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Abstract. This paper studies the structure of stable multipartner matchings in
two-sided markets where choice functions arequotafilling in the sense that they
satisfy the substitutability axiom and, in addition, fill a quota whenever possible.
It is shown that (i) the set of stable matchings is a lattice under the common
revealed preference orderings of all agents on the same side, (ii) the supremum
(infimum) operation of the lattice for each side consists componentwise of the
join (meet) operation in the revealed preference ordering of the agents on that
side, and (iii) the lattice has the polarity, distributivity, complementariness and
full-quota properties.
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1 Introduction

In this paper we study matching between two sets of agents when each agent
may havemultiple partners. We refer to the agents asmen and women. Our
interest is in the structural properties of the set of matchings which arestable
in the sense that they are not blocked by any individual or man-woman pair.1

I wish to thank F. Aleskerov, S. Barbera for their remarks and D. Gale, especially, for his motivating
interest and insightful comments. Previous versions have been presented at Koc¸ University, Bilkent
University, Barcelona JOCS, University of Alicante, SAET Conference in Rodos and Stony Brook
Game Theory Conference.

1 This may be criticized since the set of multipartner matchings that are stable in this sense is not
necessarily the core. See Sotomayor (1999). It is a fact on the other hand that, allowing blocking
coalitions of bigger size may leave no allocation that is stable. We are therefore tacitly assuming,
as widely done in the coalition formation literature for example, that there are inherent costs or
structural reasons which forbid the formation of bigger coalitions.



As is well known, in the monogamous case, stable matchings have the structure
of a lattice under the common preferences of all agents of the same sex and
further remarkable properties.2 It was shown, recently, by Baiou and Balinski
(1998) and Alkan (1999), that these properties hold for multipartner matching as
well, when preferences over partner-sets areclassical in the sense that they are
consistent with an ordering on individual partners. We show in this paper that all
the properties generalize and hold over a substantially broader domain, namely
that of (what we call)quotafilling preferences.

A somewhat novel aspect of our model is that agents’ preferences are not
given completely. We actually decribe each agent by achoice function that picks
from any set of potential partners the subset (team) he prefers the most. We
then adopt the definition that an agentprefers Team A to Team B if and only
if he chooses Team A given all the individuals in Team A or Team B. This
natural definition endows each agent with a (revealed) preference relation which,
although incomplete, happens to be sufficiently complete for all our interest.

We place two assumptions on choice functions. One is the standardsub-
stitutability axiom according to which a partner who is chosen given a set of
individuals is also chosen given any subset of the same individuals. It is a fact
that, under a mild consistency axiom in addition to substitutability, revealed pref-
erence relations happen to be partial orders with further properties that we will
make much use of. In particular, every pair of teams has a least upper bound
(join), which coincides with the team chosen from their union, and a greatest
lower bound (meet). Let us mention that these two axioms - substitutability and
consistency - are together equivalent to the well-knownpath independence con-
dition due to Plott (1973).3

Our second assumption on choice functions is that they fill aquota whenever
there are sufficiently many potential partners available. We call choice functions
that satisfy both of our assumptionsquotafilling. They constitute a subclass of
path independent choice functions.

Our findings in summary say the following:The set of stable matchings in
two-sided markets where choice functions are quotafilling is a lattice under the
common revealed preference orderings of all agents on the same side. The supre-
mum (infimum) operation of the lattice for each side consists componentwise of
the join (meet) operation in the revealed preference ordering of the agents on that
side. The lattice has the polarity, distributivity, complementariness and full-quota
properties.

Let us describe the four properties last mentioned above: The polarity and
distributivity properties are the same as in monogamous matching: Polarity says
that the supremum of two stable matchings with respect to one side is identical
with their infimum with respect to the other. Distributivity says that the join and
meet operations are distributive on the set of stable teams for each agent.

2 See Roth and Sotomayor (1990).
3 See for instance Aizerman and Aleskerov (1995) where the substitutability and consistency

axioms are called the Heritage and Outcast conditions respectively. The equivalence result is due to
Aizerman and Malishevski (1979).



The property we have called complementariness holds trivially in the monog-
amous case and, as we will point out below, has a key role in how we obtain
our results. It says that the meet (join) of two stable teams is precisely the set of
all partners who are in one of the two teams butnot in their join (meet), united
with those partners who are in both. The full-quota property says that the teams
an agent is matched with in all stable matchings are either all full-quota or all
identical. It is a generalization of the monogamous-matching property that an
agent unmatched in one stable matching is unmatched in every stable matching.

Our results hold, as we already mentioned, on the classical domain where
preferences are given by an ordering on individual partners. On this domain, in
fact, the set of stable matchings has the following additional property: Given any
two stable teams for an agent, one is always their join and the other their meet, or
equivalently, every partner in one team is of a higher rank than every partner in
the other team but not in the former (see Alkan 1999).4 There is, consequently,
a complete ordering on all stable teams. We show by an example that this need
not be the case with quotafilling choice functions: Join of a pair of stable teams
may be distinct from either team.5

For the broader domain of path-independent choice functions, on the other
hand, Blair (1988) had shown that stable matchings always exist and form a
lattice under the common preferences of all agents on one side of the market.
However, as one sees upon checking the examples provided by Blair (1988),
the properties that we cited above practically all fail to hold on this domain.6

Notably, the supremum or infimum of stable matchings, as defined here, may be
unstable.

Our findings thus establish quotafilling choice functions as constituting a
substantially broad intermediate domain, between the classical and the path-
independent, where stable matchings form a lattice with fine properties.7 It is
worth mentioning that these properties might make a difference that is of interest
for economic design. For example, the distributivity property ensures that agents
are able to evaluate different stable matchings by assigning themscores, which
in turn render possible the definition ofsex-equal stable matchings, as Gusfield
and Irving (1989) had suggested for monogamous matching.

4 Theorem 5.2 in Roth and Sotomayor (1990) states this result for the case of one-to-many
matchings.

5 It has been posed, by one referee, whether a multipartner matching market under substitutable
or quotafilling preferences is reducible to a monogamous matching market. The answer appears to be
negative: Otherwise, preferences that achieve the reduction would be classical, hence join of stable
teams could not be distinct, contradicting the example just mentioned.

6 Blair remarked that “the multipartner lattice is not necessarily distributive, although the monoga-
mous ones are. This suggests the two situations are fundamentally different, but some further insight
would be helpful.”

7 In their study onmany-to-one matchings, Martinez et al. (1999) prove the full-quota property for
complete preferences that satisfy substitutability plus the “q-separability” property that they introduce
in their paper. This preference domain appears to be the domain one would obtain by “completing”
the quotafilling preferences we have introduced here. Let us add, as pointed out by one of our
referees, that “filling a quota” is not a novel criterion and, for example, a basic feature of responsive
preferences.



We close our introduction with a partial preview of the way we obtain our
results. It will be helpful to first see this in the monogamous case. To this end,
take any two stable matchings. Let each man choose themore preferable of his
two partners. It is a fact that every man will choose a distinct woman and that it
is feasible therefore to match every man with his choice. Call this matching the
supremum of the two initial matchings. It is a further interesting fact that, in the
supremum, each woman is matched with herless preferable partner. One recog-
nizes that these two facts give the polarity property, namely that male supremum
coincides with femaleinfimum for stable matchings, under the (natural) definition
that the female infimum of two matchings is the matching where every woman
gets her less preferable partner.

In our exploration of multipartner matching here, we follow the same route
above and aim first to obtain the polarity property. The definition we adopt for the
supremum operation is a straightforward and natural extension of the definition
in the monogamous case. Thus, given two matchings, we let each man choose
and be matched with his most preferable team among all his partners in the two
matchings. In other words, we define the supremum operation on matchings via
the join operation of agents. The definition we adopt for the infimum, on the
other hand, is via an operation that extends the definition in the monogamous
case in not an evident way: Given two matchings, we let each man be matched
with (what we call) thepseudomeet of the two teams he is matched with initially,
namely the set of all partners who are in one of the two teams but not in their
join, united with those partners who are in both. Pseudomeet of teams in general
need not be their lower bound. As we show, on the other hand, the polarity
property holds with supremum infimum so defined and pseudomeet of stable
teams is their greatest lower bound (meet). One recognizes that these facts give
the complementariness property we described earlier.

2 Basic definitions

A matching market (M , W ; CM , CW ) consists of two finite setsM , W of agents,
say men and women, where each manm is described by achoice function Cm

: 2W −→ 2W , satisfying
Cm (T ) ⊂ T

for all T ⊂ W , and the analogous description holds for each womanw. A
matching is a mapµ : M ∪ W −→ 2W ∪ 2M such that

µ(m) ⊂ W , µ(w) ⊂ M ,

and
m ∈ µ(w) if and only if w ∈ µ(m),

for all m, w. We use the notationm to denote an element ofM as well as the
set{m}.

A matchingµ is individually rational if



Cm (µ(m)) = µ(m), Cw(µ(w)) = µ(w)

andpairwise stable if

w ∈ Cm (µ(m) ∪ w) − µ(m) impliesm /∈ Cw(µ(w) ∪ m)

for all m, w. Thus, a matching is individually rational if no one would disassociate
with any current partner and pairwise stable if there is no man-woman pair who
are not partners but who would each choose the other in the presence of all
current partners.

We call a matchingstable if it is individually rational and pairwise stable.

3 Quotafilling choice and lattice of teams

In this section we consider a single agent, sayw. We call S ⊂ M a team for w
if S is in the range ofCw, that is to say, ifS = Cw(T ) for someT ⊂ M . Let kw

denote themaximum cardinality of a team among all teams forw. Let k = kw,
C = Cw.

3.1 Preliminaries

The choice functionC is said to satisfysubstitutability if

a ∈ C (T ) impliesa ∈ C (S ∪ a) for all S ⊂ T .

We call teams with cardinalityk full-quota. We assumeC is quotafilling in
the sense that it satisfies substitutability andC (T ) is full-quota for all T with
cardinality at leastk . It is easy to see that, under this assumption, the set of all
teams is the collection

K = {S ⊂ M | |S | ≤ k} .

Observe thatC is idempotent, i.e., C (S ) = S for all S ∈ K . Note also thatC
is path independent in the sense

C (C (T ) ∪ T ′) = C (T ∪ T ′) for all T , T ′.

(Proof. By substitutabilityC (T ∪T ′) ⊂ C (C (T )∪T ′). If C (T ∪T ′) is full-quota
then the inclusion is equality by quotafillingness. If on the other handC (T ∪T ′)
is not full-quota, then neither isT , soC (T ) = T , whence the inclusion is equality
once again.)

We define therevealed preference binary relation
 over K by

S 
 S ′ if and only if C (S ∪ S ′) = S .



Observe that
 is reflexive sinceC is idempotent andantisymmetric sinceC (T )
is unique for all T . Also, as is well known, it follows fromC being path
independent that
 is transitive.8 Thus{K ,
} is a partially ordered set.

As one easily sees, in fact,C (S ∪ S ′) is the least upper bound of S , S ′.

(Proof. SupposeC (S ∪ S ′′) = C (S ′ ∪ S ′′) = S ′′. Then by path independence
C (C (S ∪S ′)∪S ′′) = C (S ∪S ′ ∪S ′′) = C (S ∪C (S ′ ∪S ′′)) = C (S ∪S ′′) = S ′′.)
ThusK is a semilattice with thejoin operation∨ given by

S ∨ S ′ = C (S ∪ S ′).

Furthermore, sinceK has a minimum element, namely the empty set, it follows
that every pair inK also has agreatest lower bound. ThusK is endowed with
a meet (greatest lower bound) operation∧ as well, i.e.,{K ,∨,∧} is a lattice.9

In Sect. 6.1, we give an example of a quotafilling choice function and the
diagram of the lattice of teams chosen by this function.

3.2 Pseudomeet

Let S , S ′ be any pair of teams. We introduce a binary operation
 on K , that
we call pseudomeet, by defining

S
S ′ := ((S ∪ S ′) − (S ∨ S ′)) ∪ (S ∩ S ′). (1)

Thus, pseudomeet of two teams is the set of all partners who belong to either
one of the teams butnot to their join, united with those partners who belong to
both. This operation will serve as the main tool in obtaining our results in the
next section. We now make three observations that we will make use of.

Pseudomeet of teams is not in general their lower bound.10 Our first observa-
tion gives a sufficient condition under which pseudomeet is greatest lower bound
(meet).

Lemma 1. If S
S ′ is full-quota and a lower bound for S , S ′, then S
S ′ = S ∧S ′.

Proof. Let L be any lower bound forS , S ′ and denoteQ = S
S ′. Takea ∈ Q .
Say a ∈ S . Then a ∈ C (S ∪ Q) since S = C (S ∪ Q) by assumption. So
a ∈ C (C (L∪S )∪Q) sinceS = C (L∪S ). Thereforea ∈ C (L∪S ∪Q) by path
independence, hencea ∈ C (L ∪ Q) by substitutability. That is,Q ⊂ C (L ∪ Q).
SinceQ is full-quota,Q = C (L ∪ Q). Thus,Q is an upper bound forL, hence,
the greatest lower bound ofS , S ′. ��

8 Proof. For anyS , S ′, S ′′ ∈ K , if S � S ′ andS ′ � S ′′ , thenC (S ∪ S ′′) = C (C (S ∪ S ′) ∪
S ′′) = C (S ∪ S ′ ∪ S ′′) = C (S ∪ C (S ′ ∪ S ′′)) = C (S ∪ S ′) = S .

9 More generally, the range of a path independent choice function is a lattice and has interesting
properties. See Koshevoy (1999) and Monjardet and Raderanirina (1999).

10 For example, the choice functionC such thatC {a, b, c, d} = C {a, b, c} = C {a, b, d} =
{a, b} , C {a, c, d} = {a, c} , C {b, c, d} = {b, c} is quotafilling, but pseudomeet of
{a, c} , {b, d} is {c, d} which is not a lower bound of{b, d} .



We next observe that pseudomeet of a pair of teams is never greater
than their join in cardinality: To see this, first note from (1) that|S
S ′| =
|S ∪ S ′| − (|S ∨ S ′| − |(S ∨ S ′) ∩ (S ∩ S ′)|) = |S | + |S ′| − |S ∩ S ′| − (|S ∨ S ′| −
|(S ∨ S ′) ∩ (S ∩ S ′)|). Say|S | ≤ |S ′|. Upon rearrangement,

|S
S ′| = |S | + (|S ′| − |S ∨ S ′|) − (|S ∩ S ′| − |(S ∨ S ′) ∩ (S ∩ S ′)|). (2)

Now, since|S ′| ≤ |S ∨ S ′| by quotafillingness and|S ∩ S ′| is never greater than
|(S ∨ S ′) ∩ (S ∩ S ′)|, it follows that

|S
S ′| ≤ min{|S | , |S ′|} ≤ max{|S | , |S ′|} ≤ |S ∨ S ′| . (3)

Our third observation describes when pseudomeet of a pair of teams is full-
quota: We call a pair of teamsS , S ′ concordant if S ∨ S ′ containsS ∩ S ′.

Lemma 2. Let S , S ′ be any pair of distinct teams. The following three conditions
are equivalent: (i) |S
S ′| = |S ∨ S ′| . (ii) S , S ′ are full-quota and concordant.
(iii) S
S ′ is full-quota.

Proof. Assume (i). Then|S | = |S ′| by (3). So |S | < |S ∪ S ′| since S /= S ′.
But then S (likewise S ′) must be full-quota, for otherwise|S | < |S ∨ S ′| by
quotafillingness, implying|S
S ′| < |S ∨ S ′| by (3); contradiction. Also,S ∨
S ′ must containS ∩ S ′, for otherwise|S ∩ S ′| < |(S ∨ S ′) ∩ (S ∩ S ′)|, implying
|S
S ′| < |S ∨ S ′| by (2); contradiction again. Thus (i) implies (ii). (ii) implies
(iii) by (2). (iii) implies (i) by (3). ��

We shall call a set of teams concordant if every pair of teams in the set is
concordant.

4 Lattice structure and other properties of stable matchings

Let (M , W ; CM , CW ) be a matching market with quotafilling choice functions
Cm , Cw. We define two binary operations,supremum and infimum, on the set of
all matchings: Themale supremum of a pairµ1, µ2 is the matchingµM where

µM (m) = µ1(m) ∨m µ2(m),

and themale infimum of µ1, µ2 is the matchingµM where

µM (m) = µ1(m)
m µ2(m).

Female supremum and infimum are defined analogously.
We will show that the matchingsµM , µM are stable, and that

µM (m) = µ1(m) ∧m µ2(m),

whenµ1, µ2 are stable.
Say that a set of matchingsΨ has thepolarity property if µM = µW and

µW = µM for all µ1, µ2 in Ψ . We start by showing that the set of stable matchings
has this property.

Let µ1, µ2 be any pair of stable matchings.



Proposition 1. The set of stable matchings has the polarity property.

Proof. We first show
µM ⊂ µW . (4)

Take anym and anyw ∈ µM (m), that is

w ∈ Cm (µ1(m) ∪ µ2(m)) ⊂ µ1(m) ∪ µ2(m).

If w ∈ µ1(m) ∩ µ2(m) thenm ∈ µ1(w) ∩ µ2(w) so by definition of pseudomeet
m ∈ µW (w) hencew ∈ µW (m) affirming (4). So sayw ∈ µ2(m) − µ1(m). Then

w ∈ Cm (µ1(m) ∪ w) − µ1(m)

by substitutability, som /∈ Cw(µ1(w)∪m) by stability. Hence, by substitutability,
m /∈ Cw(µ1(w) ∪ µ2(w)) = µW (w). By definition of pseudomeet thenm ∈ µW (w)
so w ∈ µW (m) proving (4).

From (4), |µM | ≤ |µW |. Also |µW | ≤ |µM | by symmetry. From (3), on the
other hand,|µW (w)| ≤ |µW (w)| for all w, so

|µW | =
∑

w

|µW (w)| ≤
∑

w

|µW (w)| = |µW | . (5)

Also |µM | ≤ |µM | by symmetry. Thus|µM | ≤ |µW | ≤ |µW | ≤ |µM | ≤ |µM |. Hence,

|µM | = |µW | = |µW | = |µM | . (6)

From (4) thereforeµM = µW . ��
It follows from (5) and (6), in fact, that supremum and infimum of stable

matchings match an agent with an equal number of partners, namely

|µW (w)| = |µW (w)| for all w. (7)

Corollary 1 and Lemma 3 stated below now directly follow from Lemma 2:
Given a set of matchingsΨ , denoteΨm the set of allµ(m) whereµ is in Ψ . We

will say thatΨ has (i) theconcordance property if everyΨm , Ψw is concordant
and (ii) thefull-quota property if everyΨm , Ψw is either a set of full-quota teams
or a singleton.

Corollary 1. The set of stable matchings has the full-quota and concordance
properties.

Say thatS is a stable team for an agent if he or she is matched withS by
some stable matching. Lemma 3 below says that pseudomeet of distinct stable
teams is full-quota:

Lemma 3. µW (w) is full-quota for all w such that µ1(w) /= µ2(w).

We next show that pseudomeet of stable teams is their lower bound.

Lemma 4. Cw(µ1(w) ∪ µW (w)) = µ1(w) for all w.



Proof. If m ∈ µW (w) − µ1(w) then w ∈ µW (m) − µ1(m), hencew ∈ µM (m) −
µ1(m) by polarity. Thusw ∈ Cm (µ1(m) ∪ µ2(m)) − µ1(m) and w ∈ µ2(m). So
w ∈ Cm (µ1(m) ∪ w) − µ1(m) by substitutability, thereforem /∈ Cw(µ1(w) ∪ m)
by stability, som /∈ Cw(µ1(w) ∪ µW (w)) by substitutability. ThusCw(µ1(w) ∪
µW (w)) ⊂ µ1(w). By quotafillingness, the inclusion is equality. ��

It follows from Lemmas 1, 3 and 4 that pseudomeet is meet over stable teams.
Thus

Proposition 2. µW (w) = µ1(w) ∧w µ2(w) for all w.

It also follows from the pseudomeet-meet equivalence just noted and the con-
cordance property (Corollary 1) that join and meet of stable teams are symmetric
“complements” in the following sense:

Corollary 2. µ1(w)∧
w

µ2(w) = ((µ1(w)∪µ2(w))− (µ1(w)∨w µ2(w)))∪ (µ1(w)∩
µ2(w)) and µ1(w) ∨w µ2(w) = ((µ1(w) ∪ µ2(w)) − (µ1(w) ∧w µ2(w))) ∪ (µ1(w) ∩
µ2(w)) for all w.

We will refer to Corollary 2 as thecomplementariness property.
Our next result says that the set of stable matchings is closed under supremum

and infimum:

Proposition 3. The supremum and infimum of stable matchings are stable.

Proof. Take any agent sayw. SinceµM (w) = µW (w) by polarity and|µW (w)| =
|µW (w)| (see (7)),µM (w) is in Kw. So the supremum is individually rational
by idempotency. We show in the paragraph below thatµM is pairwise stable.
Proposition then follows by polarity.

Take anym and any

w ∈ Cm (µM (m) ∪ w) − µM (m). (8)

We need to show
m /∈ Cw(µM (w) ∪ m). (9)

From (8),w ∈ Cm (µ1(m) ∪ µ2(m) ∪ w) by path independence, moreoverw /∈
µ1(m) ∪ µ2(m) (sincew /∈ µM (m)), in particularw ∈ Cm (µ1(m) ∪ w) − µ1(m) by
substitutability, som /∈ Cw(µ1(w) ∪ m) by stability, hence

Cw(µ1(w) ∪ m) = µ1(w).

Therefore, using path independence and the fact that pseudomeet is lower bound
(Lemma 2),Cw(µ1(w)∪µW (w)∪m) = Cw(Cw(µ1(w)∪m)∪µW (w)) = Cw(µ1(w)∪
µW (w)) = µ1(w). By substitutability thenm ∈ Cw(µW (w) ∪ m) for all m ∈
µ1(w) ∩ µW (w), that is

µ1(w) ∩ µW (w) ⊂ Cw(µW (w) ∪ m).

Symmetrically,µ2(w) ∩ µW (w) ⊂ Cw(µW (w) ∪ m). Thus



µW (w) ⊂ Cw(µW (w) ∪ m).

SinceµW (w) is full-quota (Lemma 3), the inclusion above must be equality. In
particularm /∈ Cw(µW (w) ∪ m) which gives (9) by polarity. ��

We now put all our findings together: Say that a set of matchingsΨ has the
distributivity property if supremum and infimum are distributive overΨ .

Theorem 1. The set of stable matchings in any market with quotafilling choice
functions is a lattice under the revealed preference orderings of all agents on one
side of the market. The supremum (infimum) operation of the lattice for each side
consists componentwise of the join (meet) operation in the revealed preference
ordering of the associated agent. The lattice has the polarity, full-quota, comple-
mentariness and distributivity properties.

Proof. By Propositions 2 and 3, stable matchings are a lattice under the supre-
mum infimum operations whose coordinates are the join meet operations in
agents’ revealed preference orderings. The polarity property was shown in Propo-
sition 1. The full-quota property was noted in Corollary 1 and the complemen-
tariness property noted in Corollary 2. It only remains to show the distributivity
property. We do so by showing that the join and meet operations are distributive
on the set of stable teams for each agent:

Take any three teamsS , S ′, S ′′ for an agent. Let∨,∧ denote the join meet
operations of the agent. Suppose

S ∨ S ′ = S ∨ S ′′ andS ∧ S ′ = S ∧ S ′′.

We claim S ′ = S ′′ from which distributivity follows (by Corollary to Theorem
13, Birkhoff (1973)):

Takea ∈ S ′. Notea ∈ S ′ ⊂ S ∪S ′ = (S ∨S ′)∪(S ∧S ′) = (S ∨S ′′)∪(S ∧S ′′) =
S ∪ S ′′. So if a /∈ S thena ∈ S ′′. If on the other handa ∈ S , thena ∈ S ∩ S ′

so by definitiona ∈ S∆S ′ = S ∧ S ′ and by concordancea ∈ S ∨ S ′. Hence
a ∈ (S ∨ S ′′) ∩ (S ∧ S ′′) = S ∩ S ′′ proving a ∈ S ′′ again, thus our claim. ��

5 Example

5.1 An agent with a quotafilling choice function

Consider an agentw who has the choice functionC over the set{A, B , C , a, b, c}
such thatC (T ) = {A, B , C} for all T ⊃ {A, B , C} and

C {A, B , a, b, c} = C {A, B , a, c} = C {A, B , b, c} = {A, B , c} ,

C {A, C , a, b, c} = C {A, C , a, c} = C {A, C , a, b} = {A, C , a} ,

C {B , C , a, b, c} = C {B , C , a, c} = C {B , C , a, b} = {B , C , a} ,



C {A, a, b, c} = {A, a, c} ,

C {B , a, b, c} = {B , a, c} ,

C {C , a, b, c} = {C , a, b} ,

C {A, B , a, b} = {A, B , b} ,

C {A, C , b, c} = {A, C , b} ,

C {B , C , b, c} = {B , C , c} ,

while C (S ) = S for all S ⊂ A with |S | ≤ 3. It is routine to check thatC is
quotafilling.

The lattice of teams forw can be seen in diagram in Fig. 1. It is worth
pointing out that, for instance,a > b in the presence ofA, C but b > a in
the presence ofA, B . In particular, there is no partial order on{A, B , C , a, b, c}
which would rationalizeC .

5.2 A matching market

Consider a market with six menA, B , C , a, b, c and four womenw, x , y , z where
w is described in the previous subsection. All other agents have quotas equal
to 1. AgentA regardsx his best mate andw his second-best mate. The matrix
below expresses this and the best and second-best mates for the others:

A B C a b c x y z
x y z w w w a b c
w w w x y z A B C

It is straightforward to check that the six matchings listed below are stable:

µW (w, x , y , z ) = ({A, B , C} , {a} , {b} , {c}),

µ1(w, x , y , z ) = ({A, B , c} , {a} , {b} , {C}),

µ2(w, x , y , z ) = ({B , C , a} , {A} , {b} , {c}),

µ3(w, x , y , z ) = ({C , a, b} , {A} , {B} , {c}),

µ4(w, x , y , z ) = ({B , a, c} , {A} , {b} , {C}),

µW (w, x , y , z ) = ({a, b, c} , {A} , {B} , {C}).

It is also not difficult to see that any matchingµ whereµ(w) contains{A, a} ,
{B , b} , {C , c} is unstable and that{a, w} would blockµ if µ(w) were{A, b, c}
or {A, b, C}. Thus the set of stable matchingsΣ consists of the six matchings
listed above.

We observe thatµW , µW are the female supremum and infimum ofΣ respec-
tively, that

µW = µ1 ∨W µ2 = µ1 ∨W µ3,



Fig. 1. The lattice of teams of a quotafilling choice function

µ2 = µ3 ∨W µ4,

µ4 = µ1 ∧W µ2,

µW = µ1 ∧W µ3 = µ3 ∧W µ4,

and thatΣ owns the two sublattices{µW , µ1, µ2, µ4},{µ2, µ3, µ4, µW } .
We have displayed the stable teams forw in bold in Fig. 1. We note that

there are stable teams, for instance{A, B , c} and{B , C , a}, which are mutually
incomparable, a feature that would never occur with classical choice functions,
as we mentioned in the introduction to our paper.
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Paris 1

Martinez, R., Masso, J., Neme, A., Oviedo, J. (1999) Single agents and the set of many-to-one stable
matchings. mimeo, Universitat Autonoma de Barcelona

Plott, C.R. (1973) Path independence, rationality and social choice.Econometrica 41(6): 1075–1091
Roth, A.E., Sotomayor, M (1990)Two-Sided Matching: A Study in Game-Theoretic Modeling and

Analysis. Cambridge University Press, Cambridge
Sotomayor, M. (1999) Three remarks on the many-to-many stable matching problem.Mathematical

Social Sciences 38: 55–70


