation is one of the primary challenges in image retrieval

systems that use segmented images. Erroneous segmentation causes the feature

extraction to be inaccurate. While, global color and texture features that we have

used are not sensitive to segmentation quality, shape features are too sensitive, since

they only depend on the outline contour of the plant region. The effect of bad seg-

mentation to the color features is; to store color histogram data of some background

pixels involved in the data of plant pixels. If the amount of the background that is

labeled as foreground is small proportional to the plant region, the negative effects

can be avoided. The most resistant feature to erroneous segmentation is texture-

based features. The background has no effect on extracted texture features, if it

does not contain a significant texture. In contrast, shape features are useless if the

outline of the plant could not be revealed.

Setting constraints for plant images might be an alternative solution for segmen-

tation problems which is easy to apply. For example, the outer contour of the query
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plant should be visible which is a must to trace the outer boundary of the plant.

Further, it is better if the images do not include complex background that may

intermix with the plant; this might be another constraint for the input images. As a

result, the max-flow min-cut segmentation algorithm can smoothly segment a plant

which is on a plain (one color, no texture) background. Furthermore, segmentation

algorithm may be improved by exploiting the domain information, such as the green

color or the fact that we expect to see the outer contour of plant. Using the RGB

color intensities rather than the gray-scale might be a solution in which segmen-

tation algorithm distinguishes the green plant regions from non-green background

very easily.

Another challenge encountered in this CBIR system is the scale or resolution

variance. The plant images in the database may have different resolutions. To

match a violet image in 300× 400 pixels with another violet image in 1200× 1600

pixels is an issue. In texture analysis, the max scale method is proposed to solve this

problem. Similarly a scale invariant comparison technique is implemented for shape

analysis. Shape features are extracted in three different scales, and the suitable

scale is selected with respect to the image size for each plant image. However, scale

invariance is not an issue in color analysis, since histogram values are normalized

with the number of pixels.

A further development on the shape-based analysis might be generating sharp-

ness histograms. To use a histogram indicating the distribution of the sharpness

(direction changes) on the shape contour would be an improvement, instead of us-

ing only two numbers; number of convex and concave points. Notice that we express

sharpness (direction changes) with the values in the interval [0-4]. A possible set up

is: reserving one bin for each 0.5 or 0.25 sharpness measure, so generating a 8-bin

or 16-bin histogram. Although this new approach is more sensitive to roughness

on the surface, with sufficient shape descriptors it presents more information about

the shape of the image. Besides sharp points, smoother ones even straight contour

regions and their quantity will be retrieved and measured as well.
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Using the fact that main color of plants is green and flowers have different various

colors, plants can be classified as flower-plants and plants without flower. This

distinction may increase the accuracy by simplifying the problem and even decrease

the query time. Further, spatial color distribution might be added as a new feature

which helps to measure the distribution of plant flowers for example. If the flowers

(non-green plant regions) of a plant are spread out, spatial distribution of the non-

green pixels would have higher values than the plant with a single large flower.
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Appendix A

The list of plant types in our plant database

A total of 108 plant types are indexed, while only 78 of them have segmented images

in our database. While all these 108 indexed types are listed below, the number of

segmented images in 78 plant types are also indicated.

1-agalonema commutatum 4

2-aglaonema modestum 4

3-agalonema silverqueen 4

4-Fatsia Japonica

5-oncidium orchid

6-aloe 4

7-anthurium 7

9-asplenium nidus 4

10-chlorophytum comosum 3

11-codiaeum 7

12-diffenbachia tropicsnow 3

13-dracaena marg 3

14-monstera deliciosa 3

15-guzmania 4

16-dracaena janet 8

17-hedera helix 3

18-marantha leuconeura 6

19-pachypodium 3

20-philoddomesticum (Philodendron) 4

21-setcreasea 5

22-peperomia argyreia 6

23-peperomia clusiifolia

24-sansevieria cylindrica 3

25-tradescantia zebrina 11

26-chamaedora elegans 3
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27-aechmea 3

28-syngonium 3

29-hypoestes sanguinolenta 4

30-tradescantia spathacea (rhoeo)

31-african violet 13

32-portulacaria afra 7

33-sansevieria trifasciata 6

34-caladium 4

35-bamboo 4

36-calatheabella 3

37-bougainville aglabra 3

38-dieffenbachia camille

39-aspidistra 4

40-schlumbergera (christmas cactus)

41-Sedum rubrotinctum 4

42-Cyclamen 6

43-Narcissus 3

44-Hyacinth 8

45-Tagetes petula 3

46-Sedumreflexum

47-Fritillaria whittallii

48-euphorbia milli 5

49-begonia 7

50-rhododendron 4

51-pelargonium zonale 5

52-kentia 4

53-Phalaenopsis (orchid) 3

54-cycas revoluta 3

55-schefflera arboricola 12

56-Murraya paniculata 4

57-Miltoniopsis 3

58-ficus elastica 6

59-Mimosa pudica

60-aphelandra squarrosa 5

61-Eustoma grandiflorum 3

62-Hippeastrum 3

63-Saxifraga stolonifera 3

64-Epiphyllum 5

65-Amaryllis 3

66-Crassula_ovata

67-Epipremnum aureum

68-Ficus benjamina 3

69-Nephrolepis exaltata

70-Echinopsis subdenudata

78-Proboscidia louisianica 3
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79-spathiphyllum maunaloa 5

80-Cactaceae 6

81-Bonsai 7

82-Opuntia 8

83-sinningia speciosa 4

84-kalanchoe blossfeldiana 6

85-Crocus

86-cyclamen

87-Zygocactus 7

88-Amorphophallus 9

89-Achimenes 4

90-Aeschynanthus 4

91-dionaea 5

92-Echeveria 7

93-Gardenia 4

94-Hoya 4

95-Balsaminaceae (impatients) 5

96-Nerium(oleander)

99-streptocarpus

100-musa species

101-areca 4

102-cupressus

103-cymbidium orchid 5

104-dianthus barbatus 5

105-tulip 9

106-buxus sempervirens 3

107-ficus ginseng

108-yucca 3
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Appendix B

Pseudo-codes of the contour tracing and related algorithms.

B.1 The pseudo-code of the contour tracing algorithm.

# runsteps: # of tracing run steps used for sharpness measure

::::

start(x,y) := FindStartingPoint();

dir := 1; // starting direction is east

while(counter < limit)

p_next(x,y) := MoveTo(p_current(x,y),dir);

counter++;

if(p_next(x,y) == start(x,y))

break;

end

if(p_next.y >= height) //p_next exceeds bottom limit of the image

dir := 5;

elseif(p_next.x >= width) //p_next exceeds right

dir := 3;

elseif(p_next.x < 0) //p_next exceeds left limit

dir := 7;

elseif(p_next.y < 0) //p_next exceeds top limit

if(p_next is parsed before)

dir := (dir+7) % 8; //turn left

else

dir := (dir+1) % 8; //turn right

end

else //p_next is in the image region

next := image[p_next(x,y)];

if(next == 0) //not edge point

dir := (dir+1) % 8;

else

p_current := p_next; //extend path

p_current.dir := dir;

70



Contour[contourIndex] := p_current;

index := contourIndex % runsteps;

array[index] := dir;

sharpness = MeasureSharpness(array, index);

if (sharpness >= 2 and <= 4) //if sharp enough

SharpPointsArray[sharpEdgeIndex] = Contour[contourIndex-runsteps]; //the breakpoint is runsteps points before p

sharpEdgeIndex++;

end

contourIndex++;

dir := (dir+7) % 8; //turn left

end

end

end

B.2 The pseudo-code of the labelling algorithm for given sharp points

for each s in SharpPointsArray

dir = s.dir; //direction of s

p(x,y) = MoveTo(s(x,y),dir); //p is the first point on the imaginary line

while (p(x,y) on contour)

p(x,y) = MoveTo(p(x,y),dir); //continue straight on the imaginary line

end

if(p(x,y) is in the region)

s(x,y).label = "‘concave"’;

else

s(x,y).label = "‘convex"’;

end

advance s;

end

B.3 The pseudo-code of the convex/concave point differentiation al-
gorithm

Algorithm that is used to detect sharp points:

# Contour: the contour list

# i: index of p (number of points currently in the list)

# RecentSharpnessArray: stores last n sharpness measure

# n: also called as trace run steps (runsteps)

for each new contour point p

Contour[i] = p;
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RecentSharpnessArray[i%n] = p.dir;

sharpness = MeasureSharpness(RecentSharpnessArray, i%n);

if (sharpness >= 2 and <= 4) //if sharp enough

SharpPointsArray[j] = Contour[i-(n/2)]; //the breakpoint is (n/2) points before p

end

end

Function; MeasureSharpness, that is called from the above code:

# index: keeps rounding index of the array

# array: stores last n sharpness measure

# n: also called as trace run steps (runsteps)

float MeasureSharpness(array, index)

for i=0...n/2

avgDir1 += array(index+i);

end

for i=n/2...n

avgDir2 += array(index+i);

end

diff = |avgDir1 - avgDir2|;

if (diff>4)

diff=8-diff;

return diff;

end function
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[34] M. Šonka, V. Hlaváč, and R. D. Boyle, Image Processing, Analysis and Machine

Vision, 1st ed. London, UK: Chapman and Hall, 1993.

[35] W. Ma and B. Manjunath, “Texture features and learning similarity,” Jun 1996,

pp. 425–430.

[36] J. Han and K.-K. Ma, “Rotation-invariant and scale-invariant ga-

bor features for texture image retrieval,” Image and Vision Com-

puting, vol. 25, no. 9, pp. 1474 – 1481, 2007. [Online].

Available: http://www.sciencedirect.com/science/article/B6V09-4MNYYW5-

3/2/60f49ea02e8e3d0c9d30da338aa5e18c

[37] M. I. Dengsheng Zhang, Aylwin Wong and G. Lu, “Content based image re-

trieval using gabor texture features,” December 2000, p. 392395.

[38] B. Manjunath and W. Ma, “Texture features for browsing and retrieval of

image data,” Pattern Analysis and Machine Intelligence, IEEE Transactions

on, vol. 18, no. 8, pp. 837–842, Aug 1996.

[39] C. Liu and H. Wechsler, “A gabor feature classifier for face recognition,” vol. 2,

2001, pp. 270–275 vol.2.

[40] A. El-ghazal, O. A. Basir, and S. Belkasim, “Shape-based image retrieval using

pair-wise candidate co-ranking.” in ICIAR, ser. Lecture Notes in Computer

Science, M. S. Kamel and A. C. Campilho, Eds., vol. 4633. Springer, 2007,

pp. 650–661.

77



[41] J. S. Park and T.-Y. Kim, “Shape-based image retrieval using invariant fea-

tures.” in PCM (2), 2004, pp. 146–153.

[42] S. Abbasi, F. Mokhtarian, and J. Kittler, “Curvature scale space image in shape

similarity retrieval,” Multimedia Syst., vol. 7, no. 6, pp. 467–476, 1999.

[43] Q. Iqbal and J. K. Aggarwal, “Combining structure, color and texture for image

retrireval: A performance evaluation,” vol. 2, August 2002, pp. 438–443.

[44] M. Arevalillo-Herrez, J. Domingo, and F. J. Ferri, “Combining similarity mea-

sures in content-based image retrieval,” Pattern Recognition Letters, vol. 29,

no. 16, pp. 2174 – 2181, 2008.

[45] Y. M. Wong, S. Hoi, and M. Lyu, “An empirical study on large-scale content-

based image retrieval,” July 2007, pp. 2206–2209.

[46] D.-S. Huang, D. C. W. II, D. S. Levine, and K.-H. Jo, Eds., Advanced Intel-

ligent Computing Theories and Applications. With Aspects of Contemporary

Intelligent Computing Techniques, 4th International Conference on Intelligent

Computing, ICIC 2008, Shanghai, China, September 15-18, 2008, Proceedings,

ser. Communications in Computer and Information Science, vol. 15. Springer,

2008.

78


