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Abstract

A new method for constructing a checking sequence for finite state ma-

chine (FSM) based testing is introduced. It is based on a recently sug-

gested method which uses quite a different approach than almost all the

methods developed since the introduction of the checking sequence gen-

eration problem around half a century ago. Unlike its predecessor which

aggressively tries to recognize the states by applying identification se-

quences, our approach relies on yet to be generated parts of the sequence

for this. The method may terminate without producing a checking se-

quence. We also suggest a method to check if a sequence is a checking

sequence for this purpose. If it turns out not be a checking a sequence,

a post processing phase extends the sequence further. We present the

results of an experimental study showing that our two phase approach

produces shorter checking sequences than the previously published meth-

ods. This experimental study is performed on FSMs that are randomly

generated by using a tool implemented within this work to support this

and other FSM based testing studies.
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Üretimi

Özet

Bu çalışmada Sonlu Durum Makinaları (SDM) bazlı sınamada yeni bir

kontrol dizisi üretim yöntemi verilmektedir. Bu yöntem, yakın geçmişte

öne sürülen ve problemin yaklaşık yarım asır önce ortaya konuluşundan

beri kullanılan tüm yöntemlerden farklı bir yaklaşıma sahip yeni bir

yöntemi temel almaktadır. Yenilik olarak, agresif bir şekilde durum

belirleme dizileriyle durumların tanınması yerine, kontrol dizisine daha

sonra yapılacak eklentilerin bu sorunu çözeceği öngörülmektedir. Ancak

bu yöntemin kontrol dizisi üretememe ihtimali bulunmaktadır. Bu ne-

denle yine bu çalışma içerisinde verilen bir dizinin kontrol dizisi olup

olmadığını kontrol eden bir yöntem de geliştirilmiştir. Eğer üretilen

dizinin bir kontrol dizisi olmadığı anlaşılırsa, dizi ikinci bir aşamada

tekrar ele alınıp yapılan eklentilerle bir kontrol dizisı haline getirilmek-

tedir. Bu çalışmada yeni yöntemin mevcut yöntemlere göre daha kısa

kontrol dizileri ürettiğini gösteren deneysel çalışmalar da sunulmaktadır.

Bu deneysel çalışmalarda kullanılan Sonlu Durum Makinaları yine bu

çalışma süresinde gerçekleştirilmiş bir rastlantısal SDM üretme aracı kul-

lanılarak üretilmiştir.
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Chapter 1

Introduction

A Finite State Machine (FSM) is an abstract structure with a finite set of states

where application of an input causes a state transition along with the production

of an output. FSMs are widely used to model systems in diverse areas such as

sequential circuits, communication and software protocols[4, 1, 7, 2, 21, 23, 18].

Many systems are implemented using FSM based models. As these systems became

more complicated and large, the research for techniques to ensure the reliability

of these systems gained importance. FSM based testing is a research area that is

motivated to answer these reliability demands.

In conformance testing, the aim is to ensure that an implementation conforms

to its specification. In other words, conformance testing tries to answer the question

if an implementation, that is intended to implement some specification, is a correct

implementation of its specification or not. When the specification of a system is

modeled as an FSMM then the implementation can also be considered as an FSMN

and the question becomes whether N is equivalent to M . By equivalence of FSMs it

is meant that if for any sequence of inputs that is defined in M , N produces the same

sequence of outputs as M . An Implementation Under Test (IUT) is considered to be

a black box. That is IUT is an FSM N with unknown transitions but it is generally

assumed to have at most as many states as M and to have the same input alphabet

as M . Thus the approach that is used to test an FSM based system is to apply

some inputs and observe the outputs produced by the IUT. Using only this output

observation the correct functioning of IUT is tried to be deduced by comparing

the outputs produced by the IUT against the expected outputs produced by the
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specification FSM M . An input sequence that can determine if IUT is a correct or

faulty implementation of specification M is called a checking sequence.

An important problem in conformance testing is state verification. That is, a

mechanism is needed to know in which state the IUT is. This is necessary since

a checking sequence has to verify every transition of the specification FSM and

verification of a transition requires verification of the initial and the final states of

a transition. That is we need to know that IUT is in the correct state before an

input is applied (so that the we can know which output to expect) and reaches

to the correct state after the input is applied. State verification problem can be

solved using Preset Distinguishing Sequence (PDS) [9], Unique Input Output (UIO)

sequence [22] and Characterizing Set [9]. A PDS is an input sequence that produces

different outputs for different states. Therefore if the specification FSM has a PDS,

then the state verification problem is solved easily by applying the PDS at the state

to be verified. However not every minimal FSM has a PDS [15] and to determine if

an FSM has a PDS is a PSPACE-complete problem [16].

According to the survey in [17], the literature of conformance testing begins in

1950’s. In 1956 Moore’s paper on machine identification problem was published [19].

In his paper, he studied the problem of obtaining the state diagram of an unknown

FSM with given number of states by only observing its input output behavior. He

also stated the conformance testing problem. In 1964, Hennie proposed a method

using PDS for generating a checking sequence with length polynomial in length of

PDS and machine size [10]. Hennie’s method that uses PDS to generate checking

sequences is called D-method. He also gave an algorithm that generates exponen-

tially long checking sequences for the case when a distinguishing sequence cannot

be found. Later several other checking sequence generation methods that are based

on UIO sequences, characterizing sets and transition tours were proposed. These

methods are called U-Method [22], W-Method [4] and T-Method [20] respectively.

Although there were some studies in 70’s and 80’s, conformance testing became

a more active research area in the beginning of 90’s thanks to applications in testing

communication protocols. Especially distinguishing sequence based methods be-

came popular. The studies were focused on the improvement of previous methods

using global optimization techniques. In [2], using a graph theoretical approach, the

2



checking sequence generation problem modeled as a Rural Chinese Postman Prob-

lem. In [14, 11] this optimization model was further improved. In addition to that,

in [3] it is shown that some transition verification sequences could be eliminated

from the optimization model and in [26] the model is improved to produce shorter

checking sequences by making use of overlapping of distinguishing sequences. In [24],

Simão et al. proposed an approach that is different than previous work. Instead of

trying global optimization, they designed an algorithm that makes local optimiza-

tion. With this approach, they achieved better results than global optimization

methods in most cases.

The contributions of this thesis to the conformance testing are threefold. First

we present the details of a tool that generates random FSMs that we require to

measure and compare the performances of checking sequence generation methods.

Second we present a method that attempts to determine if a given input sequence

is a distinguishing sequence based checking sequence or not. Lastly we present

a method that generates distinguishing sequence based checking sequences. Our

method is basically a modification of Simão et al.’s method. Experiments show that

our method achieves an average reduction of at least 7% in checking sequence length

compared to Simão et al.’s method.

The rest of this thesis is organized as follows. In Chapter 2, the basic informa-

tion on FSMs and conformance testing is provided. In Chapter 3, the details of our

random FSM generation tool is provided. In Chapter 4, our method to check if a

given sequence is a DS based checking sequence is presented in detail. In Chap-

ter 5, an overview of the Simão et al.’s checking sequence generation method from

[24] is provided. In Chapter 6, we present details of our checking sequence gener-

ation method together with experimental results. Finally Chapter 7 contains the

concluding remarks.
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Chapter 2

Preliminaries

2.1 FSM Fundamentals

An FSM (finite state machine) is specified by a tuple M = (S, s1, I, O, δ, λ) where

• S = {s1, s2, . . . , sn} is the finite set of states and n is the number of states

• s1 ∈ S is the initial state

• I is the finite set of inputs

• O is the finite set of outputs

• δ : S × I → S is the next state function

• λ : S × I → O is the output function

For two states si and sj, an input x and an output y if δ(si, x) = sj and λ(si, x) = y

then intuitively this means the machine M performs a transition from state si to

state sj when input x is applied and it produces output y as a response to this input.

We will also denote such a transition by (si, sj;x/y).

An input symbol x ∈ I is defined at state s if δ(s, x) and λ(s, x) are defined.

2.1.1 Extending Next State and Output Functions

The next state function δ and the output function λ can be extended to sequences

as follows. Let x ∈ I be an input symbol and X ∈ I∗ be an input sequence and

let xX ∈ I∗ denote the input sequence obtained by concatenation of x and X
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(that is juxtaposition of input (output) sequences and input (output) symbols mean

concatenation) then

• δ(s, xX) = δ(δ(s, x), X) and

• λ(s, xX) = λ(s, x)λ(δ(s, x), X)

For the empty sequence ε we define δ(s, ε) = s and λ(s, ε) = ε. An input se-

quence X = x1x2 . . . xr ∈ I∗ is defined at state s if ∀1 ≤ i ≤ r, xi is defined at

δ(s, x1x2 . . . xi−1)

2.1.2 Some Properties of FSMs

An FSM M is

• deterministic if for each state s ∈ S and for each input symbol x ∈ I, M

has at most one transition with start state s and input symbol x. Since

the transitions of an FSM are defined by a function, in our setting an FSM

is always deterministic. For nondeterministic machines, relations are used

instead of functions.

• completely specified if for each state s ∈ S and for each input symbol x ∈ I,

δ(s, x) and λ(s, x) are defined, that is when δ and λ are total functions.

• minimal if for any two different states si, sj ∈ S, there is an input sequence

X ∈ I∗ such that λ(si, X) 6= λ(sj, X).

• initially reachable if for each si ∈ S there exists some input sequence X ∈ I∗

such that δ(s1, X) = si ( i.e. each state si ∈ S is reachable from the initial

state s1)

2.2 Representing an FSM by a Directed Graph

An FSM M can be represented by a directed graph G = (V,E) with set of vertices

V and a set of directed edges E. In such a graph, each edge e = (vj, vk;x/y) ∈ E

5



s1 s2

s3

b/0

a/0

b/1

a/1

b/0

a/1

Figure 2.1: FSM M1

with label x/y represents a transition t = (sj, sk;x/y) from sj to sk with input x

and output y. We will also use (vj, vk) to denote an edge when the edge label is not

important. The vertices vj and vk of e are called start and end of e respectively and

it is said that e leaves vj and enters vk. Two edges ej and ek are called adjacent if

end of ej and start of ek are same.

Any sequence of adjacent edges (not necessarily distinct) is called a path. We will

denote a path (n1, n2;x1/y1)(n2, n3;x2/y2) . . . (nr, nr+1;xr/yr) as P = (n1, nr+1;X/Y )

where X = x1x2 . . . xr and Y = y1y2 . . . yr. The nodes ni correspond to vertices of

G. Node n1 is the start of P and nr+1 is the end of P . Input output sequence X/Y

is called the label of P and X/Y is a transfer sequence from v1 to vr. X is the input

portion and Y is output portion of X/Y respectively.

In graph G, a vertex vk is reachable from vertex vj, represented as vj  vk, if

there exists a path P such that start of P is vj and end of P is vk. G is strongly

connected if ∀vj, vk ∈ V , vj  vk is satisfied. An FSM is strongly connected, if the

digraph representing it is strongly connected.

2.3 Distinguishing Sequences

The checking sequence generation methods that will be discussed in this thesis re-

quire existence of a distinguishing sequence. Distinguishing sequences are special

sequences used for state identification. Throughout thesis the phrase identification

sequence always refers to distinguishing sequence. There are two types of distin-

guishing sequences that are explained next.

6



2.3.1 Preset Distinguishing Sequence

A Preset Distinguishing Sequence (PDS) of an FSM M is an input sequence D in

response to which every state of M gives a distinct output sequence.

For instance ba is a PDS for FSM M1 shown in Figure 2.1.

• λ(s1, ab) = 00

• λ(s2, ab) = 11

• λ(s3, ab) = 10

2.3.2 Distinguishing Set (Adaptive Distinguishing Sequence)

A Distinguishing Set (or Adaptive Distinguishing Sequence – ADS) is multi-set of

input sequences D̄ = {Ds1
, Ds2

, . . . , Dsn
} such that for any pair Dsi

, Dsj
∈ D̄ there

exists a common prefix α of Dsi
and Dsj

such that λ(si, α) 6= λ(sj, α). The sequence

Dsi
is called the ADS of state si.

For example, D̄ = {Ds1
, Ds2

, Ds3
}, where Ds1

= a and Ds2
= Ds3

= ab, is a

distinguishing set for FSM M1 in Figure 2.1.

Note that PDS is a special case of ADS where for all states Dsi
= D. Therefore

every FSM which has a PDS also has a distinguishing set. However the inverse is

not true. That is there exist FSMs with a distinguishing set but no PDS. Compared

to PDS, distinguishing sets have some advantages. Determining the existence of a

distinguishing set and finding one if exist is polynomial in number states and number

of inputs [16].

2.4 Checking Sequences based on Distinguishing

Sequences

Let M be a completely specified, minimal, deterministic and strongly connected

FSM that is represented by directed graph G = (V,E). Also let Φ(M) be the set

of FSMs such that each FSM N ∈ Φ(M) has at most as many states as M and has

the same input and output sets as M . FSMs M and N are said to be equivalent if

there does not exist an input sequence X such that λ(sM
1 , X) 6= λ(sN

1 , X) where sM
1

7



and sN
1 are the initial states of M and N respectively. If such an input sequence

X exists then X is said to distinguish M and N . A checking sequence of M is an

input sequence such that it distinguishes M from every FSM N ∈ Φ(M) that is not

equal to M . Hence in the context of conformance testing, when checking sequence

is applied on any faulty implementation N in Φ(M) the output produced by N will

be different than the output produced by specification M .

The main aspect of a checking sequence is that it defines a one to one and onto

function f between state set of specification M and state set of implementation N

and tries to show that if (sj, sk;x/y) is a transition in M then N has a corresponding

transition (f(sj), f(sk);x/y). Thus testing using a checking sequence requires the

concepts of state recognition and transition verification defined. We will define these

concepts using distinguishing sequence of FSM M as follows.

Let P = (n1, n2;x1/y1) (n2, n3; x2/y2) . . . (nr, nr+1;xr/yr) be a path in G from n1

to nr+1 with the label X/Y = x1x2 . . . xr/y1y2 . . . yr. Also let D̄ be a distinguishing

set of M . There are two types of recognition that we will define here, namely d-

recognition and t-recognition [25]. A vertex in P is said to be recognized as some state

of M if it is either d-recognized or t-recognized where d-recognition and t-recognition

are defined as follows,

• a node ni of P is d-recognized as state s of M if ni is start of a subpath of P

with label Ds/λ(s,Ds)

• a node ni of P is t-recognized as state s of M if there are two subpaths

(nq, ni;X
′/Y ′) and (nj, nk;X

′/Y ′) of P such that nq and nj are recognized

as s′ of M , nk is recognized as state s of M

In addition to that a transition verification is defined as follows. A transition

t = (s, s′;x/y) of M is verified (in P ) if there is an edge (ni, ni+1;x
′/y′) of P such

that nodes ni and ni+1 are recognized as states s and s′ of M respectively and

x′/y′ = x/y.

The following theorem from [25] (rephrased in our notation) states a sufficient

condition for a checking sequence.

Theorem 1. Let X/Y be the label of a path P of directed graph G (for FSM M)

such that every transition is verified in P . Then X (i.e. the input portion of label

8



of P ) forms a checking sequence of M .
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Chapter 3

Random FSM Generation

Measuring and comparing the performances of a checking sequence generation al-

gorithms generally require experimentation of the method on a set of FSMs. All

checking sequence generation methods, including the methods discussed in this the-

sis, require these FSMs to have some properties. For example a method may require

an FSM to be deterministic, completely specified, strongly connected, minimal and

having a preset distinguishing sequence. Since these FSMs will be used for exper-

imental purposes, it is also very important for the FSMs to have the element of

randomness in their structure as much as possible so that they are still able to rep-

resent all possible FSMs with desired properties in a just manner. For this reason,

we developed a tool that can generate deterministic and completely specified ran-

dom FSMs with given number of states, number of input symbols and number of

output symbols and having any of the following properties listed below

• Being strongly connected (or not)

• Being initially reachable (or not)

• Being minimal (or not)

• Having a preset distinguishing sequence (or not)

• Having an adaptive distinguishing sequence (or not)

Among these properties, strongly connectedness, initial reachability and having pre-

set distinguishing sequence turned out to be very difficult to satisfy when it is left

to pure chance. In other words, assigning transitions randomly between states was
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not very efficient to generate FSMs with mentioned properties. Thus for these prop-

erties, after initial assignments of the transitions, the tool allows a post processing

step to be applied on the generated random FSM to force the FSM to have the

desired property. In the following sections the details of this post processing steps

are explained for each property. However before examining post processing, below

is the process of initial assignment of transitions explained as pseudo code.

Algorithm 1: Random Assignment of Transitions

Input: S finite set of states

Input: I finite set of input symbols

Input: O finite set of output symbols

Output: T list of transitions of a completely specified, deterministic FSM

with randomly assigned transitions

T = ∅;1

foreach state s ∈ S do2

foreach input x ∈ I do3

choose a random output symbol y from O;4

choose a random destination state s′ from S;5

T = T ∪ {(s, s′;x/y)};6

Since a new transition is created for each state and input symbol pair, the com-

plexity of random assignment of transitions is O(np) where |S| = n and |I| = p.

3.1 Component Graph

The component graph, sometimes called condensation, of a digraph G is directed

acyclic graph that have a vertex for each strongly connected component of G and the

edges in component graph represents the connectivity between these components.

A more formal definition is given below.

Definition 1. Assuming that there are m strongly connected components of G =

(V,E) then the component graph of G is defined as Ḡ = (V̄ , Ē) where V̄ = {c1, c2, ...,

cm} denotes the set of strongly connected components such that V̄ is a partition of

V and Ē is defined as Ē = {(ci, cj)|ci 6= cj,∃vi ∈ ci, vj ∈ cj s.t. (vi, vj) ∈ E}.
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In other words, each vertex in Ḡ corresponds to a subset of vertices in G and

there is an edge in Ḡ from a vertex ci to another vertex cj, if in G there is an edge

from one of the vertices in ci to one of the vertices in cj.

3.2 Free Edge and Set of Free Edges

Let’s define an edge e = (vi, vj) of G where vi ∈ ci, as a free edge if the component

ci remains strongly connected when e is removed from G. Formally

Definition 2. e is a free edge in G if Ḡ = (V̄ , Ē) and Ḡ′ = (V̄ ′, Ē ′) satisfy V̄ = V̄ ′

where G′ = (V,E ′) and E ′ = E \ {e}.

In the following sections set of free edges for graph G will be denoted as F .

3.2.1 Existence of a Free Edge in a Strongly Connected

Graph

Below we present a proof for existence of at least one free edge in a strongly connected

graph G = (V,E) where |E| ≥ 2/times|V |.

Definition 3. Let G = (V,E) be a digraph. For a subset of the nodes Γ, Γ contrac-

tion of G is defined as G(Γ) = (V ′, E ′) where V ′ = (V \ Γ) ∪ {γ} and

E ′ = {(u, v)|u, v 6∈ Γ, (u, v) ∈ E} ∪

{(u, γ)|u 6∈ Γ, v ∈ Γ, (u, v) ∈ E} ∪

{(γ, v)|u ∈ Γ, v 6∈ Γ, (u, v) ∈ E}

Intuitively, in G(Γ) all the nodes in Γ are removed and they are represented by

a new fresh node γ. Those edges in G that are not from or to a node in Γ are

preserved in G(Γ). The edges between two nodes in Γ are removed in G(Γ). An

edge between a node in Γ and a node not in Γ is replaced by an edge using the node

γ instead of the node in Γ.

Lemma 2. Let G = (V,E) be a digraph and Γ ⊆ V be a subset of V . For two nodes

u, u′ ∈ V \Γ, if there exists a path u u′ in G, then there also exists a path u u′

in G(Γ).
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Proof. If the path u  u′ does not go through a node in Γ, then all the edges in

u  u′ also exist in G(Γ). Otherwise let u  v (v′  u′, resp.) be the shortest

prefix (the shortest suffix of, resp.) u u′ such that u, v′ ∈ Γ. By using Lemma 3

(Lemma 4, resp.), there exist a path u γ (γ  u′, resp.) in G(Γ). Hence we have

the path u γ  u′ in G(Γ).

Lemma 3. Let G = (V,E) be a digraph and Γ ⊆ V be a subset of V . For a node

u ∈ V \Γ, if there exists a path u u′ to a node u′ ∈ Γ in G, then there also exists

a path u γ in G(Γ).

Proof. Consider the shortest prefix u v of the path u u′ such that v ∈ Γ. Let

u v′ be the path u v where the last edge (v′, v) is removed. Since none of the

nodes along the path u  v′ are in Γ, the edges on this path also exist in G(Γ).

Therefore we have the path u  v′ also in G(Γ). Since v′ 6∈ Γ, v ∈ Γ, (v′, v) ∈ E,

we have the edge (v′, γ) in G(Γ). Thus by combining the path u v′ and the edge

(v′, γ) in G(Γ), the desired result is obtained.

Lemma 4. Let G = (V,E) be a digraph and Γ ⊆ V be a subset of V . For a node

u ∈ V \ Γ, if there exists a path u′  u from a node u′ ∈ Γ in G, then there also

exists a path γ  u in G(Γ).

Proof. Consider the shortest suffix v  u of the path u′  u such that v ∈ Γ. Let

v′  u be the path v  u where the first edge (v, v′) is removed. Since none of the

nodes along the path v′  u are in Γ, the edges on this path also exist in G(Γ).

Therefore we have the path v′  u also in G(Γ). Since v′ 6∈ Γ, v ∈ Γ, (v, v′) ∈ E,

we have the edge (γ, v′) in G(Γ). Thus by combining the edge (γ, v′) and the path

v′  u, the desired result is obtained.

Lemma 5. Let G = (V,E) be a digraph and Γ ⊂ V be a subset of V . If G is

strongly connected then so is G(Γ).

Proof. Consider two nodes u, v 6∈ Γ. Since G is strongly connected, we have a path

u v existing in G. By using Lemma 2, we also have such a path in G(Γ). Consider

now a node u 6∈ Γ. There must exist a path u γ in G(Γ). To see this consider a

node v ∈ Γ. Since G is strongly connected, there is a path u  v in G. By using

Lemma 3, the desired result is obtained. Finally, the existence of a path γ  u can

be shown by using a similar reasoning and Lemma 4.
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Lemma 6. Let G = (V,E) be a strongly connected digraph with |E| ≥ 2×|V |. Then

there exists at least one free edge in G.

Proof. The proof is by induction on |V |. For |V | = 1 it is trivial to see that the claim

holds. Let us consider the case |V | > 1. If G has a loop (that is if (v, v) ∈ E for some

v ∈ V ) or if G has parallel edges (that is if there are multiple edges between the

same pair of nodes), then we can remove the loop or one of the parallel edges and the

graph will still be strongly connected. Suppose G has no loops and it has no parallel

edges. Let Γ = {v1, v2, . . . , vm} ⊆ V be the nodes of a smallest cycle (i.e. a cycle

with the smallest number of vertices) in G. As G has no loops, m ≥ 2. Without

loss of generality assume that, ∀1 ≤ i < m, (vi, vi+1) ∈ E and (vm, v1) ∈ E. Note

that these edges must be the only edges between the nodes of Γ. In other words,

for three different nodes vi, vj, vk ∈ Γ it is not possible to have (vi, vj), (vi, vk) ∈ E

since Γ wouldn’t be a smallest cycle otherwise. Therefore there are exactly m edges

between the vertices in Γ.

Let us now consider G(Γ). Since there are exactly m edges between the vertices

in Γ, there are |E|−m edges in G(Γ). The number of vertices in G(Γ) is |V |−m+1.

First of all, the number of edges in G(Γ) is more than two times the number of

nodes in G(Γ), i.e. |E| −m ≥ 2× (|V | −m+ 1) since |E| ≥ 2× |V | and m ≥ 2.

Furthermore by using Lemma 5, it is known that G(Γ) is strongly connected as

well.

Finally, (|V | −m + 1) < |V | since m ≥ 2 and therefore by using the induction

hypothesis the proof is completed.

3.2.2 Existence of a Free Edge in a not Strongly Connected

Graph

Below we show that there exists at least one edge in a not strongly connected graph

if the graph has nodes with outdegree greater than 1.

Theorem 7. Let G = (V,E) be a digraph where each node has the same outdegree

k ≥ 2 and let G′ = (V ′, E ′) be a strongly connected component of G. If G is not

strongly connected, then there exists at least one free edge (u, v) in G where u ∈ V ′.
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Proof. If there exists an edge (u, v) ∈ E where u ∈ V ′ and v ∈ V \ V ′, then (u, v) is

a free edge. If there is no such edge, then |E ′| = k× |V ′| ≥ 2× |V ′|. In this case by

using Lemma 6, there is a free edge (u, v) in G′ where u, v ∈ V ′.

3.3 Forcing Strongly Connectedness

If the user wants the generated FSM to be strongly connected, tool gives user an

option of forcing strongly connectedness of the generated FSM by a post processing

step rather than waiting for a strongly connected FSM to be generated by random

assignment of transitions only. If this option is enabled, tool generates a random

FSM by randomly assigning transitions and checks whether it is strongly connected.

If it is not then the post processing to make the FSM strongly connected begins.

Details of this process are explained in this section. Note that since an FSM can be

represented as a directed graph, the process will be explained as a graph algorithm

considering the underlying graph representation of the FSM.

3.3.1 Finding a Set of Free Edges in a Component

The problem of finding a set of free edges for a strongly connected component as

large as possible is directly related to Minimum Equivalent Graph (MEG) problem.

MEG problem is defined as follows. Given a directed graph G(V,E) find the small-

est subset E ′ of E such that E ′ still keeps the same reachability relations between

vertices in V . When MEG problem is restricted to strongly connected graphs then

it is called the minimum Strongly Connected Spanning Subgraph (SCSS) problem

which is NP-HARD [8]. As you may notice if we can find a solution to the minimum

SCSS problem for a component ci then we can find a set of free edges with maxi-

mum cardinality for ci and vice versa. That is because if E ′ is the solution to the

minimum SCSS problem for a strongly connected component ci of G(V,E) and if

Ei ⊂ E is defined as Ei = {(vi, vj)|vi ∈ ci} then (Ei \ E ′) is a set of free edges with

maximum cardinality for ci.

Although finding a set of free edges with maximum cardinality for a strongly con-

nected component is NP-HARD, we still want to find as many free edges as possible.

For this reason we use a very simple heuristic. When finding F we iterate on each
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edge e = (vi, vj) ∈ E. If vi, vj ∈ ci we remove e and check if vj is still reachable from

vi. If it is reachable then e is a free edge and included in F , otherwise we put e back.

However there are cases where the reachability check can be skipped and an edge

can be included in F directly. One such case is when vi = vj, that is e is a self-loop

and it is guaranteed to be a free edge. Also any edge e satisfying vi ∈ ci, vj /∈ ci

directly included in F since in that case e is an edge going to a vertex outside ci and

does not affect the strongly connectedness of ci. Algorithm 2 describes this process

formally. Note that except these two cases, if an edge e happens to be a free edge

and thus is included in F and removed from E, an edge e′ 6= e which has not been

considered yet and was previously a free edge before removal of e, might not be a

free edge anymore. For that reason, the order in which the free edges are considered

and included in F becomes important. In our implementation, since we want to

affect randomness of the generated FSM as little as possible, we consider edges in a

random order for inclusion in F .

Algorithm 2: Find Set of Free Edges

Input: G = (V,E) graph

Output: F set of free edges for G

F = ∅;1

E ′ = E;2

foreach edge e = (vi, vj) ∈ E in some random order do3

Let ci and cj be the components in G s.t. vi ∈ ci and vj ∈ cj;4

if vi = vj OR ci 6= cj OR vi  vj in G′ = (V,E ′ \ {e}) then5

F = F ∪ {e};6

E ′ = E ′ \ {e};7

The complexity of finding a set of free edges is analyzed as follows. Finding

a set of free edges in a graph is performed by removing an edge and checking the

reachability condition. After an edge e = (v, v′) is removed, checking if v′ is still

reachable from v takes O(V +E) time using breadth first search. In the worst case

the algorithm may try to remove all edges and check for reachability. Hence the

complexity is O((V + E)E). Since in our case the graph represents a completely

specified FSM with n states and p inputs, that is |V | = n and |E| = np, the

16



complexity is O((n+ np)np) = O(n2p2).

3.3.2 Making a Graph Strongly Connected

Making a graph strongly connected is an iterative process such that after each

iteration the number of strongly connected components of the graph either reduces

or stays same. The process terminates when the number of strongly connected

components reduces to 1 and thus graph becomes strongly connected. To achieve

this, the aim in each iteration is to find a set of free edges of the current graph

and assign new destinations for each of them hoping that these new assignments

will create new connections between components and reduce the number of strongly

connected components. Note that Theorem 7 guarantees that if G = (V,E) is not

strongly connected then Algorithm 2 will find at least one free edge in each and

every strongly connected component of G. Notice that by definition a free edge

has no effect on the strongly connectedness of any component. Thus changing the

destinations of free edges never has the risk of increasing the number of components.

To be more clear and give the main idea, a more formal description of the algorithm

is presented in Algorithm 3.

Algorithm 3: Make Graph Strongly Connected

Input: G = (V,E) not strongly connected graph

Output: G∗ = (V,E∗) strongly connected graph obtained by changing

destination vertices of some edges in G

G∗ = G;1

while G∗ is not strongly connected do2

Ḡ∗(V̄ , Ē∗) = component graph of G∗;3

find a set of free edges F of G∗;4

remove F from E∗;5

foreach edge (vi, vj) ∈ F do6

pick a random component c ∈ V̄ ∗;7

pick a random vertex v ∈ c;8

E∗ = E∗ ∪ {(vi, v)};9

One important thing to notice is that the new destination for a free edge is
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determined by firstly choosing a random component and then a random destination

vertex within that component rather than choosing a random vertex in the graph

directly. Also notice that we have no restrictions on which component to choose,

so it can be the case that new destination for the free edge might be in the same

component as the source of the free edge. Although in such a case, no connection

is created between components, nevertheless the effect of new assignments on the

randomness of the graph is much less. In addition to that, choosing the component

of destination vertex first increases algorithm’s chances for increasing the number of

connections between components over the chance of choosing a destination within

the same component as the source of free edge. Let’s see how this is so. Assume

that a graph G with n vertices initially have m strongly connected components

V̄ = {c1, c2, ..., cm} and some component ci satisfies ∀j, j 6= i, n > |ci| >> |cj|.

That is ci is a very large component compared to all other components in terms

of number of the vertices it contains. Also let’s assume that the component with

the smallest cardinality is cm and consider the chances of assigning a free edge of ci

to cm. If we had chosen a vertex in the graph directly as the new destination of a

free edge, a free edge whose source is in ci will be assigned to a new destination in

component cm with a probability of |cm|/n. Since n >> |cm|, probability of creating

a connection from the large component ci to the smallest component cm will be very

small. However in our method, by choosing the component for the destination first,

the probability of connection from the ci to the cm becomes 1/m which is in practice

much greater than |cm|/n.

Algorithm 3, although gives the main idea of our implementation, does not re-

flect the details correctly. In each iteration of the algorithm, it seems strongly

connected components and set of free edges are computed from scratch for graph

G∗ = (V,E∗). Computing these in each iteration can be very time consuming if G∗

is large. Because of this, our implementation follows a different way, while doing the

same thing in essence. Instead of working each time on the original graph, starting

from the original graph, in each iteration we always work on the component graph

of the previous iteration. Thus we are trying to make the component graph strongly

connected which is actually same thing as making the original graph strongly con-

nected. Thus after an iteration, if some components form a new strongly connected

18



component, the size of the graph we are working on reduces. However working on

a new component graph in each iteration, instead of the original graph, requires

us to remember the vertices within the components so that the changes that are

made on the graph used in current iteration could be mapped to the graph on the

previous iteration. For this reason, we use a stack that stores the vertices within the

components and the free edges used in an iteration. When the last iteration finishes

and the graph reduces to a single component, using the information stored in the

stack, we are able to change the edges of the all previous iterations and including

the initial graph so that it is now strongly connected.

In order to analyze the running time of the Algorithm 3, we need to know that

how many times while loop iterates. We already know the running time of each

step within while loop. The most expensive step happens to be finding free edges

of a graph which has running time O(n2p2) and dominates other steps. However

we do not know how many times while loop will iterate exactly since the algorithm

is probabilistic. Although in theory while loop may iterate infinitely many times,

it will iterate until the number of strongly connected components reduces to 1. In

the worst case scenario, initially we may have all vertices as a separate component

hence there can be at most |V | = n components. Further in the worst case scenario

we assume that each component has only one free edge. Then by assigning new

destinations to free edges, algorithm tries to create a cycle in the component graph.

When a cycle is formed the components in the cycle becomes connected and number

of strongly connected components reduces. For the worst case scenario we can

calculate the probability of creating a cycle in the component graph and denote

it as P . A rough calculation shows that P > (n − 1)!(n − 1)/2nn−1. Also the

expected worst case running time of the algorithm E can be found using E = T/P

where T is the running time of a single iteration. Hence the expected running time

is O(n2p2/((n − 1)!(n − 1)/2nn−1)) which is O(nn). Although worst case expected

running time of the algorithm is very large, note that this is a very loosely calculated

bound which considers a very extreme case. In practice the algorithm terminates

in feasible time (for instance it takes approximately 1 second to generate a strongly

connected FSM with 10000 states 5 inputs and 5 outputs).
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3.4 Forcing Initial Reachability

Some checking sequence generation methods assume a reliable reset feature in the

implementation. This feature guarantees that no matter at which state the machine

currently is, applying a special input, called the reset input, takes the machine to

the initial state.

Such a reset transition is modeled in a specification by a transition from each

state to the initial state. The existence of these reset transitions relaxes the con-

ditions on the other transitions. More explicitly stated, the machine has to be

strongly connected. However for being strongly connected, it is now sufficient to be

initially reachable only, i.e. all states must be reachable from the initial state. This

condition combined with the reset transitions from all the states back to the initial

state guarantees that the machine is strongly connected. To support the research

for checking sequence generation under the assumption of reliable reset transitions,

our random FSM generation tool supports generation of initially reachable but not

strongly connected FSMs as well.

If an initially reachable FSM is desired, tool has two different methods of making

a graph initially reachable. Which method to use is selected by user. Notice that a

strongly connected FSM is also initially reachable. Because of that making an FSM

initially reachable is only necessary when a not strongly connected FSM is desired.

Before explaining methods in detail, we need to establish an important property

of initially reachable graphs.

Theorem 8. The component graph Ḡ = (V̄ , Ē) of an initially reachable graph

G = (V,E) have only one vertex with indegree 0 and it contains the initial vertex.

Proof. Consider the component ci that contains the initial vertex. That means all

components in V̄ \ {ci} are reachable from ci. Firstly notice that ci cannot have an

incoming edge so its indegree is 0. This can be shown by a simple contradiction.

If there had been an incoming edge (cj, ci) then that edge would form a cycle in

component graph since cj is reachable from ci. Since a component graph is an

acyclic graph by definition, a contradiction is reached. Secondly for all components

in V̄ to be reachable from ci each one must have at least one incoming edge because

a component with no incoming edge cannot be reached from another component.
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These two facts prove that all vertices in V̄ except ci have indegree greater than

0.

3.4.1 Method 1: Using a Backbone Component Graph

In this method, the user is given some control on the structure of component graph

of the random graph that will be generated. Besides other inputs (number of states,

number of input symbols and number of output symbols), the user can give number

of strongly connected components and the number of vertices (states) within each

component as input. Then according to this component structure given by the user,

edges between these components are decided in a manner that makes the component

graph initially reachable. This component graph is called the backbone component

graph since any graph which has the same connections between its components as

the backbone component graph is guaranteed to be initially reachable.

Notice that there can be many different backbone component graphs for a given

number of components. For this reason generation of a backbone component graph

is a process that results in one of the possible backbones by some random selection

of edges between components.

Backbone Generation Assume that user wants m strongly connected compo-

nents denoted as V̄ = {c1, c2, ..cm}. We first need to assign an order to each compo-

nent. Since we represent a component ci with an integer index i, let’s use natural

order of integers as the order of components. Then we assign edges of the backbone

component graph Ḡ = (V̄ , Ē) such that they satisfy following conditions.

1. ∀j > 1 ∃i s.t. i < j and (ci, cj) ∈ Ē

2. ∀j¬∃i s.t. i > j and (ci, cj) ∈ Ē

Simply, what these conditions establish are as follows. In condition 1 it is established

that all components, except c1, have at least one incoming edge from another com-

ponent which is smaller in the ordering of components. That is all components are

reachable from c1. Condition 2 states that there can be no edge from a component

with some large order to a component with a smaller order. This guarantees that
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there is no cycle in the graph as a component graph must be acyclic. The algorithm

for generating backbone is given in Algorithm 4.

Algorithm 4: Generate Backbone Component Graph

Input: m number of strongly connected components

Output: Ḡ = (V̄ , Ē) backbone component graph

V̄ = {c1, c2, ..., cm};1

Ē = ∅;2

for i = 2 to m do3

choose some nonempty random subset s of {1, ..., i};4

foreach cj s.t. j ∈ s do5

Ē = Ē ∪ (cj, ci);6

The complexity of generating a backbone component graph is O(m2), since for

each of the m components some edges are added from a subset of m components.

Generating an Initially Reachable Graph Now we can present the generation

of an initially reachable graph using the generated backbone component graph.

Algorithm 5 describes this process.

Here are some remarks about Algorithm 5.

• At line 1, generation of a random graph with strongly connected components

{c1, c2, ..., cm} each having size as given in N = {n1, n2, ..., nm} is achieved

as follows. Firstly for each ci a separate strongly connected graph with ni

vertices are generated using the tool. Then these m graphs are combined into

one graph that consists of these m individual graphs.

• In the for loop between lines 5-8, for each edge in the backbone graph, it is

made sure that the resulting graph has an edge between the corresponding

components. This is achieved by changing the destination vertex of a free

edge according to the edge in backbone graph and putting it back to set of

edges.

• At the last line, all remaining free edges inserted back into the graph after

their destinations are changed. Destinations are changed in such a way that
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Algorithm 5: Generate Initial Reachable Graph Using Backbone Component

Graph

Input: N = {n1, n2, ..., nm} component sizes

Output: G = (V,E) initially reachable graph with components V̄

generate a random graph G(V,E) with |N | = m strongly connected1

components each containing nk vertices where 1 ≤ k ≤ m ;

generate a backbone component graph Ḡ ;2

find a set of free edges F for G;3

remove F from E ;4

foreach edge (ci, cj) ∈ Ē of Ḡ do5

pick some random free edge (vi, vk) ∈ F s.t. vi ∈ ci ;6

pick some random vertex vj ∈ cj;7

E = E ∪ (vi, vj);8

add all remaining free edges to E after changing their destinations in a way9

that does not violate condition 2;

condition 2 is not violated, that is no cycle is introduced in the component

graph. Two approaches implemented to achieve this. In the first approach all

free edges are assigned destinations according to backbone graph whose edges

already satisfy condition 2 and in the second approach a free edge whose

source is in component ci is assigned to some random component cj such that

i < j. When the first approach is used, the component graph of the generated

random graph is same as the backbone component graph. However in the

second approach the component graph of the generated random graph may

contain connections that does not exists in the backbone component graph.

The complexity of Algorithm 5 is dominated by generating m strongly connected

graphs in the first statement. Hence Algorithm 5 have the same complexity as

generating m strongly connected graphs.
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3.4.2 Method 2: Generate an Initial Reachable Graph with

Random Components

When user does not care about the number of strongly connected components and

number of vertices in components, so he wants these parameters to be random as

well, then he can use the second method for generating an initially reachable random

graph. In this method firstly a not strongly connected random graph is obtained by

random assignment of edges. Then this graph is forced into an initially reachable

graph, if it is not initially reachable already.

Intuitively, the method works as follows. Let V̄0 ⊆ V̄ be the set of vertices

in the component graph with 0 indegree. Initially in the component graph there

are always more than one vertex with 0 indegree, since otherwise graph would be

already initially reachable. The main aim of the method is to reduce the cardinality

of V̄0 to one and thus making the graph initially reachable. In each iteration some

random vertex ci from V̄0 is chosen and it is removed from V̄0 after increasing its

indegree. Indegree of ci is increased by using free edges of some randomly chosen

subset of vertices which cannot be reached from ci. That is new connections are

made to ci from vertices that are not reachable from ci. It is important to make these

new connections from vertices that are not reachable from ci, since this guarantees

that we do not create a cycle in the component graph. Although at the end of the

iteration ci is removed from V̄0, this does not necessarily reduce the cardinality of

V̄0. This is because, the edges between vertices of two different components are free

edges by definition and since destinations of free edges are changed in order to make

new connections to ci, a vertex in the component graph may lose its only incoming

edge. Hence its indegree becomes 0 and it must be included in V̄0. For this reason,

at the end of each iteration V̄0 is updated along with the component graph Ḡ. Even

though theoretically algorithm does not have guarantee of termination, in practice

this does not seem to be a problem.

More formal description of the algorithm is presented in Algorithm 6.

Algorithm 6 is a probabilistic algorithm with large complexity. Although in

theory it has no guarantee for termination, in practice it terminates quickly.
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Algorithm 6: Make a graph initially reachable

Input: G = (V,E) graph to make initially reachable

Result: G is initially reachable

Ḡ = (V̄ , Ē) = component graph of G;1

find a set of free edges F for G;2

V̄0 = vertices in Ḡ with 0 indegree;3

while V̄0 have more than one element do4

pick some random ci ∈ V̄0 ;5

V̄i = set of components not reachable from ci ;6

pick some random subset S of V̄i;7

foreach cs ∈ S do8

pick a free edge e = (vi, vj) such that vi ∈ cs;9

set destination of e to some randomly chosen vertex in ci;10

update Ḡ;11

update V̄0 ;12

3.5 Shuffling

To decrease the time spent to generate an FSM with a preset distinguishing sequence,

tool contains an option called shuffle. When user wants to generate a random FSM

with a preset distinguishing sequence, tool generates an initial FSM and checks if it

has a preset distinguishing sequence. What this option provides is that if the FSM

has not any distinguishing sequence then rather than creating a new FSM from

scratch, tool randomly assigns new input and output symbols for each transition

and checks again for the existence of a distinguishing sequence. This operation

called shuffling and takes less time than creating a new FSM from scratch. Notice

that during shuffling, sources and destinations of transitions are not changed. Thus

properties such as strongly connectedness and initial reachability is not affected

after shuffling. When this option is enabled user can also provide how many times

shuffling takes place before a new FSM created from scratch or an FSM with preset

distinguishing sequence is generated.

The running time of a single shuffle operation is O(np) where n is number of
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states and p is number of input symbols. That is because every transition is con-

sidered once and there are np transitions in a completely specified, deterministic

FSM.

3.6 Providing Input/Output Probabilities

Recall that the assignment of output symbols to the transitions are performed ran-

domly. For each input symbol x and output symbol y, the number of x/y transitions

seen in the FSMs randomly generated in this way turns out be more or less the same.

To test a heuristic developed for generating UIO sequences based on the fre-

quency (how rare or how frequent) of transitions’ I/O labels [5], our tool has an

option that allows user to specify the probability for each I/O pair to be seen in the

FSM.

These probabilities are given in a regular text file that we call the i/o distribution

file. Each line of the file should be in the form i o p where i is an input symbol, o is an

output symbol and p is a probability as a percentage. Since tool generates completely

specified FSMs, number of transitions that have input symbol i is always same and

it is exactly number of states. That is because each state must have a transition

with input i in a completely specified FSM. On the other hand, no restriction exists

for output symbols. Then a line in the file means that among all transitions which

have input symbol i, p percent of them should have output symbol o in the FSM.
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Chapter 4

Checking if a Sequence is a

Checking Sequence

4.1 Introduction

Given any input output sequence X/Y of a specification FSM M , it is desirable to

know whether X is a checking sequence of M or not. Further if it is known that X

is not a checking sequence of M , it seems beneficial to able to get some information

about how closeX is to a checking sequence ofM . For example, during the operation

of checking sequence generation algorithm, with this information algorithm will

be knowledgeable about how close the current sequence to a checking sequence

and will have the opportunity to use it as a guide to make decisions on how to

extend the current sequence so that generating a checking sequence is possible. The

checking sequence generation method that will be explained in Chapter 6 uses such

an approach.

In this section, we propose a distinguishing sequence based method which checks

if the input portion X of an input output sequence X/Y is a DS based checking

sequence of specification FSM M . If it is not, the method is still able to provide

some information about how close X is to a checking sequence.
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4.2 Uncertainty Automaton

As explained in Section 2.4, a checking sequence for an FSM M distinguishes M

from all FSMs in the set Φ(M) where Φ(M) is the set of FSMs with at most as many

states as M and having the same input output sets. Hence to determine if the input

portion X of a input output sequence X/Y of M is a checking sequence, initially

we treat X/Y as an I/O sequence that is produced by an FSM in Φ(M). That is

initially we only assume that X/Y is a sequence that is produced by some unknown

machine N ∈ Φ(M) and what we want to know is that if N is equivalent to M or

not. Since X/Y is an I/O sequence, this sequence corresponds to some sequence of

transitions that visits a sequence of states of this unknown FSM N . Let’s consider

the path P = (n1, nr;X/Y ) where nodes ni represents states visited in N when X

is applied. If we can find a correspondence between the states of M and the nodes

in P and see that P verifies every transition of M then we can say that X is a

checking sequence of M . To find this correspondence between the states of M and

nodes in P , we consider P as a graph and call this as the uncertainty automaton. It

is called that way, since initially we do not know which node corresponds to which

state of M and there is the possibility that a node ni could be any of the states of

M . Hence we associate each node ni with a set of states that it may correspond to

and call that set as the candidate set of node ni. While we process the uncertainty

automaton we try to reduce the number of states in candidate sets of each node.

Formally, given an input output sequence X/Y we consider a path P = (n1, nr+1;

X/Y ). Then we represent P as a graph. We call this graph as uncertainty automaton

of P and represent it as GP = (VP , EP ) where initially VP = {n1, n2, ..., nr+1} and

EP = {(ni, ni+1;x/y)|(ni, ni+1;x/y) in P}.

Furthermore let’s define C : VP 7→ 2S where S is the set of states of M . In other

words C maps each node ni to a set of states of FSM M such that C(ni) is called

the candidate set of ni and represents the set of states that ni can be recognized as.

For example consider the I/O sequenceX/Y = aabababbba/0101100100 and FSM

M1 given in Figure 2.1. Then initial uncertainty automaton is generated according

to the sequence X/Y as shown in Figure 4.1. Each node in the initial uncertainty

automaton have all states of M1 in their candidate sets, i.e. ∀1 ≥ i ≥ 11, C(ni) =

{s1, s2, s3}. That is they can be recognized as either s1 or s2 or s3.
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n1 n2 n3 n4 n5 n6

n11 n10 n9 n8 n7

a/0 a/1 b/0 a/1 b/1

a/0

b/0b/1b/0a/0

Figure 4.1: Initial Uncertainty Automaton

The main aim of the method is to recognize each node in the uncertainty automa-

ton. Beginning with the initial uncertainty automaton, method tries to eliminate

states from the candidate sets of nodes. We will propose several techniques to elim-

inate states from the candidate sets. Using these techniques if a candidate set of a

node becomes singleton then that node is recognized. That is when the candidate

set of a node ni contains a single node, say s, that means ni is recognized as state

s of M , i.e. candidate set of ni will be C(ni) = {s}.

4.3 State Recognition Using Uncertainty Automa-

ton

Given an input output sequence X/Y , considering the path with label X/Y P =

(n1, nr+1;X/Y ) we form the initial uncertainty automaton GP as explained above.

GP is initialized such that for each node ni ∈ VP , C(ni) contains all the states in

FSM M . Later we try to recognize the nodes of GP by reducing the candidate sets

of the nodes. The uncertainty reduces as the candidate sets of the nodes get smaller.

One easy way of recognizing a node is to look for an occurrence of ADS of a

state. That is if the path P has a subpath (ni, nj;X
′/Y ′) such that X ′ is ADS of

a state s and λ(s,X ′) = Y ′ then the node ni cannot be any state other than s.

Therefore such nodes can easily be recognized as the corresponding states and the

candidate sets of those nodes can be updated accordingly.

For example, consider the distinguishing set D̄ = {Ds1
, Ds2

, Ds3
} where Ds1

=

a/0, Ds2
= ab/11, Ds3

= ab/10 for the FSM M1 in Figure 2.1. Using D̄ in the initial

uncertainty automaton shown in Figure 4.1, we can d-recognize

• Nodes n1, n6 and n10 as state s1
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• Node n4 as state s2

• Node n2 as state s3

and update the candidate sets as shown in Table 4.1.

C(n1) = {s1} C(n2) = {s3} C(n3) = {s1, s2, s3} C(n4) = {s2}

C(n5) = {s1, s2, s3} C(n6) = {s1} C(n7) = {s1, s2, s3} C(n8) = {s1, s2, s3}

C(n9) = {s1, s2, s3} C(n10) = {s1} C(n11) = {s1, s2, s3}

Table 4.1: Candidate Sets For the Uncertainty Automaton in Figure 4.1 after d-

recognition

Whenever we understand that two nodes of an uncertainty automaton corre-

spond to the same state of M , we merge those two nodes into one single node.

We can understand that two nodes ni and nj correspond to the same state in two

different ways.

• ni and nj are both recognized as the same state s of M , that is C(ni) =

C(nj) = {s}.

• there exist two subpaths (np, ni;X
′/Y ′) and (nq, nj;X

′/Y ′) with the same

label in GP where np and nq are understood to correspond to the same state

of M .

After we understand two nodes correspond to the same state, we merge them by

using the following merge operation.

Merging Nodes A node nj is merged into other node ni by

1. setting the start of each edge leaving nj as ni

2. setting the end of each edge entering nj as ni.

3. updating the candidate set of ni as C(ni) = C(ni) ∩ C(nj)

Intuitively, as a result of step 1 and 2 above each edge leaving and entering nj

now leaves and enters the node ni. If step 1 creates a node ni that has two leaving

edges with the same label then the end nodes of these edges are also understood
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n1 n2 n3 n4 n5

n9 n8

a/0

b/0

a/1 b/0 a/1

b/1

b/1

b/0

Figure 4.2: Uncertainty Automaton after nodes merged

to be corresponding to the same state, hence they will be merged as well. For this

reason, the uncertainty automaton always stays deterministic at the end of merge

operations. In step 3, the candidate sets of the merging nodes is intersected because

two nodes are understood to be corresponding to the same state. Although we may

not know which state they correspond to, it is obvious that it must be one of the

states in the intersection of the candidate sets of two nodes.

Also notice while merging two nodes ni and nj if C(ni) ∩ C(nj) is a singleton,

say {s} then that means after merging resulting node is recognized as state s of M .

In fact the t-recognition explained in Section 2.4 will be realized when merging two

nodes ni and nj where |C(ni)| = 1 and |C(nj)| > 1.

After nj is merged into ni, nj is removed from the uncertainty automaton, since

all the information that is stored in nj is now available in ni.

For example, consider the uncertainty automaton in Figure 4.1 and candidate

sets given in Table 4.1. Since nodes n1, n6 and n10 are recognized as state s1, they

must be merged into one node, let’s merge them as n1. In addition to that, since

n1, n6 and n10 enters to n2, n7 and n11 with the label a/0 respectively, nodes n2, n7

and n11 must be merged into one node, let’s merge them as n2. At this point no

more merging is possible and the resulting uncertainty automaton is shown in Figure

4.2 along with the candidate sets shown in Table 4.2.

C(n1) = {s1} C(n2) = {s3} C(n3) = {s1, s2, s3} C(n4) = {s2}

C(n5) = {s1, s2, s3} C(n8) = {s1, s2, s3} C(n9) = {s1, s2, s3}

Table 4.2: Candidate Sets For the Uncertainty Automaton in Figure 4.2
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The running time for a single merge operation on an uncertainty automaton

is the summation of time spent for setting the edges and intersecting candidate

sets of the nodes that are merging. For a single node the maximum number of

outgoing edges can be p (number of input symbols) and the maximum number

incoming edges can be r (number of edges in the uncertainty automaton). Hence

the total time spent for setting edges is O(p + r). In addition to that, since in a

candidate set there can be at most n elements (states), intersection of candidate

sets takes O(n2) without using a special data structure for set operations. Hence

the running time for a single merge operation is O(p + r + n2). The running time

for all possible merge operations is simply the multiplication of number of possible

merge operations and time spent for a single merge. In an uncertainty automaton

the maximum number of possible merges is bounded by the number of nodes in the

uncertainty automaton(i.e. O(r) = r + 1). This case happens when a single node

is merged with all other nodes. Hence the running time for all merge operations is

O(r)×O(p+ r + n2) = O(pr + r2 + n2r).

4.3.1 Candidate Elimination Using Incompatible Sets

With the techniques explained so far, all the state recognitions on the uncertainty

automaton can also be realized by using d- and t-recognition only. In this section a

technique that eliminates states from the candidate set of a node will be explained

which in turn allows the techniques explained above to recognize more states than

d- and t-recognitions alone can achieve. Before explaining this technique, we need

to define a compatibility relation between the nodes of an uncertainty automaton.

Compatibility of Nodes Two nodes ni and nj are defined to be compatible if

• C(ni) ∩ C(nj) 6= ∅ and

• for any input sequence X ∈ I∗ that is defined for ni, either X is not defined

for nj or if paths (ni, nt, X/Yi) and (nj, nu, X/Yj) exists in GP then Yi = Yj

and nt and nu are compatible and vice versa.

An important property of compatibility relation is that it is symmetric, that is

if ni is compatible with nj then nj is compatible with ni.
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Incompatible Set of a Node In this candidate elimination technique, we need

to know for each node ni, the set of nodes that ni is not compatible with. For this

reason, let’s define N as N : VP 7→ 2VP . N(ni) is called the incompatible set of ni

and contains the set of nodes that are not compatible with ni.

For the uncertainty automaton given in Figure 4.2, the incompatible sets are

shown in Table 4.3. If we consider N(n3), nodes n5 and n8 are in N(n3) since when

N(n1) = {n2, n4} N(n2) = {n1, n4, n5, n8} N(n3) = {n5, n8, n9}

N(n4) = {n1, n2} N(n5) = {n2, n3, n9} N(n8) = {n2, n3, n9}

N(n9) = {n3, n5, n8}

Table 4.3: Incompatible Sets For the Uncertainty Automaton in Figure 4.2

input b is applied node n3 produces output 0 whereas n5 and n8 produce output

1. N(n3) also contains n9 since with b/0 n3 enters node n4 and n9 enters node n1

but n1 and n4 incompatible. n1 and n4 are incompatible because the intersection of

their candidate sets is empty.

Finding Incompatible Sets Algorithm 7 gives formal description of finding in-

compatible sets for nodes. Finding incompatible sets of each node in uncertainty

automaton is a process with two phases. In the first phase (lines 1-6) each pair of

nodes are considered separately. For any pair of nodes, say ni and nj, if C(ni)∩C(nj)

is empty then these two nodes are incompatible. Otherwise taking only edges that

leaves ni and nj into account, compatibility of ni and nj is checked. That is, if both

nodes have an edge leaving with input symbol x, say (ni, nu;x/y) and (nj, nt;x/y′),

then these nodes are incompatible if the output they produce are different (y 6= y′).

Since in this first phase only single input symbols are considered for checking

compatibility, this phase does not give a final result about the compatibility of

two nodes. It only tells if incompatibility of two nodes can be deduced by any

input sequence of length 1. However there may be cases that ni and nj might be

incompatible but it can only be seen when all possible input sequences defined at

ni and nj are considered. In the second phase of the algorithm (lines 7-12), this

case is handled. In this phase, we iterate over a list of node pairs (L) that are

incompatible to each other. Initially this list contains all pairs of nodes that are
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found to be incompatible in the first phase. Algorithm iteratively removes a pair

from the list say ni and nj and checks if there are two nodes nu and nt such that

(nt, ni, x/y) and (nu, nj, x/y). If this is the case then we can deduce that nt and

nu are not compatible as well. That is because, nt and nu enters to incompatible

nodes with same label x/y. Then new pair nt and nu is added to list of incompatible

nodes if they are not considered before. This is checked by keeping track of each

pair considered in this second phase in a separate list (H). After all such nodes that

reach to ni and nj with the same label are added to the list then the pair ni, nj is

removed from the list. Algorithm terminates when the list becomes empty, thus all

incompatible sets are found.

Algorithm 7: Find Incompatible Sets

Input: GP = (VP , EP ) uncertainty automaton

Result: N(ni) is found for each node ni ∈ VP

L = ∅ ; // List of node pairs to be processed1

foreach pair of nodes (ni, nj) in VP × VP do2

if C(ni) ∩ C(nj) = ∅ OR (∃x (ni, nu, x/yi), (nj, nt, x/yj) ∈ EP3

s.t. yi 6= yj then

L = L ∪ {(ni, nj)};4

N(ni) = N(ni) ∪ {nj};5

N(nj) = N(nj) ∪ {ni};6

H = ∅ ; // List of incompatible node pairs processed7

while L is not empty do8

pick a pair (ni, nj) from L ;9

L = L \ {(ni, nj)};10

H = H ∪ {(ni, nj)};11

foreach nt and nu s.t. (nt, ni, x/y) and (nu, nj, x/y) do12

if (nt, nu) 6∈ H then13

L = L ∪ {(nt, nu)} ;14

N(nt) = N(nt) ∪ {nu};15

N(nu) = N(nu) ∪ {nt};16
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The running time of the finding incompatible sets given in Algorithm 7 can

be analyzed as follows. In first phase (first for loop) for each pair of nodes the

intersection of candidate sets and outgoing edges are considered. Finding intersec-

tion of candidate sets takes O(n2) time and there are O(p) outgoing edges for any

node. Since there are O(r2) node pairs, in the first phase the total time spent is

O(n2r2 + pr2). The second phase may also consider all pair of nodes and the most

time consuming operation in this phase is to check if a pair of nodes is considered

before. Although in the description given in the Algorithm 7 the list H is used to

check this, in our implementation we check if a pair of nodes was considered before

by looking whether one of the nodes is already in the incompatible set of the other.

Since each incompatible set can have at most O(r) nodes, this check is done in O(r)

time. Considering all pairs of nodes, the running time of the second phase is O(r3).

Hence the total running time of the algorithm is O(r3 + n2r2 + pr2).

Candidate Elimination Using a Recognized Node Before explaining the

technique candidate elimination using a set of incompatible nodes, we will first con-

sider a special case of the technique. We will call this special case as candidate

elimination using a recognized node.

Consider a node ni that is recognized as state s of M and suppose that there

exists a node nj which has not been recognized yet. Let’s assume nj is known to be

incompatible with ni (i.e. nj ∈ N(ni)), and s ∈ C(nj). In other words, s is still a

candidate state for nj but we also know that nj correspond to a different state than

ni which is recognized as s. This actually proves that nj cannot be recognized as s

and hence s can be removed from C(nj).

This elimination process is applied to all node pairs (ni, nj) such that C(ni) = {s}

and nj ∈ N(ni) by setting C(nj) = C(nj) \ {s}.

For example, considering the uncertainty automaton in Figure 4.2, the following

candidate eliminations using a recognized node is possible. Since node n2 is rec-

ognized as state s3 and is incompatible with nodes n5 and n8, state s3 is removed

from C(n5) and C(n8). Table 4.4 shows the updated candidate sets after these

eliminations.

Assuming incompatible sets are given, the running time for a single application

35



C(n1) = {s1} C(n2) = {s3} C(n3) = {s1, s2, s3} C(n4) = {s2}

C(n5) = {s1, s2} C(n8) = {s1, s2} C(n9) = {s1, s2, s3}

Table 4.4: Candidate Sets for the Uncertainty Automaton in Figure 4.2

of candidate elimination using recognized nodes is O(nr). That is because there can

be at most n recognized nodes and for each of them we can do eliminations on all

the nodes in its incompatible sets each of which can have at most O(r) nodes. If the

method achieves an elimination then it has to be applied again. The method can be

applied until all nodes recognized or no more elimination possible. However before

each application of this candidate elimination method incompatible sets have to be

recomputed since as a result of candidate eliminations incompatibility relations may

change. For this reason we have to add the running time of finding incompatible sets

to the running time of the method. Hence the running time of a single application

of the method is O(nr) + O(r3 + n2r2 + pr2) = O(r3 + n2r2 + pr2). As we see,

running time for finding incompatible sets dominates the running time for a single

application of the method, hence the first term O(nr) is dropped. When we analyze

how many times the method can be applied, we can say that in the worst case

the method have to be applied O(nr) times. That is because in the worst case,

each application eliminates a single element from the candidate set of a single node.

Hence in the worst case the running time of applying candidate elimination using a

recognized node is O(nr)×O(r3 + n2r2 + pr2) = O(nr4 + n3r3 + pnr3).

Candidate Elimination Using a Set of Incompatible Nodes Note that the

technique explained above cannot be applied when |C(ni)| > 1. Although for a node

nj ∈ N(ni) it is guaranteed that ni and nj will correspond to two different states

since the state corresponding to ni is not found yet we cannot simply remove the

entire set of states in C(ni) from C(nj).

However there is still a further chance for candidate elimination using a similar

idea. Let’s start by considering such an elimination on a simple case. Assume that

there is a set consisting of two nodes ni and nj both of which are not recognized yet

(i.e. |C(ni)| > 1 and |C(nj)| > 1) and are known to be incompatible (i.e. nj ∈ N(ni)

and ni ∈ N(nj)). If ni and nj have candidate sets such that |C(ni) ∪ C(nj)| = 2,

36



then that means there are 2 candidate states that ni and nj can be recognized as.

Since we also know that ni and nj is incompatible, ni and nj will be recognized as

different states in C(ni)∪C(nj). Further let’s assume that there is a third node nu

that is also not recognized yet and is known to be incompatible with both ni and

nj. This incompatibility tells us that nu cannot be recognized as any of the 2 states

in C(ni) ∪ C(nj), thus the elimination C(nu) = C(nu) \ (C(ni) ∪ C(nj)) is a valid

operation.

As we have seen in the example above, there are cases when we can definitely

know that a node cannot be recognized as a set of states rather than a single state.

Thus elimination of multiple states from the candidate set of a node at once is

possible. When we generalize this idea, we come up with the following formulation.

Assume that for a set of k nodes, say K = {n1, n2, ..., nk} where |K| = k, the

following conditions hold

1. if k > 1 then ∀ni ∈ K, |C(ni)| > 1

2. if k > 1 then ∀ni, nj ∈ K if ni 6= nj then nj ∈ N(ni)

3. if k > 1 then |
⋃k

i=1
C(ni)| = k

4. if k = 1 then |C(n1)| = 1

In simple words, condition 1 states each node in K has not been recognized yet.

Condition 2 states each node in K is incompatible with every other node in K. That

is no two nodes in K can be recognized as the same state. Condition 3 states that

there are k possible states that nodes in K can be recognized as. Hence combining

condition 2 and 3, it is obvious that each node in K will be recognized as one of the

k possible states and no other node in K will be recognized as that state. Although

we have no information about which node will be recognized as which state, this is

not necessary for elimination.

If there is any node, say nu, different than the nodes inK and is incompatible with all

the nodes in K then we can do the following elimination C(nu) = C(nu)\
⋃k

i=1
C(ni).

Notice that all conditions except the last one assumes the case k > 1. That is because

the case k = 1 refers to the special case where the only node in K must be already

recognized and that is same as the special case examined as candidate elimination
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using a recognized node.

Although candidate elimination method presents an important opportunity, finding

a set K satisfying the conditions becomes more expensive as k gets large. In fact,

finding a set K is same as solving the famous Clique problem on undirected graphs.

That is because, let’s assume we have found a set of nodes U with |U | = m ≥ k

that satisfies conditions 1 and 3. Then we need to find a subset K ⊆ U such that

K satisfies condition 2. If we consider each node in U as a node of an undirected

graph and put an undirected edge between the nodes that are incompatible with

each other, then finding a clique of size k in this graph solves our problem of finding

a subset K. Since clique problem is NPC, then candidate elimination using a set of

incompatible nodes leads to exponential running time.

Considering the performance of the method, the maximum cardinality of the set

of incompatible nodes, (k) can be given as a parameter. This provides a tuning

chance for the trade off between running time and finer analysis. Searching for a

set of incompatible nodes K with large cardinality,(k), may yield better results but

increases the running time of the analysis.

4.3.2 Candidate Elimination Using Candidate Trial

Another method that allows elimination of candidates from the candidate set of

an unrecognized node is what we call as candidate trial. In this method, for an

unrecognized node, say ni, a candidate state s ∈ C(ni) is chosen. Then a what-if

analysis is performed assuming that ni is recognized as s. In other words, a copy of

the current uncertainty automaton is created and ni is recognized as s on the copy

automaton. ni is recognized as s by simply merging it with the node that is already

recognized as s, if there is such node. If there is not, that is ni is the first node that

will be recognized as s, then setting C(ni) = {s} is enough. After ni is recognized as

s on the copy automaton, the analysis continues using the methods explained before

and it is checked that whether recognizing ni as s causes a contradiction at some

point. A contradiction is reached while recognitions and candidate eliminations

performed as usual, at some point two nodes, say nt and nu needs to be merged

but either C(nt) ∩ C(nu) is empty or for some input symbol x, nt and nu produce

different outputs. If such a contradiction is reached at some point, then it is sure
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that ni should not be recognized as s. Hence s can be eliminated from C(ni) in

the current uncertainty automaton. If no contradiction is reached then we can only

conclude that in the current state of the uncertainty automaton, there is still chance

for ni to be recognized as s. Thus at this point elimination of s from C(ni) is not

possible.

Considering the performance of the method, we think that it is reasonable not to

use candidate trial method in a nested fashion. Although it is possible to put a limit

on the depth of the nested candidate trial method calls, in our implementation we

do not call candidate trial method within another candidate trial method call. This

is simply because, not limiting candidate trial calls mean trying every possibility for

every unrecognized node and that may increase running time drastically.

Considering the uncertainty automaton in Figure 4.2, we can continue candidate

eliminations using the techniques explained above. When we want to use candidate

elimination using set of incompatible nodes, there are two such sets satisfying the

conditions of the method. One is the set of nodes {n3, n5, n9} and the other is

{n3, n8, n9}. However for both sets there is not any other node that is incompatible

with all of the nodes in one of the sets, thus no elimination is possible.

However we can continue candidate eliminations using candidate trial method.

Since among unrecognized nodes, node n5 have only two candidates remaining, we

like to consider candidate trial on node n5 first. So assume that node n5 is recognized

as state s1 on a copy of the current uncertainty automaton and this assumption leads

to following merges and candidate eliminations on the copy uncertainty automaton.

• Node n5 is merged with node n1 (since we assume they are recognized as same

state)

• State s1 is eliminated from C(n9) (since node n1 becomes incompatible with

node n9)

• State s1 is eliminated from C(n8) (since node n1 becomes incompatible with

node n8, thus node n8 recognized as state s2)

• State s1 is eliminated from C(n3) (since node n1 becomes incompatible with

node n3)
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• Node n8 merged with node n4 (since they both recognized as state s2)

• State s2 is eliminated from C(n9) (since node n9 becomes incompatible with

node n4, thus node n9 recognized as state s3)

• State s2 is eliminated from C(n3) (since node n3 becomes incompatible with

node n4,thus node n3 recognized as state s3)

After all of these merges and eliminations, the resulting copy uncertainty au-

tomaton is shown in Figure 4.3.

n1 n2 n3

n9 n4

a/0

b/1

a/1

b/0
b/0a/1

b/1

b/0

Figure 4.3: Copy Uncertainty Automaton

Since nodes n3 and n9 are now recognized as state s3 and node n2 has already

been recognized as state s3, these three nodes have to be merged. However node n9

and node n2 happens to be incompatible, since with b/0 they reach nodes that are

recognized as different states (node n2 reaches node n4 that has been recognized as

state s2 and node n9 reaches n1 that has been recognized as state s1). Thus there

is a conflict and that means our assumption of recognizing node n5 as state s1 was

false. So state s1 can be eliminated from C(n5). That leaves only state s2 in C(n5),

hence node n5 is now recognized as state s2 and must be merged with node n4.

Merging node n5 with node n4 makes the following candidate eliminations pos-

sible via candidate elimination using a recognized node.

• State s2 is eliminated from C(n9) (since node n9 is incompatible with node

n4)
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• State s2 is eliminated from C(n3) (since node n9 is incompatible with node

n4)

The resulting uncertainty automaton is shown in Figure 4.4, the corresponding can-

didate sets in Table 4.5 and the incompatible sets in Table 4.6.

n1 n2 n3 n4

n9 n8

a/0 a/1

b/0

b/0

a/1

b/1

b/1

b/0

Figure 4.4: Uncertainty Automaton

C(n1) = {s1} C(n2) = {s3} C(n3) = {s1, s3}

C(n4) = {s2} C(n8) = {s1, s2} C(n9) = {s1, s3}

Table 4.5: Candidate Sets For the Uncertainty Automaton in Figure 4.4

N(n1) = {n2, n4} N(n2) = {n1, n4, n8} N(n3) = {n4, n8, n9}

N(n4) = {n1, n2, n3, n9} N(n8) = {n2, n3, n9} N(n9) = {n3, n4, n8}

Table 4.6: Incompatible Sets For the Uncertainty Automaton in Figure 4.4

Now there is a possibility for candidate elimination using a set of incompatible

nodes. Considering the set of nodes K = {n3, n9}, it can be seen that they form

a set that can be used for elimination (since C(n3) ∪ C(n9) = {s1, s3} then |K| =

|C(n3) ∪ C(n9)| = 2 also node n3 is incompatible with node n9). If we consider

node n8 which is incompatible with both n3 and n9, then state s1 can be eliminated

from C(n8). Then node n8 is recognized as state s2 and must be merged with node

n4. This merge leads to merging of nodes n1 and n9. The resulting uncertainty

automaton is shown in Figure 4.5 with candidate sets shown in Table 4.7.
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n1 n2

n4 n3

a/0

b/0

a/1

b/0

b/0

a/1

b/1

Figure 4.5: Uncertainty Automaton

C(n1) = {s1} C(n2) = {s3} C(n3) = {s1, s3} C(n4) = {s2}

Table 4.7: Candidate Sets For the Uncertainty Automaton in Figure 4.5

The only unrecognized node is node n3 with candidate set C(n3) = {s1, s3}.

Making a candidate elimination using the recognized node n1, it is possible to elim-

inate s1 from C(n3) and recognize it as state s3. Hence node n3 must be merged

with node n2. Now all nodes are recognized as some state of FSM M1. The final

automaton is shown in Figure 4.6 with candidate sets shown in Table 4.8. Notice

that the final automaton is now equivalent to FSM M1 with all nodes recognized

and all transitions of M1 are verified. As a result it is concluded that X is a checking

sequence for FSM M1.

n1 n2

n4

b/2

a/0

b/1

a/1

b/0

a/1

Figure 4.6: Final Uncertainty Automaton
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C(n1) = {s1} C(n2) = {s3} C(n4) = {s2}

Table 4.8: Candidate Sets For the Uncertainty Automaton in Figure 4.6

4.3.3 Using Candidate Elimination Methods Together

After being seen the methods we use for candidate elimination, in this section we

present how we use these methods together. The main consideration we have is to

use the method that is cheaper as much as possible. Whenever a method fails to

update the uncertainty automaton then we proceed to the next method which makes

a more expensive analysis then the current method. What we mean by an update of

the uncertainty automaton is an elimination of a candidate from the candidate set

of any node. In addition to that whenever a method achieves an update, we brake

the execution of the current method and continue with a cheaper method if possible.

Hence we run the methods in the following order until none of the methods are able

to update the uncertainty automaton or all nodes in the uncertainty automaton

have been recognized.

1. Candidate Elimination Using a Recognized Node

2. Candidate Elimination Using a Set Of Incompatible Nodes

3. Candidate Elimination Using Candidate Trial

4.4 Thoughts on Uncertainty Automaton

As explained above, given an FSM M , an I/O sequence X/Y (which can be inferred

from a given input sequence X by tracing it onM starting from s1), together with an

ADS D̄, induces an uncertainty automaton N for an FSM M by using the method

explained in this section. Although not proved formally, it is easy to see intuitively

that if the uncertainty automaton N has as many states as M and is equivalent to

M , then X is a checking sequence for M .

However, even if X is really a checking sequence for M , the method may not

produce an uncertainty automaton equivalent toM . This may happen sinceX might

actually be a checking sequence not using D̄, or there might be other recognitions

which cannot be performed by using our state recognition techniques. Therefore
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when the final uncertainty automaton is not equivalent to M , we cannot be sure

whether X is a checking sequence or not.

We believe that even when a given input sequence X does not produce an un-

certainty automaton N equivalent to M , N can be used to decide how close X is

being a checking sequence. The difference in the number of states and the sizes of

the candidate states at the nodes of N can be used to produce such a metric.

44



Chapter 5

Overview of Simão et al.’s Method

In [24], Simão et al. presents a constructive method for generating checking se-

quences using distinguishing sets. In this section we provide a short description of

the algorithm using our own notation.

Given an FSM M and a distinguishing set D̄ = {Ds1
, Ds2

, ...Dsn
} of M , the

algorithm generates a checking sequence Q = x1x2...xk. For a sequence Q, let P (Q)

denote the path that starts from the initial state of M such that Q is the input por-

tion of the label of P (Q). That is P (Q) = (n1, n2;x1/y1), (n2, n3;x2/y2), ..., (nr, nr+1;

xr/yr). The algorithm iteratively constructs the sequence Q such that in the cor-

responding path P (Q) all transitions of M are verified. Thus when all transitions

are verified, Q becomes a checking sequence of M and algorithm terminates. Let

Qi denote the prefix of the checking sequence Q such that Qi is obtained at the

end of the ith iteration. Similarly let P (Qi) be the corresponding path for Qi. At

iteration i, algorithm produces the sequence Qi by extending the sequence Qi−1.

Initially it is supposed that the implementation is at the initial state s1 and in order

to recognize it Ds1
has to be applied. Thus the sequence Q1 is always Ds1

. In itera-

tion i how to extend the sequence Qi−1 is decided based on whether the end vertex

of P (Qi−1) is recognized or not. In this method, a vertex in P (Q) is recognized

when it is d-recognized or t-recognized as explained in Section 2.4. If the end vertex

of P (Qi−1) is recognized then a transition verification sequence is appended to the

current sequence, otherwise a state recognition is done by appending some iden-

tification sequence. Notice that in each case the sequence appended always ends

with an identification sequence, hence when a state recognition is attempted the
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longest possible overlapping between the identification sequences is considered. A

more formal description of method is given in Algorithm 8.

Algorithm 8: Simão et al.’s Checking Sequence Generation Method as in [24]

Input: D̄ = {Ds1
, Ds2

, ..., Dsn
} a distinguishing set for an FSM M

Output: Q a checking sequence for M

Q0 is the empty sequence ;1

i = 1;2

while there are unverified transitions do3

let sk = δ(s1, Qi−1) ;4

if end of P (Qi−1) is recognized (as sk of M) then5

Find a shortest verified transfer sequence β from sk to some state sj,6

such that sj has some unverified transition (sj, su;x/y) ;

Qi = Qi−1βxDsu
;7

else

Find the longest suffix χ of Qi−1 such that Qi−1 = αχ and χ is also a8

prefix of Dsu
, where su = δ(s1, α), and the end vertex of P (α) is not

recognized ;

Qi = Qi−1φ where Dsu
= χφ ;9

Update recognized vertices in P (Qi) ;10

Update verified transitions ;11

Since the aim of the algorithm is to obtain a sequence that verifies every transi-

tion, after each extension to the current sequence the set of verified transitions must

be updated. This is necessary for both cases. In case 1 when a transition verification

sequence is appended to current sequence it is obvious that a transition will be veri-

fied, but note that a transition verification may lead to other transition verifications

via t-recognitions. Hence more than one transition can be verified within an itera-

tion. Likewise in case 2, that is when a suffix of identification sequence is appended

to the current sequence, a previously unrecognized vertex will be d-recognized and

that may also lead to transition verifications.
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Chapter 6

Our Checking Sequence

Generation Method

In this section a new method to generate checking sequences using distinguishing sets

will be presented. Similar to Simão et al.’s [24] method, this method also constructs

a checking sequence by extending the current sequence in each iteration. However

unlike the method in [24], the method consists of two phases. In the first phase an

input sequence Q is generated but Q is not guaranteed to be a checking sequence.

If it is not, then method enters second phase and does some post-processing. In this

post-processing phase, Q is further extended until it becomes a checking sequence.

6.1 Phase 1: Sequence Generation

In the first phase of the method, an input sequence Q, which may not be a checking

sequence, is constructed iteratively. In this method, recognition of a vertex in P (Q)

can be achieved with d and t-recognitions as usual. However in our method a vertex

can also be recognized conditionally. A conditional recognition of the start of an

edge (ni, ni+1;x/y) in P (Q) is possible if this edge corresponds to an invertible

transition (s, s′;x/y) in FSM M . An invertible transition is defined as follows.

Definition 4. A transition (s, s′;x/y) is invertible if ∀s′′ ∈ S such that s′′ 6= s,

either δ(s′′, x) 6= s′ or λ(s′′, x) 6= y.

In simple words, a transition (s, s′;x/y) is invertible if it is the only transition

entering state s′ with input x and output y.
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Although in a different context, the idea of using invertible transition to reduce

the checking sequence length has been suggested before in [12, 13, 6].

If (s, s′;x/y) is an invertible transition of FSM M the recognition of the start

vertex ni of the edge (ni, ni+1;x/y) as s in P (Q) is possible when the following

conditions are met.

• the end vertex ni+1 is recognized as state s′ of M and

• For each state s′′ of M such that s′′ 6= s, P (Q) contains an edge (nj, nj+1;x/y′)

such that nj is recognized as s′′ and either y′ 6= y or nj+1 is recognized as some

state different than s′

In simple words, recognized vertices of P (Q) have to provide enough evidence

that all states except s when input x is applied either produces an output different

than y or enters a state different than s′. Thus, if an unrecognized vertex ni in

P (Q) enters state s′ with input x and output y, then the only remaining state that

ni can be recognized as is s. Invertibility of transition (s, s′;x/y) is crucial in such

conditional recognitions, since otherwise there would be at least one other state s′′

different than s that also enters s′ with input x and output y. In that case ni cannot

be recognized conditionally since there is not enough evidence to know whether ni

should be recognized as s or s′′.

A conditional recognition is valid only when all conditions are satisfied. Hence it

should be checked that if the conditions are satisfied. However in this method, we do

not check if any of the conditions is satisfied in the first phase. Instead if there is an

edge (ni, ni+1;x/y) in P (Q) and it corresponds to an invertible transition (s, s′;x/y),

then ni directly assumed to be recognized as s without considering if there is enough

evidence in P (Q) to validate this recognition. That is why the sequence generated

in the first phase of the algorithm is not guaranteed to be a checking sequence and

some post processing may become necessary to obtain a checking sequence.

A description of the first phase of method is presented in Algorithm 9. At the

end of the first phase, generated sequence Q is checked to see if it is a checking

sequence using the method described in Chapter 4. If Q is a checking sequence the

algorithm terminates. Otherwise Phase 2 of the algorithm is executed to extend Q

to a checking sequence.
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Algorithm 9: Phase 1

Input: D̄ = {Ds1
, Ds2

, ..., Dsn
} a distinguishing set for an FSM M

Output: Q a possible checking sequence for M

Q0 is the empty sequence ;1

i = 1;2

while there are unverified transitions do3

let sk = δ(s1, Qi−1) ;4

if end vertex of P (Qi−1) is recognized (as sk of M) then5

Find a shortest verified transfer sequence β from sk to some state sj,6

such that sj has some unverified transition (sj, su;x/y) ;

Qi = Qi−1βxDsu
;7

else

Qi = Qi−1Dsk
;8

Update recognized vertices in P (Qi) ;9

Update verified transitions ;10

The length of the sequence generated by Phase 1 of the algorithm can be analyzed

as follows. To be able to verify a transition, the last vertex of the sequence must

be recognized. In worst case, the last vertex of the sequence is recognized after

identification sequence is appended (n+ 1) times. Let |D̄| denote the length of the

longest identification sequence in the distinguishing set D̄. Then the last vertex of

the sequence is recognized after at most (n+ 1)× |D̄| input symbols are appended.

When the last vertex is recognized we may need to append a transfer sequence. The

maximum length of a transfer sequence can be n in case all states must be visited. In

addition to that since a transition verification sequence is concatenation of an input

symbol and an identification sequence, its length can be at most |D̄|+1. Summing all

these gives the length of sequence required for a single transition verification. Since

there are np transitions then upper bound for the length of generated sequence can

be calculated by np× ((n+ 1)|D̄|+ n+ |D̄|+ 1) which is O(n2p|D̄|).

The running time of Phase 1 is dominated by updating recognized vertices in

the current sequence. Given a sequence of length l updating the recognized vertices

in that sequence takes O(l2) time. Since the length of the sequence is generated in
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Phase 1 is O(n2p|D̄|), a single iteration of the while loop takes O(n4p2|D̄|2). While

loop iterates at most np times, hence the running time of Phase 1 is O(n5p3|D̄|2).

Example

We will now illustrate the execution of Phase 1 will on the FSM M1 shown in

Figure 2.1 with the distinguishing set D̄ = {Ds1
, Ds2

, Ds3
} where Ds1

= a,Ds2
=

ab,Ds3
= ab. First note that all transitions in FSM M1 is invertible so all nodes

can be conditionally recognized if needed. Initially we have the empty sequence Q0,

hence we extend it by Ds1
= a. Thus Q1 = a, P (Q1) = (n1, n2; a/0) and n1 is

d-recognized as state s1. From now on, we will show iterations of algorithm using

a table format. For the first iteration, Table 6.1 shows the current sequence Q1 in

the first row. Second row shows the initial vertex of the corresponding path P (Q1)

for the input at the same column. Third row shows if the corresponding vertex in

the second row is recognized, D is used for d-recognition, T is used for t-recognition

and C is used for conditional recognition. Last row shows the corresponding states

of M1. That is, we can read Table 6.1 as, current input sequence Q1 is a, in P (Q1)

vertex n1 enters vertex n2 with input a and n1 is d-recognized as state s1, whereas

n2 is not recognized yet.

Sequence a

Vertex n1 n2

Recognition D

State s1 s3

Table 6.1: Iteration 1

In the second iteration the end vertex in P (Q1), n2, is not yet recognized, thus

we extend sequence by Ds3
= ab. With this extension n2 is d-recognized and n3

is conditionally recognized. Also the transitions (s1, s3; a/0) and (s3, s3; a/1) are

verified. Iteration 2 is shown in Table 6.2.

In the third iteration the end vertex in P (Q2), n4, is not yet recognized, thus we

extend sequence by Ds2
= ab as shown in Table 6.3. In this iteration, transitions

(s3, s2; b/0) and (s2, s2; a/1) are verified.

In the fourth iteration the end vertex in P (Q3), n6, is not yet recognized, thus
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Sequence a a b

Vertex n1 n2 n3 n4

Recognition D D C

State s1 s3 s3 s2

Table 6.2: Iteration 2

Sequence a a b a b

Vertex n1 n2 n3 n4 n5 n6

Recognition D D C D C

State s1 s3 s3 s2 s2 s1

Table 6.3: Iteration 3

we extend sequence by Ds1
= a as shown in Table 6.4. In this iteration, transition

(s2, s1; b/1) is verified.

Sequence a a b a b a

Vertex n1 n2 n3 n4 n5 n6 n7

Recognition D D C D C D T

State s1 s3 s3 s2 s2 s1 s3

Table 6.4: Iteration 4

In the fifth iteration, the end vertex in P (Q4), n7, is recognized as s3. Since

all transitions of s3 are verified, we need to transfer to a state with an unverified

transition. Actually the only transition that remains unverified is (s1, s1; b/0). Hence

we transfer to s1 with sequence bb first and then verify the transition with bDs1
= ba.

Hence in this iteration the sequence is extended by bbba as shown in Table 6.5. As

every transition is now verified, sequence generation in Phase 1 is finished. If we

check whether the generated sequence Q = Q5 is a checking sequence using the

method in Chapter 4, we see that Q is a checking sequence. Actually the example

sequence used in Chapter 4 is the same sequence generated here and in that section

it is shown that this sequence is checking sequence for M1.
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Sequence a a b a b a b b b a

Vertex n1 n2 n3 n4 n5 n6 n7 n8 n9 n10 n11

Recognition D D C D C D T T T D T

State s1 s3 s3 s2 s2 s1 s3 s2 s1 s1 s1

Table 6.5: Iteration 5

6.2 Phase 2: Extending Sequence Q to a Checking

Sequence

If the sequence generated in Phase 1, namely Q, is not a checking sequence, then

Phase 2 of the algorithm is executed. In this post processing phase, Q is extended

with some identification sequences. Just after Phase 1, using the method in Chapter

4 the sequence is checked whether it is a checking sequence or not. If Q cannot be

understood to be a checking sequence, that means the final uncertainty automaton

for Q has some unrecognized nodes. Hence in Phase 2, what we simply do is to find

an unrecognized node in uncertainty automaton and extend the sequence with the

corresponding identification sequence for that unrecognized node. The recognition

of an unrecognized node may result in new recognitions via candidate eliminations

and merges on the uncertainty automaton. If there are still unrecognized nodes re-

maining in the uncertainty automaton then the sequence is further extended until no

unrecognized nodes remains in the uncertainty automaton, thus sequence becomes

a checking sequence.

Among unrecognized nodes in the uncertainty automaton which one to recognize

is chosen using a very simple approach. Assume that in the uncertainty automaton

the current node is ni. From ni a shortest transfer sequence β (possibly empty) to

an unrecognized node nj is found in the uncertainty automaton. If nj has to be

recognized as s, then the sequence βDs, where Ds is the identification sequence of

s, is appended to the sequence.

However there might be some cases such that in uncertainty automaton a transfer

sequence to some unrecognized node cannot be found from the current node ni. That

case happens when every node that is reachable from ni is already recognized and

at least one of these nodes has an undefined transition. Then we find the shortest
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transfer sequence β to such a node. Assume that nj is that node which is recognized

as s and has some undefined transition, say x. Then the sequence is extended by the

transition verification sequence appended to β, namely βxDs′ where s′ = δ(s, x).

An application of this case can be seen in the example given in this section

Example

Now the execution of Phase 2 will be illustrated on an example. Consider the

FSM M2 given in Figure 6.1 with the distinguishing set D̄ = {Ds1
, Ds2

, Ds3
, Ds4

}

where Ds1
= ab, Ds2

= ab, Ds3
= aa and Ds4

= aa.

s1 s4

s3 s2

a/1

b/0

a/1

b/1

a/0

b/1

a/0

b/0

Figure 6.1: FSM M2

Phase 1 generates the sequence Q = ababbababbaaaaa for the FSM M2 with the

given distinguishing set D̄. When it is checked whether Q is a checking sequence for

M2, the method described in Chapter 4 produces the final uncertainty automaton

shown in Figure 6.2 with the candidate sets given in Table 6.6. Since there are

still some unrecognized nodes in the uncertainty automaton, Q is not a checking

sequence. Thus in Phase 2, Q needs to be extended to become a checking sequence

for M2.

C(n1) = {s1} C(n2) = {s3, s4} C(n6) = {s2} C(n7) = {s3, s4}

C(n11) = {s3} C(n12) = {s1, s2} C(n13) = {s4}

Table 6.6: Candidate Sets For the Uncertainty Automaton in Figure 6.2

Notice that in the uncertainty automaton nodes n2, n7 and n12 are unrecognized,

each having multiple states in their candidate sets. In order to extend sequence Q

into a checking sequence, we need to recognize all nodes in the uncertainty automa-
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n1 n6 n7

n2 n13 n12 n11

a/1b/0

b/0
a/1

b/1

b/1

a/0a/1

a/0

Figure 6.2: Final Uncertainty Automaton for Q generated in Phase 1

ton. Hence firstly we like to transfer to one of these unrecognized nodes using the

shortest possible transfer sequence and recognize that node with the corresponding

identification sequence from D̄. However when sequence Q is traced (starting from

the node that is recognized as the initial state s1, i.e. node n1) on the uncertainty

automaton, the last node happens to be n13. Note that node n13 is already recog-

nized as s4. As the only edge leaving node n13 is a self-loop, there is no way to

transfer to an unrecognized node. The reason for that is node n13 have no defined

edge with input b. In other words b transition of s4 has not been verified yet, because

possibly in Phase 1 some conditions that is required for a conditional recognition

remained unsatisfied. To get rid of this situation, we extend Q to verify b transition

of s4. Hence the sequence bDs1
= bab is appended to Q (note that δ(s4, b) = s1).

When we check whether the extended sequence Q′ = Qbab is a checking sequence

for M2, the resulting uncertainty automaton happens to have all nodes recognized

and all transitions verified as shown in Figure 6.3 and candidate sets in Table 6.7.

Thus Q′ is a checking sequence for M2.

C(n1) = {s1} C(n6) = {s2} C(n11) = {s3} C(n13) = {s4}

Table 6.7: Candidate Sets For the Uncertainty Automaton in Figure 6.3

6.3 Experimental Results

In this section the experimental results for the checking sequence generation method

will be discussed. The methods have been implemented with Java and the exper-
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n1 n13

n11 n6

a/1

b/0

a/1

b/1

a/0

b/1

a/0

b/0

Figure 6.3: Final Uncertainty Automaton for Q′ = Qbab

iments have been executed on a machine with Intel Xeon 2.33 GHz and 32 GB

ram.

The FSMs that is used in experiments are generated using the random FSM

generation tool whose details explained in Chapter 3. For the experiments 10 sets

of FSMs are used. Each set of FSMs contain 200 FSMs having number of states

n, where n is ranging from 10 to 100 (increasing with a step size 10). Each FSM

has 5 input symbols and 5 output symbols. Also each FSM has a PDS. In this

experimental setup PDS is used instead of distinguishing sets. That is because for

a given FSM, the tool we are using is biased toward finding distinguishing sets that

generally contain repetitions of the same input symbol. We call such sequences as

uniform sequences. However for finding PDS there is no such bias. If an identifi-

cation sequence is uniform, then this situation increases the chances of overlapping

among identification sequences and causes biased results.

We are going to compare the performance of our method with Simão et al.’s

method given in [24]. The comparisons will be in terms of checking sequence length

and method execution time.

6.3.1 Comparison with Simão et al.’s Method

For the experimental results that will be presented in this section our method uses

candidate elimination using a recognized node as the only candidate elimination

method while checking if the sequence generated is a checking sequence. That is

candidate elimination using candidate trial and candidate elimination using a set of
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incompatible nodes are not used due to their high computational costs. However the

experiments show that even with this reduced recognition ability our method can

outperform Simão et al.’s method.

Number of States Our Method Simão et al.’s Method

10 179 207

20 451 528

30 788 893

40 1172 1320

50 1476 1665

60 1856 2043

70 2267 2492

80 2787 3046

90 3269 3559

100 3644 3944

Table 6.8: Average CS Lengths

Table 6.8 shows for each set of 200 FSMs with number of states ranging 10 to

100, the average checking sequence length of our method and Simão et al.’s method.

Figure 6.4 shows the data in Table 6.8 as a chart.

Figure 6.4: Average CS Lengths

Table 6.9 contains the average improvement over Simão et al.’s method in terms
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of checking sequence length. First column shows the average improvement calcu-

lated for all FSMs. Second and third columns show the average improvement when

FSMs with non-uniform distinguishing sequences and FSMs with uniform distin-

guishing sequences considered separately. The values are calculated by averaging

the improvements of each FSM in a set. In Figure 6.6 average improvements are

shown as a chart.

Considering the performance of our method only, Figure 6.5 shows the box plot

for CS lengths. A box plot is interpreted as follows. For each set of FSMs on the

horizontal axis the plot contains a box on a vertical line segment. The ends of a line

segment marks the minimum and maximum values. The box contains the middle

50% of the values and its upper and lower edges are on the 75th percentile and 25th

percentile respectively. The line inside the box shows the median value.
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Figure 6.5: Our Method’s CS Lenghts as a Box Plot

When FSMs with non-uniform distinguishing sequences are considered, our method

on average produces significantly shorter checking sequences. The average improve-

ment varies between 7, 95% and 15, 23%. However when FSMs with uniform distin-

guishing sequences are considered our method’s improvement is not significant and

both methods have more or less the same performance. This performance difference

between uniform and non-uniform distinguishing sequences stem from the fact that

Simão et al.’s method uses overlapping between distinguishing sequences, but our

method have no such consideration. Our method does not search for overlapping

since using conditonal recognition we are able recognize nearly all nodes in the se-

quence (only if a transition is not invertible then conditional recognition does not

work). However when distinguishing sequence is uniform then Simão et al.’s method

can find many overlaps, thus it can also recognize many nodes like our method. For

non-uniform distinguishing sequences chances of overlap greatly reduces, thus our

method creates a significant difference in checking sequence length.

In Figure 6.7, the improvement of our method over Simão et al.’s method in

checking sequence length shown as a box plot. It can be seen that although for

some FSMs our method may perform worse than Simão et al.’s method, in majority

of the cases it performs better and improvement can be as high as 30%.

When method execution times are considered, Figure 6.8 shows the average run-
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Number FSMs with FSMs with

of States All FSMs (%) non-uniform DS (%) uniform DS (%)

10 12,61 12,99 2,14

20 14,22 15,23 2,64

30 11,50 12,78 1,63

40 11,08 11,65 2,08

50 11,32 11,55 2,39

60 9,06 9,34 1,17

70 8,88 9,20 2,09

80 8,36 8,80 1,37

90 8,07 8,34 -2,73

100 7,46 7,95 0,88

Table 6.9: Average Improvements Over Simão et al.’s Method

ning times of our method and Simão et al.’s method together as a chart. The results

show that there is no significant difference in running time, with this experimental

setup where we did not use expensive candidate elimination techniques. However

the length of the sequence is reduced by at least 7% in our experiments on FSMs

upto 100 states.

6.3.2 Contributions of Phase 1 and Phase 2

In this section, we will analyze experimental results for our method only and present

the contributions of Phase 1 and Phase 2 to the average checking sequence length

and average execution times.

Figure 6.9 shows the contributions of Phase 1 and Phase 2 to the average checking

sequence lengths. In Figure 6.11 the average distribution of the execution time

between Phase 1 and Phase 2 is shown. The percentage contribution of Phase 2 to

the checking sequence length and time increases with the size of the FSM. Although

the time taken by Phase 2 seems to contribute more and more as the size of the

FSM grows, the percentage contribution of Phase 2 to the length of the checking

sequence seems to be saturating around 30%. Percentage contribution of Phase 2

to CS length shown in Figure 6.10.
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Figure 6.6: Average Improvements Over Simão et al.’s Method

6.3.3 Effect of Candidate Elimination Using a Set of Incom-

patible Nodes

When the candidate elimination method candidate elimination using a set of in-

compatible nodes is also used the average length of checking sequences generated by

our method further reduces but the execution times increase as expected. Results

will be given when the maximum cardinality, k, of the incompatible set is set to 5

and 10 (k = 5 and k = 10). Remember that k = 1 actually means using the method

candidate elimination using a recognized node only and the results for this case were

already given in the previous sections.

Note that the value of k has no effect on the length of the sequence generated at

the end of the Phase 1 since during Phase 1 candidate elimination methods are not

used. As the value of k increases a better analysis of the uncertainty automaton will

be performed and this is expected to reduce the length of the extension introduced

by Phase 2. Figure 6.12 shows the improvement on this extension length by giving

the ratio of extension lengths when k = 5 and k = 10 to the extension length when

k = 1. The experiments show that as the size of the FSM gets bigger although k = 5

and k = 10 cases perform a more complex analysis their extension length quickly

approach to the extension length of case k = 1.

The value of k does not affect the time spent in Phase 1. As the value of k

increases since a more complex analysis is performed the running time of Phase 2
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Figure 6.7: Improvements Over Simão et al.’s Method as a Box Plot

is expected to increase. Figure 6.13 shows the speed down factor when k = 5 and

k = 10 compared to case k = 1. The experiments show that the analysis required

by k = 5 and k = 10 cases slow down the execution at least more than 5 times.
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Figure 6.8: Average Method Execution Times

Figure 6.9: Contributions of Phase 1 and Phase 2 to CS Length
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Figure 6.10: Percentage Contribution of Phase 2 CS Length

Figure 6.11: Distribution of Execution Time between Phase 1 and Phase 2
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Figure 6.12: Effect of Candidate Elimination Using a Set of Incompatible Nodes on

Length

Figure 6.13: Effect of Candidate Elimination Using a Set of Incompatible Nodes on

Time
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Chapter 7

Conclusion

In this thesis, three aspects of FSM based testing is addressed.

The absence of a benchmark set of FSMs makes it difficult to compare the

performance of different checking sequence generation methods. Although it is not

clear at all how well a randomly generated FSM will represent the features of a real

FSM specification, it seems that there is no easy way of obtaining an extensive set

of FSMs other than generating them randomly.

For this reason, we have implemented a random FSM generation tool in order to

satisfy an important need in FSM based testing. For FSMs with different properties

(such as being strongly connected or not, having a PDS/ADS or not, etc.) there

are different and specialized methods for generating test and checking sequences.

The tool does not only generate random FSMs of the certain type required by

the checking sequence generation method developed within this thesis, but it can

generate quite a wide range of types of FSMs with the required properties to support

FSM based testing in general. Generation of a random FSM with some properties

are difficult when it is left to chance. We developed some algorithms to obtain FSMs

with these properties. Our main consideration while designing these algorithms was

to affect the randomness of an FSM as little as possible. The thesis contains the

details of the algorithms we developed to create random FSMs with such properties.

One especially hard to satisfy property turns out to be existence of preset dis-

tinguishing sequence (PDS). The existence check of PDS (which is known to be

PSPACE–complete) is currently performed by an exponential analysis in the tool.

Therefore generating large FSMs with PDS is quite difficult. Although we have
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suggested the shuffling method to speed up regenerating candidate FSMs for this

method, it seems that an approach that will generate a random FSM from a certain

class of FSMs guaranteed to have PDS will be more effective.

Second contribution of the thesis is a method that can answer the following ques-

tion: Given an input output sequence X/Y and a distinguishing sequence D̄ for an

FSM M , is X/Y a checking sequence for M which is generated by using D̄ The

method uses state recognition techniques already existing in the literature, such as

d- and t-recognition. However we also introduce some novel state recognition meth-

ods. Although this increases the capability of the method to recognize a checking

sequence, it is still possible that a sequence being found not to be a checking se-

quence even if it is really a checking sequence, i.e. we may have false negatives.

However, it is not possible for us to have false positives. In other words, whenever a

sequence is found to be a checking sequence, it is really a checking sequence for M .

Although this check is used as a termination condition in our checking sequence

generation method, we believe the information provided by the uncertainty automa-

ton can be used in the context of passive testing as well. In passive testing, the tester

is nothing more than an observer of the IUT in its normal operation and cannot

interfere with the operation of the system for testing purposes. Being a passive ob-

server, the tester can only declare the implementation under test (IUT) to be faulty

whenever an unexpected behavior is seen. However, if IUT keeps producing the ex-

pected responses, there is no verdict for the passive testing activity. We conjecture

that the input output behavior X/Y of IUT as observed by the tester can be used

to build an uncertainty automaton to see if the observation seen so far is a checking

sequence or not. Even if it does not turn out to be a checking sequence, the size of

the uncertainty automaton, probably together with the sizes of the candidate sets

of the unrecognized nodes of it, may provide a metric to judge how close X/Y is to

being a checking sequence.

The final and major contribution of the thesis is a new distinguishing sequence

based checking sequence generation algorithm. Our method is based on a recent

method that uses a local optimization. This local optimization based method in

most cases yield better results than the existing global optimization based methods.

Our method consists of two phases, in the first phase a sequence is generated with
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little consideration in state recognition. If the sequence generated in first phase is

not a checking sequence then it is extended to a checking sequence in Phase 2. The

experimental results have shown that our method achieves at least 7% reduction

in the length of the checking sequence over the method that it is based on. We

think that, there is still a room for further improvement using our method. The

experiments show that approximately 30% of the checking sequence length stem

from the extensions in Phase 2 and this extension length can be reduced. In Phase

2 of the algorithm we implemented a very simple idea to extend the sequence to a

checking sequence. However a closer analysis of the final form of the uncertainty

automaton may actually yield shorter extensions required. As a future work, we

want to find some good heuristics that makes these extensions more cleverly. It may

also be worthwhile to reconsider our eager and careless conditional state recognition

approach in Phase 1.

Another promising research direction seems to be the fusion of the new local

optimization based methods and the old global optimization based methods. Al-

though the new methods generate shorter sequences, they are based on very greedy

ideas. Hence bringing in some kind of global knowledge into the algorithms may

improve the performance even more.
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