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ABSTRACT

Cellular Manufacturing System (CMS) is considered as a competent strategy for batch type
production. The motive behind using CMS is to reduce lead time and increase machine
utilization. Zero-one machine part incidence matrix based on the machine part routing
information is frequently used to form machine cells. In this study, a genetic algorithm is
proposed to efficiently solve the Cell Formation (CF) problem considering the machine part
incidence matrix. The algorithm is tested by using two different fitness functions on 35
problems from the literature and its performance is benchmarked with the outcomes of the
three recent studies. Results are promising in both fitness score perspectives. The algorithm is

then applied to datasets obtained from two supplier companies.
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GRUP TEKNOLOIJISINDE HUCRE OLUSTURMA PROBLEMI ICIN YENI BiR
GENETIK ALGORITMA
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Yardimci Tez Danismani: Dog. Dr. Ugur SEZERMAN

Anahtar Kelimeler: Hiicre Olusturma Problemi, Grup Teknolojisi, Genetik Algoritma

OZET

Hiicresel imalat Sistemi (HIS), toplu iiretim igin etkili bir sistem olarak goriilmektedir. HIS
kullaniminin arkasinda yatan neden, teslimat siiresini en aza indirgeyip makine kullanimim
eniyileme istegidir. Genel olarak, parca-makine rotasindan yola ¢ikilarak olusturulmus olan
ikili tabanda atama matrisi kullanilmaktadir. Bu calismada, ikili atama matrisi gbz oniinde
bulundurularak Hiicre Olusturma (HO) Problemi ¢6ziilmeye c¢alisilmistir. Algoritma, iki farkl
ama¢ fonksiyonu cinsinden, literatiirde kullanilan karsilastirma verileriyle denenmis,
performansi literatlirdeki en yeni iic c¢alisma ile karsilastirilmistir. Her iki amag
fonksiyonundan da iimit veren sonuglar elde edilmistir. Ardindan algoritma iki farkli tedarikgi

firmadan edinilen veriler iizerinde denenmistir.
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Chapter 1

1 INTRODUCTION

Group Technology (GT) is a management philosophy which is based on the principle that
similar things, such as product design, process planning, fabrication, assembly and
production control, should be done similarly (Askin and Standridge,1993). The main
principle of GT is to decompose the organization area into sections, or cells, that behave
like smaller organizational units which produce specific outputs. The cell, by its proper
definition, is the essential unit of life. Since the early 1960s, similar to living organisms,
manufacturing systems have also been said to possess cells that encourage continual
performance improvements by closely locating people and equipment required for
processing families of products. A cell, in this perspective, is a group of closely located
workstations where multiple, sequential operations are performed on one or more families
of similar raw materials, parts, components, products or information carriers (Hyer and
Wemmerldv, 2002). A manufacturing cell is a sole organizational unit within the
manufacturing system, whose major goal is to physically process, transform, transmit, and
add value to materials whose end state are products or components. If the cell concept is
implemented to the shop floor-manufacturing area, the facility is said to operate in a
Cellular Manufacturing (CM) environment. CM is favorable on reducing manufacturing
costs as well as diminishing lead time of products in batch production. The most
challenging problem in the implementation of CM systems is the cell formation (CF)
problem. CF problem addresses the issues surrounding the creation of part families based
on component processing requirements and the identification of machine groups based on

their ability to process specific part families (Brown and Sumichrast, 2001).

The objective in CF problem is to minimize intercellular movements of the
products while maximizing machine utilization (James et al, 2007). Formulated as an
optimization problem, the CF problem has been shown to be a non-deterministic
polynomial (NP) complete problem (Dimopoulos and Zalzala, 2000), that is, as the

problem size increases the amount of computation also increases with an exponential



pattern. This occurrence results with an increase in the computational time. To solve the
CF problem, we propose in this thesis a Genetic Algorithm (GA) approach. GAs are
inspired by typical genetic development. Similar to that of biological process, GAs works
with genes over the set of chromosomes performing crossover and mutation. Our aim is to
construct an efficient and flexible algorithm for CF problem that can incorporate different
fitness measures. The proposed algorithm is tested on 35 well-known instances from the
literature and its performance is compared to those of hybrid grouping genetic algorithm
(HGGA) in James et al. (2007) and enhanced grouping genetic algorithm (EnGGA) in
Tunnukij and Hicks (2007). The organization of the thesis is as follows: In Chapter 2, we
provide an overview of the CF problem and review the related literature. In Chapter 3, we
describe the details of our algorithm. Chapter 4 is devoted to the computational study
followed by two case studies in Chapter 5. Finally, Chapter 6 gives the concluding remarks

and directions for future research.



Chapter 2

2 PROBLEM DESCRIPTION AND RELATED LITERATURE

CM is an application of the GT concepts to factory reconfiguration and shop floor layout
design (Irani, 1999). There exist mainly three different traditional types of manufacturing
facility layouts: product layout, cellular layout and functional layout. Some domains of
application of cellular layout are machinery and machine tools, agricultural and
construction equipment, hospital and medical equipment, defense products, automobiles
and engines, piece parts and components, electronic products, chemical equipment and
packaging industries (Irani, 1999). There are three different methods for cell design: visual
inspection, production flow analysis (PFA) and part classification and coding (C&C).
More detailed information about cellular manufacturing can be found in Irani’s study on
cellular manufacturing. There are three main phases in the design of a manufacturing cell

(Dimopoulos and Zalzala, 2000):

e grouping of machines into cells, better known as the CF problem,
e layout of cells in the plant, and

e layout of machines within the cells.

Some of the recent studies are promising for CM area. Zolfaghari et al. (2005)
compared the performance of a new hybrid manufacturing system (combination of job
shop and CM) with a conventional CM System. Mahdavi and Mahadevan (2008) proposed
an algorithm (CLASS) for cellular manufacturing system and layout design by using
sequence data. Chtourou et al. (2007) offered a critical review of simulation studies in
CM. The following sections describe the CF problem and review the relevant literature on

CF problem including GA applications.



2.1 Description of the Cell Formation Problem

CF is the main step of the CM design process. The manufacturing system is divided into
cells that work for producing a family of parts or components. The objective is mainly to
minimize the inter-cell moves and obtain independently operating cells. The cell formation
problem mainly constitutes grouping of machines into machine cells and parts into part

families. This problem has a combinatorial pattern where there are m machines and n parts.

Selim et al. (1998) proposed a detailed review on CF techniques. These techniques
can be classified into five main groups: descriptive procedures that are identified by
Ballakur and Steudel (1987), cluster analysis, graph partitioning, artificial intelligence and

mathematical programming. Figure 2.1.1 outlines the CF techniques (Selim et al., 1998)

CELL FORMATION
TECHNIQUES

DESCRIPTIVE CLUSTER GRAFH ARTIFICIAL MATHEMATICAL
PROCEDURES ANALYSIS PARTITIONING INTELLIGENCE | | PROGRAMMING
{ |
PART FAMILY IREAEDAND : TINEAR QUADRATIC
| IDENTIFICATION Sl e INTRLHR.
ot QUES ' PROGRAMMING

- . HIERARCHICAL
AR LEAMILY, CLUSTERING GOAL DYNAMIC

| MACHINE GROUPS 1 TECHNIQUES PROGRAMMING PROGRAMMING

NON-HIERARCHICAL
CLUSTERING
TECHNIQUES

MACHINE GROUPS
IBENTIFICATION

Figure 2.1.1 QOutlines the CF techniques

Some early algorithms for cell formation are Production Flow Analysis (Burbidge,
1977), Rank Order Clustering (ROC) algorithm (King and Nakornchai, 1982) which is an
array-based clustering technique, similarity-based clustering algorithm (McAuley, 1972),
Zero-One Data-Ideal seed Algorithm for Clustering (ZODIAC), which is a non-
hierarchical clustering algorithm (Chandrasekharan and Rajagopalan, 1989) and
assignment model for cell formation (Srinivasan et al., 1990) which is a heuristic solution
to p-median problem where the number of groups is not fixed (Onwubolu and Mutingi,

2001) .



Originally, 0-1 linear programming p-median problem (Kusiak, 1987) seeks to
form a fixed number of cells where the total similarity of machines in each cell is

maximized. The formulation is as follows:

Maximize z z Similarity ;x,; (2.1)
q=1 j=1

Subject to
D> ox, =1 q=1,2,...m (2.2)
j=1
Y x,=C (2.3)
p=1
X, <x; qg=1,2,..m, j=1,2,...m 2.4)
x,;, =0orl g=1,2,...m, j=1,2,...m (2.5)

In the model, C is a parameter that represents the number of machine cells desired,
so the user must know it a priori. The objective function (2.1) maximizes the total
similarity of machines. Constraint (2.2) ensures that each machine belongs to one machine
cell only and constraint (2.3) specifies the desired number of machine cells. Constraint
(2.4) guarantees that machine q is assigned to machine cell j only when the machine cell is
formed and constraint (2.5) represents either machine q belongs to machine cell j by using
a binary decision variable, xqj. (Heragu, 1998). Later, we will introduce a new similarity

measure that addresses directly to machine similarities inside machine cells.

To reflect which part visits which machine, a binary machine-component incidence
matrix is used. Although the binary representation does not reflect neither the varying lot
sizes nor machine capacities and processing times, it is favorable because of the illustration
simplicity. Machine-part incidence matrix is used in Rank Order Clustering (King and
Nakornchai, 1982), ZODIAC (Chandrasekharan and Ragajopalan, 1989), MODROC that
employs the ROC algorithm in conjunction with a block and slice method for obtaining a
set of intersecting machine cells and non-intersecting part families followed by a
hierarchical clustering method (Chandrasekharan and Ragajopalan, 1986), Bond Energy
Algorithm which operates upon a raw input object-object or object-attribute data array by
permuting its rows and columns in order to find informative variable groups and their

interrelations (McCormick et al., 1972), Direct Clustering Algorithm in which families of



parts together during line-balancing optimization are grouped together (Chan and Milner,

1982) and Close Neighbor Algorithm where the user intervention is avoided (Boe and

Cheng, 1991). By interchanging rows and columns of the incidence matrix, a block

diagonal form is achieved (1s are brought to the diagonals). In an ideal solution, all the 1s

will remain in the diagonal blocks of the incidence matrix and all the Os in the off-diagonal

blocks. Figure 2.1.2 shows an ideal solution to cell formation problem.

Machines
N W N =

)

SO = O -

Parts Parts

23456 145236
00100 3 [11]oo000
00010 € 1 [11fo000
00100 = < 2 00[1]l000
11001 S 5 000111
11001 4 000111

Figure 2.1.2 Ideal Case Solution to CF Problem

This implies that all the parts are produced entirely within their corresponding

machine cells and the resulting manufacturing sub-systems achieve perfect independence

that occurs rarely in practice (Won et al., 2004). If the perfect cell formation is not

achieved, that means there are some exceptional machine-part incidences which remain

outside the groups or some void incidences reduce machine utilization in the cell as shown

in the figure 2.1.3.

Parts Parts
123456 145236
1 100100 s 3 [11]o o@ o Fxception
g 2 000010 = £ 1 [110000
< 3 101100 g 2 oo1foo0o0
S 4 001001 Z 5 000111
5 011001 4 000011
Void <
Figure 2.1.3 Exceptional and void elements

Some statistics in the literature are used to quantify the level of perfection of the

resulting incidence matrix. These statistics are called performance measures. One of them

is the grouping efficacy (Kumar and Chandrasekharan, 1990). This measure is meant to



find the goodness of block diagonal forms of binary matrices by using total number of
nonzero incidences, e, number of voids, ev, and number of exceptions, €0. The operational
zone consists of the nonzero incidences and the voids. Finding the proportion of the sum of
voids and exceptions in the operational zone will give us the inefficacy measure (2.6) of

the incidence matrix as follows:

e, te,

e +e 2.6)

By subtracting the inefficacy measure from 1 we obtain the efficacy measure (2.7) of the
incidence matrix as follows:
e, te, e—e

1
e, +te e+te, 2.7)

Because the measure has a simple structure, it is widely used in recent studies in GT

management philosophy where evolutionary algorithms exerted.

Grouping efficacy measure considers only 0-1 incidence matrix without making use
of any similarity pattern between the machines other than part processing scheme.
Alhourani and Seiffoddini (2007) proposed a new clustering technique for machine part
grouping with a recently developed volume-based similarity coefficient that is based on the
intercellular movement of parts. Wu et al.(2004) proposed a tabu search approach to CF
problem. They introduced dynamic tabu tenure with a long term memory mechanism and
two methods for quickly generating the initial solutions. Spilipoulos and Sofianopoulou
(2008) proposed an efficient ant colony optimization system for the manufacturing CF
problem that produces promising results for medium and large size instances. Yang and
Yang (2008) proposed a modified adaptive resonance theory (ART1) neural network
model where they evolve the ART1 model that was first used by Dagli and Huggahalli
(1995). Dimopoulos and Mort (2004) proposed an evolutionary methodology for the
construction of new similarity coefficients that can be used by standard hierarchical
clustering techniques in CF. Yasuda and Yin (2005) introduced a comparative
investigation on the similarity coefficients applied to CF problem and they founded out

that Jaccard similarity coefficient is the most stable similarity coefficient.



2.2 Genetic Algorithm Approach to Cell Formation Problem

Invented in 1960 by John Holland, genetic algorithm (GA) is one of the most powerful
algorithms developed in this century. GAs are favorable for solving complex problems
with their ability to search large fitness landscapes. By means of its combinatorial nature,
CF problem is an NP-complete problem where the traditional methods are incapable of
finding optimal solutions to large instances within a reasonable amount of time
(Dimopoulos and Zalzala 2000, Goncalves and Resende 2004). GAs, with their multi-
directional searching ability in the fitness landscape, are less susceptible to becoming
trapped in local optima (Yasuda et al, 2005) and more favorable than unidirectional
stochastic searching methods such as Simulated Annealing (Kirkpatrick et al., 1983) and
Tabu Search (Glover, 1989) where the search starts from a single state and converges to a

local optima.

Unlike the mathematical programming approaches, GA does not need any complex
mathematical representation. The main advantage of GA is that it only requires an
objective function (or “fitness function”) that can be evaluated numerically (Tunnukij and
Hicks, 2008). This function takes the required information from a string of numbers
(binary, decimal, etc.) called as chromosome, where the necessary input to measure the
performance of the current condition is given. To search a wide landscape, more than one
chromosome is needed. These chromosomes are randomly initialized and form the initial

population. Typically, the algorithm has three main operators:

e Selection Operator,
e Mutation Operator,

e Crossover Operator.

Selection operator provides fitter individuals to transfer their enclosed information
to the next generations proportionally to their fitness scores or rankings. Some selection
procedures are roulette wheel selection, ranking models, elitist methods and tournament
selection. Selection mechanisms provide the transfer of the building blocks which are
string templates (schemata) that match a short portion of the individuals and act as a unit to

influence the fitness of individuals ( Paz, 2000).



Mutation and crossover operators are mainly used to form new solutions from the
existing ones. Some types of mutation are uniform mutation, multi-uniform mutation, non-
uniform mutation, multi-non-uniform mutation and boundary mutation (Suresh and Kay,
1998). Mutation operators are used to find an alternative solution by only making a slight
modification. As for the crossover operator, it is favorable to transfer a set of information
from parents to offspring chromosomes. Like the mutation operator, crossover operator
seeks to find an alternative solution to the current set of strings. Simple crossover,
arithmetic crossover, cell-swap crossover and two-point crossover are different types of

Crossover operators.

The most common problem in using the GA is the computational speed. A way of
reducing the computation time is to increase the computer power. Without upgrading the
single computer, the power can be increased by using parallel GAs. The basic idea behind
most parallel programs is to divide a task into chunks and to solve the chunks
simultaneously using multiple processors (Paz, 2000). Paz classified parallel GAs into four
categories: global master-slave parallelization, fine-grained algorithms, multiple-

population and hierarchical parallel GAs.

Chaudhry and Luo (2005) proposed a survey on the application of GAs in
production and operations management (POM). They reported that the use of GAs may be
expanded to a broader range of areas instead of focusing onto specific studies. Nsakanda et
al. (2007) prepared a technical note on ensuring the population diversity in GAs; they
applied the experiment to the CF problem where they used the entropy-based and distance-
based measures. Car and Mikac (2006) proposed a modified GA for solving CF problem

based on emergent synthesis idea.

Faulkenhauer (1992) developed the Grouping Genetic Algorithm (GGA) where the
drawbacks of the classical GAs are overcome significantly. GGA is a powerful algorithm
that uses a special chromosome structure with its proper crossover, mutation and inversion
operators. Brown and Sumichrast (2005) evaluated the performance advantages of GGA in
three different types of problems and found that GGA performs well for solving grouping

optimization problems.



James et al. (2007) proposed a Hybrid Grouping Genetic Algorithm (HGGA) where
the standard GGA 1is coupled with a local search proposed by Gongalves and Resende
(2004). The algorithm makes use of the GGA with the chromosome encoding and the
special crossover operator where they contribute a repair heuristic for the missing parts or
machines. The chromosome encoding includes part families and machine groups as well as
the machine-part cells. The crossover operation is different than normal crossover
operators. The cross points are chosen from the cell numbers segment and part-machine
segments are interchanged accordingly. Because there might be some missing parts or
machines, a repair heuristic that takes the incidence matrix into consideration was used.
Selection operator is the classical roulette wheel selection. They demonstrated that by
incorporating the local search algorithm into a traditional grouping GA, they both
improved the solution quality and reduced the variability of the solutions with fewer
iterations than the traditional GGA. Results were tested with 35 well known instances from
the literature and the performance of HGGA was shown to be at least as well as, and often

better than, some of the best algorithms for the CF problem.

Tunnukij and Hicks (2008) developed an Enhanced Grouping Genetic Algorithm
(EnGGA) where they introduced a new strategy that combines the elitist strategy with the
rank-based roulette wheel strategy and configured the standard GGA replacement heuristic
with a greedy heuristic. They compared their findings with 24 instances from the literature
and obtained effective results that equal or outperform all the other methods considered

including HGGA.

Mahdavi et al (2009) proposed a GA approach for solving the CF problem and
obtained considerably good outcomes. The chromosome representation consists of two
sections: the first section represents the parts and the second stands for machines. They
introduced a non linear mathematical model based on the machine part incidence matrix
and a new mutation operator. They benchmarked the results they found with other

algorithms in the literature but did not take HGGA into consideration.
Since HGGA, EnGGA, and the algorithm proposed by Mahdavi et al. provide the

best results, we use them in our computational study to benchmark the performance of our

algorithm.

10



Chapter 3

3 PROPOSED ALGORITHM

The proposed algorithm is a GA used for assigning machines into machine cells via
similarity based fitness measure and variable search mechanisms. Even though the
diagonal structure gives a great deal of solutions, similarity based cell formation methods

are more realistic for real life applications.

The proposed algorithm employs a variant of Jaccard similarity coefficient where
the number of machines in a cell affects the total similarity measure of the instance. The
randomness is carefully conserved during selection, crossover and mutation procedures.
The selection operator is the classical roulette wheel mechanism where the chromosomes
are valorized according to their fitness scheme and picked within a probability range of
being selected. The crossover operator fragments the chromosome into three pieces and
switches the intermediary sections. The uniformity of crossover points and the crossover
rate are kept consistent in each generation. The mutation operator has two separate
branches: random and guided mutation. Random mutation provides algorithm to search a
wide landscape and guided mutation satisfies the need for converging to better results. The
two mutation types are sequentially applied and the fitness landscape, in a broader view,

looks like a sandglass that shrinks and enlarges consequently.

Although satisfactory percentages of the best individuals are reserved along the
generations, the tendency of convergence cannot be overcome. In the case of aggregation
into a single or two diverse chromosome structures, the best chromosome structure and the
chromosomes with a constant survival probability are kept in hand whereas the remaining

chromosomes are regenerated ancw.

The chromosomes are assumed to be feasible if neither of machine cells disappear.
To keep the feasibility intact, chromosome structures are continuously checked during the
generation. The algorithm is run for a predetermined number of generations. We apply two
search approaches: single population search and multiple populations search. The resulting

best chromosome is given as an input to the part family formation procedure.

11



In this section, we briefly explain the performance measure and algorithm
components to provide the reader detailed information on the steps and the characteristics

of the proposed algorithm. The flowchart of the algorithm can be found in APPENDIX A.

3.1 Chromosome Structure

The algorithm has a simple chromosome structure where the genes correspond to cell
numbers and the chromosome length corresponds to the total number of machines in the

shop floor.

The general representation of the chromosome structure in this study is first used
by Venugopal and Narendran (1992) and represents the simple machine assignment into
cells. Figure 3.1.1 shows the chromosome structure of an example machine cell
configuration. In this figure, machines {1, 3} are in cell 1, machine {2, 4, 7, 8} are in cell

2 and machines {5, 6} are in cell 3.

m e 0B Tk 0O M NV 18
Lif2]if2]3]3]2]2]

Figure 3.1.1 A chromosome structure example

Since the initial number of cells is defined at first, we assume that the least amount of

machines in each cell must be equal to one.

12



3.2 Proposed Fitness Function

The fitness function for each chromosome is calculated by means of similarities between
machines. Because Jaccard similarity coefficient (Jaccard, 1901) is found to be the most
stable measure (Yin and Yasuda, 2005) for the CF problem, we preferred to use Jaccard
measure instead of the other possible coefficients (Yin and Yasuda, 2006). The measure in
equation (3.1) can be summarized as the proportion of the number of machines that

operates on both of two parts to the number of machines occupied by either of the parts.

#Machines operating on Part A AND Part B _ A ﬂ B 3.1

#Machines operating on Part A OR Part B AU B

The incidence matrix in figure 3.2.1 is used for the example study in this chapter.
Figure 3.2.2 shows an exemplar of the similarity coefficient matrix formed by using
Jaccard measure. This matrix is generated in accordance with equation (3.1) and gives the

similarities.

Parts

1 23 45 6 7 8 91011121314151617 1819 20
101 100O0O0OT1T1TO0OT1O01T1O0T1T1O0OT1FO0
20 01 T0O0110O0O0O0O0O0OT1TO0OO0OO0OT1O01
3301 0000O0O1T1TO01011O011O0T10
'_54 001101T1TO0O01O0O0O0O0O0O0OO0OT1OQ0°1
§5 1 000110O0O01O01O0O0T1O0T1TTU0TO0OO0
61 0001 00O0O011O01O0O0T1O0°O0°O0O01
77001101 10O0O0O011O0O0O0O0O0T1O01
8o o1 101 100O0O0O0O0O0O0O0O0ODT1O01

Figure 3.2.1 Incidence Matrix (Chandrasekharan and Rajagopalan, 1986a)

Machines
1 2 3 4 5 6 7 8

1 - 0.13 0.90 0.06 0.06 0.06 0.13 0.07
2 - 0.07 0.75 0.08 0.08 0.67 0.86
g 3 - 0.00 0.07 0.07 0.06 0.00
;EE, 4 - 0.17 0.17 0.67 0.86
é‘ 5 - 0.56 0.15 0.08
6 - 0.15 0.08
7 - 075
8 -
Figure 3.2.2 Similarity coefficient matrix
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Fitness score reflects the quality of the resulting chromosome. In this study, we
generated a fitness function, Fit (Equation 3.2), as the total average similarity score where
the similarities between the machines and the number of machines in each cell are kept
into account. Fit is equal to the sum of all average fitness scores per cell. Sjkt is the
measure between two machines, k and t in cell j, dj is the number of machines in cell j, C is
the total number of machine cells, M is the total number of machines and 1 is the index for

the evaluated chromosome.

c S
Fit, = Fitness score for the chromosome,; = z 5
=1 4y Vik,t (3.2)

Jkt

Figure 3.2.1 also shows the machine assignments into three cells generated by James
et al. (2005) for the given incidence matrix. By using this particular assignment as the
chromosome structure, and similarity coefficient matrix, Fit is found to be 1.8647. The
reason why we use the equation (3.2) is that finding the sum of all average fitness scores
per cell gives much more reliable information on the total similarity score than finding the

sum of similarities.

3.3 Selection Operator

The selection operator is roulette wheel selection. The values are normalized between 0
and 1 depending upon the fitness ensuring that the higher quality solutions are given a
larger piece of the wheel (James et al., 2007). Because duplication is not allowed,
chromosomes are avoided to mate with themselves. This constraint ensures that no fake

convergence happens during crossover.

3.4 Crossover Operator

As a result of roulette wheel selection, the algorithm forms group of pairs of parent
chromosomes, where the size of the group is half of the size of population. Then, two-
point crossover is performed on the pair of chromosomes. By generating two rounded-up
random points between 1 and m-1, we divide both of the parents into three sub-sections
and interchange the intermediary parts to form a new pair of offspring chromosomes.

Consider the two parent chromosomes in figure 3.4.1.
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m e 1B Nk 05 N Ny 0B
p: [1[2]1]2]3]3][2]2]

p2: [2[1[3]1]2]2]1]3]

Figure 3.4.1 Randomly selected pair of chromosomes

The chromosomes are cut into three parts and intermediary sub-structures are swapped as

shown in figure 3.4.2.

m Nk N kM5 I Ok 08 mn NMe N3 ks Ok Nr| N0k
pi: [1]2f1]2]3]3]2ke o1: 21|22 2]1]2]
CROSSOVER >

P2: [ 2] 1] 3 1M2[2]13 02: W2 [1[3[1/3]3]2]3]

Figure 3.4.2 Two-point crossover

3.5 Infeasibility Check

Since the number of cells is pre-determined and empty cells are prohibited, the resulting
offspring chromosome may be infeasible as is the case for Ol in figure 3.4.2. To overcome
this problem, Gupta et al.(1995) used an adjustment operator where they iteratively search
for locating a new machine into the empty cell so that no cell remains empty (Cheng Lee,
1998). We use the same procedure by making sure that a machine belonging to a singleton
-cell with a single machine- is not selected for relocation. The infeasibility in offspring 1 in
the example in figure 3.4.2 is eliminated by assigning either machine 5, 6 or 7 to cell 3 as

seen in figure 3.5.1.

m e s NuiNs Nk Ny N8 m N N NMuiNs Nk N N8
pi: [1{2]1]2f3]3]2bke] o1 Nyuf2fi]2i3]2][1]2]
CROSSOVER >

P2: | 2 1l 3[D2]2]17[3 02: W2 [1]3[1]3[3]2]3]

Figure 3.5.1 Feasible offsprings
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3.6 Mutation Operator

To expand the search space, we use a dual mutation procedure. To prevent fast
convergence, we apply different mutation rates within the generations. Once the mutation
begins, the procedure is applied to all individuals of the population. By the time we
increase the diversity among chromosomes, we use a mutation procedure to maximize the
fitness score by relocating the least similar machine of the minimum scored cell to another
cell where the similarity contribution is maximized. We name this method as guided

mutation. Figure 3.6.1 describes the steps of the guided mutation.

Step 1. Calculate the fitness scores for each cell

Step 2. Find the cell with the minimum fitness score and check
whether the cell is a singleton or not. Ifthe cellis a
singleton, check the second cell with the minimum fitness
score. Continue until you find a non-singleton cell

Step 3. Select the machine which is least similar to other
machines in the cell

Step 4. Relocate this machine iteratively to the other cells

Step 5. For each iteration, calculate the contribution of changing
the location of the machine to the fitness score

Step 6. Put the machine to the cell where the highest contribution
is achieved.

Figure 3.6.1 Steps of the guided mutation

Random mutation is performed to impede the convergence through local optimum. Each

chromosome is randomly mutated by skipping the singletons.

3.7 Elitist Strategy

The elitist strategy is useful for keeping the best chromosome structures and progressively
improving the set of chromosomes in every generation. To prevent fast convergence and
increase diversity among chromosomes, elite individuals were selected according to their
structures instead of their fitness scores. We also adopt an elitist strategy by replacing the

least fit offsprings by the fittest parents. Figure 3.7.1 shows the steps of the elitist strategy.
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3.8 Migration Strategy

If B percent of one type of chromosome or y percent of two different types of chromosomes
over the offspring population converges to the likewise structures, algorithm chooses to
preserve a percentage of the fittest chromosomes with different structures over all the
population, migrate ¢ chromosomes with a probability rate v of being selected and store
the remaining 1- ¢ chromosomes. The algorithm generates v randomly thus ¢ value varies

correspondingly. Figure 3.8.1 shows the states of the individuals before and after the

Step 1. Find / structurally different fittest individuals from the nitial parent

population where / is equal to 2 for the intervals A and C, and 6 for
the intervals B and D.

Step 2. Find / structurally different least fit individuals from the offSpring

population where / is equal to 2 for the intervals A and C, and 6 for
the intervals B and D.

Step 3. Ifthe worst score of the set of fittest individuals is greater than the
best score of the set of least fit individuals, replace the least fit

individuals in the offSpring population with the fittest individuals from

the initial parent population.

Figure 3.7.1

migration.

/

\

Offspring population before the immigration

Fittest individuals

Remaining individuals

Steps of the elitist strategy

| MN
MIGRATION

Figure 3.8.1 States of the individuals before and after the immigration.

| Fittest individuals

\

Stored individuals
with probability P(v )

>

Immigrated and
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3.9 Sequential Search Procedure

Running the algorithm for the given set of generation numbers just one time is mentioned
as single search GA. Another way of searching is the parallel GAs. One of the parallel GAs
is called multiple-population algorithm or the island strategy (Hartmann, 2000). The main
idea behind this strategy is to select the fittest individuals (Equation 3.3) from { neighbor
islands and bring them to the main island to produce offsprings. The environmental

conditions are assumed to be constant in each island.

Do o <
4 Fittest individuals ——2PUALON SZ¢ (3.3)

G

Figure 3.9.1 presents the procedure to locate individuals from neighbor islands to

the main island. In this example, number of islands is taken as 5.

Neighbor Islands Main Island

| The fittest 20% of individuals from island 1 |

| The fittest 20% of individuals from island 2 |

The fittest 100% of individuals of the
[ The fittest 20% of individuals from island 3 | 5 neighbor islands

that form the mitial population
|The fittest 20% of individuals from island 4 | in the main island

| The fittest 20% of individuals from island 5 |

Figure 3.9.1 Formation of the main island population

Notice that the island strategy increases the search space by augmenting the number of
iterations by { + 1 times and provides opportunity to start with a better initial population.
Also, it should be noted that island strategy is a kind of migration strategy where the best

individuals are gathered together.

3.10 Part Family Formation Procedure

Once the machine groups are formed using the GA, the part families are constructed by

using partial efficacy measure (Gongalves and Resende, 2004). The idea behind this score
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is mainly to put the part into the best possible cell to maximize the total efficacy of the

incidence matrix. Figure 3.10.1 shows the steps of the part family formation procedure.

Step 1. Calculate partial efficacy scores for each cell in which the part can be potentially put.
The equation (3.4) shows the partial efficacy score of part p on machine ¢ .

€~ € p

= — .(34
H g e+e, G4

Step 2. Select the highest scored potential cell and assign the part to that location
Condition 1. Ifthere is a tie in the highest partial efficacy score,
assign the part to the less utilized cell (the cell that operates on the smaller|
number of parts), otherwise continue.
Condition 2. If the utilizations of the cells are equal, then assign the part to the smaller|
indexed cell, otherwise continue.

Figure 3.10.1 Steps of the part family formation procedure

After forming part families, we check whether there are missing families. If any,
we randomly assign a part to the absent family (without perturbing singletons). The
correction procedure is similar to the infeasibility check where we look for the missing

machine cells in the chromosome structure.
Best chromosome structure is given as an input to the part family formation

procedure by using partial efficacy measure. Note that the part families are formed only for

the best fit chromosome.

19



Chapter 4

4 EXPERIMENTAL STUDY

The algorithm is tested with 35 well-known instances from the literature. The proposed GA
was coded in MATLAB 7.0 (without using GA Toolbox) and run in high performance
workstations (Intel (R) Core (TM)2 Quad CPU, Q6600 at 2.40GHz and 3.24GB of RAM).
The information required to solve the algorithm included the part machine incidence

matrix, the number of cells, the number of generations, and the size of the population.

4.1 Preliminary Experiments & Observations

The population size is set to 50. The probability of immigration is 0.3. The crossover rate
is 0.5. The stopping criterion is determined as the number of generations. Different number
of generations (120, 300, 900, 1800) and different run types (single population genetic
algorithm and multiple population genetic algorithms) are applied and the best possible
results are compared with the latest 2 methods performed on cell formation problem. The
results over 5 different runs are explicitly given in APPENDIX B. The deviation of the
results and the deviation from the best score in the literature for each search procedure are

measured may also be checked from APPENDIX B.

Table 4.1 shows the chromosome length (#machines) and the corresponding best
stopping criteria and search procedures in terms of two fitness measures (e.g. Instances
with more than 30 machines and less than or equal to 40 machines converge to the highest
similarity score by using 900 generations as stopping criterion and direct search (no island)

procedure). The table is arranged by means of best scores with least deviation over 5 runs.
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Efficacy Measure Similarity Measure
# Machines| Generation Size| Search Procedure|# Machines| Generation Size| Search Procedure

<10 120 No island <10 120 No island
<14 120 No island
<16 300 Island-5

<20 300 No island <20 900 Island-5

<30 1800 Island-2 <30 900 No island

<40 1800 No island <40 1800 No island

Table 4.1 Generation size according to chromosome length

Figure 4.1.1 and 4.1.2 show the positive impact of the migration strategy over 5
runs. The same instance (instance 35) with the same number of machine cells and the same
initial population are given as an input to the algorithm. As can be seen from Figure 4.1.1,
80% of the results converge through a local optima and only 20% give high scores. When

the algorithm uses the migration strategy, 80% of the results converge to a favorable score.

Results without Migration

runl
run2
run3

run4

Similarity Score

run5

O T T T T 1
0 20 40 60 80 100

Generation

Figure 4.1.1 Results without migration
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Results with Migration

Similarity Score

S bk~ N 0 O

Generation

Figure 4.1.2 Results with migration

Figure 4.1.3 and 4.1.4, show the typical expected behavior of a 2-island strategy
compared to a non-island strategy. If the same random initial population is used as a
benchmark input for a single run of 20 generations and 2-island strategies, the island
strategy gives better results. The instant drop in the island set 1 is caused by the migration
operation and corresponds to a single value over 20 generations. The algorithm always

keeps the best fitness score in hand and search for better results.

No island
1.0
0.9
0. 8-
o 0.7
g o
S 0.6—_/—/
3 ]
> 0.5
g ]
z 0. 41
S= 0.3
pﬂ 4
0.2
0.1
0.0 T T T T T T T T T T T T T T T
1234567 891011121314151617181920
Generation

Figure 4.1.3 No-Island Strategy

22



Island 2

Island set 1

Island set 2

Island set final

Efficacy Score
°Pooo0oo0oo0oo0o00 o0
MNP H POV RO

012345678 91011121314151617181920

Generation

Figure 4.1.4 Island Strategy

It is important to note that our proposed algorithm is a sequential GA where the
island strategy is used and run in a single processor. However, it can be converted by a

slight modification into a parallel GA and run in multiple processors.

Figures 4.1.5 (a), 4.1.5 (b) and 4.1.5 (c) reflect the behavior of small instances
while using the island strategy. It is obvious that island strategy is not useful on instances
with small number of machines. The algorithm, within a single search, directly converges
to the best solution found so far. Although the best solution can be found in early stages of
the generations, to ensure that the results obtained are not trapped to the local optima, we
preferred to run the instance until the stopping criteria is met. It can be seen that the island
strategy may be useful when smaller number of iterations is chosen as a stopping criterion

or more complex string of machines where a wider search space is required.
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Instance 10 - Island 2 setl

Instance 10 - Island 2 set2
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Instance 10 - Island 2 final set
1 -
1;0.75
o 08 Becelofecofecctacccaccccaccecacolecececce)
Qo
% 0.6
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Figure 4.1.5 Convergence of the small sized instances (a) setl, (b) set2, (c) final set

Figure 4.1.6 shows the convergence of the algorithm with single search through the

best score. The points that are apart from the convergence region symbolize the migration

steps. Figure 4.1.7 shows the behavior of a large problem with 40 machines (instance 35)

in case of 5-island procedure with 1800 generations. Each sub-procedure is run for 300

generations and structurally the best 10% of the chromosomes are collected and undergone

300 generations. A considerable increase in the results from the island run is detected.
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Figure 4.1.6 Convergence of the algorithm with single search through the best score
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Figure 4.1.7 Behavior of instance 35 - 5-island-1800 generations

The mutation procedure is a dual mutation procedure where the mutation types
differ according to generation number. Table 4.2 shows the behavior of the results in case
of using two mutation types consecutively (e.g. random — guided means that we first use

random mutation then we use guided mutation). Results demonstrate that higher results
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using efficacy measure are obtained for large sized instances with a dual mutation
procedure where the fitness landscape first shrinks and then enlarges by using first guided
then random mutation. By taking similarity measure as the fitness function, we see that
higher results are obtained by using either first random then guided mutation or fully

random mutation.

Efficacy Measure
Instance Source Size | Random - Guided Guided - Random Random - Random Guided - Guided
18 Mosier and Taube 20x20 42.36% 43.36% 43.07% 43.07%
25 Chandrasekharan |, 52.63% 52.63% 52.41% 52.63%
and Rajagopalan
26 | Chandrasekharan 1, 0 48.63% 48.61% 48.32% 48.32%
and Rajagopalan
g7 | Chandrasckharan 0, ) 46.26% 46.21% 45.89% 46.58%
and Rajagopalan
28 McCormick et al. 27 x 27 54.52% 54.52% 54.45% 54.27%
29 Carrie 28 x 46 45.87% 46.48% 45.24% 46.46%
30 Kumar and Vannelli | 30 x 41 63.31% 62.33% 61.54% 62.59%
31 Stanfel 30 x50 59.66% 59.77% 58.48% 59.66%
32 Stanfel 30 x50 50.55% 50.56% 50.55% 50.54%
33 King and Nakornchai| 36 x 90 45.88% 46.61% 45.14% 45.75%
34 McCormick et al. 37 x53 58.37% 58.86% 58.25% 58.37%
Chandrasekh:
35 AHCTASCRAATAN 40 100]  78.74% 83.81% 83.81% 81.82%
and Rajagopalan
Similarity M easure
Instance Source Size | Random - Guided Guided - Random Random - Random Guided - Guided
18 Mosier and Taube 20 x20 2.3962 2.3962 2.3962 2.3962
ps | Chandrasekharan 1, s 1.9761 1.9761 1.9761 1.9761
and Rajagopalan
26 | Chandrasekharan -, 1.6091 1.6079 1.6091 1.6109
and Rajagopalan
g7 | Chandrasckharan 1, ) 1.4662 1.4648 1.4662 1.4662
and Rajagopalan
28 McCormick et al. 27 x 27 4.6528 4.6528 4.6528 4.6282
29 Carrie 28 x 46 2.4042 2.3909 2.4042 2.3562
30 Kumar and Vannelli | 30 x 41 4.2765 4.1443 4.2765 4.2765
31 Stanfel 30 x50 3.5298 3.5823 3.5823 3.5220
32 Stanfel 30 x 50 2.7592 2.7429 2.7592 2.7445
33 King and Nakornchai| 36 x 90 2.0383 2.0276 2.0383 1.9803
34 McCormick et al. 37 %53 8.8944 8.9150 8.9150 8.9122
Chandrasekh:
35 AHCTASCRAATA 1 40 % 100 9.8432 9.5757 9.8432 9.4811
and Rajagopalan
Table 4.2 Comparison on the sequence of dual mutation procedure (300 generations)

However, as can be seen in Table 4.3, for higher number of generations, there is no
change on the highest results while using random-guided, guided-random or fully random

mutations. In our calculations, we used first guided then random mutation.
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Similarity Measure
Random - Guided  Guided - Random  Random- Random Guided - Guided

18 | Mosier and Taube | 20 x 20 2.3962 2.3962 2.3962 2.3962

g5 | Chandrasckharan -} ) 1.9761 1.9761 1.9761 1.9761
and Rajagopalan
Chandrasekh:

26 | CERCASCKAEL o) g0 1.6130 1.6130 1.6130 1.6130
and Rajagopalan

g7 | Chandrasekharan )\ 1.4662 1.4662 1.4546 1.4662
and Rajagopalan

28| McCormick etal. | 27 x 27 4.6528 4.6528 4.6528 4.6305

29 Carrie 28 x 46 2.3909 2.4042 2.4042 2.3909

30 | Kumar and Vannelli | 30 x 41 4.2765 4.2765 4.2765 4.2765

31 Stanfel 30 x50 3.6171 3.6171 3.6171 3.5939

32 Stanfel 30 x50 2.7592 2.7592 2.7575 2.7592

33 | King and Nakornchai| 36 x 90 2.0788 2.0788 2.0788 2.0763

34| McCormick etal. | 37 x 53 8.9584 8.9584 8.9584 8.9584
Chandrasekh:

35| ANCESCRIAND 4 100 10.4205 10.4205 10.4205 10.1287
and Rajagopalan

Table 4.3 Comparison on the sequence of dual mutation procedure for the similarity measure

(1800 generations)

Figure 4.1.8 shows the intervals for the mutation rates and mutation types. Assume

that the total generation number is 100. In case of mutation, the chromosomes in the

generations between [1, 30] (Interval A) and the generations between [51, 80] (Interval C)

are updated by using guided mutation whereas the rest of the chromosomes in the rest of

the generations are randomly mutated.

Mutation Rate - 1 (mutl) Mutation Rate - 2 (mut2)
e

I B
® L ® ® [ [} [ J [ o [ J 9
Q.O 0.1 0.2 /@.3 0.4 N.S 0.6 0.7 0.8 0.9 1.0

Guided Mutation Random Mutation Guided Mutation Random Mutation

Interval A Interval B Interval C Interval D
Figure 4.1.8 Intervals for the mutation rates and mutation types

Figure 4.1.9 shows the behavior of the algorithm in extreme crossover and mutation

rates for different problems. As the chromosome lengths increase, crossover and mutation

operators affect the fitness scores. Lack of both crossover and mutation operators results

with poor scores whereas the application of both operators in every generation gives the

highest scores.
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Figure 4.1.9 Impact of crossover and mutation rates to the average of the maximum of 5 runs

Crossover operator has a positive influence depending on the chromosome length.
Mutation operator has better impact on higher chromosome lengths; however, it has
slightly lower results in instance 22. The motive behind is the ideal case nature of the
problem. If mutation operation is solely or predominantly applied, the results diverge
through lower scores (Figure 4.1.9 and 4.1.10) A number of different crossover and
mutation rates are experimented on the same set of instances and the average of the
maximum results over 5 runs are compared in Figure 4.1.10. Because the rate of
occurrences directly strikes the randomness, set [1, 1, 1] is directly eliminated. The best
two set of rates are [0.9, 0.4, 0.2] and [0.5, 0.2, 0.1]. Set [0.9, 0.4, 0.2] gives better results
on larger instances with lower number of generations. However, final results do not change

and we used set [0.5, 0.2, 0.1] in our calculations.

10.00
9.00-

@ xover:0, mutl:0, mut2:0

@ xover:0.2, mutl:0.1, mut2:0.05

@ xover:0.5, mutl:0.2, mut2:0.1

Similarity Score

@ xover:0.9, mutl:0.4, mut2:0.2

@ xover:1, mutl:1, mut2:1

1 12 22 32 35
Instance number

Figure 4.1.10  Average of the maximum of S runs vs. different crossover and mutation rates
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4.2 Computational Results

All of the instances are taken from the original source to be sure that no error in the data
occurs. The HGGA efficacy scores are also recalculated and the same observation that is
made by Tunnukij and Hicks (2008) on the miscalculation of the instance-25 was also

corrected.

Since both HGGA and EnGGA methods allow singletons, we can directly compare
them in terms of efficacy and the similarity scores. However, because machine cells are not
explicitly defined for EnGGA method, we can only measure the performance of the
corresponding machine cell assignments with efficacy measure. We preferred not to show
the results from the former methods because these two algorithms outperform the other

results in the literature.

Table 4.3 shows the maximum scores found by using efficacy measure and the
similarity measure in the genetic algorithm. The gaps between the best solution in the
literature and our findings show that the new algorithm performs adequately well with the
efficacy measure on the majority of the instances as well as the similarity measure always

gives favorable results.

The best results for all the instances (Table 4.3) are chosen by taking into
consideration the least deviation over 5 runs per instance in APPENDIX B. The

corresponding incidence matrices are available in APPENDIX C and APPENDIX D.

The results from the literature defeats the outcomes of the proposed algorithm
while using similarity measure as the fitness function. The reason behind this is that the
final efficacy score found by using the proposed algorithm is calculated without making

any local search throughout the part families.

One single generation, typically takes on average 1 second. The time it takes to
converge directly depends on the generation number where the highest score over the set of
generations is hit upon. Likewise, chromosome length, number of cells and probable use of

operators straightforwardly influence the number of generations for convergence.
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Efficacy Measure

Similarity Measure

5]
(7]
£ . Proposed | Gap Best Score | Proposed | Gap Corresponding Gap
*
g Source Size | Best Score Source GA (%) | (%) || @GGA) GA (%) | Efficacy Score(%) | (%)
1 | Kingand Nakornchai 5% 7 8235 H, E 8235  0.00 0.9306 0.9306 0.00 8235 0.00
2 Waghodekar 5%x7 69.57 H, E,M 69.57  0.00 0.7667 0.7667  0.00 69.57 0.00
and Sahu
3 Seifoddini 5% 18 79.59 H, E, M 79.59  0.00 0.9637 0.9637 0.00 79.59 0.00
4 Kusiak and Cho 6 x8 76.92 H, E, M 76.92  0.00 1.3587 1.3587 0.00 76.92 0.00
5 Kusiak and Chow 7% 11 60.87 H, E, M 60.87  0.00 0.2917 0.2917 0.00 58.33 -2.54
6 Boctor 7% 11 70.83 H, E, M 70.83  0.00 0.7500 0.7500 0.00 70.83 0.00
7 | Sseifoddiniand Wolfe | 8 x 12 69.44 H E 69.44  0.00 1.4111 1.4111 0.00 69.44 0.00
8 Chandrasckharan 8 % 20 85.25 H, E, M 8525  0.00 1.8647 1.8647  0.00 85.25 0.00
and Rajagopalan
Chandrasekharan
9 ! 8 x 20 58.72 H, E,M 5872 0.00 1.3779 1.4274 3.59 57.66 -1.06
and Rajagopalan
10 Mosier and Taube 10 x 10 75.00 H M 75.00  0.00 1.4375 1.4583 1.45 69.23 -5.77
11 Chan and Milner 10 x 15 92.00 H,M 92.00  0.00 2.9167 2.9167 0.00 92.00 0.00
12 Askin and 14 x 24 72.06 H 72.06  0.00 2.1960 2.2933 4.43 69.70 -2.36
Subramanian
13 Stanfel 14 x 24 71.83 H,M 71.83  0.00 2.0368 2.1683 6.45 70.59 -1.24
14 McCormick et al. 16 x 24 53.26 H, E, M 5326  0.00 1.4550 1.5116 3.89 51.09 2.17
15 Srinivasan et al. 16 x 30 68.99 H, E 68.99  0.00 2.7690 2.7690 0.00 68.99 0.00
16 King 16 x 43 57.53 H, E 5753 0.00 1.7193 1.8223 5.99 53.69 -2.43
17 Carrie 18 x 24 57.73 H, E 5729  -0.44 1.8306 22306  21.85 56.25 -1.48
18 Mosier and Taube 20 x 20 43.18 H,M 4318  0.00 2.1243 23962  12.80 40.16 -3.02
19 Kumar et al. 20 x 23 50.81 H 50.81  0.00 1.1360 29517  159.84 47.29 -3.52
20 Carrie 20 x 35 77.91 H, E, M 7791  0.00 4.9661 4.9664 0.01 73.94 -3.97
21 Boe and Cheng 20 x 35 57.98 H, E 5798  0.00 3.3295 3.3625 0.99 56.68 -1.30
Chandrasekh:
22 andraserharan 24 % 40 100.00 H, E, M 100.00  0.00 8.5000 8.5000  0.00 100.00 0.00
and Rajagopalan
Chandrasekharan
23 ! 24 x 40 85.11 H, E, M 85.11  0.00 6.2459 6.2459 0.00 85.11 0.00
and Rajagopalan
handrasekha
24 Chandrasckharan 24 x 40 73.51 H, E,M 7351 0.00 43729 43729  0.00 73.51 0.00
and Rajagopalan
Chandrasekh:
25 andraseicharan 24 % 40 53.29 H, E, M 5263  -0.66 1.9473 1.9761 1.48 4933 -3.96
and Rajagopalan

* H: HGGA, E: EnGGA, M: Mahdavi et al

Table 4.4

Comparison of the proposed genetic algorithm with results from the literature
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Efficacy Measure Similarity Measure
5]
(]
£ . Proposed Gap Best Score | Proposed | Gap Corresponding Gap
8 Best
E Source Size est Score Source GA (%) @) || @®GGA) GA (%) | Efficacy Score(%) | (%)
26 | Chandrasekharan 24 x 40 48.95 H, E, M 48.95 0.00 1.5348 16130 5.10 46.90 -2.05
and Rajagopalan
27 Chandrasckharan 24 x 40 47.26 H 46.81 -0.45 1.3008 14662 1271 41.89 -5.37
and Rajagopalan
28 McCormick et al. 27 x 27 54.82 E 54.52 -0.30 43823 46528  6.17 48.71 -6.11
29 Carrie 28 x 46 46.91 H 47.08 0.17 2.2180 24042 8.40 44.40 113
30 |  Kumarand Vanneli | 30 x 41 63.31 H, E 63.31 0.00 3.9587 42765  8.03 59.57 3.74
31 Stanfel 30 x 50 60.12 H,M 59.77 -0.35 3.4633 36171 444 58.96 -0.81
32 Stanfel 30 x 50 50.83 H,M 50.83 0.00 0.7606 27592 262.76 48.94 -1.89
33 | Kingand Nakornchai | 36 x 90 46.35 H 46.78 0.43 0.5627 2.0788  269.43 42.82 -2.99
34 McCormick et al. 37 x 53 60.64 H, E 60.36 -0.28 8.6598 8.9584  3.45 49.95 -9.26
Chandrasekha
35 NSS40 < 100 | 84.03 H, M 83.81 022|] 104205 | 104205  0.00 83.81 2022
and Rajagopalan

*H: HGGA, E: EnGGA, M: Mahdavi et al.

Table 4.4

Comparison of the proposed genetic algorithm with results from the literature (Continued)

31




Chapter 5

5 CASE STUDY

The algorithm is applied to two supplier companies which currently operate on job shop

environment.

5.1 General Information about the Cases

The first company, MERCAN MAKINA A.S., is a small-medium sized supplier company
with 1 factory in Izmir Kemalpasa Industrial District. They supply various parts and
components for 3 manufacturers in Turkey. There are a total of 13 active machines and 213
dynamically produced parts. Originally they have divided shop-floor layout into 7 sections.
Because this study has never done before, the incidence matrix of the shop floor is made up

ancw.

The second company, KONVEYOR A.S., is a big company with 6 factories in
Istanbul, Eskisehir and Manisa and 1300 employees in total. As of 2007, the company has
reached an annual turnover volume of 80M €. They supply various parts and components for
all appliance manufacturers in Turkey and for many other companies spread in Europe, Asia,
Africa and South and North America. This study is performed in the factory (5000 sqm area
with 2 floors) that is located in Istanbul Tuzla Industrial District. The approximate production
capacity (in 2007) of the factory is 80000 parts /day. 387 workers work in 2-shifts and 7-days

per week.

There are a total of 155 active machines and 767 dynamically produced parts.
Originally they have divided shop-floor layout into 20 sections in accordance with 26 different
operations. However, the company faced with lead time problems and they decided to analyze

the factory configuration by using Cellular Manufacturing.
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Because the visiting sequence of machines and parts are not separately defined, we
formed the incidence matrix, from fresh, by using operation-part information. We maintained

the same input parameters and assumptions that we used in the computational study.

We analyzed datasets for both fitness measures with different number of clusters for
1800 generations. The results found by using fitness measure over 5 runs and the
corresponding efficacy score and the corresponding machine-part assignments are exposed in

table 5.1

Similarity Measure Efficacy Measure
Deviation (%)  Final Efficacy Efficacy Scores
#Cells | Proposed GA over 5 Runis Scores (%) #Cells %)

2 0.8933 0.00 42.33 2 48.08

. 3 0.9438 0.00 54.21 3 55.62
- 4 0.9864 0.00 54.29 4 56.42
s 5 0.9864 0.00 54.50 5 56.60
= 6 0.9652 0.00 54.86 6 56.77
E 7 0.9158 0.00 56.18 7 56.60
§ 8 0.8521 0.00 55.81 8 56.54
ﬁ 9 0.7799 0.00 55.54 9 56.62
10 0.6728 0.00 55.70 10 55.63

11 0.5432 0.00 55.57 11 55.49

2 1.0417 0.00 32.14 2 40.22

3 1.2043 0.00 40.36 3 44.30

4 1.3091 2.07 41.70 4 46.20

5 1.3695 0.54 42.11 5 47.26

6 1.4177 0.47 46.21 6 47.99

7 1.4585 0.29 46.84 7 48.42

8 1.5001 0.37 46.98 8 48.66

% 9 1.5023 0.00 47.07 9 48.69
< 10 1.4979 0.23 47.11 10 48.84
; 11 1.4850 0.06 47.21 11 48.91
g 12 1.4712 0.00 47.44 12 48.93
;Z 13 1.4424 0.11 47.36 13 48.94
14 14111 0.00 47.50 14 48.99

15 1.3754 0.58 47.46 15 49.00

16 1.3291 0.00 47.83 16 49.00

17 1.2735 0.00 47.92 17 48.98

18 1.2025 0.09 48.43 18 48.93

19 1.1281 0.00 48.04 19 48.84

20 1.0533 0.00 48.05 20 48.70

21 0.9647 0.00 48.03 21 48.31

Table 5.1 Case results
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Results show that our algorithm works well on real life cases. There is consistency of
change in pattern of the fitness score versus number of cells. To compare the results of the
similarity score more adequately, we normalized machine cell assignment scores and final
efficacy scores by means of maximum score. Results show that, if the firm wants to form the
clusters according to similarity between machine processes, we should suggest Mercan
Makina A.S. to use between 4 — 6 cells and Konveyor A.S. between 8 — 11 cells. Exemplary

machine part assignment schemes for both cases are given in APPENDIX E.

Figure 5.1.3 shows the convergence scheme, in terms of similarity score, of Mercan
Makina A.S. Results show that the best score found as 0.9864 in the 50th generation and all of

the 5 runs converged to the highest score in 129th generation.

Convergence Scheme for Mercan Makina A.S.
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Figure 5.1.3 Convergence scheme for Mercan Makina A.S.
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Figure 5.1.4 shows the convergence scheme, in terms of similarity score, of Konveyor A.S.
Results show that the best score found as 1.5023 in the 729th generation and all of the 5 runs

converged to the highest score in 1506th generation.

Convergence Scheme for Konveyor A.S.
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£ o runl
O
1%5) e Tun2
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§09 0 339.%33%&“’?34’ o ° run5
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Figure 5.1.4 Convergence scheme for Konveyor A.S.

Both cases were run for 1800 generations with the standard parameters of the algorithm. Since
the algorithm found the same results by using island strategies, the number of generations may
be decreased by making a slight modification and running the cases in parallel machines

instead of a single machine.
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Chapter 6

6 CONCLUSION AND FUTURE WORK

This thesis proposes a GA approach for the machine cell formation problem utilizing a
Jaccard-based similarity coefficient as the fitness function. However, the algorithm may be
easily adapted for any other similarity measure. In GA, we use a simple chromosome structure
that only contains machine cell information. Even though complex chromosome structures are
favorable for holding more information to simultaneously form machine groups and part
families, the simple structure is powerful on choosing the best machine cell configuration in a

reasonable amount of computational time.

The roulette wheel selection procedure, a two-point crossover mechanism, random and
guided mutation operators with an elitist strategy are applied for a pre-determined number of
generations. The random mutation operator allows the algorithm to search a broad landscape
whereas the guided mutation attempts to converge to better results in the neighborhood. The
two mutation types are applied consecutively and the fitness landscape, in a broader sight,

looks like a sandglass that shrinks and enlarges accordingly.

The performance of the proposed GA method is tested on 35 well-known problems and
is compared to that of other GA approaches in the literature, which are known as best-in-class
algorithms. Our comparison is based on both our similarity measure and the grouping efficacy
measure. The results are promising with respect to the similarity measure and competitive with

respect to the efficacy measure.

The proposed approach is also applied to two real life data that were collected from
two plants operating in a job-shop environment. Different machine cell configurations are
reported for varying cell numbers and sizes. The results show that the algorithm may be

efficiently used in a real-life setting.
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Further research on this topic may focus on the following extensions. First, the island
strategy and the parameter selection may be investigated through a more in-depth
experimental analysis. Second, other similarity measures may be considered to test the
robustness of the algorithm. However, the comparison will be limited by the availability of
benchmark data in the literature. A similarity measure based on production volumes may be
particularly more realistic in an industrial environment. Furthermore, parallel computing may
be used in the experiments with multiple populations to reduce the computational effort. The

algorithm can be easily adapted to a parallel setting.
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8 APPENDIX A - Flowchart of the Proposed Algorithm

Population =
Population,
Fitness Scores =
Fitness scoresy

le—Yes

Initialize Population,
Calculate fitness
sCores,

Population =
Population;,
Fitness Scores =
Fitness scores,

Find the missing cell and randomly
assign a machine to this cell
(Without perturbing singletons)
Continue until each cell possesses at
least ane machine

!

Roulette Wheel
Selection

}

Two-point
Crossover

Is there any loss of
cell?

No
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Take

Mutation rate = 0.2 j[&——Yes

Current generation =
Total # Generation/5 ?

Take
Mutation rate = 0,1

Random Mutation [+—VYes

otal # Generations*(.3=
Current generation <
Total # Generations*0.5
OR
Total # Generations*().§<
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No—  Guided Mutation
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Take 6 structurally
different
chromosomes

Form Population,
Calculate fitness

SCOTes)

‘otal # Generations*0.3
Current generation <
Total # Generations*(,5
OR
Total # Generations*0.8<
Current generation <
Total # Generations*1.0)

No—»

Take 2 structurally
different
chromosomes

'

Elitist
Strategy
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Current Generation=
Total # Generatios/3?

10% or more than 10% of the 2 best
chromosome types
converged to their current structures
OR
20% or more than 20% of the best
chromosome type
converged to its current structure?

25% or more than 25% of the 2 best
chromosome types
converged to their current structures
OR
50% or more than 50% of the best chromosome
type converged to its current structure?

Yes—» Migration Strategy —Yes

}

Form Population,
Calculate fitness
SCOIES,

No No
Current Generation=
Total # Generations?
Yes ¢
Find the missing part family and /\ ] ; ;
sy ssslon:a fart to fut Sanitly Perform part family formation procedure.

Is there any loss o
cell?

Use partial effiacy measures and the best
chromosome structure. Then, find the part
families.

!

_ﬁisplay the best fitness score and
r\ ordered incidence matrix

(Without perturbing singletons) «—Ye 5{

Continue until each family possesses at
least one part
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9 APPENDIX B — Detailed Computational Results of 5 Runs

Gap Gap Gap

Instance § Deviation |between Deviation | between Deviation | between

Size HGGA | § |Noisland from | the best}  ndaz2| from the best |, anas| oM the best

the sample | solution the sample| solution the sample| solution

Number of cells S
¢ of 5runs | and our of 5 runs and our of 5 runs and our
result result result

1 0.9306 | 120 0.9306 0.00% 0.00%| 0.9306 0.00% 0.00%| 0.9306 0.00% 0.00%
5x7 300 0.9306 0.00% 0.00%] 0.9306 0.00% 0.00%] 0.9306 0.00% 0.00%
2 900 0.9306 0.00% 0.00%] 0.9306 0.00% 0.00%| 0.9306 0.00% 0.00%
1800 0.9306 0.00% 0.00%] 0.9306 0.00% 0.00%] 0.9306 0.00% 0.00%
2 0.7667 | 120 0.7667 0.00% 0.00%| 0.7667 0.00% 0.00%| 0.7667 0.00% 0.00%
5x7 300 0.7667 0.00% 0.00%] 0.7667 0.00% 0.00%| 0.7667 0.00% 0.00%
2 900 0.7667 0.00% 0.00%| 0.7667 0.00% 0.00%| 0.7667 0.00% 0.00%
1800 0.7667 0.00% 0.00%| 0.7667 0.00% 0.00%] 0.7667 0.00% 0.00%
3 0.9637| 120 0.9637 0.00% 0.00%| 0.9637 0.00% 0.00%| 0.9637 0.00% 0.00%
5% 18 300 0.9637 0.00% 0.00%] 0.9637 0.00% 0.00%] 0.9637 0.00% 0.00%
2 900 0.9637 0.00% 0.00%| 0.9637 0.00% 0.00%| 0.9637 0.00% 0.00%
1800 0.9637 0.00% 0.00%] 0.9637 0.00% 0.00%] 0.9637 0.00% 0.00%
4 1.3587 | 120 1.3587 0.00% 0.00%| 1.3587 0.00% 0.00%| 1.3587 0.00% 0.00%
6x8 300 1.3587 0.00% 0.00%] 1.3587 0.00% 0.00%] 1.3587 0.00% 0.00%
2 900 1.3587 0.00% 0.00%| 1.3587 0.00% 0.00%| 1.3587 0.00% 0.00%
1800 1.3587 0.00% 0.00%] 1.3587 0.00% 0.00%] 1.3587 0.00% 0.00%
5 0.2917| 120 0.2917 0.00% 0.00%| 0.2917 0.00% 0.00%| 0.2917 0.00% 0.00%
7 x 11 300 0.2917 0.00% 0.00%] 0.2917 0.00% 0.00%] 0.2917 0.00% 0.00%
5 900 0.2917 0.00% 0.00%| 0.2917 0.00% 0.00%| 0.2917 0.00% 0.00%
1800 0.2917 0.00% 0.00%]| 0.2917 0.00% 0.00%] 0.2917 0.00% 0.00%
6 0.7500| 120 0.7500 0.00% 0.00%| 0.7500 0.00% 0.00%| 0.7500 0.00% 0.00%
7 %11 300 0.7500 0.00% 0.00%] 0.7500 0.00% 0.00%] 0.7500 0.00% 0.00%
4 900 0.7500 0.00% 0.00%| 0.7500 0.00% 0.00%| 0.7500 0.00% 0.00%
1800 0.7500 0.00% 0.00%] 0.7500 0.00% 0.00%] 0.7500 0.00% 0.00%
7 1.4111] 120 1.4111 0.00% 0.00%| 1.4111 0.00% 0.00%| 1.4111 0.00% 0.00%
8 x12 300 1.4111 0.00% 0.00%] 1.4111 0.00% 0.00%] 1.4111 0.00% 0.00%
4 900 1.4111 0.00% 0.00%| 1.4111 0.00% 0.00%| 1.4111 0.00% 0.00%
1800 1.4111 0.00% 0.00%]| 1.4111 0.00% 0.00%] 1.4111 0.00% 0.00%
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Gap Gap Gap

Instance § Deviation |between Deviation | between Deviation | between

Size HGGA | § [Noisland from | the bestf, | nda2| from the best |, janas| _from the best

the sample | solution the sample| solution the sample| solution

Number of cells 5
) of 5runs | and our of 5 runs and our of 5 runs and our
result result result

8 1.8647 | 120] 1.8647 0.00% 0.00%| 1.8647 0.00% 0.00%| 1.8647 0.00% 0.00%
8 x 20 300 1.8647 0.00% 0.00%| 1.8647 0.00% 0.00%| 1.8647 0.00% 0.00%
3 900 1.8647 0.00% 0.00%| 1.8647 0.00% 0.00%| 1.8647 0.00% 0.00%
1800 1.8647 0.00% 0.00%| 1.8647 0.00% 0.00%| 1.8647 0.00% 0.00%
9 1.3779| 120] 1.4274 0.00% 3.59%| 1.4274 0.00% 3.59%| 1.4274 0.00% 3.59%
8 x 20 300 1.4274 0.00% 3.59%| 1.4274 0.00% 3.59%| 1.4274 0.00% 3.59%
2 900] 1.4274 0.00% 3.59%| 1.4274 0.00% 3.59%| 1.4274 0.00% 3.59%
1800 1.4274 0.00% 3.59%| 1.4274 0.00% 3.59%| 1.4274 0.00% 3.59%
10 1.4375| 120 1.4583 0.00% 1.45%| 1.4583 0.00% 1.45%| 1.4583 0.00% 1.45%
10 x 10 300 1.4583 0.00% 1.45%| 1.4583 0.00% 1.45%| 1.4583 0.00% 1.45%
5 900 1.4583 0.00% 1.45%| 1.4583 0.00% 1.45%| 1.4583 0.00% 1.45%
1800 1.4583 0.00% 1.45%| 1.4583 0.00% 1.45%| 1.4583 0.00% 1.45%
11 2.9167 ] 120 2.9167 0.00% 0.00%| 2.9167 0.00% 0.00%| 2.9167 0.00% 0.00%
10 x 15 300 2.9167 0.00% 0.00%| 2.9167 0.00% 0.00%| 2.9167 0.00% 0.00%
3 900 2.9167 0.00% 0.00%| 2.9167 0.00% 0.00%| 2.9167 0.00% 0.00%
1800 2.9167 0.00% 0.00%| 2.9167 0.00% 0.00%| 2.9167 0.00% 0.00%
12 2.1960 | 120] 2.2933 0.00% 4.43%| 2.2933 0.00% 4.43%| 2.2933 0.00% 4.43%
14 x 24 300 2.2933 0.00% 4.43%| 2.2933 0.00% 4.43%| 2.2933 0.00% 4.43%
7 900 2.2933 0.00% 4.43%| 2.2933 0.00% 4.43%| 2.2933 0.00% 4.43%
1800| 2.2933 0.00% 4.43%| 2.2933 0.00% 4.43%| 2.2933 0.00% 4.43%
13 2.0368 | 120| 2.1683 0.00% 6.45%| 2.1683 0.00% 6.45%| 2.1683 0.00% 6.45%
14 x 24 300 2.1683 0.00% 6.45%| 2.1683 0.00% 6.45%| 2.1683 0.00% 6.45%
7 900 2.1683 0.00% 6.45%| 2.1683 0.00% 6.45%| 2.1683 0.00% 6.45%
1800 2.1683 0.00% 6.45%| 2.1683 0.00% 6.45%| 2.1683 0.00% 6.45%
14 1.4550 | 120 1.5116 0.35% 3.89%| 1.5116 1.69% 3.89%| 1.5116 2.70% 3.89%
16 x 24 300 1.5116 0.00% 3.89%| 1.5116 1.08% 3.89%| 1.5116 0.80% 3.89%
8 900 1.5116 1.32% 3.89%| 1.5116 0.00% 3.89%| 1.5116 0.00% 3.89%
1800 1.5116 0.00% 3.89%| 1.5116 0.00% 3.89%| 1.5116 0.00% 3.89%
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Gap Gap Gap

Instance § Deviation |between Deviation | between Deviation | between

Size HGGA | § [Noisland from | the bestf, | nda2| from the best |, janas| _from the best

the sample | solution the sample| solution the sample| solution

Number of cells 5
) of 5runs | and our of 5 runs and our of 5 runs and our
result result result

15 2.7690 | 120] 2.7651 5.17% -0.14%| 2.7690 0.21% 0.00%| 2.7690 0.79% 0.00%
16 x 30 300 2.7690 1.25% 0.00%| 2.7690 0.00% 0.00%| 2.7690 0.93% 0.00%
6 900 2.7690 0.00% 0.00%]| 2.7690 0.00% 0.00%| 2.7690 0.00% 0.00%
1800 2.7690 0.00% 0.00%| 2.7690 0.00% 0.00%| 2.7690 0.00% 0.00%
16 1.7193 | 120] 1.8223 0.00% 5.99%| 1.8223 1.89% 5.99%| 1.8223 5.58% 5.99%
16 x 43 300 1.8223 0.00% 5.99%| 1.8223 0.00% 5.99%| 1.8223 0.00% 5.99%
8 900| 1.8223 0.00% 5.99%| 1.8223 0.00% 5.99%| 1.8223 0.00% 5.99%
1800 1.8223 0.00% 5.99%| 1.8223 0.00% 5.99%| 1.8223 0.00% 5.99%
17 1.8306 | 120 2.2306 0.00% 21.85%| 2.2306 5.38% 21.85%| 2.2306 5.90% 21.85%
18 x 24 300 2.2306 0.00% 21.85%]| 2.2306 0.00% 21.85%]| 2.2306 0.00% 21.85%
9 900 2.2306 0.00% 21.85%| 2.2306 0.00% 21.85%| 2.2306 0.00% 21.85%
1800 2.2306 0.00% 21.85%]| 2.2306 0.00% 21.85%]| 2.2306 0.00% 21.85%
18 2.1243 1 120 2.3131 4.15% 8.89%| 2.3310 6.67% 9.73%| 2.2688 9.92% 6.80%
20 x 20 300 2.3962 3.09% 12.80%] 2.3962 4.90% 12.80%| 2.3185 2.55% 9.14%
6 900 2.3962 2.09% 12.80%| 2.3962 2.71% 12.80%| 2.3962 1.71% 12.80%
1800 2.3962 1.71% 12.80%| 2.3962 1.71% 12.80%| 2.3962 1.71% 12.80%
19 1.1360 | 120] 2.8983 1.08% 155.13%| 2.9517 5.09% 159.84%| 2.9014 10.17% 155.41%
20 x 23 300 2.9517 3.60% 159.84%| 2.9517 1.19% 159.84%| 2.9364 3.21% 158.48%
7 900 2.9517 0.00% 159.84%| 2.9517 0.00% 159.84%| 2.9517 0.00% 159.84%
1800| 2.9517 0.00% 159.84%| 2.9517 0.00% 159.84%| 2.9517 0.00% 159.84%
20 4.9661 | 120| 4.9664 3.82% 0.01%]| 4.9664 20.94% 0.01%| 4.8828 42.93% -1.68%
20 x 35 300 4.9664 3.22% 0.01%| 4.9664 3.16% 0.01%]| 4.9664 3.17% 0.01%
5 900 4.9664 0.01% 0.01%]| 4.9664 0.01% 0.01%| 4.9664 0.00% 0.01%
1800 4.9664 0.00% 0.01%]| 4.9664 0.00% 0.01%]| 4.9664 0.00% 0.01%
21 3.3295| 120 3.3545 14.64% 0.75%| 3.3407 5.96% 0.34%| 3.3545 9.56% 0.75%
20 x 35 300 3.3625 3.63% 0.99%| 3.3625 3.42% 0.99%| 3.3625 4.12% 0.99%
5 900 3.3625 0.44% 0.99%| 3.3625 0.44% 0.99%| 3.3625 0.00% 0.99%
1800 3.3625 0.36% 0.99%| 3.3625 0.44% 0.99%| 3.3625 0.00% 0.99%
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Gap Gap Gap

Instance § Deviation |between Deviation | between Deviation | between

Size HGGA | § [Noisland from | the bestf, | nda2| from the best |, janas| _from the best

the sample | solution the sample| solution the sample| solution

Number of cells 5
) of 5runs | and our of 5 runs and our of 5 runs and our
result result result

22 8.5000 | 120} 7.5000 41.59% -11.76%| 7.8333 54.92% -7.84%| 6.8333 32.56% -19.61%
24 x 40 300 8.5000 44.72% 0.00%| 8.5000 0.00% 0.00%| 8.5000 43.20% 0.00%
7 900 8.5000 0.00% 0.00%]| 8.5000 0.00% 0.00%| 8.5000 0.00% 0.00%
1800 8.5000 0.00% 0.00%| 8.5000 0.00% 0.00%]| 8.5000 0.00% 0.00%
23 6.2459 | 120| 6.2459 29.32% 0.00%]| 6.0538 22.73% -3.08%| 5.5937 48.25% -10.44%
24 x 40 300 6.2459 26.83% 0.00%| 6.2459 8.59% 0.00%| 6.0538 36.03% -3.08%
7 900] 6.2459 0.00% 0.00%]| 6.2459 10.06% 0.00%| 6.2459 0.00% 0.00%
1800 6.2459 0.00% 0.00%]| 6.2459 0.00% 0.00%]| 6.2459 0.00% 0.00%
24 4.37291 120 4.3729 39.39% 0.00%| 4.3729 41.35% 0.00%| 3.8576 37.77% -11.78%
24 x 40 300 4.3729 0.00% 0.00%]| 4.3729 24.64% 0.00%| 4.3729 21.12% 0.00%
7 900 4.3729 0.00% 0.00%| 4.3729 0.00% 0.00%| 4.3729 0.00% 0.00%
1800 4.3729 0.00% 0.00%]| 4.3729 0.00% 0.00%| 4.3729 0.00% 0.00%
25 1.9473| 120 1.9682 14.17% 1.07%| 1.9428 2.72% -0.23%| 1.9111 15.24% -1.86%
24 x 40 300 1.9761 6.17% 1.48%| 1.9761 2.92% 1.48%| 1.9375 3.78% -0.50%
11 900 1.9761 2.71% 1.48%| 1.9761 1.09% 1.48%| 1.9761 0.00% 1.48%
1800 1.9761 1.46% 1.48%| 1.9761 0.00% 1.48%| 1.9761 0.00% 1.48%
26 1.5348 | 120] 1.6017 5.98% 4.36%| 1.5806 5.14% 2.98%| 1.4706 4.09% -4.18%
24 x 40 300 1.6079 1.94% 4.76%]| 1.6130 2.47% 5.10%| 1.6074 4.52% 4.73%
12 900 1.6130 0.25% 5.10%| 1.6130 0.28% 5.10%| 1.6130 0.12% 5.10%
1800| 1.6130 0.00% 5.10%| 1.6130 0.21% 5.10%| 1.6130 0.12% 5.10%
27 1.3008 | 120] 1.4629 597% 12.46%| 1.3831 3.31% 6.33%| 1.3642 4.46% 4.87%
24 x 40 300 1.4648 3.16% 12.61%]| 1.4662 4.57% 12.71%]| 1.4581 2.36% 12.10%
12 900 1.4662 1.20% 12.71%] 1.4662 2.01% 12.71%| 1.4662 1.74% 12.71%
1800 1.4662 0.78% 12.71%]| 1.4662 0.00% 12.71%| 1.4662 1.74% 12.71%
28 4.3823 | 120 4.4860 11.90% 2.37%| 4.4384 12.16% 1.28%| 4.1307 21.02% -5.74%
27 x 27 300 4.6528 7.29% 6.17%| 4.4503 2.75% 1.55%| 4.5330 11.56% 3.44%
6 900 4.6528 12.78% 6.17%| 4.6528 6.66% 6.17%| 4.6528 3.12% 6.17%
1800 4.6528 10.52% 6.17%| 4.6528 7.11% 6.17%| 4.6528 3.12% 6.17%
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Gap Gap Gap

Instance § Deviation |between Deviation | between Deviation | between

Size HGGA | § [Noisland from | the bestf, | nda2| from the best |, janas| _from the best

the sample | solution the sample| solution the sample| solution

Number of cells 5
) of 5runs | and our of 5 runs and our of 5 runs and our
result result result

29 2.2180 | 120} 2.3113 4.92% 4.21%| 2.2197 10.98% 0.08%| 2.2177 15.98% -0.01%
28 x 46 300 2.3909 3.48% 7.80%| 2.3673 5.19% 6.73%| 2.3857 6.61% 7.56%
10 900 2.4042 2.10% 8.40%| 2.4042 2.16% 8.40%| 2.3857 1.05% 7.56%
1800 2.4042 1.97% 8.40%| 2.4042 1.80% 8.40%| 2.3857 1.05% 7.56%
30 3.9587 | 120| 4.2394 25.68% 7.09%| 4.1099 24.46% 3.82%| 3.8787 33.07% -2.02%
30 x 41 300 4.1443 8.89% 4.69%| 4.1765 5.06% 5.50%| 4.2479 11.32% 7.31%
14 900] 4.2765 2.03% 8.03%| 4.2765 0.00% 8.03%| 4.2765 1.64% 8.03%
1800 4.2765 6.09% 8.03%| 4.2765 0.00% 8.03%| 4.2765 1.64% 8.03%
31 3.4633 | 120 3.4583 14.39% -0.14%] 3.3843 15.66% -2.28%| 3.0728 15.61% -11.28%
30 x 50 300 3.5823 7.93% 3.44%| 3.4662 7.29% 0.08%]| 3.5375 12.93% 2.14%
13 900 3.5939 3.51% 3.77%| 3.5491 7.19% 2.48%| 3.6171 6.95% 4.44%
1800 3.5298 0.80% 1.92%| 3.6171 3.85% 4.44%] 3.6171 6.95% 4.44%
32 0.7606 | 120 2.6864 21.64% 253.19%] 2.6407 9.73% 247.18%| 2.2874 25.20% 200.73%
30 x 50 300 2.7429 10.98% 260.63%| 2.7320 10.94% 259.19%| 2.6254 511% 245.17%
14 900 2.7592 0.54% 262.76%| 2.7592 2.05% 262.76%| 2.7592 0.08% 262.76%
1800 2.7592 0.00% 262.76%| 2.7592 0.43% 262.76%| 2.7592 0.08% 262.76%
33 0.5627 | 120] 2.0521 20.00% 264.70%] 1.8282 8.51% 224.90%| 1.6167 7.27% 187.31%
36 x 90 300 2.0276 6.47% 260.34%| 2.0744 13.26% 268.66%| 1.9583 9.72% 248.01%
17 900 2.0788 5.92% 269.43%| 2.0788 4.29% 269.43%| 2.0779 3.87% 269.28%
1 800| 2.0788 0.14% 269.43%| 2.0779 0.37% 269.28%| 2.0779 3.87% 269.28%
34 8.6598 | 120| 8.6617 32.86% 0.02%]| 8.8392 37.99% 2.07%| 8.4875 40.65% -1.99%
37 x 53 300 8.9150 21.16% 2.95%| 8.9118 27.11% 2.91%| 8.3785 10.10% -3.25%
3 900 8.9584 2.43% 3.45%| 8.9584 4.02% 3.45%| 8.9584 2.87% 3.45%
1800 8.9584 3.56% 3.45%| 8.9584 3.60% 3.45%| 8.9584 2.87% 3.45%
35 10.4205] 120 9.0348 119.32% -13.30%]| 7.3890 62.33% -29.09%| 6.1221 50.80% -41.25%
40 x 100 300 9.5757 70.30% -8.11%| 9.7907 47.16% -6.04%| 8.5676 58.02% -17.78%
10 900 10.4205 30.33% 0.00%| 10.0264 15.34% -3.78%| 10.4205 42.68% 0.00%
18001 10.4205 19.84% 0.00%] 10.4205 40.16% 0.00%] 10.4205 42.68% 0.00%
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Minimum Deviations for Similarity Measure

=} = =} =}
T = = = = = = = = = = =
s A& @ s & @ 3 & y 3 & s
120 0.00% 0.00% 0.00% |10] 120 0.00% 0.00% 0.00% | 20| 120 1.08% 5.09% 9.56% |30] 120 14.39% 9.73% 15.61%
300 0.00% 0.00% 0.00% | m| 300 0.00% 0.00% 0.00% | m| 300 3.09% 1.19% 2.55% | m] 300 7.93% 5.06% 5.11%
900 0.00% 0.00% 0.00% 900 0.00% 0.00% 0.00% 900 0.00% 0.00% 0.00% 900 0.54% 0.00%  0.08%
1800 0.00% 0.00% 0.00% 1800 0.00% 0.00% 0.00% 1800 0.00% 0.00%  0.00% 1800 0.00% 0.00%  0.08%
120 0.00% 0.00% 0.00% | 14| 120 0.00% 0.00% 0.00% | 24| 120 597% 2.72% 4.09% |36] 120 20.00% 8.51% 7.27%
300 0.00% 0.00% 0.00% | m| 300 0.00% 0.00% 0.00% | m| 300 0.00% 0.00% 2.36% | s | 300 6.47% 13.26% 9.72%
900 0.00% 0.00% 0.00% 900 0.00% 0.00% 0.00% 900 0.00% 0.00% 0.00% 900 5.92% 4.29%  3.87%
1800 0.00% 0.00% 0.00% 1800 0.00% 0.00% 0.00% 1800 0.00% 0.00%  0.00% 1800 0.14% 0.37%  3.87%
120 0.00% 0.00% 0.00% | 16] 120 0.00% 0.21% 0.79% | 27| 120 11.90% 12.16% 21.02% | 37| 120 32.86% 37.99% 40.65%
300 0.00% 0.00% 0.00% | m| 300 0.00% 0.00% 0.00% ]| s | 300 7.29% 2.75% 11.56% | s | 300 21.16% 27.11% 10.10%
900 0.00% 0.00% 0.00% 900 0.00% 0.00% 0.00% 900 12.78% 6.66% 3.12% 900 2.43% 4.02%  2.87%
1800 0.00% 0.00% 0.00% 1800 0.00% 0.00% 0.00% 1800 10.52% 7.11%  3.12% 1800 3.56% 3.60%  2.87%
120 0.00% 0.00% 0.00% | 18] 120 0.00% 5.38% 5.90% | 28] 120 4.92% 10.98% 15.98% | 40] 120 119.32% 62.33% 50.80%
300 0.00% 0.00% 0.00% ] s | 300 0.00% 0.00% 0.00% ] s ] 300 3.48% 5.19% 6.61% | s | 300 70.30% 47.16% 58.02%
900 0.00% 0.00% 0.00% 900 0.00% 0.00% 0.00% 900 2.10% 2.16% 1.05% 900 30.33% 15.34% 42.68%
1800 0.00% 0.00% 0.00% 1800 0.00% 0.00% 0.00% 1800 1.97% 1.80% 1.05% 1800 19.84% 40.16% 42.68%
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Maximum Deviations for Similarity Measure

k=] = = =
- = = n = = " = = " = =
7 & " 7 & " 7 & " 7 & "
120 0.00% 0.00% 0.00%]10] 120 0.00% 0.00% 0.00% |20] 120 14.64% 20.94% 42.93% |30| 120 25.68% 24.46% 33.07%
300 0.00% 0.00% 0.00%|m] 300 0.00% 0.00% 0.00% |m]| 300 3.63% 4.90% 4.12% |m| 300 10.98% 10.94% 12.93%
900 0.00% 0.00% 0.00% 900 0.00% 0.00% 0.00% 900 2.09% 2.71% 1.71% 900 3.51% 7.19% 6.95%
1800 0.00% 0.00% 0.00% 1800 0.00% 0.00% 0.00% 1800 1.71% 1.71% 1.71% 1800 6.09% 3.85% 6.95%
120 0.00% 0.00% 0.00%|14] 120 0.00% 0.00% 0.00% |24| 120 41.59% 54.92% 48.25% |36] 120 20.00% 8.51% 7.27%
5] 300 0.00% 0.00% 0.00%|m] 300 0.00% 0.00% 0.00% |m| 300 44.72% 24.64% 43.20% | s | 300 6.47% 13.26% 9.72%
900 0.00% 0.00% 0.00% 900 0.00% 0.00% 0.00% 900 2.71% 10.06% 1.74% 900 5.92% 4.29% 3.87%
1800 0.00% 0.00% 0.00% 1800 0.00% 0.00% 0.00% 1800 1.46% 0.21% 1.74% 1800 0.14% 0.37% 3.87%
120 0.00% 0.00% 0.00%]16] 120 5.17% 1.89% 5.58% 27| 120 11.90% 12.16% 21.02% |37| 120 32.86% 37.99% 40.65%
m| 300 0.00% 0.00% 0.00%|m] 300 1.25% 1.08% 0.93%] s | 300 7.29% 2.75% 11.56% | s | 300 21.16% 27.11% 10.10%
900 0.00% 0.00% 0.00% 900 1.32% 0.00% 0.00% 900 12.78% 6.66% 3.12% 900 2.43% 4.02% 2.87%
1800 0.00% 0.00% 0.00% 1800 0.00% 0.00% 0.00% 1800 10.52% 7.11% 3.12% 1800 3.56% 3.60% 2.87%
120 0.00% 0.00% 0.00%]18] 120 0.00% 5.38% 5.90% |28] 120 4.92% 10.98% 15.98% [40| 120 119.32% 62.33% 50.80%
m| 300 0.00% 0.00% 0.00%| s | 300 0.00% 0.00% 0.00%] s | 300 3.48% 5.19% 6.61% | s | 300 70.30% 47.16% 58.02%
900 0.00% 0.00% 0.00% 900 0.00% 0.00% 0.00% 900 2.10% 2.16% 1.05% 900 30.33% 15.34% 42.68%
1800 0.00% 0.00% 0.00% 1800 0.00% 0.00% 0.00% 1800 1.97% 1.80% 1.05% 1800 19.84% 40.16% 42.68%
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Instance
Size .. Gap
Number of cell HGGA EnGGA Gener Deviation between Gap
S ation No island 0 from the best Deviation | between Ca
(3 Sample soluti Island2 from t Deviati p
h eviati
1 3 of5runs | and o the sample N b.eSt Is fr on | between
5 x7 2.35% 52350 our of 5 solution land5 om the best
2 = 82.35% 0.00° result runs and our the sample | solution
300 82.35% O'OO‘;) 0.00% 82.35% 0 result of S runs and our
. 0,
> 900 82.35% 0 000/0 0.00% 82.35% 00% 0.00% 2235% result
69.57% 1800 82.35¢ =20 0.00% 0.00% 0.00° =0 0.00%
5x7 o 69.57% 50 = % 0.00% 0,00 82.35% 0.00% o % 82.35% 0.00% 0.00%
57% 00%]  82.35% ' 00%| 8 B 0.00°
2 300 o 0.00% 6 0.00% 2.35% .00%
900 s 0.00%  0.00° Sl 0.00% 35% 0.00% .00%
.57% .00% 69.57° 0 0.00% .00% 0.00%
3 18 0.00% 57% 0.00° 69.57% -00%
5x18 79.59% 79.59% 12?) 69.57% O_()()«%l: g'gng 69.57% 0 ggof 0.00% 69.570/2 8'88% 0.00%
79.59% -U07 69.57° S0 0.00% .00% 0.00°
79.59%, 0.00% 79.59% - () 0.00% 69.57° 0.00% 0.00%
900 79 0.00% 0.00° =270 0.00% S7% 0.00° =20
50 00%l 79500 6 0.00% 00% 0.00°
6x8 o 76.92% G o J 0.00% 0.00% 79.59% 0.00% 6,00 ol  79.59% 0.00% 0.00%
.929% o0 79.59% ’ .00% 79.590 70 0.00%
2 300 n 0.00% d 0.00% 9.59% o
900 0.00%  0.00° S 0.00% 9.59% 0.00% 00%
76.92% 00%|  76.929 o 0.00% 00% 0007
S 60.87% 1800 76,900 " 0.00% 0.00% 70 0.00% 0.00° g 76.92% 0.00% /o
711 o e087% [ 20l 60, L O00% = 0.00%af = 70.92% = 0.00% L, S o oo
87% 00%|  76.92% ' 00% 00%  0.00%
S 300 o 0.00% 6 0.00% 76.92% %
60.87% 0.00% 60.87% el 0.00% 76.920 0.00% 0.00%
900 60 0.00% 0.00° : © 0.00% .92% 0.00° . ()
87% .00%]  60.87° R0 00% ___ 0.00%
6 70.83% 1800 60.870 0.00% 0.00% %o 0.00% 0.00° 60.87% 0.00% 0
7 x11 0 70.83% 120 70- %o 0.00% 0,00 60.87% 0.00% 0-0 %o 60.87% 0.00% 0.00%
83% 0 60.87% i 00% 7% 0.00°
4 300 2 0.00% 0 0.00% 60.87% .00%
70.83% 0.00% 20.83° A4l 0.00% 6 0.00% 0.00%
900 0.00% 0.00° -83% 0.00% 0.87% 0.00° /0
70.83% .00% 70.839 ° 0.00% .00% 0.00°
7 18 0 0.00% .83% 0.00° o 70.83% .00%
g %12 B e S D070 O Op, 000 O
69.44% : .00% 70.83° VU0 0.00% .00% 0.00°
4 3 0 0.00% 83% 0.00° 0 70.83% .00%
988 69.44% 0.00% 8'83% 69.44% 0 00(;’ 0.00%|  70.83% 8‘88% 0.00%
69.44% : .00% 69.44° =20 0.00% .00% 0.00?
1800 69.44% S 9% 0.00% oo G 000% 0 Ooof
00% 0.00% 69 440" 0.00% 0.00% 44% 0.00% 0' 00
44% 0 0 69.44% .00%
0.00% 0.00° o 0.00%
.00% 69.44% o' o > 0.00%
.00% 0.00%
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Instance
Size Gap
HGGA Ge Deviati
Number EnGGA ner on between Ga
of cells ation | NOisland from the be Deviation p
the sam st between Gap
ple | solution | 'S1and2 from | the best Deviation | betw
8 85.259 of Sruns | ando the sample : Isl fro een
8 x20 25% 85.25% ur £ solution andS m the best
3 ’ b 85.25% result of S runs | andour the sample | solution
300 85.25% (0)'00(?’ 0.00% 85.25% result of 5 runs and our
Sl 85.25% 00% 0.00% 85'250/" 0.00% 0.00% 3 result
9 58720 1800 8 0.00% 0.00° L0 70 0.00% 5.25% 0.00°
12% 5 o 5.25% .00% 85.259 0.00% .00% 0.00°
g x 20 872% [ 120]  58.72 0.00% ___0.00% 5%  000%  0.00° 85.25% 0.00% 00%
2% o 85.25% i -00% 85250 U0 0.00°
2 300 0 0.00% o 0.00% 5.25% %
58.72% 0.00% 58.72¢° - 0 0.00% 85 0 0.00% 0.00%
900 58 0.00% 0.00° 2% 0.00% 25% 0.00° : 0
T72% .00% 58.72° 0 0.00% .00% 0.00°
10 0.00° 72% & 58.729 .00%
1010 75.00% i 1?28 58.72% 0.00 Of’ 0.00% 58 729, 888:;0 0.00% 53 72;’ 0.00% 0.00%
75.00% — 0.00%|  58.729 00% 0.00% L 0.00% 0.00°
s 300 2 0.00% 72% 0.00% O 58.72% .00%
75.00% 0.00% 75.00% Al 0.00% 5 0.00% 0.00%
900, 75.0 0.00% 0.00% =270 0.00% 8.72% 0.00° 70
.00% .00% 75.00° o 0.00% .00% 0.00°
11 1800 0.00% 00% 0.00° 75.00% .00%
92.00% 75.00% g 0.00% .00% 0.00% 0.00%
10 x15 6 ) = .00% 0.00% 75.00% 0.00° .00%]  75.00% 0.00%
92.00% 0.00% 75.00% -00% 0.00% 0.00% 0.00°
3 300 a 0.00% 00% _ 0.00% o|  75.00% 00%
92.00% 0.00%]  92.00% 00% _ 0.00%| 75 0.00% 0.00%
900, 92.0 0.00% 0.00° =220 0.00% 00% 0.00° 22270
.00% 00% 92.00° 0 0.00% .00% 0.00°
12 1800 0.00% .00% 0.00° 92.00% .00%
72.06% 92.00% 0.00% 9 .00% 0.00% 0.00%
14 x 24 ° - B 0 0.00% 2.00% 00%|  92.00% 0.00%
0 72.06° 2 0.00% 9 0.00% 0.00% ? 0.00%
7 300 06% 0.85% 2.00% 0.00% 00%|  92.00% 0.00%
900 - 0.00%  0.00° Lo 1.06% 2.00% 0,005 .00%
U 0%l 72.06% o 0.00% 00% ____0.00%
141 324 o~ 1800|  72.06% (o)'gng ool 706 8—80% 0.00% Zggj 0000
) 120 718 .00% ____0.00% ' :00% s 0.00° oy
.83% 0 72.06% 0.00% .00% 0.00°
7 300 o 0.00% o 0.00% 72.06% 00%
71.83% 0.00%|  71.83% 0 0.00%|  72.06° 0.00% 0.00%
900 7 0.00% 0.00° : ° 0.00% 06% 0.00° : 0
.83% .00% 71.83° 0 0.00% .00% 0.00°
14 0.00° .83% © 71.83% .00%
16 %24 .26% 120 53.26% 0.00% 0.00% 71' Vo 0.00% 0.00% 71.83% 0.00% .00%
8 300 70 0.49% 2 83% 0.00% 00%|  71.83% e 0.00%
53.26% 0.00% 53.26° /0 0.00% 7 0.00% 0.00%
900, 532 0.49% 0.009 26% 0.69% 1.83% 0.00° 70
26% .00% 53.26% 0 0.00% 5 .00% 0.00%
e i B2 00 000 S — 0%
— 0.00% 53.26% 8‘88://" 0.00% 53.260/0 0.60% 0.00%
. - o 0 0
o 0.00%|  53.26% 0‘800”’ 0.00%
00% __ 0.00%
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Insstance g e
ize . . p
H = Deviati
Number of cells GGA EnGGA g ' ef“atlon between Gﬂp
2 Noisland rom the be Deviation | be
(3 the st tween Ga
sample | soluti Island2 from Deviati p
1 of 5 on the best ation | betwe
5 68.999 runs and the sample . Is fr en
16 x 30 99%  6899% [ 1 - of 5 solution [ 1*1"® om | thebest
6 320 68.99% 0.00% result runs and our the sample | solution
988 68,00 o 0.00%|  68.99% - result of 5runs | andour
. A 51°
o 68.99% 0.00° 0.00% 68.99% 1% 0.00% 68.999 result
16 x 43 53%  5753% [ 120 5 99% 000% | 0.00% 68.99%  0.00% 0.00%] __ 68.99% O'OéA) 0.00%
7.53% : 0 68.999 : © 0.00% .00% 0.00°
8 300 © 0.00% .99% 0.00% o 68.99%, .00%
900 57 0.00% 0.00° 33% 0.68% 8.99% 0.00° -00%
.53% .00% 57.539 ° 0.00% .00% 0.00°
17 1 0 0.00% 53% 0 57.430 .00%
18 x 24 57.73% 57.73% ?gg 57.53% 0 00%': 8(0)0% 57.53% g.ggzo 0.00% 57 5302: 876% -0.10%
57.29% - .00% 57,530 070 0.00% ; 05%
9 300 ° 0.70% .53% 0.00° 0 57.53% 0.00%
57.29% ’ -0.44% 57.299 00% 0.00% 0.00% 0.00°
ool 57 0.00%  -0.44° 29% 0.82% 57.53% 0.00° 00%
.29% A44% 57,290 ° -0.44% .00% 0.00°
18 180 0 0.00% 29% 0.26° o|  55.67% .00%
43.18% 0 57.29% o -0.44% 26%  -0.44° o 0.36%
20 x 20 A ; 5 297 0.00% 57.29% 44% 57.29% & -2.06%
of 4275 o -044% 0.00%  -0.44° 2970 0.22% d
6 300 5% 0.26% 57.29% 0.00° 44%|  57.29% 22%  -0.44%
43.36% ’ -0.43% 42.349 .00% -0.44% 0.00% -0.449
900 0 0.78% 0.18° .34% 0.46% 57.29% 0.00° .44%
86% 18% 42.96° o -0.84% .00% -0.44°
19 1800 ° 0.37% 96% 038 o|  41.98% 44%
50.81% 43.36% o -032% 38%  -0.229 . 1.09%
20 x 23 o - 0 2070 0.55% 43.36% -22% 43.07° o -1.20%
0 50.00° 2270 0.18% 0.33% 0.18° 07% 0.44% "
7 300 —— 1.07% 23.36% 0.28° 18%)  43.18% A4%  0.11%
50.81% o -0.81% 48.85° 28% 0.18% 0.06% 0.00°
900 50 1.44% 0.00° 85% 1.38% 43.36% 0.36° -00%
.81% .00% 50.81° ° -1.96% -36% 0.18°
20 1 0 0.22% 81% of  47.58 18%
20 x 35 77.91% 77.91% ?gg 50.81% 0 OOOA'Z 8(0)0% 50.81% ??g:jo 0.00% 50 81‘;(: (1)50% -3.23%,
77.91% - .00% 50.81° 1670 0.00% : 23%
5 300 2 1.07% 81% 0.00% O 50.40% 0.00%
77.91% 0.00%|  77.919 — 0.00% 0.18%  -0.419
%0 77 0.77%  0.00° % 323% 20.81% 0.00° S
91% .00% 77.919 0 0.00% .00% 0.00°
21 ( 0.00° 91% o 76.36% .00%
20 57.98% 57.98° 1800 77.91% % 0.00% 77.91% 0.36% 0.00% % 5.66% 15 00
% 35 98% 120 57.98% 0.00% 0.00% 7 o 0.00% e 77.91% 0.57% .55%
5 300 : o 0.54% S 91% 0.00° : o 77.91% . o 0.00%
57.98% g 0.00% 57.98° .00% 0.00% 0.00% 0.00°
98% .00% 57.989 © 0.00% .00% 0.00°
1 0.00% 98% ° 55.96% .00%
e 951 Ition Do __000%) 57 oI 02
7 0.00% 57.080 .00% 0.00% — 0.83% 0.00°
98% 0.00% ol 57.98% 0370 00%
0.00%|  57.98% o % 000%
00% _ 0.00%
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Instance =
Size HGGA En % Deviation be?wa: Gap
en
Number of cells GGA E No island from the best Deviation | between Gap
3 th;’ sample | solution Islana2 | from the best Deviation | between
of S runs e sample . Isla; from
22 100.00% 100.00° and our of 5 l‘url: solution nds the sampl the best
24 x 40 -00% 120 100.00% T result s | andour o ple | solution
. 0,
7 3000 100.00% 22 Of’ 0.00%|  100.00% =5 result runs | andour
900 100.00% 0 0000 0.00%]  100.00% 3 240O 0.00% 94.12% 11.33° result
23 1800 00% 0.00% 24% 0.00% 33%  -5.88%
85.11% 85.11% 100.00% 0.00% .00%|  100.00% 0.00% .00%|  100.00% 3,57 .88%
24 x 40 L1770 120 85.11° A 0.00% 100.00° U0 0.00% 100.00° 0/ 70 0.00%
- 300 11% 7.15% 0.00° 00% 0.00% 0.00% v—— 0.00% 0.00°
85.11% 0.00% -00% 80.82% 2.12% — 100.00% 0.00% -00%
o0 s e 2120 A2l GLT6 A8 Ll
: 0 - 0, g () =
24 73.51% 73.51% 800 85.11% 0.00% .00% 85.11% i .00% 80.82% .49% 17.39%
24 x40 o 120 69.87° U4 0.00%|  85.11° S 0.00%|  85.119 70 -4.29%
7 300 87% 1.91% 3.649 11% 0.00% 0.00% e 0.00% 0.00°
OO LN Sl TSI 081 0| ssiie oows o000
1900 73.51% T 8'002/0 73.51% 0.00% 8'00% 60.37% 3.13% IO'OOA’
3 . 0 B () -
25 g s [ o0t IS SO o0t IO O ods 3:14%
24 % 40 o770 120 52.63 70 0.00% 73519 U0 0.00% 73.510 V70 0.00%
11 300 63% 112%  -0.66% S1% ____000% __ 0.00% e 0.00%  0.00%
52.63% 0.32% 0' 00 51.97% 1.77% 1. 00 73.51% 0.00% 0. 00
IZOO 52.63% 0.10% _0660A) 52.63% 0.53% _032(? 49.67% 3 70% .00%
26 48.95%, 48.95% 00 52.63% 0.11% -0.66% 52.63% 0.00% -0.66% 52.29%, 1 34% -3.62%
24 x40 o0 120 48.61° Ll -0.66% 52.639 70 -0.66% 52,63 0 -1.00%
61% 0.69% .63% 0.00% S50 0.11%
12 300 48.61% 0240, 0.34%|  47.52% . 060/0 -0.66%|  52.63% 0.11% -0.66%
1900 48.61% 0'17(;; '8-34% 48.61% 03 70/0 '(1)~43% 45.16% 0.860/0 -0.66%
5 o 0 . () - 0, - () -
27 47.26% 46.58% 800 48.61% 0.14% -34% 48.95% 0.29% 34% 48.03% 0.60% G
24 x 40 o870 120 45.58° 14%  -034% 48.950 — 0.00% 48.95° U0 -0.92%
8% 0.37% 95% ___ 027% 9% 0.36%
12 300 4621% 0'250/" -1.68%|  45.89% o3 0.00%|  48.95% 0'29(; 0.00%
1900 46.81% 0‘35(;; -(1).05% 46.26% 04 402 '1-37% 44.83% o 6<y0 0.00%
b i 0 E - 0 . () _
28 a0 54890 800 46.58% 0 A5%|  46.58% 0.14% 00%|  4621% 0.51% 2.43%
27 %27 Here 120 54.399 el -0.68% 46.81° 22270 -0.68% 46.58° =0 -1.05%
6 300 =500 2.36% -0.43° 810 0.10% -0.45% S 0.26% -0.689
54.50, 0830 .43% 52.82% 1.15% 2270 46.58% 0.19% 180
900 54.52% 0 8000 0.30%|  54.45% 0 470° 2.00%|  51.19% 1.85° 0.08%
1800]  s4.52 80%  -030%| 5 47%  037%| 5 85%  -3.63%
52% 0.46% 4.52% 0.50% 4.15% 1.329 .
A46%  0.30% 50%  -0.30% 32%  -0.67%
54.52% 0.03% 54.52% 031% 0
03%  -0.30%|  54.52% 31%  -0.30%
L0 0.06%
0 -0.30%
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Gap Gap Gap

Instance é Deviation | between Deviation | between Deviation between

Size HGGA | mGGA | § | Noistana | Trom | thebest ) @ from f thebest | =\ ds from | the best

Number of cells é the sample | solution the sample | solution the sample | solution

of 5 runs and our of 5 runs | andour of 5 runs and our

result result result
29 46.91% - 120 44.79% 0.51% 2.12% 43.96% 1.15% -2.95% 43.54% 0.88% -3.37%
28 x 46 300 46.31% 0.84% -0.60% 46.06% 0.13% -0.85% 46.25% 0.46% -0.66%
10 900 46.10% 0.16% -0.81% 47.08% 0.33% 0.17% 46.77% 0.18% -0.14%
1800 46.25% 0.20% -0.66% 46.44% 0.24% -0.47% 46.24% 0.24% -0.67%
30 63.31% 63.31% 120 60.00% 2.20% -3.31% 61.38% 1.80% -1.93% 58.78% 3.44% -4.53%
30 x41 300 62.33% 0.87% -0.98% 62.14% 1.20% -1.17% 60.14% 1.15% -3.17%
14 900 62.94% 0.41% -0.37% 63.31% 0.53% 0.00% 63.31% 0.68% 0.00%
1800 62.59% 0.39% -0.72% 63.31% 0.38% 0.00% 63.31% 0.61% 0.00%
31 59.77% - 120 58.96% 1.57% -0.81% 55.19% 2.13% -4.58% 53.07% 1.93% -6.70%
30 x50 300 59.77% 1.22% 0.00% 59.65% 0.85% -0.12% 56.91% 0.94% -2.86%
13 900 59.77% 0.05% 0.00% 59.77% 0.05% 0.00% 59.77% 0.63% 0.00%
1800 59.77% 0.15% 0.00% 59.77% 0.00% 0.00% 59.77% 0.06% 0.00%
32 50.83% - 120 50.00% 1.38% -0.83% 49.19% 2.43% -1.64% 44.50% 1.17% -6.33%
30 x50 300 50.56% 0.67% -0.27% 50.28% 0.87% -0.55% 49.21% 0.42% -1.62%
14 900 50.83% 0.12% 0.00% 50.56% 0.13% -0.27% 50.82% 0.36% -0.01%
1800 50.83% 0.15% 0.00% 50.83% 0.14% 0.00% 50.56% 0.12% -0.27%
33 46.35% - 120 45.71% 1.55% -0.64% 44.59% 1.72% -1.76% 44.14% 2.30% 2.21%
36 x90 300 46.56% 1.16% 0.21% 45.33% 0.64% -1.02% 45.60% 0.92% -0.75%
17 900 46.61% 0.12% 0.26% 46.37% 0.12% 0.02% 46.37% 0.39% 0.02%
1800 46.31% 0.09% -0.04% 46.78% 0.11% 0.43% 46.24% 0.14% -0.11%
34 60.64% 60.64% 120 58.37% 0.20% 2.27% 58.49% 0.04% 2.15% 58.37% 0.72% -2.27%
37 x53 300 58.37% 0.00% -2.27% 60.14% 0.36% -0.50% 60.14% 0.01% -0.50%
3 900 60.36% 0.72% -0.28% 58.62% 0.00% -2.02% 58.86% 0.00% -1.78%
1800 58.49% 0.00% -2.15% 58.49% 0.72% -2.15% 58.62% 0.00% -2.02%
35 84.03% - 120 74.30% 4.80% -9.73% 68.31% 7.12%  -15.72% 50.83% 2.21% -33.20%
40 x 100 300 83.81% 5.09% -0.22% 76.01% 2.96% -8.02% 68.39% 4.11% -15.64%
10 900 83.81% 2.26% -0.22% 83.81% 1.46% -0.22% 83.81% 3.18% -0.22%
1800 83.81% 0.00% -0.22% 83.81% 0.00% -0.22% 83.81% 1.81% -0.22%
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Maximum Deviations - Efficacy Measure

T 2 E o EC: O B R R

> & v z & v z & v, > & v,
5] 120 0.00% 0.00% 0.00%[10] 120 0.00% 0.00% 0.00%[20] 120 1.07% 3.23% 5.66% [30] 120 2.20% 2.43% 3.44%
m| 300 0.00% 0.00% 0.00%|m| 300 0.00% 0.00% 0.00%|m|300 1.44% 0.93% 1.23% [m|300 1.22% 1.20% 1.15%
900 0.00% 0.00% 0.00%| [ 900 0.00% 0.00% 0.00%| |900 037% 1.18% 037%[ |900 0.41% 0.53% 0.68%
1800 0.00% 0.00% 0.00%| [1800 0.00% 0.00% 0.00%| [1800 0.55% 0.28% 0.36% | [1800 0.39% 0.38% 0.61%
6] 120 0.00% 0.00% 0.00%]14] 120 0.85% 1.06% 1.49%[24] 120 10.42% 8.25% 11.33%|36[ 120 1.55% 1.72% 2.30%
[s| 300 0.00% 0.00% 0.00%[m| 300 0.00% 0.00% 0.00%|m| 300 2.63% 324% 3.57% s |300 1.16% 0.64% 0.92%
900 0.00% 0.00% 0.00%| [ 900 0.00% 0.00% 0.00%| |900 035% 029% 036%[ |900 0.12% 0.12% 0.39%
1800 0.00% 0.00% 0.00%| [1800 0.00% 0.00% 0.00%| [1800 0.27% 0.27% 0.29% | [1800 0.09% 0.11% 0.14%
7] 120 0.00% 0.00% 0.00%|16] 120 0.49% 1.51% 0.91%|27[ 120 236% 1.15% 1.85% |37] 120 0.20% 0.04% 0.72%
m| 300 0.00% 0.00% 0.00%|m| 300 0.49% 0.00% 0.60%| s [ 300 0.83% 0.47% 1.32%[s|300 0.00% 0.36% 0.01%
900 0.00% 0.00% 0.00%| | 900 0.00% 0.00% 0.00%| | 900 0.80% 0.50% 0.31% | |900 0.72% 0.00% 0.00%
1800 0.00% 0.00% 0.00%| |1800 0.00% 0.00% 0.00%| |1800 0.46% 0.03% 0.06% | |1800 0.00% 0.72% 0.00%
8] 120 0.00% 0.00% 0.00%[18] 120 0.70% 0.82% 0.36%[28] 120 0.51% 1.15% 0.88% [40[ 120 4.80% 7.12% 2.21%
m| 300 0.00% 0.00% 0.00%| s | 300 0.00% 0.26% 0.22%| s [ 300 0.84% 0.13% 0.46% | s | 300 5.09% 2.96% 4.11%
900 0.00% 0.00% 0.00%[ | 900 0.00% 0.00% 0.00%| |900 0.16% 0.33% 0.18% [ |900 2.26% 1.46% 3.18%
1800 0.00% 0.00% 0.00%[ 1800 0.00% 0.00% 0.00%| 1800 0.20% 0.24% 0.24% | [1800 0.00% 0.00% 1.81%

59




Minimum Deviations - Efficacy Measure

I IC: A R N B S EC

z & v 7 & v z & v 7 & v
S| 120 0.00% 0.00% 0.00%]10] 120 0.00% 0.00% 0.00%]20] 120 0.26% 0.46% 0.50% |30] 120 1.38% 1.80% 1.17%
m| 300 0.00% 0.00% 0.00%| m| 300 0.00% 0.00% 0.00%| m| 300 0.70% 0.36% 0.44% [m| 300 0.67% 0.85% 0.42%
900 0.00% 0.00% 0.00% 900 0.00% 0.00% 0.00% 900 0.00% 0.00% 0.00% 900 0.05% 0.05% 0.36%
1800 0.00% 0.00% 0.00%| |1800 0.00% 0.00% 0.00%| |1800 0.00% 0.00% 0.00% | |1800 0.15% 0.00% 0.06%
6] 120 0.00% 0.00% 0.00%|14] 120 0.00% 0.00% 0.54%|24[ 120 037% 0.63% 0.86% |36] 120 1.55% 1.72% 2.30%
[ s] 300 0.00% 0.00% 0.00%]|m} 300 0.00% 0.00% 0.00%|m| 300 0.00% 0.00% 0.51% | s | 300 1.16% 0.64% 0.92%
900  0.00% 0.00% 0.00%[ | 900 0.00% 0.00% 0.00%[ | 900 0.00% 0.00% 0.00%[ |900 0.129% 0.12% 0.39%
1800 0.00% 0.00% 0.00% 1800 0.00% 0.00% 0.00% 1800 0.00% 0.00% 0.00% 1800 0.09% 0.11% 0.14%
7] 120 0.00% 0.00% 0.00%[16] 120 0.00% 0.68% 0.76%[27[ 120 236% 1.15% 1.85% [37] 120 0.20% 0.04% 0.72%
im| 300 0.00% 0.00% 0.00%]|m} 300 0.00% 0.00% 0.00%] s | 300 0.83% 0.47% 1.32% | s | 300 0.00% 0.36% 0.01%
900  0.00% 0.00% 0.00%[ | 900 0.00% 0.00% 0.00%| |900 080% 050% 031%[ |900 0.72% 0.00% 0.00%
1800 0.00% 0.00% 0.00% 1800 0.00% 0.00% 0.00% 1800 0.46% 0.03% 0.06% 1800 0.00% 0.72% 0.00%
8] 120 0.00% 0.00% 0.00%[18] 120 0.70% 0.82% 0.36%[28] 120 0.51% 1.15% 0.88% [40] 120 4.80% 7.12% 2.21%
m| 300 0.00% 0.00% 0.00%]| s | 300 0.00% 0.26% 0.22%| s | 300 0.84% 0.13% 0.46% [ s | 300 5.09% 2.96% 4.11%
900 0.00% 0.00% 0.00% 900 0.00% 0.00% 0.00% 900 0.16% 0.33% 0.18% 900 2.26% 1.46% 3.18%
1800 0.00% 0.00% 0.00%| 1800 0.00% 0.00% 0.00%| 1800 0.20% 0.24% 0.24% | |1800 0.00% 0.00% 1.81%
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10 APPENDIX C - Diagonal Matrices Obtained Using the Efficacy

Measure as the Fitness Score
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12 APPENDIX E — Case Results

MERCAN
Cell-1 Cell-2 Cell-3 Cell-4
g 1 g g g
£e|lf g |f & |Z g
o S| 9O | 8 |9 ]
g A g A g R § A
7 12 1 1 4 6 208|2 3 77 130 192
9 16 5 2 10 9 20913 4 78 131 193
11 6 10 |12 11 210 5 79 132 194
8 124 {13 13 211 7 80 134 195
133 15 213 8 8l 135 196
145 17 14 82 136 197
207 20 18 83 137 198
22 19 84 140 199
24 21 8 142 200
25 23 8 146 202
26 28 87 147 212
27 20 88 150
32 30 89 151
33 31 93 152
34 43 94 153
35 44 95 154
36 45 96 156
37 46 97 159
38 47 98 162
39 48 99 163
40 49 100 164
41 50 101 165
42 51 102 167
71 52 103 168
90 53 104 169
91 54 105 170
92 55 106 171
128 56 107 172
129 57 108 173
138 58 109 174
139 59 110 175
141 60 111 176
143 61 112 177
144 62 113 178
148 63 114 179
149 64 115 180
155 65 116 181
157 66 117 182
158 67 118 183
160 68 119 184
161 69 120 185
166 70 121 186
201 72 122 187
203 73 123 188
204 74 125 189
205 75 126 190
206 76 127 191
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KONVEYOR

Cell-1 [ Cell-2 | Cell-3 | Cell4 | Cell-5 Cell-6 Cell-7 Cell-8 Cell-9
g g g g g g g g g
Soelfoglsoelsoe|sels £ | g |2 & i ;
Pl s 0 s 0 s Pl < Pl 5 Pl S Pl S 0 S B} o
e e e et e E B = B
10 156] 5 102 7 248] 1 118 5|12 28 73616 2 3793 14 170 485 2 7 99 225 311 392 448 528 584 639 693 747
18 14 20 26619 3119 o6 39 73723 59 604] 4 21 176 487|11 8 104 226 312 393 449 530 587 640 694 748
15 21 467|113 4 (22 12 41 63 64425 23 177 489|17 9 105 228 313 394 450 531 588 642 695 749
64116 48 13 65 64 655 25 178 492|126 10 109 230 315 395 451 532 589 643 696 750
24 53 29 71 106 26 181 493 11 110 231 316 396 452 533 590 645 697 751
331 30 131 107 31 183 498 15 111 233 318 397 454 534 591 646 698 752
336 38 154 108 32 185 506 16 112 234 319 398 462 535 595 647 699 753
406 44 168 122 34 192 508 17 116 235 321 399 469 536 597 648 700 754
546 45 171 136 35 194 509 18 117 236 322 400 470 537 598 649 701 755
583 55 172 148 36 197 518 19 118 237 323 401 471 538 599 650 702 756
658 62 174 155 42 201 519 20 119 238 324 403 472 539 601 652 703 757
70 175 169 43 203 524 22 120 239 325 405 476 540 602 653 704
72 179 173 57 206 547 24 121 240 326 407 478 541 603 654 705
75 186 267 58 207 548 27 123 242 328 408 479 542 605 656 706
76 195 268 61 208 549 33 130 244 329 409 480 543 606 657 707
91 196 289 66 210 573 37 132 245 330 410 481 544 607 659 708
127 205 291 68 212 574 40 133 249 334 411 482 545 608 661 709
139 232 292 69 213 585 46 134 250 335 413 483 550 609 662 710
140 275 293 73 217 586 47 137 251 337 414 486 551 610 663 711
141 278 294 80 219 592 49 138 252 340 415 488 552 611 664 712
161 279 295 82 220 593 50 146 253 341 417 490 553 612 665 713
167 280 296 100 227 594 51 150 254 343 418 491 554 613 666 714
180 283 297 101 229 596 52 159 255 345 419 494 555 614 667 715
182 286 298 103 241 600 54 162 256 355 420 495 556 615 668 716
216 305 300 113 243 660 56 163 257 356 421 496 557 616 669 717
287 306 301 114 246 60 164 258 361 422 497 558 617 670 718
288 344 302 115 247 67 184 259 362 423 499 559 618 671 719
351 347 303 124 310 74 187 260 363 424 500 560 619 672 720
352 348 304 125 402 77 188 261 364 426 501 561 620 673 721
353 349 307 126 412 78 189 262 366 429 502 563 621 674 722
357 404 308 128 416 79 190 263 367 430 503 564 622 675 724
358 456 309 129 425 81 191 264 371 431 504 565 623 676 727
360 458 314 135 427 83 193 265 373 432 505 566 624 677 728
368 460 317 142 428 84 198 269 376 433 507 567 625 678 730
369 464 320 143 443 85 199 270 377 434 510 568 626 679 731
370 465 327 144 453 86 200 271 380 435 511 569 627 680 733
372 525 332 145 455 87 202 272 381 436 512 570 628 681 734
374 527 333 147 457 88 204 273 382 437 513 571 629 682 735
375 529 338 149 459 89 209 274 383 438 514 572 630 683 738
463 562 339 151 461 90 211 276 384 439 515 575 631 684 739
651 342 152 466 92 214 277 385 440 516 576 632 685 740
690 346 153 468 93 215 281 386 441 517 577 633 686 741
723 350 157 473 94 218 282 387 442 520 578 634 687 742
725 354 158 474 95 221 284 388 444 521 579 635 688 743
726 359 160 475 96 222 285 389 445 522 580 636 689 744
729 365 165 477 97 223 290 390 446 523 581 637 691 745
732 378 166 484 98 224 299 391 447 526 582 638 692 746
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