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ABSTRACT 
 
 

 
Cellular Manufacturing System (CMS) is considered as a competent strategy for batch type 

production. The motive behind using CMS is to reduce lead time and increase machine 

utilization. Zero-one machine part incidence matrix based on the machine part routing 

information is frequently used to form machine cells. In this study, a genetic algorithm is 

proposed to efficiently solve the Cell Formation (CF) problem considering the machine part 

incidence matrix. The algorithm is tested by using two different fitness functions on 35 

problems from the literature and its performance is benchmarked with the outcomes of the 

three recent studies. Results are promising in both fitness score perspectives. The algorithm is 

then applied to datasets obtained from two supplier companies. 
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ÖZET 
 
 

 
Hücresel Đmalat Sistemi (HĐS), toplu üretim için etkili bir sistem olarak görülmektedir. HĐS 

kullanımının arkasında yatan neden, teslimat süresini en aza indirgeyip makine kullanımını 

eniyileme isteğidir. Genel olarak, parça-makine rotasından yola çıkılarak oluşturulmuş olan 

ikili tabanda atama matrisi kullanılmaktadır. Bu çalışmada, ikili atama matrisi göz önünde 

bulundurularak Hücre Oluşturma (HO) Problemi çözülmeye çalışılmıştır. Algoritma, iki farklı 

amaç fonksiyonu cinsinden, literatürde kullanılan karşılaştırma verileriyle denenmiş, 

performansı literatürdeki en yeni üç çalışma ile karşılaştırılmıştır. Her iki amaç 

fonksiyonundan da ümit veren sonuçlar elde edilmiştir. Ardından algoritma iki farklı tedarikçi 

firmadan edinilen veriler üzerinde denenmiştir. 
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Chapter 1 

 
 
 

1 INTRODUCTION 
 
 
 

Group Technology (GT) is a management philosophy which is based on the principle that 

similar things, such as product design, process planning, fabrication, assembly and 

production control, should be done similarly (Askin and Standridge,1993). The main 

principle of GT is to decompose the organization area into sections, or cells, that behave 

like smaller organizational units which produce specific outputs. The cell, by its proper 

definition, is the essential unit of life. Since the early 1960s, similar to living organisms, 

manufacturing systems have also been said to possess cells that encourage continual 

performance improvements by closely locating people and equipment required for 

processing families of products.  A cell, in this perspective, is a group of closely located 

workstations where multiple, sequential operations are performed on one or more families 

of similar raw materials, parts, components, products or information carriers (Hyer and 

Wemmerlöv, 2002). A manufacturing cell is a sole organizational unit within the 

manufacturing system, whose major goal is to physically process, transform, transmit, and 

add value to materials whose end state are products or components. If the cell concept is 

implemented to the shop floor-manufacturing area, the facility is said to operate in a 

Cellular Manufacturing (CM) environment. CM is favorable on reducing manufacturing 

costs as well as diminishing lead time of products in batch production. The most 

challenging problem in the implementation of CM systems is the cell formation (CF) 

problem. CF problem addresses the issues surrounding the creation of part families based 

on component processing requirements and the identification of machine groups based on 

their ability to process specific part families (Brown and Sumichrast, 2001).  

 

The objective in CF problem is to minimize intercellular movements of the 

products while maximizing machine utilization (James et al, 2007). Formulated as an 

optimization problem, the CF problem has been shown to be a non-deterministic 

polynomial (NP) complete problem (Dimopoulos and Zalzala, 2000), that is, as the 

problem size increases the amount of computation also increases with an exponential 
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pattern. This occurrence results with an increase in the computational time. To solve the 

CF problem, we propose in this thesis a Genetic Algorithm (GA) approach. GAs are 

inspired by typical genetic development. Similar to that of biological process, GAs works 

with genes over the set of chromosomes performing crossover and mutation. Our aim is to 

construct an efficient and flexible algorithm for CF problem that can incorporate different 

fitness measures. The proposed algorithm is tested on 35 well-known instances from the 

literature and its performance is compared to those of hybrid grouping genetic algorithm 

(HGGA) in James et al. (2007) and enhanced grouping genetic algorithm (EnGGA) in 

Tunnukij and Hicks (2007). The organization of the thesis is as follows: In Chapter 2, we 

provide an overview of the CF problem and review the related literature. In Chapter 3, we 

describe the details of our algorithm. Chapter 4 is devoted to the computational study 

followed by two case studies in Chapter 5. Finally, Chapter 6 gives the concluding remarks 

and directions for future research. 
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Chapter 2 
 
 
 
 

2 PROBLEM DESCRIPTION AND RELATED LITERATURE 
 
 
 

CM is an application of the GT concepts to factory reconfiguration and shop floor layout 

design (Irani, 1999). There exist mainly three different traditional types of manufacturing 

facility layouts: product layout, cellular layout and functional layout. Some domains of 

application of cellular layout are machinery and machine tools, agricultural and 

construction equipment, hospital and medical equipment, defense products, automobiles 

and engines, piece parts and components, electronic products, chemical equipment and 

packaging industries (Irani, 1999). There are three different methods for cell design: visual 

inspection, production flow analysis (PFA) and part classification and coding (C&C). 

More detailed information about cellular manufacturing can be found in Irani’s study on 

cellular manufacturing. There are three main phases in the design of a manufacturing cell 

(Dimopoulos and Zalzala, 2000):  

 

• grouping of machines into cells, better known as the CF problem, 

• layout of cells in the plant, and 

• layout of machines within the cells. 

 

Some of the recent studies are promising for CM area. Zolfaghari et al. (2005) 

compared the performance of a new hybrid manufacturing system (combination of job 

shop and CM) with a conventional CM System. Mahdavi and Mahadevan (2008) proposed 

an algorithm (CLASS) for cellular manufacturing system and layout design by using 

sequence data.  Chtourou et al. (2007) offered a critical review of simulation studies in 

CM. The following sections describe the CF problem and review the relevant literature on 

CF problem including GA applications. 
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2.1 Description of the Cell Formation Problem 
 
 
CF is the main step of the CM design process. The manufacturing system is divided into 

cells that work for producing a family of parts or components. The objective is mainly to 

minimize the inter-cell moves and obtain independently operating cells. The cell formation 

problem mainly constitutes grouping of machines into machine cells and parts into part 

families. This problem has a combinatorial pattern where there are m machines and n parts.  

 

 Selim et al. (1998) proposed a detailed review on CF techniques. These techniques 

can be classified into five main groups: descriptive procedures that are identified by 

Ballakur and Steudel (1987), cluster analysis, graph partitioning, artificial intelligence and 

mathematical programming. Figure 2.1.1 outlines the CF techniques (Selim et al., 1998) 

.  

  

Figure  2.1.1 Outlines the CF techniques 
 

Some early algorithms for cell formation are Production Flow Analysis (Burbidge, 

1977), Rank Order Clustering (ROC) algorithm (King and Nakornchai, 1982) which is an 

array-based clustering technique, similarity-based clustering algorithm (McAuley, 1972), 

Zero-One Data-Ideal seed Algorithm for Clustering (ZODIAC), which is a non-

hierarchical clustering algorithm (Chandrasekharan and Rajagopalan, 1989) and 

assignment model for cell formation (Srinivasan et al., 1990) which is a heuristic solution 

to p-median problem where the number of groups is not fixed (Onwubolu and Mutingi, 

2001) .  
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Originally, 0-1 linear programming p-median problem (Kusiak, 1987) seeks to 

form a fixed number of cells where the total similarity of machines in each cell is 

maximized. The formulation is as follows: 

 

(2.5)             ..., 2, 1,     ,..., 2, 1,         1or  0                        
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In the model, C is a parameter that represents the number of machine cells desired, 

so the user must know it a priori. The objective function (2.1) maximizes the total 

similarity of machines. Constraint (2.2) ensures that each machine belongs to one machine 

cell only and constraint (2.3) specifies the desired number of machine cells. Constraint 

(2.4) guarantees that machine q is assigned to machine cell j only when the machine cell is 

formed and constraint (2.5)  represents either machine q belongs to machine cell j by using 

a binary decision variable, xqj. (Heragu, 1998). Later, we will introduce a new similarity 

measure that addresses directly to machine similarities inside machine cells. 

 

 To reflect which part visits which machine, a binary machine-component incidence 

matrix is used. Although the binary representation does not reflect neither the varying lot 

sizes nor machine capacities and processing times, it is favorable because of the illustration 

simplicity. Machine-part incidence matrix is used in Rank Order Clustering (King and 

Nakornchai, 1982), ZODIAC (Chandrasekharan and Ragajopalan, 1989), MODROC that 

employs the ROC algorithm in conjunction with a block and slice method for obtaining a 

set of intersecting machine cells and non-intersecting part families followed by a 

hierarchical clustering method (Chandrasekharan and Ragajopalan, 1986), Bond Energy 

Algorithm which operates upon a raw input object-object or object-attribute data array by 

permuting its rows and columns in order to find informative variable groups and their 

interrelations (McCormick et al., 1972), Direct Clustering Algorithm in which families of 
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parts together during line-balancing optimization are grouped together (Chan and Milner, 

1982) and Close Neighbor Algorithm where the user intervention is avoided (Boe and 

Cheng, 1991). By interchanging rows and columns of the incidence matrix, a block 

diagonal form is achieved (1s are brought to the diagonals). In an ideal solution, all the 1s 

will remain in the diagonal blocks of the incidence matrix and all the 0s in the off-diagonal 

blocks. Figure 2.1.2 shows an ideal solution to cell formation problem. 

 

         

1 2 3 4 5 6 1 4 5 2 3 6

1 1 0 0 1 0 0 3 1 1 0 0 0 0
2 0 0 0 0 1 0 1 1 1 0 0 0 0

3 1 0 0 1 0 0 2 0 0 1 0 0 0

4 0 1 1 0 0 1 5 0 0 0 1 1 1
5 0 1 1 0 0 1 4 0 0 0 1 1 1

Parts

M
ac

h
in
es

P
ar

ts

M
ac

h
in
es

Parts

 
Figure  2.1.2 Ideal Case Solution to CF Problem 

 

 

This implies that all the parts are produced entirely within their corresponding 

machine cells and the resulting manufacturing sub-systems achieve perfect independence 

that occurs rarely in practice (Won et al., 2004). If the perfect cell formation is not 

achieved, that means there are some exceptional machine-part incidences which remain 

outside the groups or some void incidences reduce machine utilization in the cell as shown 

in the figure 2.1.3. 

1 2 3 4 5 6 1 4 5 2 3 6

1 1 0 0 1 0 0 3 1 1 0 0 1 0

2 0 0 0 0 1 0 1 1 1 0 0 0 0

3 1 0 1 1 0 0 2 0 0 1 0 0 0

4 0 0 1 0 0 1 5 0 0 0 1 1 1
5 0 1 1 0 0 1 4 0 0 0 0 1 1

P
ar

ts

Parts

Exception

Void

M
ac

h
in
es

Parts

M
ac

h
in
es

 

Figure  2.1.3 Exceptional and void elements 
 

Some statistics in the literature are used to quantify the level of perfection of the 

resulting incidence matrix. These statistics are called performance measures. One of them 

is the grouping efficacy (Kumar and Chandrasekharan, 1990). This measure is meant to 
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find the goodness of block diagonal forms of binary matrices by using total number of 

nonzero incidences, e, number of voids, ev, and number of exceptions, e0. The operational 

zone consists of the nonzero incidences and the voids. Finding the proportion of the sum of 

voids and exceptions in the operational zone will give us the inefficacy measure (2.6) of 

the incidence matrix as follows:  

ee

ee

v

v

+

+ 0

      (2.6) 

By subtracting the inefficacy measure from 1 we obtain the efficacy measure (2.7) of the 

incidence matrix as follows: 

vv

v

ee

ee

ee

ee

+

−
=

+

+
− 001

                 (2.7) 

Because the measure has a simple structure, it is widely used in recent studies in GT 

management philosophy where evolutionary algorithms exerted.  

 

Grouping efficacy measure considers only 0-1 incidence matrix without making use 

of any similarity pattern between the machines other than part processing scheme. 

Alhourani and Seiffoddini (2007) proposed a new clustering technique for machine part 

grouping with a recently developed volume-based similarity coefficient that is based on the 

intercellular movement of parts.  Wu et al.(2004) proposed a tabu search approach to CF  

problem. They introduced dynamic tabu tenure with a long term memory mechanism and 

two methods for quickly generating the initial solutions. Spilipoulos and Sofianopoulou 

(2008) proposed an efficient ant colony optimization system for the manufacturing CF 

problem that produces promising results for medium and large size instances. Yang and 

Yang (2008) proposed a modified adaptive resonance theory (ART1) neural network 

model where they evolve the ART1 model that was first used by Dagli and Huggahalli 

(1995). Dimopoulos and Mort (2004) proposed an evolutionary methodology for the 

construction of new similarity coefficients that can be used by standard hierarchical 

clustering techniques in CF. Yasuda and Yin (2005) introduced a comparative 

investigation on the similarity coefficients applied to CF problem and they founded out 

that Jaccard similarity coefficient is the most stable similarity coefficient.  
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2.2 Genetic Algorithm Approach to Cell Formation Problem 
 

Invented in 1960 by John Holland, genetic algorithm (GA) is one of the most powerful 

algorithms developed in this century. GAs are favorable for solving complex problems 

with their ability to search large fitness landscapes. By means of its combinatorial nature, 

CF problem is an NP-complete problem where the traditional methods are incapable of 

finding optimal solutions to large instances within a reasonable amount of time 

(Dimopoulos and Zalzala 2000, Goncalves and Resende 2004).  GAs, with their multi-

directional searching ability in the fitness landscape, are less susceptible to becoming 

trapped in local optima (Yasuda et al, 2005) and more favorable than unidirectional 

stochastic searching methods such as Simulated Annealing (Kirkpatrick et al., 1983) and 

Tabu Search (Glover, 1989) where the search starts from a single state  and converges to a 

local optima. 

 

Unlike the mathematical programming approaches, GA does not need any complex 

mathematical representation. The main advantage of GA is that it only requires an 

objective function (or “fitness function”) that can be evaluated numerically (Tunnukij and 

Hicks, 2008). This function takes the required information from a string of numbers 

(binary, decimal, etc.) called as chromosome, where the necessary input to measure the 

performance of the current condition is given. To search a wide landscape, more than one 

chromosome is needed. These chromosomes are randomly initialized and form the initial 

population. Typically, the algorithm has three main operators: 

 

• Selection Operator, 

• Mutation Operator, 

• Crossover Operator. 

 

Selection operator provides fitter individuals to transfer their enclosed information 

to the next generations proportionally to their fitness scores or rankings. Some selection 

procedures are roulette wheel selection, ranking models, elitist methods and tournament 

selection. Selection mechanisms provide the transfer of the building blocks which are 

string templates (schemata) that match a short portion of the individuals and act as a unit to 

influence the fitness of individuals ( Paz, 2000). 
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Mutation and crossover operators are mainly used to form new solutions from the 

existing ones. Some types of mutation are uniform mutation, multi-uniform mutation, non-

uniform mutation, multi-non-uniform mutation and boundary mutation (Suresh and Kay, 

1998). Mutation operators are used to find an alternative solution by only making a slight 

modification. As for the crossover operator, it is favorable to transfer a set of information 

from parents to offspring chromosomes. Like the mutation operator, crossover operator 

seeks to find an alternative solution to the current set of strings. Simple crossover, 

arithmetic crossover, cell-swap crossover and two-point crossover are different types of 

crossover operators. 

 

The most common problem in using the GA is the computational speed. A way of 

reducing the computation time is to increase the computer power. Without upgrading the 

single computer, the power can be increased by using parallel GAs. The basic idea behind 

most parallel programs is to divide a task into chunks and to solve the chunks 

simultaneously using multiple processors (Paz, 2000). Paz classified parallel GAs into four 

categories: global master-slave parallelization, fine-grained algorithms, multiple-

population and hierarchical parallel GAs.  

 

Chaudhry and Luo (2005) proposed a survey on the application of GAs in 

production and operations management (POM). They reported that the use of GAs may be 

expanded to a broader range of areas instead of focusing onto specific studies. Nsakanda et 

al. (2007) prepared a technical note on ensuring the population diversity in GAs; they 

applied the experiment to the CF problem where they used the entropy-based and distance-

based measures. Car and Mikac (2006) proposed a modified GA for solving CF problem 

based on emergent synthesis idea. 

 

Faulkenhauer (1992) developed the Grouping Genetic Algorithm (GGA) where the 

drawbacks of the classical GAs are overcome significantly. GGA is a powerful algorithm 

that uses a special chromosome structure with its proper crossover, mutation and inversion 

operators. Brown and Sumichrast (2005) evaluated the performance advantages of GGA in 

three different types of problems and found that GGA performs well for solving grouping 

optimization problems. 
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James et al. (2007) proposed a Hybrid Grouping Genetic Algorithm (HGGA) where 

the standard GGA is coupled with a local search proposed by Gonçalves and Resende 

(2004).  The algorithm makes use of the GGA with the chromosome encoding and the 

special crossover operator where they contribute a repair heuristic for the missing parts or 

machines. The chromosome encoding includes part families and machine groups as well as 

the machine-part cells. The crossover operation is different than normal crossover 

operators. The cross points are chosen from the cell numbers segment and part-machine 

segments are interchanged accordingly. Because there might be some missing parts or 

machines, a repair heuristic that takes the incidence matrix into consideration was used. 

Selection operator is the classical roulette wheel selection. They demonstrated that by 

incorporating the local search algorithm into a traditional grouping GA, they both 

improved the solution quality and reduced the variability of the solutions with fewer 

iterations than the traditional GGA. Results were tested with 35 well known instances from 

the literature and the performance of HGGA was shown to be at least as well as, and often 

better than, some of the best algorithms for the CF problem. 

 

Tunnukij and Hicks (2008) developed an Enhanced Grouping Genetic Algorithm 

(EnGGA) where they introduced a new strategy that combines the elitist strategy with the 

rank-based roulette wheel strategy and configured the standard GGA replacement heuristic 

with a greedy heuristic. They compared their findings with 24 instances from the literature 

and obtained effective results that equal or outperform all the other methods considered 

including HGGA. 

 

Mahdavi et al (2009) proposed a GA approach for solving the CF problem and 

obtained considerably good outcomes.  The chromosome representation consists of two 

sections: the first section represents the parts and the second stands for machines. They 

introduced a non linear mathematical model based on the machine part incidence matrix 

and a new mutation operator. They benchmarked the results they found with other 

algorithms in the literature but did not take HGGA into consideration. 

 

Since HGGA, EnGGA, and the algorithm proposed by Mahdavi et al. provide the 

best results, we use them in our computational study to benchmark the performance of our 

algorithm. 
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Chapter 3 
 
3 PROPOSED ALGORITHM 
 
The proposed algorithm is a GA used for assigning machines into machine cells via 

similarity based fitness measure and variable search mechanisms. Even though the 

diagonal structure gives a great deal of solutions, similarity based cell formation methods 

are more realistic for real life applications.  

 

The proposed algorithm employs a variant of Jaccard similarity coefficient where 

the number of machines in a cell affects the total similarity measure of the instance. The 

randomness is carefully conserved during selection, crossover and mutation procedures. 

The selection operator is the classical roulette wheel mechanism where the chromosomes 

are valorized according to their fitness scheme and picked within a probability range of 

being selected. The crossover operator fragments the chromosome into three pieces and 

switches the intermediary sections. The uniformity of crossover points and the crossover 

rate are kept consistent in each generation. The mutation operator has two separate 

branches: random and guided mutation. Random mutation provides algorithm to search a 

wide landscape and guided mutation satisfies the need for converging to better results. The 

two mutation types are sequentially applied and the fitness landscape, in a broader view, 

looks like a sandglass that shrinks and enlarges consequently.  

 

Although satisfactory percentages of the best individuals are reserved along the 

generations, the tendency of convergence cannot be overcome. In the case of aggregation 

into a single or two diverse chromosome structures, the best chromosome structure and the 

chromosomes with a constant survival probability are kept in hand whereas the remaining 

chromosomes are regenerated anew.  

 

The chromosomes are assumed to be feasible if neither of machine cells disappear. 

To keep the feasibility intact, chromosome structures are continuously checked during the 

generation. The algorithm is run for a predetermined number of generations. We apply two 

search approaches: single population search and multiple populations search. The resulting 

best chromosome is given as an input to the part family formation procedure. 
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In this section, we briefly explain the performance measure and algorithm 

components to provide the reader detailed information on the steps and the characteristics 

of the proposed algorithm. The flowchart of the algorithm can be found in APPENDIX A. 

 
3.1 Chromosome Structure 
 
The algorithm has a simple chromosome structure where the genes correspond to cell 

numbers and the chromosome length corresponds to the total number of machines in the 

shop floor.  

 

The general representation of the chromosome structure in this study is first used 

by Venugopal and Narendran (1992) and represents the simple machine assignment into 

cells. Figure 3.1.1 shows the chromosome structure of an example machine cell 

configuration.  In this figure, machines {1, 3} are in cell 1, machine {2, 4, 7, 8} are in cell 

2 and machines {5, 6} are in cell 3.  

 

m1 m2 m3 m4 m5 m6 m7 m8

1 2 1 2 3 3 2 2  

Figure  3.1.1 A chromosome structure example 
 

Since the initial number of cells is defined at first, we assume that the least amount of 

machines in each cell must be equal to one.   
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3.2 Proposed Fitness Function 
 
The fitness function for each chromosome is calculated by means of similarities between 

machines. Because Jaccard similarity coefficient (Jaccard, 1901) is found to be the most 

stable measure (Yin and Yasuda, 2005) for the CF problem, we preferred to use Jaccard 

measure instead of the other possible coefficients (Yin and Yasuda, 2006). The measure in 

equation (3.1) can be summarized as the proportion of the number of machines that 

operates on both of two parts to the number of machines occupied by either of the parts. 

#Machines operating on Part A AND Part B (3.1)

#Machines operating on Part A OR Part B BA

BA

U

I
=

  

The incidence matrix in figure 3.2.1 is used for the example study in this chapter. 

Figure 3.2.2 shows an exemplar of the similarity coefficient matrix formed by using 

Jaccard measure. This matrix is generated in accordance with equation (3.1) and gives the 

similarities. 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0 1 1 0 0 0 0 1 1 0 1 0 1 1 0 1 1 0 1 0
2 0 0 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 1 0 1
3 0 1 0 0 0 0 0 1 1 0 1 0 1 1 0 1 1 0 1 0
4 0 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0 1
5 1 0 0 0 1 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0
6 1 0 0 0 1 0 0 0 1 1 0 1 0 0 1 0 0 0 0 1
7 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 0 0 1 0 1
8 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1

M
ac

h
in
es

Parts

 

Figure  3.2.1 Incidence Matrix (Chandrasekharan and Rajagopalan, 1986a) 
 

1 2 3 4 5 6 7 8
1 - 0.13 0.90 0.06 0.06 0.06 0.13 0.07
2 - 0.07 0.75 0.08 0.08 0.67 0.86
3 - 0.00 0.07 0.07 0.06 0.00
4 - 0.17 0.17 0.67 0.86
5 - 0.56 0.15 0.08
6 - 0.15 0.08
7 - 0.75
8 -

M
ac

h
in
es

Machines

 

Figure  3.2.2 Similarity coefficient matrix 
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Fitness score reflects the quality of the resulting chromosome. In this study, we 

generated a fitness function, Fit (Equation 3.2), as the total average similarity score where 

the similarities between the machines and the number of machines in each cell are kept 

into account. Fit is equal to the sum of all average fitness scores per cell. Sjkt is the 

measure between two machines, k and t in cell j, dj is the number of machines in cell j, C is 

the total number of machine cells, M is the total number of machines and i is the index for 

the evaluated chromosome.  

 

∑
=

==
C

j j

jkt

ii
d

S
Fit

1

chromosome for the score Fitness
    tk ,∀   (3.2) 

 

Figure 3.2.1 also shows the machine assignments into three cells generated by James 

et al. (2005) for the given incidence matrix. By using this particular assignment as the 

chromosome structure, and similarity coefficient matrix, Fit is found to be 1.8647. The 

reason why we use the equation (3.2) is that finding the sum of all average fitness scores 

per cell gives much more reliable information on the total similarity score than finding the 

sum of similarities.  

 
3.3 Selection Operator 
 
The selection operator is roulette wheel selection. The values are normalized between 0 

and 1 depending upon the fitness ensuring that the higher quality solutions are given a 

larger piece of the wheel (James et al., 2007). Because duplication is not allowed, 

chromosomes are avoided to mate with themselves. This constraint ensures that no fake 

convergence happens during crossover.  

 
3.4 Crossover Operator 
 

As a result of roulette wheel selection, the algorithm forms group of pairs of parent 

chromosomes, where the size of the group is half of the size of population.  Then, two-

point crossover is performed on the pair of chromosomes. By generating two rounded-up 

random points between 1 and m-1, we divide both of the parents into three sub-sections 

and interchange the intermediary parts to form a new pair of offspring chromosomes. 

Consider the two parent chromosomes in figure 3.4.1. 
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m1 m2 m3 m4 m5 m6 m7 m8

P1: 1 2 1 2 3 3 2 2

P2: 2 1 3 1 2 2 1 3  

Figure  3.4.1 Randomly selected pair of chromosomes 
 

The chromosomes are cut into three parts and intermediary sub-structures are swapped as 

shown in figure 3.4.2. 

m1 m2 m3 m4 m5 m6 m7 m8 m1 m2 m3 m4 m5 m6 m7 m8

P1: 1 2 1 2 3 3 2 2 O1: 1 2 1 2 2 2 1 2

P2: 2 1 3 1 2 2 1 3 O2: 2 1 3 1 3 3 2 3

CROSSOVER

 

Figure  3.4.2 Two-point crossover 

 
3.5 Infeasibility Check 
 

Since the number of cells is pre-determined and empty cells are prohibited, the resulting 

offspring chromosome may be infeasible as is the case for O1 in figure 3.4.2. To overcome 

this problem, Gupta et al.(1995) used an adjustment operator where they iteratively search 

for locating a new machine into the empty cell so that no cell remains empty (Cheng Lee, 

1998). We use the same procedure by making sure that a machine belonging to a singleton 

-cell with a single machine- is not selected for relocation. The infeasibility in offspring 1 in 

the example in figure 3.4.2 is eliminated by assigning either machine 5, 6 or 7 to cell 3 as 

seen in figure 3.5.1.  

m1 m2 m3 m4 m5 m6 m7 m8 m1 m2 m3 m4 m5 m6 m7 m8

P1: 1 2 1 2 3 3 2 2 O1: 1 2 1 2 3 2 1 2

P2: 2 1 3 1 2 2 1 3 O2: 2 1 3 1 3 3 2 3

CROSSOVER

 

Figure  3.5.1 Feasible offsprings 
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3.6 Mutation Operator 
 
To expand the search space, we use a dual mutation procedure. To prevent fast 

convergence, we apply different mutation rates within the generations. Once the mutation 

begins, the procedure is applied to all individuals of the population. By the time we 

increase the diversity among chromosomes, we use a mutation procedure to maximize the 

fitness score by relocating the least similar machine of the minimum scored cell to another 

cell where the similarity contribution is maximized. We name this method as guided 

mutation. Figure 3.6.1 describes the steps of the guided mutation. 

 

Step 1. Calculate the fitness scores for each cell
Step 2.  Find the cell with the minimum fitness score and check 

whether the cell is a singleton or not. If the cell is a 
singleton, check the second cell with the minimum fitness 
score. Continue until you find a non-singleton cell

Step 3. Select the machine which is least similar to other
machines in the cell

Step 4.  Relocate this machine iteratively to the other cells
Step 5. For each iteration, calculate the contribution of changing 

the location of the machine to the fitness score
Step 6. Put the machine to the cell where the highest contribution 

is achieved.

Step 1. Calculate the fitness scores for each cell
Step 2.  Find the cell with the minimum fitness score and check 

whether the cell is a singleton or not. If the cell is a 
singleton, check the second cell with the minimum fitness 
score. Continue until you find a non-singleton cell

Step 3. Select the machine which is least similar to other
machines in the cell

Step 4.  Relocate this machine iteratively to the other cells
Step 5. For each iteration, calculate the contribution of changing 

the location of the machine to the fitness score
Step 6. Put the machine to the cell where the highest contribution 

is achieved.  

Figure  3.6.1 Steps of the guided mutation 
 

Random mutation is performed to impede the convergence through local optimum. Each 

chromosome is randomly mutated by skipping the singletons.   

 

3.7 Elitist Strategy 
 
The elitist strategy is useful for keeping the best chromosome structures and progressively 

improving the set of chromosomes in every generation. To prevent fast convergence and 

increase diversity among chromosomes, elite individuals were selected according to their 

structures instead of their fitness scores. We also adopt an elitist strategy by replacing the 

least fit offsprings by the fittest parents. Figure 3.7.1 shows the steps of the elitist strategy. 
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Step 1. Find l  structurally different fittest individuals from the initial parent 
population where l  is equal to 2 for the intervals A and C, and 6 for 
the intervals B and D.

Step 2. Find l  structurally different least fit individuals from the offspring 
population where l  is equal to 2 for the intervals A and C, and 6 for 
the intervals B and D.

Step 3. If the worst score of the set of fittest individuals is greater than the 
best score of the set of least fit individuals, replace the least fit 
individuals in the offspring population with the fittest individuals from 
the initial parent population.  

Figure  3.7.1 Steps of the elitist strategy 

 
3.8 Migration Strategy 
 
If β percent of one type of chromosome or γ percent of two different types of chromosomes 

over the offspring population converges to the likewise structures, algorithm chooses to 

preserve a percentage of the fittest chromosomes with different structures over all the 

population, migrate φ chromosomes with a probability rate ν of being selected and store 

the remaining 1- φ chromosomes. The algorithm generates ν randomly thus φ value varies 

correspondingly. Figure 3.8.1 shows the states of the individuals before and after the 

migration.  

Fittest individuals

Fittest individuals

Stored individuals
Remaining individuals with probability P(ν )

Immigrated and 

initialized individuals
Offspring population before the immigration with probability 1-P(ν )

Offspring population after the immigration

      MIGRATION

 

Figure  3.8.1 States of the individuals before and after the immigration. 
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3.9 Sequential Search Procedure 
 
Running the algorithm for the given set of generation numbers just one time is mentioned 

as single search GA. Another way of searching is the parallel GAs. One of the parallel GAs 

is called multiple-population algorithm or the island strategy (Hartmann, 2000). The main 

idea behind this strategy is to select the fittest individuals (Equation 3.3) from ζ neighbor 

islands and bring them to the main island to produce offsprings. The environmental 

conditions are assumed to be constant in each island.  

Population size

ζ
# Fittest individuals  = (3.3)

 

Figure 3.9.1 presents the procedure to locate individuals from neighbor islands to 

the main island. In this example, number of islands is taken as 5. 

Neighbor Islands Main Island

The fittest 20% of individuals from island 1

The fittest 20% of individuals from island 2

The fittest 100% of individuals of the 

The fittest 20% of individuals from island 3 5 neighbor islands

that form the initial population

The fittest 20% of individuals from island 4 in the main island

The fittest 20% of individuals from island 5

  ISLAND

 

Figure  3.9.1 Formation of the main island population 
 

Notice that the island strategy increases the search space by augmenting the number of 

iterations by ζ + 1 times and provides opportunity to start with a better initial population. 

Also, it should be noted that island strategy is a kind of migration strategy where the best 

individuals are gathered together.  

 
3.10 Part Family Formation Procedure 
 
Once the machine groups are formed using the GA, the part families are constructed by 

using partial efficacy measure (Gonçalves and Resende, 2004). The idea behind this score 
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is mainly to put the part into the best possible cell to maximize the total efficacy of the 

incidence matrix. Figure 3.10.1 shows the steps of the part family formation procedure. 

 

Step 1. 

                                                                      .(3.4)

Step 2. 

Condition 1. If there is a tie in the highest partial efficacy score,   
assign the part to the less utilized cell (the cell that operates on the smaller
number of parts), otherwise continue.

Condition 2. If the utilizations of the cells are equal, then assign the part to the smaller
indexed cell, otherwise continue.

Select the highest scored potential cell and assign the part to that location

Calculate partial efficacy scores for each cell in which the part can be potentially put. 
The equation (3.4) shows the partial efficacy score of part p on machine q .

pqv

pq

pq
ee

ee

,

,0

+

−
=µ

 

Figure  3.10.1    Steps of the part family formation procedure 
 

After forming part families, we check whether there are missing families. If any, 

we randomly assign a part to the absent family (without perturbing singletons). The 

correction procedure is similar to the infeasibility check where we look for the missing 

machine cells in the chromosome structure.  

 

Best chromosome structure is given as an input to the part family formation 

procedure by using partial efficacy measure. Note that the part families are formed only for 

the best fit chromosome. 
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Chapter 4 
 
4 EXPERIMENTAL STUDY 
 
The algorithm is tested with 35 well-known instances from the literature. The proposed GA 

was coded in MATLAB 7.0 (without using GA Toolbox) and run in high performance 

workstations (Intel (R) Core (TM)2 Quad CPU, Q6600 at 2.40GHz and 3.24GB  of RAM). 

The information required to solve the algorithm included the part machine incidence 

matrix, the number of cells, the number of generations, and the size of the population. 

 

4.1 Preliminary Experiments & Observations  
 

The population size is set to 50. The probability of immigration is 0.3. The crossover rate 

is 0.5. The stopping criterion is determined as the number of generations. Different number 

of generations (120, 300, 900, 1800) and different run types (single population genetic 

algorithm and multiple population genetic algorithms) are applied and the best possible 

results are compared with the latest 2 methods performed on cell formation problem. The 

results over 5 different runs are explicitly given in APPENDIX B. The deviation of the 

results and the deviation from the best score in the literature for each search procedure are 

measured may also be checked from APPENDIX B. 

 

Table 4.1 shows the chromosome length (#machines) and the corresponding best 

stopping criteria and search procedures in terms of two fitness measures (e.g. Instances 

with more than 30 machines and less than or equal to 40 machines converge to the highest 

similarity score by using 900 generations as stopping criterion and direct search (no island) 

procedure). The table is arranged by means of best scores with least deviation over 5 runs. 
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# Machines Generation Size Search Procedure # Machines Generation Size Search Procedure

≤10 120 No island ≤10 120 No island

≤14 120 No island
≤16 300 Island-5

≤20 300 No island ≤20 900 Island-5

≤30 1800 Island-2 ≤30 900 No island
≤40 1800 No island ≤40 1800 No island

Efficacy Measure Similarity Measure

 

Table  4.1 Generation size according to chromosome length 
 

Figure 4.1.1 and 4.1.2 show the positive impact of the migration strategy over 5 

runs. The same instance (instance 35) with the same number of machine cells and the same 

initial population are given as an input to the algorithm. As can be seen from Figure 4.1.1, 

80% of the results converge through a local optima and only 20% give high scores. When 

the algorithm uses the migration strategy, 80% of the results converge to a favorable score. 

 

Results without Migration
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Figure  4.1.1 Results without migration 
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Figure  4.1.2 Results with migration 
 

Figure 4.1.3 and 4.1.4, show the typical expected behavior of a 2-island strategy 

compared to a non-island strategy. If the same random initial population is used as a 

benchmark input for a single run of 20 generations and 2-island strategies, the island 

strategy gives better results. The instant drop in the island set 1 is caused by the migration 

operation and corresponds to a single value over 20 generations. The algorithm always 

keeps the best fitness score in hand and search for better results.  

 

 

Figure  4.1.3 No-Island Strategy 
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Figure  4.1.4 Island Strategy 
 

It is important to note that our proposed algorithm is a sequential GA where the 

island strategy is used and run in a single processor. However, it can be converted by a 

slight modification into a parallel GA and run in multiple processors.  

 

Figures 4.1.5 (a), 4.1.5 (b) and 4.1.5 (c) reflect the behavior of small instances 

while using the island strategy. It is obvious that island strategy is not useful on instances 

with small number of machines. The algorithm, within a single search, directly converges 

to the best solution found so far. Although the best solution can be found in early stages of 

the generations, to ensure that the results obtained are not trapped to the local optima, we 

preferred to run the instance until the stopping criteria is met. It can be seen that the island 

strategy may be useful when smaller number of iterations is chosen as a stopping criterion 

or more complex string of machines where a wider search space is required.  
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Instance 10 - Island 2 set1
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Instance 10 - Island 2 set2
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(b) 

 

Instance 10 - Island 2 final set
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(c) 

Figure  4.1.5 Convergence of the small sized instances (a) set1, (b) set2, (c) final set 
 

Figure 4.1.6 shows the convergence of the algorithm with single search through the 

best score. The points that are apart from the convergence region symbolize the migration 

steps. Figure 4.1.7 shows the behavior of a large problem with 40 machines (instance 35) 

in case of 5-island procedure with 1800 generations. Each sub-procedure is run for 300 

generations and structurally the best 10% of the chromosomes are collected and undergone 

300 generations. A considerable increase in the results from the island run is detected.  
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Figure  4.1.6 Convergence of the algorithm with single search through the best score 
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Figure  4.1.7 Behavior of instance 35 - 5-island-1800 generations 
 

 

The mutation procedure is a dual mutation procedure where the mutation types 

differ according to generation number. Table 4.2 shows the behavior of the results in case 

of using two mutation types consecutively (e.g. random – guided means that we first use 

random mutation then we use guided mutation). Results demonstrate that higher results 



 26 

using efficacy measure are obtained for large sized instances with a dual mutation 

procedure where the fitness landscape first shrinks and then enlarges by using first guided 

then random mutation. By taking similarity measure as the fitness function, we see that 

higher results are obtained by using either first random then guided mutation or fully 

random mutation.  

                             Efficacy Measure

Instance Source Size Random - Guided Guided - Random Random - Random Guided - Guided

18 Mosier and Taube 20 x 20 42.36% 43.36% 43.07% 43.07%

25
Chandrasekharan
 and Rajagopalan

24 x 40 52.63% 52.63% 52.41% 52.63%

26
Chandrasekharan
 and Rajagopalan

24 × 40 48.63% 48.61% 48.32% 48.32%

27
Chandrasekharan
 and Rajagopalan

24 × 40 46.26% 46.21% 45.89% 46.58%

28 McCormick et al. 27 × 27 54.52% 54.52% 54.45% 54.27%
29 Carrie  28 × 46 45.87% 46.48% 45.24% 46.46%
30 Kumar and Vannelli 30 × 41 63.31% 62.33% 61.54% 62.59%
31 Stanfel  30 × 50 59.66% 59.77% 58.48% 59.66%
32 Stanfel  30 × 50 50.55% 50.56% 50.55% 50.54%
33 King and Nakornchai 36 × 90 45.88% 46.61% 45.14% 45.75%
34 McCormick et al. 37 × 53 58.37% 58.86% 58.25% 58.37%

35
Chandrasekharan
 and Rajagopalan

40 × 100 78.74% 83.81% 83.81% 81.82%

                                Similarity Measure

Instance Source Size Random - Guided Guided - Random Random - Random Guided - Guided

18 Mosier and Taube 20 x 20 2.3962 2.3962 2.3962 2.3962

25
Chandrasekharan
 and Rajagopalan

24 x 40 1.9761 1.9761 1.9761 1.9761

26
Chandrasekharan
 and Rajagopalan

24 × 40 1.6091 1.6079 1.6091 1.6109

27
Chandrasekharan
 and Rajagopalan

24 × 40 1.4662 1.4648 1.4662 1.4662

28 McCormick et al. 27 × 27 4.6528 4.6528 4.6528 4.6282
29 Carrie  28 × 46 2.4042 2.3909 2.4042 2.3562
30 Kumar and Vannelli 30 × 41 4.2765 4.1443 4.2765 4.2765
31 Stanfel  30 × 50 3.5298 3.5823 3.5823 3.5220
32 Stanfel  30 × 50 2.7592 2.7429 2.7592 2.7445
33 King and Nakornchai 36 × 90 2.0383 2.0276 2.0383 1.9803
34 McCormick et al. 37 × 53 8.8944 8.9150 8.9150 8.9122

35
Chandrasekharan
 and Rajagopalan

40 × 100 9.8432 9.5757 9.8432 9.4811
 

Table  4.2 Comparison on the sequence of dual mutation procedure (300 generations) 
 

 

However, as can be seen in Table 4.3, for higher number of generations, there is no 

change on the highest results while using random-guided, guided-random or fully random 

mutations. In our calculations, we used first guided then random mutation. 
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                   Similarity Measure

Random - Guided Guided - Random Random - Random Guided - Guided

18 Mosier and Taube 20 x 20 2.3962 2.3962 2.3962 2.3962

25
Chandrasekharan
 and Rajagopalan

24 x 40 1.9761 1.9761 1.9761 1.9761

26
Chandrasekharan
 and Rajagopalan

24 × 40 1.6130 1.6130 1.6130 1.6130

27
Chandrasekharan
 and Rajagopalan

24 × 40 1.4662 1.4662 1.4546 1.4662

28 McCormick et al. 27 × 27 4.6528 4.6528 4.6528 4.6305
29 Carrie  28 × 46 2.3909 2.4042 2.4042 2.3909
30 Kumar and Vannelli 30 × 41 4.2765 4.2765 4.2765 4.2765
31 Stanfel  30 × 50 3.6171 3.6171 3.6171 3.5939
32 Stanfel  30 × 50 2.7592 2.7592 2.7575 2.7592
33 King and Nakornchai 36 × 90 2.0788 2.0788 2.0788 2.0763
34 McCormick et al. 37 × 53 8.9584 8.9584 8.9584 8.9584

35
Chandrasekharan
 and Rajagopalan

40 × 100 10.4205 10.4205 10.4205 10.1287

 

Table  4.3 Comparison on the sequence of dual mutation procedure for the similarity measure 
(1800 generations) 

    

Figure 4.1.8 shows the intervals for the mutation rates and mutation types. Assume 

that the total generation number is 100. In case of mutation, the chromosomes in the 

generations between [1, 30] (Interval A) and the generations between [51, 80] (Interval C) 

are updated by using guided mutation whereas the rest of the chromosomes in the rest of 

the generations are randomly mutated.  

 

Mutation Rate - 1 (mut1) Mutation Rate - 2 (mut2)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Guided Mutation     Random Mutation Guided Mutation     Random Mutation
Interval A                  Interval B Interval C                  Interval D  

Figure  4.1.8 Intervals for the mutation rates and mutation types 
 

Figure 4.1.9 shows the behavior of the algorithm in extreme crossover and mutation 

rates for different problems. As the chromosome lengths increase, crossover and mutation 

operators affect the fitness scores. Lack of both crossover and mutation operators results 

with poor scores whereas the application of both operators in every generation gives the 

highest scores.  
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Figure  4.1.9 Impact of crossover and mutation rates to the average of the maximum of 5 runs 
 

Crossover operator has a positive influence depending on the chromosome length. 

Mutation operator has better impact on higher chromosome lengths; however, it has 

slightly lower results in instance 22. The motive behind is the ideal case nature of the 

problem. If mutation operation is solely or predominantly applied, the results diverge 

through lower scores (Figure 4.1.9 and 4.1.10) A number of different crossover and 

mutation rates are experimented on the same set of instances and the average of the 

maximum results over 5 runs are compared in Figure 4.1.10. Because the rate of 

occurrences directly strikes the randomness, set [1, 1, 1] is directly eliminated. The best 

two set of rates are [0.9, 0.4, 0.2] and [0.5, 0.2, 0.1]. Set [0.9, 0.4, 0.2] gives better results 

on larger instances with lower number of generations. However, final results do not change 

and we used set [0.5, 0.2, 0.1] in our calculations.  
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Figure  4.1.10 Average of the maximum of 5 runs vs. different crossover and mutation rates 
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4.2 Computational Results 
 
All of the instances are taken from the original source to be sure that no error in the data 

occurs. The HGGA efficacy scores are also recalculated and the same observation that is 

made by Tunnukij and Hicks (2008) on the miscalculation of the instance-25 was also 

corrected.  

 

Since both HGGA and EnGGA methods allow singletons, we can directly compare 

them in terms of efficacy and the similarity scores. However, because machine cells are not 

explicitly defined for EnGGA method, we can only measure the performance of the 

corresponding machine cell assignments with efficacy measure. We preferred not to show 

the results from the former methods because these two algorithms outperform the other 

results in the literature.  

 

Table 4.3 shows the maximum scores found by using efficacy measure and the 

similarity measure in the genetic algorithm. The gaps between the best solution in the 

literature and our findings show that the new algorithm performs adequately well with the 

efficacy measure on the majority of the instances as well as the similarity measure always 

gives favorable results.  

 

The best results for all the instances (Table 4.3) are chosen by taking into 

consideration the least deviation over 5 runs per instance in APPENDIX B. The 

corresponding incidence matrices are available in APPENDIX C and APPENDIX D. 

 

The results from the literature defeats the outcomes of the proposed algorithm 

while using similarity measure as the fitness function. The reason behind this is that the 

final efficacy score found by using the proposed algorithm is calculated without making 

any local search throughout the part families.  

 

One single generation, typically takes on average 1 second. The time it takes to 

converge directly depends on the generation number where the highest score over the set of 

generations is hit upon. Likewise, chromosome length, number of cells and probable use of 

operators straightforwardly influence the number of generations for convergence.
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In
st
an

ce

Source Size Best Score Source*
Proposed 
GA (%)

Gap
(%)

Best Score
(HGGA)

Proposed 
GA

Gap
(%)

Corresponding 
Efficacy Score(%)

Gap
(%)

1 King and Nakornchai 5 × 7 82.35 H, E 82.35 0.00 0.9306 0.9306 0.00 82.35 0.00

2
Waghodekar 
and Sahu

5 × 7 69.57 H, E, M 69.57 0.00 0.7667 0.7667 0.00 69.57 0.00

3 Seifoddini  5 × 18 79.59 H, E, M 79.59 0.00 0.9637 0.9637 0.00 79.59 0.00
4 Kusiak and Cho 6 × 8 76.92 H, E, M 76.92 0.00 1.3587 1.3587 0.00 76.92 0.00
5 Kusiak and Chow 7 × 11 60.87 H, E, M 60.87 0.00 0.2917 0.2917 0.00 58.33 -2.54
6 Boctor  7 × 11 70.83 H, E, M 70.83 0.00 0.7500 0.7500 0.00 70.83 0.00
7 Seifoddini and Wolfe 8 × 12 69.44 H, E 69.44 0.00 1.4111 1.4111 0.00 69.44 0.00

8
Chandrasekharan
 and Rajagopalan

8 × 20 85.25 H, E, M 85.25 0.00 1.8647 1.8647 0.00 85.25 0.00

9
Chandrasekharan
 and Rajagopalan

8 × 20 58.72 H, E, M 58.72 0.00 1.3779 1.4274 3.59 57.66 -1.06

10 Mosier and Taube 10 × 10 75.00 H, M 75.00 0.00 1.4375 1.4583 1.45 69.23 -5.77
11 Chan and Milner 10 × 15 92.00 H, M 92.00 0.00 2.9167 2.9167 0.00 92.00 0.00

12
Askin and 

Subramanian
14 × 24 72.06 H 72.06 0.00 2.1960 2.2933 4.43 69.70 -2.36

13 Stanfel  14 × 24 71.83 H, M 71.83 0.00 2.0368 2.1683 6.45 70.59 -1.24
14 McCormick et al. 16 × 24 53.26 H, E, M 53.26 0.00 1.4550 1.5116 3.89 51.09 -2.17
15 Srinivasan et al. 16 × 30 68.99 H, E 68.99 0.00 2.7690 2.7690 0.00 68.99 0.00
16 King  16 × 43 57.53 H, E 57.53 0.00 1.7193 1.8223 5.99 53.69 -2.43
17 Carrie  18 × 24 57.73 H, E 57.29 -0.44 1.8306 2.2306 21.85 56.25 -1.48
18 Mosier and Taube 20 × 20 43.18 H, M 43.18 0.00 2.1243 2.3962 12.80 40.16 -3.02
19 Kumar et al. 20 × 23 50.81 H 50.81 0.00 1.1360 2.9517 159.84 47.29 -3.52
20 Carrie  20 × 35 77.91 H, E, M 77.91 0.00 4.9661 4.9664 0.01 73.94 -3.97
21 Boe and Cheng 20 × 35 57.98 H, E 57.98 0.00 3.3295 3.3625 0.99 56.68 -1.30

22
Chandrasekharan
 and Rajagopalan

24 × 40 100.00 H, E, M 100.00 0.00 8.5000 8.5000 0.00 100.00 0.00

23
Chandrasekharan
 and Rajagopalan

24 × 40 85.11 H, E, M 85.11 0.00 6.2459 6.2459 0.00 85.11 0.00

24
Chandrasekharan
 and Rajagopalan

24 × 40 73.51 H, E, M 73.51 0.00 4.3729 4.3729 0.00 73.51 0.00

25
Chandrasekharan
 and Rajagopalan

24 × 40 53.29 H, E, M 52.63 -0.66 1.9473 1.9761 1.48 49.33 -3.96

Efficacy Measure Similarity Measure

* H: HGGA, E: EnGGA, M: Mahdavi et al 

Table  4.4  Comparison of the proposed genetic algorithm with results from the literature 
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Source Size Best Score Source
Proposed 
GA (%)

Gap
(%)

Best Score
(HGGA)

Proposed 
GA

Gap
(%)

Corresponding 
Efficacy Score(%)

Gap
(%)

26
Chandrasekharan
 and Rajagopalan

24 × 40 48.95 H, E, M 48.95 0.00 1.5348 1.6130 5.10 46.90 -2.05

27
Chandrasekharan
 and Rajagopalan

24 × 40 47.26 H 46.81 -0.45 1.3008 1.4662 12.71 41.89 -5.37

28 McCormick et al. 27 × 27 54.82 E 54.52 -0.30 4.3823 4.6528 6.17 48.71 -6.11
29 Carrie  28 × 46 46.91 H 47.08 0.17 2.2180 2.4042 8.40 44.40 -1.13
30 Kumar and Vannelli 30 × 41 63.31 H, E 63.31 0.00 3.9587 4.2765 8.03 59.57 -3.74
31 Stanfel  30 × 50 60.12 H, M 59.77 -0.35 3.4633 3.6171 4.44 58.96 -0.81
32 Stanfel  30 × 50 50.83 H, M 50.83 0.00 0.7606 2.7592 262.76 48.94 -1.89
33 King and Nakornchai 36 × 90 46.35 H 46.78 0.43 0.5627 2.0788 269.43 42.82 -2.99
34 McCormick et al. 37 × 53 60.64 H, E 60.36 -0.28 8.6598 8.9584 3.45 49.95 -9.26

35
Chandrasekharan
 and Rajagopalan

40 × 100 84.03 H, M 83.81 -0.22 10.4205 10.4205 0.00 83.81 -0.22

*H: HGGA, E: EnGGA, M: Mahdavi et al.

Efficacy Measure Similarity Measure

Table 4.4  Comparison of the proposed genetic algorithm with results from the literature (Continued) 
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Chapter 5 
 
5 CASE STUDY 
 

The algorithm is applied to two supplier companies which currently operate on job shop 

environment. 

 

5.1 General Information about the Cases 
 

The first company, MERCAN MAKĐNA A.Ş., is a small-medium sized supplier company 

with 1 factory in Đzmir Kemalpaşa Industrial District. They supply various parts and 

components for 3 manufacturers in Turkey. There are a total of 13 active machines and 213 

dynamically produced parts. Originally they have divided shop-floor layout into 7 sections. 

Because this study has never done before, the incidence matrix of the shop floor is made up 

anew. 

 

 The second company, KONVEYOR A.Ş., is a big company with 6 factories in 

Istanbul, Eskişehir and Manisa and 1300 employees in total. As of 2007, the company has 

reached an annual turnover volume of 80M €. They supply various parts and components for 

all appliance manufacturers in Turkey and for many other companies spread in Europe, Asia, 

Africa and South and North America. This study is performed in the factory (5000 sqm area 

with 2 floors) that is located in Istanbul Tuzla Industrial District. The approximate production 

capacity (in 2007) of the factory is 80000 parts /day. 387 workers work in 2-shifts and 7-days 

per week.  

 

There are a total of 155 active machines and 767 dynamically produced parts. 

Originally they have divided shop-floor layout into 20 sections in accordance with 26 different 

operations.  However, the company faced with lead time problems and they decided to analyze 

the factory configuration by using Cellular Manufacturing.  
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Because the visiting sequence of machines and parts are not separately defined, we 

formed the incidence matrix, from fresh, by using operation-part information. We maintained 

the same input parameters and assumptions that we used in the computational study.  

 

We analyzed datasets for both fitness measures with different number of clusters for 

1800 generations. The results found by using fitness measure over 5 runs and the 

corresponding efficacy score and the corresponding machine-part assignments are exposed in 

table 5.1 

#Cells Proposed GA
Deviation (%) 
over 5 Runs

Final Efficacy 
Scores (%)

#Cells
Efficacy Scores 

(%)

2 0.8933 0.00 42.33 2 48.08
3 0.9438 0.00 54.21 3 55.62
4 0.9864 0.00 54.29 4 56.42
5 0.9864 0.00 54.50 5 56.60
6 0.9652 0.00 54.86 6 56.77
7 0.9158 0.00 56.18 7 56.60
8 0.8521 0.00 55.81 8 56.54
9 0.7799 0.00 55.54 9 56.62
10 0.6728 0.00 55.70 10 55.63
11 0.5432 0.00 55.57 11 55.49

2 1.0417 0.00 32.14 2 40.22
3 1.2043 0.00 40.36 3 44.30
4 1.3091 2.07 41.70 4 46.20
5 1.3695 0.54 42.11 5 47.26
6 1.4177 0.47 46.21 6 47.99
7 1.4585 0.29 46.84 7 48.42
8 1.5001 0.37 46.98 8 48.66
9 1.5023 0.00 47.07 9 48.69
10 1.4979 0.23 47.11 10 48.84
11 1.4850 0.06 47.21 11 48.91
12 1.4712 0.00 47.44 12 48.93
13 1.4424 0.11 47.36 13 48.94
14 1.4111 0.00 47.50 14 48.99
15 1.3754 0.58 47.46 15 49.00
16 1.3291 0.00 47.83 16 49.00
17 1.2735 0.00 47.92 17 48.98
18 1.2025 0.09 48.43 18 48.93
19 1.1281 0.00 48.04 19 48.84
20 1.0533 0.00 48.05 20 48.70
21 0.9647 0.00 48.03 21 48.31

Efficacy MeasureSimilarity Measure

K
on
ve
yo
r 
A
.Ş
.

M
er
ca
n 
M
ak
in
a 
A
.Ş
.

 
Table  5.1 Case results 
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Comparison of Konveyor performance measures
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Figure  5.1.1  Konveyor A.Ş. performance measures vs. number of cells 
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Comparison of Mercan performance measures
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Figure  5.1.2 Mercan Makina A.Ş. performance measures vs. number of cells 
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Results show that our algorithm works well on real life cases. There is consistency of 

change in pattern of the fitness score versus number of cells. To compare the results of the 

similarity score more adequately, we normalized machine cell assignment scores and final 

efficacy scores by means of maximum score. Results show that, if the firm wants to form the 

clusters according to similarity between machine processes, we should suggest Mercan 

Makina A.Ş. to use between 4 – 6 cells and Konveyor A.Ş. between 8 – 11 cells. Exemplary 

machine part assignment schemes for both cases are given in APPENDIX E.  

 

Figure 5.1.3 shows the convergence scheme, in terms of similarity score, of Mercan 

Makina A.Ş. Results show that the best score found as 0.9864 in the 50th generation and all of 

the 5 runs converged to the highest score in 129th generation. 

 

Convergence Scheme for Mercan Makina A.Ş.
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Figure  5.1.3 Convergence scheme for Mercan Makina A.Ş. 
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Figure 5.1.4 shows the convergence scheme, in terms of similarity score, of Konveyor A.Ş. 

Results show that the best score found as 1.5023 in the 729th generation and all of the 5 runs 

converged to the highest score in 1506th generation. 

 

Convergence Scheme for Konveyor A.Ş.
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Figure  5.1.4 Convergence scheme for Konveyor A.Ş. 
 

Both cases were run for 1800 generations with the standard parameters of the algorithm. Since 

the algorithm found the same results by using island strategies, the number of generations may 

be decreased by making a slight modification and running the cases in parallel machines 

instead of a single machine. 
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Chapter 6 
 
 
6 CONCLUSION AND FUTURE WORK 
 
 
This thesis proposes a GA approach for the machine cell formation problem utilizing a 

Jaccard-based similarity coefficient as the fitness function. However, the algorithm may be 

easily adapted for any other similarity measure. In GA, we use a simple chromosome structure 

that only contains machine cell information. Even though complex chromosome structures are 

favorable for holding more information to simultaneously form machine groups and part 

families, the simple structure is powerful on choosing the best machine cell configuration in a 

reasonable amount of computational time.  

 

The roulette wheel selection procedure, a two-point crossover mechanism, random and 

guided mutation operators with an elitist strategy are applied for a pre-determined number of 

generations. The random mutation operator allows the algorithm to search a broad landscape 

whereas the guided mutation attempts to converge to better results in the neighborhood. The 

two mutation types are applied consecutively and the fitness landscape, in a broader sight, 

looks like a sandglass that shrinks and enlarges accordingly.  

 

The performance of the proposed GA method is tested on 35 well-known problems and 

is compared to that of other GA approaches in the literature, which are known as best-in-class 

algorithms. Our comparison is based on both our similarity measure and the grouping efficacy 

measure. The results are promising with respect to the similarity measure and competitive with 

respect to the efficacy measure.  

 

The proposed approach is also applied to two real life data that were collected from 

two plants operating in a job-shop environment. Different machine cell configurations are 

reported for varying cell numbers and sizes. The results show that the algorithm may be 

efficiently used in a real-life setting. 
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Further research on this topic may focus on the following extensions. First, the island 

strategy and the parameter selection may be investigated through a more in-depth 

experimental analysis. Second, other similarity measures may be considered to test the 

robustness of the algorithm. However, the comparison will be limited by the availability of 

benchmark data in the literature. A similarity measure based on production volumes may be 

particularly more realistic in an industrial environment. Furthermore, parallel computing may 

be used in the experiments with multiple populations to reduce the computational effort. The 

algorithm can be easily adapted to a parallel setting. 
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8 APPENDIX A – Flowchart of the Proposed Algorithm 
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9 APPENDIX B – Detailed Computational Results of 5 Runs 

Instance 

Size

Number of cells

HGGA

G
e
n
e
ra
ti
o
n

No island

Deviation 

from 

the sample 

of 5 runs

Gap 

between 

the best 

solution 

and our 

result

Island2

Deviation 

from 

the sample 

of 5 runs

Gap 

between 

the best 

solution 

and our 

result

Island5

Deviation 

from 

the sample 

of 5 runs

Gap 

between 

the best 

solution 

and our 

result

1 0.9306 120 0.9306 0.00% 0.00% 0.9306 0.00% 0.00% 0.9306 0.00% 0.00%

5 × 7 300 0.9306 0.00% 0.00% 0.9306 0.00% 0.00% 0.9306 0.00% 0.00%

2 900 0.9306 0.00% 0.00% 0.9306 0.00% 0.00% 0.9306 0.00% 0.00%

1800 0.9306 0.00% 0.00% 0.9306 0.00% 0.00% 0.9306 0.00% 0.00%

2 0.7667 120 0.7667 0.00% 0.00% 0.7667 0.00% 0.00% 0.7667 0.00% 0.00%

5 × 7 300 0.7667 0.00% 0.00% 0.7667 0.00% 0.00% 0.7667 0.00% 0.00%

2 900 0.7667 0.00% 0.00% 0.7667 0.00% 0.00% 0.7667 0.00% 0.00%

1800 0.7667 0.00% 0.00% 0.7667 0.00% 0.00% 0.7667 0.00% 0.00%

3 0.9637 120 0.9637 0.00% 0.00% 0.9637 0.00% 0.00% 0.9637 0.00% 0.00%

5 × 18 300 0.9637 0.00% 0.00% 0.9637 0.00% 0.00% 0.9637 0.00% 0.00%

2 900 0.9637 0.00% 0.00% 0.9637 0.00% 0.00% 0.9637 0.00% 0.00%

1800 0.9637 0.00% 0.00% 0.9637 0.00% 0.00% 0.9637 0.00% 0.00%

4 1.3587 120 1.3587 0.00% 0.00% 1.3587 0.00% 0.00% 1.3587 0.00% 0.00%

6 × 8 300 1.3587 0.00% 0.00% 1.3587 0.00% 0.00% 1.3587 0.00% 0.00%

2 900 1.3587 0.00% 0.00% 1.3587 0.00% 0.00% 1.3587 0.00% 0.00%

1800 1.3587 0.00% 0.00% 1.3587 0.00% 0.00% 1.3587 0.00% 0.00%

5 0.2917 120 0.2917 0.00% 0.00% 0.2917 0.00% 0.00% 0.2917 0.00% 0.00%

7 × 11 300 0.2917 0.00% 0.00% 0.2917 0.00% 0.00% 0.2917 0.00% 0.00%

5 900 0.2917 0.00% 0.00% 0.2917 0.00% 0.00% 0.2917 0.00% 0.00%

1800 0.2917 0.00% 0.00% 0.2917 0.00% 0.00% 0.2917 0.00% 0.00%

6 0.7500 120 0.7500 0.00% 0.00% 0.7500 0.00% 0.00% 0.7500 0.00% 0.00%

7 × 11 300 0.7500 0.00% 0.00% 0.7500 0.00% 0.00% 0.7500 0.00% 0.00%

4 900 0.7500 0.00% 0.00% 0.7500 0.00% 0.00% 0.7500 0.00% 0.00%

1800 0.7500 0.00% 0.00% 0.7500 0.00% 0.00% 0.7500 0.00% 0.00%

7 1.4111 120 1.4111 0.00% 0.00% 1.4111 0.00% 0.00% 1.4111 0.00% 0.00%

8 × 12 300 1.4111 0.00% 0.00% 1.4111 0.00% 0.00% 1.4111 0.00% 0.00%

4 900 1.4111 0.00% 0.00% 1.4111 0.00% 0.00% 1.4111 0.00% 0.00%

1800 1.4111 0.00% 0.00% 1.4111 0.00% 0.00% 1.4111 0.00% 0.00%  
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8 1.8647 120 1.8647 0.00% 0.00% 1.8647 0.00% 0.00% 1.8647 0.00% 0.00%

8 × 20 300 1.8647 0.00% 0.00% 1.8647 0.00% 0.00% 1.8647 0.00% 0.00%

3 900 1.8647 0.00% 0.00% 1.8647 0.00% 0.00% 1.8647 0.00% 0.00%

1800 1.8647 0.00% 0.00% 1.8647 0.00% 0.00% 1.8647 0.00% 0.00%

9 1.3779 120 1.4274 0.00% 3.59% 1.4274 0.00% 3.59% 1.4274 0.00% 3.59%

8 × 20 300 1.4274 0.00% 3.59% 1.4274 0.00% 3.59% 1.4274 0.00% 3.59%

2 900 1.4274 0.00% 3.59% 1.4274 0.00% 3.59% 1.4274 0.00% 3.59%

1800 1.4274 0.00% 3.59% 1.4274 0.00% 3.59% 1.4274 0.00% 3.59%

10 1.4375 120 1.4583 0.00% 1.45% 1.4583 0.00% 1.45% 1.4583 0.00% 1.45%

10 × 10 300 1.4583 0.00% 1.45% 1.4583 0.00% 1.45% 1.4583 0.00% 1.45%

5 900 1.4583 0.00% 1.45% 1.4583 0.00% 1.45% 1.4583 0.00% 1.45%

1800 1.4583 0.00% 1.45% 1.4583 0.00% 1.45% 1.4583 0.00% 1.45%

11 2.9167 120 2.9167 0.00% 0.00% 2.9167 0.00% 0.00% 2.9167 0.00% 0.00%

10 × 15 300 2.9167 0.00% 0.00% 2.9167 0.00% 0.00% 2.9167 0.00% 0.00%

3 900 2.9167 0.00% 0.00% 2.9167 0.00% 0.00% 2.9167 0.00% 0.00%

1800 2.9167 0.00% 0.00% 2.9167 0.00% 0.00% 2.9167 0.00% 0.00%

12 2.1960 120 2.2933 0.00% 4.43% 2.2933 0.00% 4.43% 2.2933 0.00% 4.43%

14 × 24 300 2.2933 0.00% 4.43% 2.2933 0.00% 4.43% 2.2933 0.00% 4.43%

7 900 2.2933 0.00% 4.43% 2.2933 0.00% 4.43% 2.2933 0.00% 4.43%

1800 2.2933 0.00% 4.43% 2.2933 0.00% 4.43% 2.2933 0.00% 4.43%

13 2.0368 120 2.1683 0.00% 6.45% 2.1683 0.00% 6.45% 2.1683 0.00% 6.45%

14 × 24 300 2.1683 0.00% 6.45% 2.1683 0.00% 6.45% 2.1683 0.00% 6.45%

7 900 2.1683 0.00% 6.45% 2.1683 0.00% 6.45% 2.1683 0.00% 6.45%

1800 2.1683 0.00% 6.45% 2.1683 0.00% 6.45% 2.1683 0.00% 6.45%

14 1.4550 120 1.5116 0.35% 3.89% 1.5116 1.69% 3.89% 1.5116 2.70% 3.89%

16 × 24 300 1.5116 0.00% 3.89% 1.5116 1.08% 3.89% 1.5116 0.80% 3.89%

8 900 1.5116 1.32% 3.89% 1.5116 0.00% 3.89% 1.5116 0.00% 3.89%

1800 1.5116 0.00% 3.89% 1.5116 0.00% 3.89% 1.5116 0.00% 3.89%  
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15 2.7690 120 2.7651 5.17% -0.14% 2.7690 0.21% 0.00% 2.7690 0.79% 0.00%

16 × 30 300 2.7690 1.25% 0.00% 2.7690 0.00% 0.00% 2.7690 0.93% 0.00%

6 900 2.7690 0.00% 0.00% 2.7690 0.00% 0.00% 2.7690 0.00% 0.00%

1800 2.7690 0.00% 0.00% 2.7690 0.00% 0.00% 2.7690 0.00% 0.00%

16 1.7193 120 1.8223 0.00% 5.99% 1.8223 1.89% 5.99% 1.8223 5.58% 5.99%

16 × 43 300 1.8223 0.00% 5.99% 1.8223 0.00% 5.99% 1.8223 0.00% 5.99%

8 900 1.8223 0.00% 5.99% 1.8223 0.00% 5.99% 1.8223 0.00% 5.99%

1800 1.8223 0.00% 5.99% 1.8223 0.00% 5.99% 1.8223 0.00% 5.99%

17 1.8306 120 2.2306 0.00% 21.85% 2.2306 5.38% 21.85% 2.2306 5.90% 21.85%

18 × 24 300 2.2306 0.00% 21.85% 2.2306 0.00% 21.85% 2.2306 0.00% 21.85%

9 900 2.2306 0.00% 21.85% 2.2306 0.00% 21.85% 2.2306 0.00% 21.85%

1800 2.2306 0.00% 21.85% 2.2306 0.00% 21.85% 2.2306 0.00% 21.85%

18 2.1243 120 2.3131 4.15% 8.89% 2.3310 6.67% 9.73% 2.2688 9.92% 6.80%

20 × 20 300 2.3962 3.09% 12.80% 2.3962 4.90% 12.80% 2.3185 2.55% 9.14%

6 900 2.3962 2.09% 12.80% 2.3962 2.71% 12.80% 2.3962 1.71% 12.80%

1800 2.3962 1.71% 12.80% 2.3962 1.71% 12.80% 2.3962 1.71% 12.80%

19 1.1360 120 2.8983 1.08% 155.13% 2.9517 5.09% 159.84% 2.9014 10.17% 155.41%

20 × 23 300 2.9517 3.60% 159.84% 2.9517 1.19% 159.84% 2.9364 3.21% 158.48%

7 900 2.9517 0.00% 159.84% 2.9517 0.00% 159.84% 2.9517 0.00% 159.84%

1800 2.9517 0.00% 159.84% 2.9517 0.00% 159.84% 2.9517 0.00% 159.84%

20 4.9661 120 4.9664 3.82% 0.01% 4.9664 20.94% 0.01% 4.8828 42.93% -1.68%

20 × 35 300 4.9664 3.22% 0.01% 4.9664 3.16% 0.01% 4.9664 3.17% 0.01%

5 900 4.9664 0.01% 0.01% 4.9664 0.01% 0.01% 4.9664 0.00% 0.01%

1800 4.9664 0.00% 0.01% 4.9664 0.00% 0.01% 4.9664 0.00% 0.01%

21 3.3295 120 3.3545 14.64% 0.75% 3.3407 5.96% 0.34% 3.3545 9.56% 0.75%

20 × 35 300 3.3625 3.63% 0.99% 3.3625 3.42% 0.99% 3.3625 4.12% 0.99%

5 900 3.3625 0.44% 0.99% 3.3625 0.44% 0.99% 3.3625 0.00% 0.99%

1800 3.3625 0.36% 0.99% 3.3625 0.44% 0.99% 3.3625 0.00% 0.99%  
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22 8.5000 120 7.5000 41.59% -11.76% 7.8333 54.92% -7.84% 6.8333 32.56% -19.61%

24 × 40 300 8.5000 44.72% 0.00% 8.5000 0.00% 0.00% 8.5000 43.20% 0.00%

7 900 8.5000 0.00% 0.00% 8.5000 0.00% 0.00% 8.5000 0.00% 0.00%

1800 8.5000 0.00% 0.00% 8.5000 0.00% 0.00% 8.5000 0.00% 0.00%

23 6.2459 120 6.2459 29.32% 0.00% 6.0538 22.73% -3.08% 5.5937 48.25% -10.44%

24 × 40 300 6.2459 26.83% 0.00% 6.2459 8.59% 0.00% 6.0538 36.03% -3.08%

7 900 6.2459 0.00% 0.00% 6.2459 10.06% 0.00% 6.2459 0.00% 0.00%

1800 6.2459 0.00% 0.00% 6.2459 0.00% 0.00% 6.2459 0.00% 0.00%

24 4.3729 120 4.3729 39.39% 0.00% 4.3729 41.35% 0.00% 3.8576 37.77% -11.78%

24 × 40 300 4.3729 0.00% 0.00% 4.3729 24.64% 0.00% 4.3729 21.12% 0.00%

7 900 4.3729 0.00% 0.00% 4.3729 0.00% 0.00% 4.3729 0.00% 0.00%

1800 4.3729 0.00% 0.00% 4.3729 0.00% 0.00% 4.3729 0.00% 0.00%

25 1.9473 120 1.9682 14.17% 1.07% 1.9428 2.72% -0.23% 1.9111 15.24% -1.86%

24 × 40 300 1.9761 6.17% 1.48% 1.9761 2.92% 1.48% 1.9375 3.78% -0.50%

11 900 1.9761 2.71% 1.48% 1.9761 1.09% 1.48% 1.9761 0.00% 1.48%

1800 1.9761 1.46% 1.48% 1.9761 0.00% 1.48% 1.9761 0.00% 1.48%

26 1.5348 120 1.6017 5.98% 4.36% 1.5806 5.14% 2.98% 1.4706 4.09% -4.18%

24 × 40 300 1.6079 1.94% 4.76% 1.6130 2.47% 5.10% 1.6074 4.52% 4.73%

12 900 1.6130 0.25% 5.10% 1.6130 0.28% 5.10% 1.6130 0.12% 5.10%

1800 1.6130 0.00% 5.10% 1.6130 0.21% 5.10% 1.6130 0.12% 5.10%

27 1.3008 120 1.4629 5.97% 12.46% 1.3831 3.31% 6.33% 1.3642 4.46% 4.87%

24 × 40 300 1.4648 3.16% 12.61% 1.4662 4.57% 12.71% 1.4581 2.36% 12.10%

12 900 1.4662 1.20% 12.71% 1.4662 2.01% 12.71% 1.4662 1.74% 12.71%

1800 1.4662 0.78% 12.71% 1.4662 0.00% 12.71% 1.4662 1.74% 12.71%

28 4.3823 120 4.4860 11.90% 2.37% 4.4384 12.16% 1.28% 4.1307 21.02% -5.74%

27 × 27 300 4.6528 7.29% 6.17% 4.4503 2.75% 1.55% 4.5330 11.56% 3.44%

6 900 4.6528 12.78% 6.17% 4.6528 6.66% 6.17% 4.6528 3.12% 6.17%

1800 4.6528 10.52% 6.17% 4.6528 7.11% 6.17% 4.6528 3.12% 6.17%  



 51 

Instance 

Size

Number of cells

HGGA

G
e
n
e
ra
ti
o
n

No island

Deviation 

from 

the sample 

of 5 runs

Gap 

between 

the best 

solution 

and our 

result

Island2

Deviation 

from 

the sample 

of 5 runs

Gap 

between 

the best 

solution 

and our 

result

Island5

Deviation 

from 

the sample 

of 5 runs

Gap 

between 

the best 

solution 

and our 

result

29 2.2180 120 2.3113 4.92% 4.21% 2.2197 10.98% 0.08% 2.2177 15.98% -0.01%

28 × 46 300 2.3909 3.48% 7.80% 2.3673 5.19% 6.73% 2.3857 6.61% 7.56%

10 900 2.4042 2.10% 8.40% 2.4042 2.16% 8.40% 2.3857 1.05% 7.56%

1800 2.4042 1.97% 8.40% 2.4042 1.80% 8.40% 2.3857 1.05% 7.56%

30 3.9587 120 4.2394 25.68% 7.09% 4.1099 24.46% 3.82% 3.8787 33.07% -2.02%

30 × 41 300 4.1443 8.89% 4.69% 4.1765 5.06% 5.50% 4.2479 11.32% 7.31%

14 900 4.2765 2.03% 8.03% 4.2765 0.00% 8.03% 4.2765 1.64% 8.03%

1800 4.2765 6.09% 8.03% 4.2765 0.00% 8.03% 4.2765 1.64% 8.03%

31 3.4633 120 3.4583 14.39% -0.14% 3.3843 15.66% -2.28% 3.0728 15.61% -11.28%

30 × 50 300 3.5823 7.93% 3.44% 3.4662 7.29% 0.08% 3.5375 12.93% 2.14%

13 900 3.5939 3.51% 3.77% 3.5491 7.19% 2.48% 3.6171 6.95% 4.44%

1800 3.5298 0.80% 1.92% 3.6171 3.85% 4.44% 3.6171 6.95% 4.44%

32 0.7606 120 2.6864 21.64% 253.19% 2.6407 9.73% 247.18% 2.2874 25.20% 200.73%

30 × 50 300 2.7429 10.98% 260.63% 2.7320 10.94% 259.19% 2.6254 5.11% 245.17%

14 900 2.7592 0.54% 262.76% 2.7592 2.05% 262.76% 2.7592 0.08% 262.76%

1800 2.7592 0.00% 262.76% 2.7592 0.43% 262.76% 2.7592 0.08% 262.76%

33 0.5627 120 2.0521 20.00% 264.70% 1.8282 8.51% 224.90% 1.6167 7.27% 187.31%

36 × 90 300 2.0276 6.47% 260.34% 2.0744 13.26% 268.66% 1.9583 9.72% 248.01%

17 900 2.0788 5.92% 269.43% 2.0788 4.29% 269.43% 2.0779 3.87% 269.28%

1800 2.0788 0.14% 269.43% 2.0779 0.37% 269.28% 2.0779 3.87% 269.28%

34 8.6598 120 8.6617 32.86% 0.02% 8.8392 37.99% 2.07% 8.4875 40.65% -1.99%

37 × 53 300 8.9150 21.16% 2.95% 8.9118 27.11% 2.91% 8.3785 10.10% -3.25%

3 900 8.9584 2.43% 3.45% 8.9584 4.02% 3.45% 8.9584 2.87% 3.45%

1800 8.9584 3.56% 3.45% 8.9584 3.60% 3.45% 8.9584 2.87% 3.45%

35 10.4205 120 9.0348 119.32% -13.30% 7.3890 62.33% -29.09% 6.1221 50.80% -41.25%

40 × 100 300 9.5757 70.30% -8.11% 9.7907 47.16% -6.04% 8.5676 58.02% -17.78%

10 900 10.4205 30.33% 0.00% 10.0264 15.34% -3.78% 10.4205 42.68% 0.00%

1800 10.4205 19.84% 0.00% 10.4205 40.16% 0.00% 10.4205 42.68% 0.00%  
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5 120 0.00% 0.00% 0.00% 10 120 0.00% 0.00% 0.00% 20 120 1.08% 5.09% 9.56% 30 120 14.39% 9.73% 15.61%

m 300 0.00% 0.00% 0.00% m 300 0.00% 0.00% 0.00% m 300 3.09% 1.19% 2.55% m 300 7.93% 5.06% 5.11%

900 0.00% 0.00% 0.00% 900 0.00% 0.00% 0.00% 900 0.00% 0.00% 0.00% 900 0.54% 0.00% 0.08%

1800 0.00% 0.00% 0.00% 1800 0.00% 0.00% 0.00% 1800 0.00% 0.00% 0.00% 1800 0.00% 0.00% 0.08%

6 120 0.00% 0.00% 0.00% 14 120 0.00% 0.00% 0.00% 24 120 5.97% 2.72% 4.09% 36 120 20.00% 8.51% 7.27%

s 300 0.00% 0.00% 0.00% m 300 0.00% 0.00% 0.00% m 300 0.00% 0.00% 2.36% s 300 6.47% 13.26% 9.72%

900 0.00% 0.00% 0.00% 900 0.00% 0.00% 0.00% 900 0.00% 0.00% 0.00% 900 5.92% 4.29% 3.87%

1800 0.00% 0.00% 0.00% 1800 0.00% 0.00% 0.00% 1800 0.00% 0.00% 0.00% 1800 0.14% 0.37% 3.87%

7 120 0.00% 0.00% 0.00% 16 120 0.00% 0.21% 0.79% 27 120 11.90% 12.16% 21.02% 37 120 32.86% 37.99% 40.65%

m 300 0.00% 0.00% 0.00% m 300 0.00% 0.00% 0.00% s 300 7.29% 2.75% 11.56% s 300 21.16% 27.11% 10.10%

900 0.00% 0.00% 0.00% 900 0.00% 0.00% 0.00% 900 12.78% 6.66% 3.12% 900 2.43% 4.02% 2.87%

1800 0.00% 0.00% 0.00% 1800 0.00% 0.00% 0.00% 1800 10.52% 7.11% 3.12% 1800 3.56% 3.60% 2.87%

8 120 0.00% 0.00% 0.00% 18 120 0.00% 5.38% 5.90% 28 120 4.92% 10.98% 15.98% 40 120 119.32% 62.33% 50.80%

m 300 0.00% 0.00% 0.00% s 300 0.00% 0.00% 0.00% s 300 3.48% 5.19% 6.61% s 300 70.30% 47.16% 58.02%

900 0.00% 0.00% 0.00% 900 0.00% 0.00% 0.00% 900 2.10% 2.16% 1.05% 900 30.33% 15.34% 42.68%

1800 0.00% 0.00% 0.00% 1800 0.00% 0.00% 0.00% 1800 1.97% 1.80% 1.05% 1800 19.84% 40.16% 42.68%
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5 120 0.00% 0.00% 0.00% 10 120 0.00% 0.00% 0.00% 20 120 14.64% 20.94% 42.93% 30 120 25.68% 24.46% 33.07%

m 300 0.00% 0.00% 0.00% m 300 0.00% 0.00% 0.00% m 300 3.63% 4.90% 4.12% m 300 10.98% 10.94% 12.93%

900 0.00% 0.00% 0.00% 900 0.00% 0.00% 0.00% 900 2.09% 2.71% 1.71% 900 3.51% 7.19% 6.95%

1800 0.00% 0.00% 0.00% 1800 0.00% 0.00% 0.00% 1800 1.71% 1.71% 1.71% 1800 6.09% 3.85% 6.95%

6 120 0.00% 0.00% 0.00% 14 120 0.00% 0.00% 0.00% 24 120 41.59% 54.92% 48.25% 36 120 20.00% 8.51% 7.27%

s 300 0.00% 0.00% 0.00% m 300 0.00% 0.00% 0.00% m 300 44.72% 24.64% 43.20% s 300 6.47% 13.26% 9.72%

900 0.00% 0.00% 0.00% 900 0.00% 0.00% 0.00% 900 2.71% 10.06% 1.74% 900 5.92% 4.29% 3.87%

1800 0.00% 0.00% 0.00% 1800 0.00% 0.00% 0.00% 1800 1.46% 0.21% 1.74% 1800 0.14% 0.37% 3.87%

7 120 0.00% 0.00% 0.00% 16 120 5.17% 1.89% 5.58% 27 120 11.90% 12.16% 21.02% 37 120 32.86% 37.99% 40.65%

m 300 0.00% 0.00% 0.00% m 300 1.25% 1.08% 0.93% s 300 7.29% 2.75% 11.56% s 300 21.16% 27.11% 10.10%

900 0.00% 0.00% 0.00% 900 1.32% 0.00% 0.00% 900 12.78% 6.66% 3.12% 900 2.43% 4.02% 2.87%

1800 0.00% 0.00% 0.00% 1800 0.00% 0.00% 0.00% 1800 10.52% 7.11% 3.12% 1800 3.56% 3.60% 2.87%

8 120 0.00% 0.00% 0.00% 18 120 0.00% 5.38% 5.90% 28 120 4.92% 10.98% 15.98% 40 120 119.32% 62.33% 50.80%

m 300 0.00% 0.00% 0.00% s 300 0.00% 0.00% 0.00% s 300 3.48% 5.19% 6.61% s 300 70.30% 47.16% 58.02%

900 0.00% 0.00% 0.00% 900 0.00% 0.00% 0.00% 900 2.10% 2.16% 1.05% 900 30.33% 15.34% 42.68%

1800 0.00% 0.00% 0.00% 1800 0.00% 0.00% 0.00% 1800 1.97% 1.80% 1.05% 1800 19.84% 40.16% 42.68%
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Instance 
Size

Number of cells
HGGA EnGGA
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No island

Deviation 
from 

the sample 
of 5 runs

Gap 
between 
the best 
solution 
and our 
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of 5 runs

Gap 
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the best 
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and our 
result

Island5

Deviation 
from 

the sample 
of 5 runs

Gap 
between 
the best 
solution 
and our 
result

1 82.35% 82.35% 120 82.35% 0.00% 0.00% 82.35% 0.00% 0.00% 82.35% 0.00% 0.00%
5 × 7 300 82.35% 0.00% 0.00% 82.35% 0.00% 0.00% 82.35% 0.00% 0.00%

2 900 82.35% 0.00% 0.00% 82.35% 0.00% 0.00% 82.35% 0.00% 0.00%
1800 82.35% 0.00% 0.00% 82.35% 0.00% 0.00% 82.35% 0.00% 0.00%

2 69.57% 69.57% 120 69.57% 0.00% 0.00% 69.57% 0.00% 0.00% 69.57% 0.00% 0.00%
5 × 7 300 69.57% 0.00% 0.00% 69.57% 0.00% 0.00% 69.57% 0.00% 0.00%

2 900 69.57% 0.00% 0.00% 69.57% 0.00% 0.00% 69.57% 0.00% 0.00%
1800 69.57% 0.00% 0.00% 69.57% 0.00% 0.00% 69.57% 0.00% 0.00%

3 79.59% 79.59% 120 79.59% 0.00% 0.00% 79.59% 0.00% 0.00% 79.59% 0.00% 0.00%
5 × 18 300 79.59% 0.00% 0.00% 79.59% 0.00% 0.00% 79.59% 0.00% 0.00%

2 900 79.59% 0.00% 0.00% 79.59% 0.00% 0.00% 79.59% 0.00% 0.00%
1800 79.59% 0.00% 0.00% 79.59% 0.00% 0.00% 79.59% 0.00% 0.00%

4 76.92% 76.92% 120 76.92% 0.00% 0.00% 76.92% 0.00% 0.00% 76.92% 0.00% 0.00%
6 × 8 300 76.92% 0.00% 0.00% 76.92% 0.00% 0.00% 76.92% 0.00% 0.00%

2 900 76.92% 0.00% 0.00% 76.92% 0.00% 0.00% 76.92% 0.00% 0.00%
1800 76.92% 0.00% 0.00% 76.92% 0.00% 0.00% 76.92% 0.00% 0.00%

5 60.87% 60.87% 120 60.87% 0.00% 0.00% 60.87% 0.00% 0.00% 60.87% 0.00% 0.00%
7 × 11 300 60.87% 0.00% 0.00% 60.87% 0.00% 0.00% 60.87% 0.00% 0.00%

5 900 60.87% 0.00% 0.00% 60.87% 0.00% 0.00% 60.87% 0.00% 0.00%
1800 60.87% 0.00% 0.00% 60.87% 0.00% 0.00% 60.87% 0.00% 0.00%

6 70.83% 70.83% 120 70.83% 0.00% 0.00% 70.83% 0.00% 0.00% 70.83% 0.00% 0.00%
7 × 11 300 70.83% 0.00% 0.00% 70.83% 0.00% 0.00% 70.83% 0.00% 0.00%

4 900 70.83% 0.00% 0.00% 70.83% 0.00% 0.00% 70.83% 0.00% 0.00%
1800 70.83% 0.00% 0.00% 70.83% 0.00% 0.00% 70.83% 0.00% 0.00%

7 69.44% 69.44% 120 69.44% 0.00% 0.00% 69.44% 0.00% 0.00% 69.44% 0.00% 0.00%
8 × 12 300 69.44% 0.00% 0.00% 69.44% 0.00% 0.00% 69.44% 0.00% 0.00%

4 900 69.44% 0.00% 0.00% 69.44% 0.00% 0.00% 69.44% 0.00% 0.00%
1800 69.44% 0.00% 0.00% 69.44% 0.00% 0.00% 69.44% 0.00% 0.00%
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HGGA EnGGA

Gener
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Deviation 
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and our 
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8 85.25% 85.25% 120 85.25% 0.00% 0.00% 85.25% 0.00% 0.00% 85.25% 0.00% 0.00%
8 × 20 300 85.25% 0.00% 0.00% 85.25% 0.00% 0.00% 85.25% 0.00% 0.00%

3 900 85.25% 0.00% 0.00% 85.25% 0.00% 0.00% 85.25% 0.00% 0.00%
1800 85.25% 0.00% 0.00% 85.25% 0.00% 0.00% 85.25% 0.00% 0.00%

9 58.72% 58.72% 120 58.72% 0.00% 0.00% 58.72% 0.00% 0.00% 58.72% 0.00% 0.00%
8 × 20 300 58.72% 0.00% 0.00% 58.72% 0.00% 0.00% 58.72% 0.00% 0.00%

2 900 58.72% 0.00% 0.00% 58.72% 0.00% 0.00% 58.72% 0.00% 0.00%
1800 58.72% 0.00% 0.00% 58.72% 0.00% 0.00% 58.72% 0.00% 0.00%

10 75.00% - 120 75.00% 0.00% 0.00% 75.00% 0.00% 0.00% 75.00% 0.00% 0.00%
10 × 10 300 75.00% 0.00% 0.00% 75.00% 0.00% 0.00% 75.00% 0.00% 0.00%

5 900 75.00% 0.00% 0.00% 75.00% 0.00% 0.00% 75.00% 0.00% 0.00%
1800 75.00% 0.00% 0.00% 75.00% 0.00% 0.00% 75.00% 0.00% 0.00%

11 92.00% - 120 92.00% 0.00% 0.00% 92.00% 0.00% 0.00% 92.00% 0.00% 0.00%
10 × 15 300 92.00% 0.00% 0.00% 92.00% 0.00% 0.00% 92.00% 0.00% 0.00%

3 900 92.00% 0.00% 0.00% 92.00% 0.00% 0.00% 92.00% 0.00% 0.00%
1800 92.00% 0.00% 0.00% 92.00% 0.00% 0.00% 92.00% 0.00% 0.00%

12 72.06% - 120 72.06% 0.85% 0.00% 72.06% 1.06% 0.00% 72.06% 1.49% 0.00%
14 × 24 300 72.06% 0.00% 0.00% 72.06% 0.00% 0.00% 72.06% 0.00% 0.00%

7 900 72.06% 0.00% 0.00% 72.06% 0.00% 0.00% 72.06% 0.00% 0.00%
1800 72.06% 0.00% 0.00% 72.06% 0.00% 0.00% 72.06% 0.00% 0.00%

13 71.83% - 120 71.83% 0.00% 0.00% 71.83% 0.00% 0.00% 71.83% 0.54% 0.00%
14 × 24 300 71.83% 0.00% 0.00% 71.83% 0.00% 0.00% 71.83% 0.00% 0.00%

7 900 71.83% 0.00% 0.00% 71.83% 0.00% 0.00% 71.83% 0.00% 0.00%
1800 71.83% 0.00% 0.00% 71.83% 0.00% 0.00% 71.83% 0.00% 0.00%

14 52.75% 53.26% 120 53.26% 0.49% 0.00% 53.26% 0.69% 0.00% 52.17% 0.80% -1.09%
16 × 24 300 53.26% 0.49% 0.00% 53.26% 0.00% 0.00% 53.26% 0.60% 0.00%

8 900 53.26% 0.00% 0.00% 53.26% 0.00% 0.00% 53.26% 0.00% 0.00%
1800 53.26% 0.00% 0.00% 53.26% 0.00% 0.00% 53.26% 0.00% 0.00%
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15 68.99% 68.99% 120 68.99% 0.00% 0.00% 68.99% 1.51% 0.00% 68.99% 0.91% 0.00%
16 × 30 300 68.99% 0.00% 0.00% 68.99% 0.00% 0.00% 68.99% 0.00% 0.00%

6 900 68.99% 0.00% 0.00% 68.99% 0.00% 0.00% 68.99% 0.00% 0.00%
1800 68.99% 0.00% 0.00% 68.99% 0.00% 0.00% 68.99% 0.00% 0.00%

16 57.53% 57.53% 120 57.53% 0.00% 0.00% 57.53% 0.68% 0.00% 57.43% 0.76% -0.10%
16 × 43 300 57.53% 0.00% 0.00% 57.53% 0.00% 0.00% 57.53% 0.05% 0.00%

8 900 57.53% 0.00% 0.00% 57.53% 0.00% 0.00% 57.53% 0.00% 0.00%
1800 57.53% 0.00% 0.00% 57.53% 0.00% 0.00% 57.53% 0.00% 0.00%

17 57.73% 57.73% 120 57.29% 0.70% -0.44% 57.29% 0.82% -0.44% 55.67% 0.36% -2.06%
18 × 24 300 57.29% 0.00% -0.44% 57.29% 0.26% -0.44% 57.29% 0.22% -0.44%

9 900 57.29% 0.00% -0.44% 57.29% 0.00% -0.44% 57.29% 0.00% -0.44%
1800 57.29% 0.00% -0.44% 57.29% 0.00% -0.44% 57.29% 0.00% -0.44%

18 43.18% - 120 42.75% 0.26% -0.43% 42.34% 0.46% -0.84% 41.98% 1.09% -1.20%
20 × 20 300 43.36% 0.78% 0.18% 42.96% 0.38% -0.22% 43.07% 0.44% -0.11%

6 900 42.86% 0.37% -0.32% 43.36% 0.33% 0.18% 43.18% 0.06% 0.00%
1800 43.36% 0.55% 0.18% 43.36% 0.28% 0.18% 43.36% 0.36% 0.18%

19 50.81% - 120 50.00% 1.07% -0.81% 48.85% 1.38% -1.96% 47.58% 0.50% -3.23%
20 × 23 300 50.81% 1.44% 0.00% 50.81% 0.93% 0.00% 50.81% 1.23% 0.00%

7 900 50.81% 0.22% 0.00% 50.81% 1.18% 0.00% 50.40% 0.18% -0.41%
1800 50.81% 0.00% 0.00% 50.81% 0.00% 0.00% 50.81% 0.00% 0.00%

20 77.91% 77.91% 120 77.91% 1.07% 0.00% 77.91% 3.23% 0.00% 76.36% 5.66% -1.55%
20 × 35 300 77.91% 0.77% 0.00% 77.91% 0.36% 0.00% 77.91% 0.57% 0.00%

5 900 77.91% 0.00% 0.00% 77.91% 0.00% 0.00% 77.91% 0.00% 0.00%
1800 77.91% 0.00% 0.00% 77.91% 0.00% 0.00% 77.91% 0.00% 0.00%

21 57.98% 57.98% 120 57.98% 0.54% 0.00% 57.98% 1.32% 0.00% 55.96% 3.38% -2.02%
20 × 35 300 57.98% 0.70% 0.00% 57.98% 0.64% 0.00% 57.98% 0.83% 0.00%

5 900 57.98% 0.00% 0.00% 57.98% 0.00% 0.00% 57.98% 0.37% 0.00%
1800 57.98% 0.00% 0.00% 57.98% 0.00% 0.00% 57.98% 0.00% 0.00%
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22 100.00% 100.00% 120 100.00% 10.42% 0.00% 100.00% 8.25% 0.00% 94.12% 11.33% -5.88%
24 × 40 300 100.00% 2.63% 0.00% 100.00% 3.24% 0.00% 100.00% 3.57% 0.00%

7 900 100.00% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00% 0.00% 0.00%
1800 100.00% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00% 0.00% 0.00%

23 85.11% 85.11% 120 85.11% 7.15% 0.00% 80.82% 2.12% -4.29% 67.72% 4.88% -17.39%
24 × 40 300 85.11% 0.00% 0.00% 85.11% 2.47% 0.00% 80.82% 1.49% -4.29%

7 900 85.11% 0.00% 0.00% 85.11% 0.00% 0.00% 85.11% 0.00% 0.00%
1800 85.11% 0.00% 0.00% 85.11% 0.00% 0.00% 85.11% 0.00% 0.00%

24 73.51% 73.51% 120 69.87% 1.91% -3.64% 73.51% 6.81% 0.00% 60.37% 3.13% -13.14%
24 × 40 300 73.51% 1.43% 0.00% 73.51% 0.00% 0.00% 73.51% 3.10% 0.00%

7 900 73.51% 0.00% 0.00% 73.51% 0.00% 0.00% 73.51% 0.00% 0.00%
1800 73.51% 0.00% 0.00% 73.51% 0.00% 0.00% 73.51% 0.00% 0.00%

25 53.29% 53.29% 120 52.63% 1.12% -0.66% 51.97% 1.77% -1.32% 49.67% 2.70% -3.62%
24 × 40 300 52.63% 0.32% -0.66% 52.63% 0.53% -0.66% 52.29% 1.34% -1.00%

11 900 52.63% 0.10% -0.66% 52.63% 0.00% -0.66% 52.63% 0.11% -0.66%
1800 52.63% 0.11% -0.66% 52.63% 0.00% -0.66% 52.63% 0.11% -0.66%

26 48.95% 48.95% 120 48.61% 0.69% -0.34% 47.52% 1.06% -1.43% 45.16% 0.86% -3.79%
24 × 40 300 48.61% 0.24% -0.34% 48.61% 0.37% -0.34% 48.03% 0.60% -0.92%

12 900 48.61% 0.17% -0.34% 48.95% 0.29% 0.00% 48.95% 0.36% 0.00%
1800 48.61% 0.14% -0.34% 48.95% 0.27% 0.00% 48.95% 0.29% 0.00%

27 47.26% 46.58% 120 45.58% 0.37% -1.68% 45.89% 0.63% -1.37% 44.83% 1.16% -2.43%
24 × 40 300 46.21% 0.25% -1.05% 46.26% 0.44% -1.00% 46.21% 0.51% -1.05%

12 900 46.81% 0.35% -0.45% 46.58% 0.14% -0.68% 46.58% 0.26% -0.68%
1800 46.58% 0.27% -0.68% 46.81% 0.10% -0.45% 46.58% 0.19% -0.68%

28 54.02% 54.82% 120 54.39% 2.36% -0.43% 52.82% 1.15% -2.00% 51.19% 1.85% -3.63%
27 × 27 300 54.52% 0.83% -0.30% 54.45% 0.47% -0.37% 54.15% 1.32% -0.67%

6 900 54.52% 0.80% -0.30% 54.52% 0.50% -0.30% 54.52% 0.31% -0.30%
1800 54.52% 0.46% -0.30% 54.52% 0.03% -0.30% 54.52% 0.06% -0.30%
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29 46.91% - 120 44.79% 0.51% -2.12% 43.96% 1.15% -2.95% 43.54% 0.88% -3.37%
28 × 46 300 46.31% 0.84% -0.60% 46.06% 0.13% -0.85% 46.25% 0.46% -0.66%

10 900 46.10% 0.16% -0.81% 47.08% 0.33% 0.17% 46.77% 0.18% -0.14%
1800 46.25% 0.20% -0.66% 46.44% 0.24% -0.47% 46.24% 0.24% -0.67%

30 63.31% 63.31% 120 60.00% 2.20% -3.31% 61.38% 1.80% -1.93% 58.78% 3.44% -4.53%
30 × 41 300 62.33% 0.87% -0.98% 62.14% 1.20% -1.17% 60.14% 1.15% -3.17%

14 900 62.94% 0.41% -0.37% 63.31% 0.53% 0.00% 63.31% 0.68% 0.00%
1800 62.59% 0.39% -0.72% 63.31% 0.38% 0.00% 63.31% 0.61% 0.00%

31 59.77% - 120 58.96% 1.57% -0.81% 55.19% 2.13% -4.58% 53.07% 1.93% -6.70%
30 × 50 300 59.77% 1.22% 0.00% 59.65% 0.85% -0.12% 56.91% 0.94% -2.86%

13 900 59.77% 0.05% 0.00% 59.77% 0.05% 0.00% 59.77% 0.63% 0.00%
1800 59.77% 0.15% 0.00% 59.77% 0.00% 0.00% 59.77% 0.06% 0.00%

32 50.83% - 120 50.00% 1.38% -0.83% 49.19% 2.43% -1.64% 44.50% 1.17% -6.33%
30 × 50 300 50.56% 0.67% -0.27% 50.28% 0.87% -0.55% 49.21% 0.42% -1.62%

14 900 50.83% 0.12% 0.00% 50.56% 0.13% -0.27% 50.82% 0.36% -0.01%
1800 50.83% 0.15% 0.00% 50.83% 0.14% 0.00% 50.56% 0.12% -0.27%

33 46.35% - 120 45.71% 1.55% -0.64% 44.59% 1.72% -1.76% 44.14% 2.30% -2.21%
36 × 90 300 46.56% 1.16% 0.21% 45.33% 0.64% -1.02% 45.60% 0.92% -0.75%

17 900 46.61% 0.12% 0.26% 46.37% 0.12% 0.02% 46.37% 0.39% 0.02%
1800 46.31% 0.09% -0.04% 46.78% 0.11% 0.43% 46.24% 0.14% -0.11%

34 60.64% 60.64% 120 58.37% 0.20% -2.27% 58.49% 0.04% -2.15% 58.37% 0.72% -2.27%
37 × 53 300 58.37% 0.00% -2.27% 60.14% 0.36% -0.50% 60.14% 0.01% -0.50%

3 900 60.36% 0.72% -0.28% 58.62% 0.00% -2.02% 58.86% 0.00% -1.78%
1800 58.49% 0.00% -2.15% 58.49% 0.72% -2.15% 58.62% 0.00% -2.02%

35 84.03% - 120 74.30% 4.80% -9.73% 68.31% 7.12% -15.72% 50.83% 2.21% -33.20%
40 × 100 300 83.81% 5.09% -0.22% 76.01% 2.96% -8.02% 68.39% 4.11% -15.64%

10 900 83.81% 2.26% -0.22% 83.81% 1.46% -0.22% 83.81% 3.18% -0.22%
1800 83.81% 0.00% -0.22% 83.81% 0.00% -0.22% 83.81% 1.81% -0.22%
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5 120 0.00% 0.00% 0.00% 10 120 0.00% 0.00% 0.00% 20 120 1.07% 3.23% 5.66% 30 120 2.20% 2.43% 3.44%

m 300 0.00% 0.00% 0.00% m 300 0.00% 0.00% 0.00% m 300 1.44% 0.93% 1.23% m 300 1.22% 1.20% 1.15%

900 0.00% 0.00% 0.00% 900 0.00% 0.00% 0.00% 900 0.37% 1.18% 0.37% 900 0.41% 0.53% 0.68%

1800 0.00% 0.00% 0.00% 1800 0.00% 0.00% 0.00% 1800 0.55% 0.28% 0.36% 1800 0.39% 0.38% 0.61%

6 120 0.00% 0.00% 0.00% 14 120 0.85% 1.06% 1.49% 24 120 10.42% 8.25% 11.33% 36 120 1.55% 1.72% 2.30%

s 300 0.00% 0.00% 0.00% m 300 0.00% 0.00% 0.00% m 300 2.63% 3.24% 3.57% s 300 1.16% 0.64% 0.92%

900 0.00% 0.00% 0.00% 900 0.00% 0.00% 0.00% 900 0.35% 0.29% 0.36% 900 0.12% 0.12% 0.39%

1800 0.00% 0.00% 0.00% 1800 0.00% 0.00% 0.00% 1800 0.27% 0.27% 0.29% 1800 0.09% 0.11% 0.14%

7 120 0.00% 0.00% 0.00% 16 120 0.49% 1.51% 0.91% 27 120 2.36% 1.15% 1.85% 37 120 0.20% 0.04% 0.72%

m 300 0.00% 0.00% 0.00% m 300 0.49% 0.00% 0.60% s 300 0.83% 0.47% 1.32% s 300 0.00% 0.36% 0.01%

900 0.00% 0.00% 0.00% 900 0.00% 0.00% 0.00% 900 0.80% 0.50% 0.31% 900 0.72% 0.00% 0.00%

1800 0.00% 0.00% 0.00% 1800 0.00% 0.00% 0.00% 1800 0.46% 0.03% 0.06% 1800 0.00% 0.72% 0.00%

8 120 0.00% 0.00% 0.00% 18 120 0.70% 0.82% 0.36% 28 120 0.51% 1.15% 0.88% 40 120 4.80% 7.12% 2.21%

m 300 0.00% 0.00% 0.00% s 300 0.00% 0.26% 0.22% s 300 0.84% 0.13% 0.46% s 300 5.09% 2.96% 4.11%

900 0.00% 0.00% 0.00% 900 0.00% 0.00% 0.00% 900 0.16% 0.33% 0.18% 900 2.26% 1.46% 3.18%

1800 0.00% 0.00% 0.00% 1800 0.00% 0.00% 0.00% 1800 0.20% 0.24% 0.24% 1800 0.00% 0.00% 1.81%
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Minimum Deviations - Efficacy Measure

N
o-

Is
la
n
d

2-
Is
la
n
d

5-
Is
la
n
d

N
o-

Is
la
n
d

2-
Is
la
n
d

5-
Is
la
n
d

N
o-

Is
la
n
d

2-
Is
la
n
d

5-
Is
la
n
d

N
o-

Is
la
n
d

2-
Is
la
n
d

5-
Is
la
n
d

5 120 0.00% 0.00% 0.00% 10 120 0.00% 0.00% 0.00% 20 120 0.26% 0.46% 0.50% 30 120 1.38% 1.80% 1.17%

m 300 0.00% 0.00% 0.00% m 300 0.00% 0.00% 0.00% m 300 0.70% 0.36% 0.44% m 300 0.67% 0.85% 0.42%

900 0.00% 0.00% 0.00% 900 0.00% 0.00% 0.00% 900 0.00% 0.00% 0.00% 900 0.05% 0.05% 0.36%

1800 0.00% 0.00% 0.00% 1800 0.00% 0.00% 0.00% 1800 0.00% 0.00% 0.00% 1800 0.15% 0.00% 0.06%

6 120 0.00% 0.00% 0.00% 14 120 0.00% 0.00% 0.54% 24 120 0.37% 0.63% 0.86% 36 120 1.55% 1.72% 2.30%

s 300 0.00% 0.00% 0.00% m 300 0.00% 0.00% 0.00% m 300 0.00% 0.00% 0.51% s 300 1.16% 0.64% 0.92%

900 0.00% 0.00% 0.00% 900 0.00% 0.00% 0.00% 900 0.00% 0.00% 0.00% 900 0.12% 0.12% 0.39%

1800 0.00% 0.00% 0.00% 1800 0.00% 0.00% 0.00% 1800 0.00% 0.00% 0.00% 1800 0.09% 0.11% 0.14%

7 120 0.00% 0.00% 0.00% 16 120 0.00% 0.68% 0.76% 27 120 2.36% 1.15% 1.85% 37 120 0.20% 0.04% 0.72%

m 300 0.00% 0.00% 0.00% m 300 0.00% 0.00% 0.00% s 300 0.83% 0.47% 1.32% s 300 0.00% 0.36% 0.01%

900 0.00% 0.00% 0.00% 900 0.00% 0.00% 0.00% 900 0.80% 0.50% 0.31% 900 0.72% 0.00% 0.00%

1800 0.00% 0.00% 0.00% 1800 0.00% 0.00% 0.00% 1800 0.46% 0.03% 0.06% 1800 0.00% 0.72% 0.00%

8 120 0.00% 0.00% 0.00% 18 120 0.70% 0.82% 0.36% 28 120 0.51% 1.15% 0.88% 40 120 4.80% 7.12% 2.21%

m 300 0.00% 0.00% 0.00% s 300 0.00% 0.26% 0.22% s 300 0.84% 0.13% 0.46% s 300 5.09% 2.96% 4.11%

900 0.00% 0.00% 0.00% 900 0.00% 0.00% 0.00% 900 0.16% 0.33% 0.18% 900 2.26% 1.46% 3.18%

1800 0.00% 0.00% 0.00% 1800 0.00% 0.00% 0.00% 1800 0.20% 0.24% 0.24% 1800 0.00% 0.00% 1.81%
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10 APPENDIX C – Diagonal Matrices Obtained Using the Efficacy 
Measure as the Fitness Score 

 

 

Instance 1 

 

1 1 1 2 2

5 2 3 4 1

1 1 1 1 1

1 3 1 1

1 7 1 1

2 2 1 1

2 4 1 1

2 5 1

2 6 1 1  

 

 

Instance 2 

 

1 1 1 1 2

3 5 2 4 1

1 2 1 1 1

1 3 1 1 1

1 4 1 1 1 1

1 5 1 1 1 1

2 1 1 1

2 6 1 1 1

2 7 1  

 

 

 

 

 

 

 

 

 

 

Instance 3 

1 1 1 2 2

5 3 2 1 4

1 4 1 1 1

1 7 1 1

1 9 1

1 10 1 1 1

1 15 1 1 1

1 18 1 1 1

2 1 1 1 1

2 2 1 1

2 3 1 1 1

2 5 1 1

2 6 1 1 1

2 8 1 1 1

2 11 1 1 1

2 12 1 1 1

2 13 1 1 1

2 14 1 1

2 16 1 1

2 17 1 1  

 

Instance 4 

1 1 1 2 2 2

3 5 2 4 6 1

1 1 1 1

1 3 1 1 1

1 5 1 1

1 6 1 1 1

1 8 1 1 1

2 2 1 1

2 4 1 1 1

2 7 1 1 1 1  
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Instance 5 

1 2 3 3 4 4 5

6 5 4 7 2 3 1

1 1 1 1 1

1 4 1 1

1 9 1 1

1 10 1 1

2 5 1 1

2 8 1 1

3 3 1 1 1

3 6 1 1

4 11 1 1

5 2 1

5 7 1 1  

 

Instance 6 

1 2 2 3 3 4 4

6 7 4 3 2 5 1

1 4 1 1

1 11 1 1

2 5 1 1

2 8 1

2 10 1 1

3 2 1 1

3 6 1 1

3 9 1

4 1 1 1

4 3 1 1 1

4 7 1 1  

 

 

 

 

 

 

 

 

 

 

 

 

Instance 7 

1 1 2 2 3 3 3 4

7 8 3 2 6 5 4 1

1 11 1 1 1

1 12 1 1

2 3 1 1 1

2 4 1 1 1

2 5 1 1

2 6 1 1 1

3 7 1 1 1 1 1

3 8 1 1 1 1

3 9 1 1 1

3 10 1 1 1 1

4 1 1 1

4 2 1  

 

Instance 8 

1 1 2 2 2 2 3 3

5 6 8 2 7 4 3 1

1 1 1 1

1 5 1 1

1 10 1 1 1

1 12 1 1 1

1 15 1 1

2 3 1 1 1 1 1

2 4 1 1 1 1

2 6 1 1 1 1 1

2 7 1 1 1 1

2 18 1 1 1 1

2 20 1 1 1 1 1

3 2 1 1

3 8 1 1

3 9 1 1 1

3 11 1 1 1

3 13 1 1

3 14 1 1 1

3 16 1 1

3 17 1 1 1

3 19 1 1
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          Instance 9 

1 1 1 2 2 2 2 2

3 7 5 1 2 4 6 8

1 5 1 1 1 1

1 6 1 1 1 1

1 11 1 1 1 1

1 12 1 1 1 1

1 13 1 1 1 1 1

1 16 1 1 1 1 1 1

1 17 1 1 1 1 1

1 19 1 1 1 1 1 1

1 20 1 1 1 1 1

2 1 1 1 1 1

2 2 1 1 1 1

2 3 1 1 1 1 1

2 4 1 1 1 1

2 7 1 1 1 1 1

2 8 1 1 1 1 1

2 9 1 1 1 1

2 10 1 1 1 1 1

2 14 1 1 1 1

2 15 1 1 1 1

2 18 1 1 1 1  

 

 

Instance 10 

 

1 2 3 3 4 4 5 5 5 5

8 3 5 6 4 1 7 2 10 9

1 6 1 1

1 9 1

2 5 1

3 7 1 1

3 10 1 1 1

4 1 1 1 1

5 2 1 1

5 3 1 1 1 1

5 4 1 1 1

5 8 1 1 1  

 

 

 

 

 

Instance 11 

 

1 1 1 1 2 2 2 3 3 3

3 4 6 9 2 5 8 1 7 10

1 1 1 1 1

1 4 1 1 1

1 6 1 1 1

1 9 1 1 1 1

1 14 1 1 1 1

2 3 1 1 1

2 5 1 1 1

2 8 1 1 1

2 13 1 1 1

2 15 1 1 1

3 2 1 1 1

3 7 1 1

3 10 1 1 1

3 11 1 1 1

3 12 1 1 1  

 

Instance 12 

1 2 2 2 3 4 4 4 5 6 6 6 7 7

14 9 6 8 10 5 4 7 12 2 3 11 1 13

1 11 1 1

1 13 1 1

2 1 1 1

2 6 1 1

2 10 1 1 1 1

2 12 1 1 1

2 14 1 1

2 15 1 1 1 1

2 16 1 1

3 22

3 24 1

4 2 1 1 1

4 3 1 1 1

4 17 1 1 1

4 19 1

4 20 1 1 1

4 23 1 1 1

5 9 1 1

6 4 1 1 1 1

6 5 1 1 1

6 21 1 1

7 7 1 1

7 8 1 1 1 1

7 18 1
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Instance 13 

 

1 2 3 4 4 4 5 5 5 6 6 6 7 7

12 14 10 6 9 8 5 4 7 2 3 11 1 13

1 8 1 1

2 11 1 1

2 13 1 1

3 24 1 1

4 5 1 1

4 9 1 1 1 1

4 10 1 1

4 12 1 1 1

4 14 1 1

4 15 1 1 1 1

4 16 1 1

4 22 1 1

5 1 1 1 1

5 2 1 1 1

5 17 1 1 1

5 19 1

5 20 1 1 1

5 23 1 1 1

6 3 1 1 1 1

6 4 1 1 1

6 21 1 1

7 6 1 1

7 7 1 1 1 1

7 18 1

 

 

Instance 14 

1 2 3 4 5 6 6 6 7 7 7 7 7 8 8 8

14 13 6 9 5 2 8 1 16 11 15 10 12 4 7 3

1 4 1 1 1

1 6 1 1 1 1

1 12 1

2 2 1 1 1 1

2 8 1 1

2 11 1 1 1 1

3 13 1 1

3 15 1 1

3 17 1 1 1 1 1

3 18 1 1

4 5

5 21 1 1

6 3 1 1 1 1

6 7 1 1 1 1 1

6 10 1 1 1 1

6 22 1 1 1 1

6 23 1 1 1 1

7 9 1 1 1 1 1

7 14 1 1 1 1 1

7 20 1 1 1 1 1

7 24 1 1 1 1 1 1 1

8 1 1 1 1 1 1

8 16 1 1

8 19 1 1 1 1

 

Instance 15 

 

1 1 1 1 1 1 2 3 3 3 4 5 5 5 5 6

1 11 7 12 4 8 13 6 15 3 9 10 14 16 5 2

1 2 1 1 1 1 1

1 4 1 1 1 1 1 1 1

1 7 1 1 1 1 1 1 1

1 9 1 1 1 1

1 12 1 1 1 1 1

1 18 1 1 1 1 1 1 1 1

1 22 1 1 1 1 1

1 30 1 1 1 1 1 1

2 3 1 1

2 10 1 1

2 13 1 1

3 23 1 1 1 1

3 25 1 1 1 1 1

3 27 1 1 1 1 1 1

3 29 1 1 1 1

4 5 1 1 1

4 17 1

4 19 1 1

4 28 1 1 1

5 6 1 1 1 1

5 8 1 1 1 1

5 11 1 1 1 1

5 14 1 1 1 1

5 15 1 1 1 1

5 21 1 1 1

5 24 1 1 1

5 26 1 1 1 1

6 1 1

6 16 1

6 20 1 1 1
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Instance 16 

1 1 2 2 2 2 3 3 3 4 5 5 6 6 7 8

3 14 15 4 5 8 2 16 9 12 13 11 7 10 6 1

1 17 1 1 1

1 35 1 1

1 36 1

2 5 1 1 1

2 9 1 1 1 1

2 14 1 1 1 1

2 15 1 1

2 19 1 1 1 1 1

2 21 1 1 1 1

2 23 1 1 1 1

2 29 1 1

2 41 1 1 1

2 43 1 1 1 1

3 2 1 1 1 1 1 1

3 4 1

3 10 1 1 1

3 18 1 1

3 28 1 1 1

3 32 1 1 1 1

3 37 1 1 1 1 1 1

3 38 1 1 1 1

3 40 1 1 1 1

3 42 1 1 1 1 1

4 11 1 1

4 22 1

4 27 1 1 1

4 30 1 1

5 3 1 1 1

5 20 1 1

5 24 1 1 1 1

6 1 1 1 1 1

6 13 1 1 1

6 25 1 1

6 26 1

6 31 1 1

7 6 1 1

7 7 1 1 1

7 8 1 1 1 1

7 12 1 1

7 33 1 1 1

7 34 1 1

7 39 1

8 16 1

 

 

 

 

 

 

 

 

 

 

 

Instance 17 

 
1 2 2 2 2 3 3 3 3 3 3 3 4 4 5 5 5 5 5 6

12 14 5 4 18 2 10 11 13 15 17 20 3 8 1 6 9 16 19 7

1 19 1 1

2 3 1 1 1 1 1 1 1 1

2 8 1 1 1 1 1 1 1 1

2 11 1 1 1 1 1 1 1

2 12 1 1 1 1 1 1

2 14 1 1 1 1 1

2 16 1 1 1 1

2 17 1 1 1 1 1 1

3 2 1 1 1 1 1 1 1 1 1 1

3 10 1 1 1 1 1

3 13 1 1 1 1 1 1 1

4 5 1 1 1

4 15 1 1 1 1 1

4 20 1 1 1 1 1

5 1 1 1 1 1 1 1

5 4 1 1 1

5 7 1 1 1 1 1 1 1 1 1

5 9 1 1 1 1 1

6 6 1 1 1

6 18 1 1 1 1

 

Instance 18 

 
1 2 2 2 3 4 5 5 6 6 7 7 8 8 8 8 9 9

18 11 12 14 15 7 9 8 13 10 1 2 3 4 5 6 16 17

1 11 1 1

1 16 1 1

2 7 1 1 1

2 14 1 1 1

2 18 1 1 1 1

2 21 1 1 1

3 1 1 1

3 13 1 1 1

4 6 1 1 1

5 3 1 1 1

5 20 1 1

5 24 1 1 1 1

6 19 1 1 1

6 22 1 1 1

7 23 1 1 1 1 1

8 2 1 1 1 1 1

8 5 1 1 1 1 1

8 8 1 1 1 1 1

8 9 1 1 1 1 1

8 10 1 1 1 1

8 12 1 1 1 1 1

8 15 1 1 1 1 1

8 17 1 1 1 1 1

9 4 1 1 1 1
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Instance 19 

 
2 2 2 2 2 2 3 4 4 4 4 5 5 5 5 6 6 7 7

1 3 5 6 12 18 13 4 8 14 20 2 11 16 19 9 15 7 10

1

1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1

1 1 1 1 1 1 1 1 1 1 1

1 1

1 1 1

1 1 1 1 1 1

1 1 1 1 1

1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1

1 1

1 1 1 1 1 1

1 1

1 1 1 1

1 1 1 1

1 1 1 1 1 1

1 1

1 1

1 1

 Instance 20 

 

1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5

6 9 10 20 1 3 7 8 17 11 12 15 16 19 2 4 13 14 18 5

1 8 1 1 1 1 1

1 14 1 1 1 1 1

1 19 1 1 1 1

1 22 1 1 1

1 26 1 1 1 1

2 1 1 1 1 1 1

2 3 1 1 1 1 1

2 5 1 1 1 1

2 15 1 1 1 1

2 17 1 1 1 1

2 20 1 1 1 1

2 23 1 1 1 1 1

2 25 1 1 1

2 29 1 1 1

3 4 1 1 1 1 1

3 6 1 1 1 1

3 9 1 1 1 1 1

3 11 1 1 1 1 1

3 21 1 1 1 1 1

3 28 1 1 1 1

3 30 1 1 1 1

3 32 1 1 1

4 2 1 1 1 1 1

4 7 1 1 1

4 10 1 1 1

4 12 1 1 1 1 1

4 13 1 1 1 1 1

4 18 1 1 1

4 24 1 1 1 1 1

4 27 1 1 1

4 31 1 1 1 1

5 16 1 1 1

5 33 1

5 34 1 1

5 35 1

 

 

 

 Instance 21 
1 1 1 1 2 2 2 2 2 3 4 4 4 4 4 5 5 5 5 5

3 7 8 17 2 4 13 14 18 1 11 12 15 16 19 5 6 9 10 20

1 1 1 1 1 1 1

1 3 1 1 1

1 5 1 1 1 1 1

1 15 1 1 1 1 1

1 17 1 1 1 1

1 20 1 1 1 1 1

1 28 1 1

2 2 1 1 1 1 1

2 7 1 1 1 1

2 10 1 1

2 12 1 1 1 1 1 1 1

2 13 1 1 1 1 1

2 24 1 1 1 1 1 1 1 1

2 26 1 1 1

2 31 1 1 1 1 1

3 16 1 1

3 18 1 1 1 1

3 25 1 1 1

3 33 1

3 34 1

3 35 1 1 1 1 1

4 4 1 1 1 1 1

4 6 1 1 1 1 1

4 9 1 1 1 1 1 1

4 11 1 1 1 1

4 21 1 1 1

4 27 1 1 1

4 30 1 1 1 1 1 1 1

4 32 1 1 1 1 1 1

5 8 1 1 1 1

5 14 1 1 1 1 1 1

5 19 1 1 1 1 1 1

5 22 1 1 1

5 23 1 1 1 1 1 1

5 29 1 1 1 1 1

 

 

Instance 22 

 
1 1 1 1 1 2 2 2 2 3 3 3 3 4 4 5 5 5 5 6 6 6 7 7

6 8 12 15 18 1 13 21 22 7 14 23 24 3 20 2 5 11 19 9 10 17 4 16

4 1 1 1 1 1

5 1 1 1 1 1

18 1 1 1 1 1

26 1 1 1 1 1

27 1 1 1 1 1

30 1 1 1 1 1

1 1 1 1 1

9 1 1 1 1

16 1 1 1 1

17 1 1 1 1

33 1 1 1 1

3 1 1 1 1

25 1 1 1 1

32 1 1 1 1

2 1 1

11 1 1

12 1 1

15 1 1

23 1 1

24 1 1

31 1 1

34 1 1

10 1 1 1 1

13 1 1 1 1

14 1 1 1 1

22 1 1 1 1

35 1 1 1 1

36 1 1 1 1

6 1 1 1

7 1 1 1

20 1 1 1

29 1 1 1

40 1 1 1

8 1 1

19 1 1

21 1 1

28 1 1

37 1 1

38 1 1

39 1 1
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Instance 23 
1 1 1 2 2 2 2 3 3 4 4 4 4 5 5 6 6 6 6 6 7 7 7 7

9 10 17 2 5 11 19 4 16 7 14 23 24 3 20 6 8 12 15 18 1 13 21 22

1 6 1 1 1

1 7 1 1 1

1 20 1 1 1

1 29 1 1

1 40 1 1 1

2 10 1 1 1 1 1

2 13 1 1 1

2 14 1 1 1 1

2 22 1 1 1 1

2 35 1 1 1

2 36 1 1 1

3 8 1 1

3 19 1 1

3 21 1 1

3 28 1

3 37 1 1

3 38 1 1

3 39 1 1

4 3 1 1 1 1

4 25 1 1 1

4 32 1 1 1 1 1

5 2 1 1 1

5 11 1 1

5 12 1 1

5 15 1 1

5 23 1 1

5 24 1 1 1

5 31 1 1 1

5 34 1 1

6 4 1 1 1 1 1

6 5 1 1 1 1 1 1

6 18 1 1 1 1 1

6 26 1 1 1 1 1

6 27 1 1 1 1 1

6 30 1 1 1 1

7 1 1 1 1 1

7 9 1 1 1 1

7 16 1 1 1 1

7 17 1 1 1

7 33 1 1 1 1 1

 

 

Instance 24 

 
1 1 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 6 7 7

3 20 9 10 17 7 14 23 24 1 13 21 22 2 5 11 19 6 8 12 15 18 4 16

1 2 1 1 1

1 11 1 1

1 12 1 1

1 15 1 1

1 23 1 1

1 24 1 1 1

1 31 1 1

1 34 1 1

2 6 1 1

2 7 1 1 1

2 20 1 1 1

2 29 1 1

2 40 1 1 1 1

3 3 1 1 1

3 25 1 1 1

3 32 1 1 1 1

4 1 1 1 1 1

4 9 1 1 1

4 16 1 1 1 1 1

4 17 1 1 1

4 33 1 1 1 1 1 1

5 10 1 1 1 1 1

5 13 1 1 1

5 14 1 1 1 1

5 22 1 1 1 1

5 35 1 1 1

5 36 1 1 1 1

6 4 1 1 1 1

6 5 1 1 1 1 1 1

6 18 1 1 1 1

6 26 1 1 1 1 1

6 27 1 1 1 1 1

6 30 1 1 1 1 1

7 8 1 1

7 19 1 1 1 1

7 21 1 1

7 28 1

7 37 1 1

7 38 1 1 1

7 39 1 1

 

 

Instance 25 
1 1 1 1 2 2 3 3 4 4 5 5 6 7 7 8 9 10 10 11 11 11 11 11

2 5 11 19 13 22 1 21 4 16 7 14 17 23 24 9 10 3 20 6 8 12 15 18

1 10 1 1 1 1

1 13 1 1 1 1

1 14 1 1 1 1 1

1 22 1 1 1 1

1 35 1 1 1 1 1

1 36 1 1 1 1

2 1 1 1 1 1

2 16 1 1 1 1

2 17 1 1 1 1

3 9 1 1

3 33 1 1 1 1

4 8 1 1

4 19 1 1 1

4 21 1 1

4 28 1

4 37 1 1

4 38 1 1

5 25 1 1 1

6 7 1

6 29 1 1

6 31 1 1

7 2 1 1 1

7 3 1 1 1 1

7 32 1 1 1 1 1

8 39 1 1

8 40 1 1 1

9 6 1 1

9 20 1 1 1

9 24 1 1 1

10 11 1 1 1

10 12 1 1 1 1

10 15 1 1 1

10 23 1 1 1

10 34 1 1 1

11 4 1 1 1 1

11 5 1 1 1 1 1

11 18 1 1 1

11 26 1 1 1 1 1

11 27 1 1 1 1

11 30 1 1 1 1
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Instance 26 

 
1 1 2 2 3 3 3 4 4 4 5 6 6 6 7 8 8 9 9 10 11 11 12 12

13 22 3 20 6 8 18 4 7 14 9 2 15 19 16 10 12 1 21 17 23 24 5 11

1 1 1 1 1 1

1 16 1 1 1 1

1 35 1 1 1

2 2 1 1 1

2 12 1 1 1 1 1 1

2 15 1 1 1

2 23 1 1 1

2 34 1 1 1 1

3 4 1 1 1

3 5 1 1 1 1

3 18 1 1 1

3 26 1 1 1 1 1

3 30 1 1 1 1

3 38 1 1 1

4 11 1 1 1 1

4 25 1 1 1

4 28 1 1

5 6 1 1

5 29 1 1

5 39 1 1

5 40 1 1 1

6 13 1 1 1 1

6 14 1 1 1 1

6 27 1 1 1 1

6 36 1 1 1 1

7 8 1 1

7 19 1 1 1

7 21 1 1

7 37 1 1

8 20 1 1 1

8 24 1 1 1

9 9 1 1 1 1

9 33 1 1 1 1

10 7 1

10 17 1 1 1

10 31 1 1 1

11 3 1 1 1

11 32 1 1 1 1

12 10 1 1 1 1

12 22 1 1 1 1

 

Instance 27 
1 1 2 2 2 3 3 3 4 4 5 5 5 6 6 7 8 8 8 9 10 10 11 12

3 24 1 10 21 5 9 13 16 23 6 8 22 12 18 11 7 14 20 4 2 19 15 17

1 8 1 1 1

1 24 1 1 1

1 34 1 1 1

2 9 1 1 1 1

2 33 1 1 1 1

3 6 1 1 1

3 12 1 1 1 1 1 1

3 35 1 1

4 19 1 1 1

4 32 1 1 1 1

4 36 1 1 1

4 39 1 1 1

5 16 1 1 1 1

5 26 1 1 1 1 1

5 30 1 1 1 1

5 38 1 1 1

6 4 1 1 1

6 18 1 1 1

6 27 1 1 1 1

7 3 1 1 1 1

7 10 1 1 1 1 1

7 15 1 1 1

7 22 1 1 1 1

7 23 1 1

8 2 1 1 1

8 11 1 1 1

8 25 1 1 1

9 21 1 1

9 28 1 1

10 13 1 1 1 1

10 14 1 1 1 1

10 40 1 1 1

11 1 1 1 1

11 5 1 1 1 1

11 37 1 1

12 7 1 1

12 17 1 1 1

12 20 1 1 1

12 29 1

12 31 1 1 1

 

Instance 28 

 
1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 4 4 5 6 6

6 17 20 21 23 24 26 27 1 2 3 4 5 7 8 10 13 14 16 19 22 12 11 25 9 15 18

1 6 1 1 1 1 1 1 1 1

1 17 1 1 1 1 1 1 1 1 1

1 20 1 1 1 1 1 1 1

1 21 1 1 1 1 1 1 1 1 1

1 23 1 1 1 1

1 24 1 1 1 1 1

1 26 1 1 1 1 1

1 27 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1

2 2 1 1 1 1 1 1 1 1 1

2 3 1 1 1 1 1 1 1 1

2 4 1 1 1 1 1 1 1

2 5 1 1 1 1 1 1 1 1 1 1 1

2 7 1 1 1 1 1 1 1 1 1 1 1 1 1

2 8 1 1 1 1 1 1 1 1 1

2 10 1 1 1 1 1 1 1 1 1 1 1

2 13 1 1 1 1 1 1 1 1 1 1

2 14 1 1 1 1 1 1 1 1

2 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 19 1 1 1 1 1 1 1 1 1 1

2 22 1 1 1 1 1 1 1 1 1 1

3 12 1 1 1 1 1 1

4 11 1 1 1 1 1 1

4 25 1 1 1 1

5 9 1 1 1 1 1 1

6 15 1 1 1 1 1 1 1

6 18 1 1 1 1 1 1
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Instance 29 
1 2 2 2 2 3 3 4 4 5 5 5 6 6 6 6 6 7 7 7 7 7 8 8 8 9 9 10

2 22 23 27 28 18 26 16 17 3 4 5 1 8 9 10 15 11 12 13 14 24 19 20 21 6 7 25

1 38 1 1 1

2 33 1 1 1

3 17 1 1 1 1 1 1

4 44 1 1 1 1

4 45 1 1 1 1

5 14 1 1 1 1 1 1

5 18 1 1 1 1 1

5 19 1 1 1 1 1

5 20 1 1 1 1 1

5 21 1 1 1 1 1

5 22 1 1 1 1 1

5 23 1 1 1 1 1

5 25 1 1 1 1 1 1 1

5 28 1 1 1 1

5 30 1 1 1 1

5 31 1 1 1 1

6 1 1 1 1 1 1 1 1

6 2 1 1 1 1 1 1 1

6 3 1 1 1 1 1

6 4 1 1 1 1 1

6 5 1 1 1 1 1

6 7 1 1 1 1 1

6 12 1 1 1 1

6 15 1 1 1 1 1

6 16 1 1 1 1 1

6 24 1 1 1 1 1 1 1

7 39 1 1 1 1 1

7 40 1 1 1 1 1

7 41 1 1 1 1

7 42 1 1 1 1

7 43 1 1 1

8 6 1 1 1 1 1

8 8 1 1 1 1

8 9 1 1 1 1

8 10 1 1 1 1

8 11 1 1 1 1

8 32 1 1 1

8 36 1 1 1

9 13 1 1 1 1 1 1 1

9 26 1 1 1 1 1

9 27 1 1 1 1 1

9 29 1 1 1 1

9 37 1 1 1

10 34 1 1 1

10 35 1 1 1

10 46 1 1 1  
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Instance 30 

 

1 2 2 3 4 5 5 6 6 6 6 7 8 8 8 8 9 9 10 11 11 11 11 12 12 12 12 13 13 14

9 13 24 25 8 5 15 7 17 18 26 14 19 20 29 30 6 16 12 3 10 22 23 1 2 11 21 27 28 4

1 13 1 1

2 38 1 1

3 4 1 1

4 9 1 1

4 14 1 1

4 29 1 1

5 17 1 1

6 16 1 1 1 1

6 27 1 1 1 1

6 34 1 1 1 1

6 36 1 1 1 1

7 5 1 1

7 18 1 1

7 26 1 1

7 37 1 1

8 1 1 1 1 1 1

8 3 1 1 1 1 1

8 21 1 1 1 1 1

8 22 1 1 1

8 30 1 1

9 6 1 1

10 11 1 1

10 19 1 1

10 20 1 1

10 24 1 1

10 40 1 1 1 1

11 2 1 1

11 12 1 1 1 1 1 1 1

11 23 1 1 1 1 1

11 31 1 1 1 1 1

11 39 1 1 1 1 1 1 1 1

12 10 1 1 1 1

12 32 1 1 1 1 1

12 33 1 1 1 1

12 41 1 1 1

13 8 1 1 1

14 7 1 1

14 15 1 1

14 25 1 1

14 28 1 1

14 35 1 1  
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Instance 31 

1 1 2 2 2 3 4 4 5 5 5 6 6 6 7 8 8 8 8 9 9 9 10 11 11 12 12 13 13 13

14 16 6 8 12 7 15 17 19 21 23 25 27 29 28 1 4 11 13 2 5 9 26 24 30 3 10 18 20 22

1 19 1 1

1 21 1 1

1 23 1 1 1

1 26 1 1

1 27 1 1

2 5 1 1 1 1

2 7 1 1 1 1 1 1

2 13 1 1 1

2 14 1 1 1

2 15 1 1 1

2 16 1 1 1

3 9 1 1 1 1 1

3 12 1 1

4 20 1 1 1

4 22 1 1

4 24 1 1

4 25 1 1 1

5 29 1 1 1

5 31 1 1 1

5 33 1 1 1

5 38 1 1 1

6 40 1 1 1

6 41 1 1 1

6 45 1 1 1

6 49 1 1 1

6 50 1 1

7 43 1 1

7 47 1 1

8 1 1 1 1 1 1 1

8 18 1 1 1 1

9 2 1 1 1 1

9 3 1 1 1 1

9 17 1 1 1

10 46 1 1

11 39 1 1 1 1

11 42 1 1 1

11 44 1 1 1

11 48 1 1 1

12 4 1 1 1 1

12 6 1 1 1 1 1

12 8 1 1 1

12 10 1 1

12 11 1 1 1

13 28 1 1 1

13 30 1 1 1

13 32 1 1 1

13 34 1 1 1

13 35 1 1 1

13 36 1 1 1

13 37 1 1 1  
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Instance 32 

 

1 2 2 3 3 4 4 4 4 5 5 5 6 6 6 6 7 7 8 8 8 9 9 10 10 11 12 13 14 14

6 7 28 13 20 8 9 23 30 1 4 14 10 25 26 27 16 21 17 18 22 5 29 19 24 15 2 11 3 12

1 31 1 1 1 1

1 32 1 1 1

1 44 1 1 1 1

1 48 1 1

2 10 1 1 1

2 12 1 1 1

2 14 1 1

2 18 1 1

2 40 1 1 1 1

3 1 1 1 1 1

3 4 1 1 1

3 29 1 1 1

3 33 1 1 1

3 42 1

3 45 1 1 1 1

4 35 1 1 1 1

4 39 1 1 1 1 1 1 1

5 8 1 1 1 1

5 9 1 1 1

5 21 1 1 1 1 1

5 36 1 1 1

5 41 1 1 1 1

6 13 1 1 1 1

6 15 1 1 1

6 34 1 1 1 1 1 1 1

7 2 1 1 1 1

7 3 1 1 1

7 11 1 1

8 28 1 1 1

8 30 1 1 1

8 50 1 1 1

9 23 1 1 1 1

9 24 1 1 1

9 25 1 1 1

10 5 1 1 1 1

10 6 1 1 1

10 7 1 1 1

10 26 1 1 1

10 27 1 1

11 37 1 1

11 46 1 1 1 1 1

11 47 1 1

12 19 1 1 1 1

12 20 1 1 1 1

12 38 1

13 16 1 1 1

13 49 1 1

14 17 1 1 1 1 1

14 22 1 1 1

14 43 1 1 1 1
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Instance 33 

 
1 1 2 3 4 5 5 5 6 7 7 7 7 7 8 9 10 11 12 12 12 13 13 13 13 13 13 13 13 13 14 15 16 16 16 17

32 34 18 13 15 7 20 36 17 16 22 25 27 30 1 26 35 28 11 31 33 2 3 4 8 10 12 14 24 29 6 9 5 19 21 23

1 1 1

1 3 1

1 5 1 1

1 6 1

1 7 1

1 9 1 1 1 1 1 1

1 13 1 1 1

1 19 1 1

1 25 1 1

1 27 1 1 1 1

1 29 1 1 1

1 31 1 1 1

1 37 1 1

1 43 1 1 1

1 46 1 1

1 54 1 1 1

1 58 1 1

1 60 1 1 1

1 69 1 1 1 1 1

1 70 1 1 1

1 72 1 1 1

1 79 1 1 1 1 1 1 1 1

1 84 1 1 1 1 1 1

2 80 1 1 1

2 82 1 1 1 1

3 75 1 1

4 18 1

5 45 1

5 81 1 1 1 1 1 1 1

5 85 1 1 1 1 1 1 1

6 86 1 1 1 1 1 1

7 8 1 1 1 1 1 1

7 15 1 1 1 1 1

7 21 1 1 1 1 1 1 1

7 22 1 1 1 1 1 1 1

7 40 1 1 1 1 1 1 1

7 51 1 1 1

7 56 1 1 1 1 1

7 62 1 1 1

7 64 1 1 1 1 1

7 68 1 1 1

7 73 1 1 1 1 1

7 76 1 1 1 1 1 1

7 77 1 1 1 1 1 1 1

7 88 1 1 1 1 1 1

7 90 1 1 1 1 1 1 1 1

8 16 1 1

8 34 1

8 50 1 1

9 2 1 1

9 17 1

9 42 1 1

9 48 1 1 1

9 55 1 1 1 1 1

9 63 1 1 1 1

9 78 1 1 1 1

10 14 1 1

10 32 1

10 47 1 1

10 53 1

10 57 1 1

10 66 1 1 1

11 20 1

11 30 1 1

11 33 1 1

11 74 1 1 1

12 10 1

12 11 1 1 1 1 1

12 12 1

12 28 1 1 1

12 36 1 1 1 1 1

12 41 1 1 1 1 1 1

12 49 1 1 1 1

12 61 1 1

13 39 1

14 4 1 1

14 23 1

14 38 1

14 52 1 1 1

15 35 1 1

16 24 1

16 44 1

16 59 1 1 1

16 65 1 1 1 1 1 1

16 67 1 1 1 1

16 71 1 1 1 1

16 83 1 1 1 1 1 1

16 87 1 1 1 1 1

16 89 1 1 1 1 1 1

17 26 1
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Instance 34 

 
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3

36 37 3 4 8 10 11 14 15 17 18 19 20 21 23 26 27 28 30 31 32 33 35 1 2 5 6 7 9 12 13 16 22 24 25 29 34

1 45 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 22 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 23 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 26 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 27 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 28 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 29 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 34 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 35 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 36 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 37 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 38 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 39 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 40 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 42 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 43 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 44 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 46 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 47 1 1 1 1 1 1 1 1 1 1 1 1 1

2 48 1 1 1 1 1 1 1 1 1 1 1 1 1

2 49 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 51 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 52 1 1 1 1 1 1 1 1 1 1 1

2 53 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 33 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
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Instance 35 
1 1 1 2 2 2 2 2 3 3 3 4 4 4 4 4 4 5 5 6 6 6 6 7 7 7 8 8 8 8 8 9 9 9 9 9 10 10 10 10

14 17 35 6 12 26 38 40 24 27 29 5 8 22 23 37 39 11 13 19 25 28 30 4 9 20 15 18 33 34 36 2 10 16 21 31 1 3 7 32

1 21 1 1 1

1 22 1 1 1

1 52 1 1 1

1 75 1 1 1

1 86 1 1 1 1

1 94 1 1

2 1 1 1 1 1 1

2 2 1 1 1 1 1 1

2 14 1 1 1 1

2 15 1 1 1 1 1

2 29 1 1 1 1

2 30 1 1 1 1 1

2 38 1 1 1 1 1

2 40 1 1 1 1

2 43 1 1 1 1 1

2 44 1 1 1 1 1

2 45 1 1 1 1 1

2 59 1 1 1 1 1 1

2 60 1 1 1 1 1 1

2 62 1 1 1 1

2 63 1 1 1 1

2 95 1 1 1 1 1

3 8 1 1 1

3 16 1 1 1

3 25 1 1 1

3 34 1 1 1 1

3 35 1 1 1

3 47 1 1 1 1

3 53 1 1 1 1

3 68 1 1 1

3 87 1 1 1

3 96 1 1 1

4 6 1 1 1 1 1 1

4 17 1 1 1 1 1

4 26 1 1 1 1 1 1 1

4 27 1 1 1 1 1

4 28 1 1 1 1 1

4 46 1 1 1 1 1 1

4 55 1 1 1 1 1 1

4 69 1 1 1 1 1 1

4 70 1 1 1 1 1 1

4 76 1 1 1 1 1 1

4 82 1 1 1 1 1 1

4 83 1 1 1 1 1 1

4 88 1 1 1 1 1 1 1

4 89 1 1 1 1 1 1

4 93 1 1 1 1

4 98 1 1 1 1 1 1

4 99 1 1 1 1 1 1

5 7 1 1

5 11 1 1

5 18 1 1

5 37 1 1 1

5 42 1 1

5 56 1 1 1 1

5 67 1 1 1

5 79 1 1

5 80 1 1 1

5 97 1 1

6 71 1 1 1 1

6 72 1 1 1 1

6 84 1 1 1 1

6 85 1 1 1 1

6 91 1 1 1 1

6 92 1 1 1 1

7 3 1 1 1

7 10 1 1 1

7 19 1 1 1

7 20 1 1 1

7 36 1 1 1

7 48 1 1 1

7 50 1 1 1

7 100 1 1 1

8 23 1 1 1 1 1

8 31 1 1 1 1 1

8 32 1 1 1 1

8 41 1 1 1 1 1

8 51 1 1 1 1

8 74 1 1 1 1 1 1

9 12 1 1 1 1 1 1

9 13 1 1 1 1

9 54 1 1 1

9 61 1 1 1 1 1 1

9 64 1 1 1 1

9 73 1 1 1 1 1

9 77 1 1 1 1 1 1

9 78 1 1 1 1 1

9 90 1 1 1 1 1

10 4 1 1 1 1

10 5 1 1 1 1

10 9 1 1 1

10 24 1 1 1 1

10 33 1 1 1

10 39 1 1 1 1

10 49 1 1 1 1

10 57 1 1 1 1

10 58 1 1 1 1

10 65 1 1 1 1

10 66 1 1 1 1

10 81 1 1 1
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11 APPENDIX D – Diagonal Matrices Obtained Using the Similarity Measure as the 
Fitness Score

 
 
 
Instance 1 
 

1 1 1 2 2

2 3 5 1 4

1 1 1 1 1

1 3 1 1

1 7 1 1

2 2 1 1

2 4 1 1

2 5 1

2 6 1 1  

 

 

Instance 2 

 

1 1 1 1 2

2 3 4 5 1

1 2 1 1 1

1 3 1 1 1

1 4 1 1 1 1

1 5 1 1 1 1

2 1 1 1

2 6 1 1 1

2 7 1  

 

 

 

 

 

 

 

 

 

 

 

 

 

Instance3 

1 1 1 2 2

2 3 5 1 4

1 4 1 1 1

1 7 1 1

1 9 1

1 10 1 1 1

1 15 1 1 1

1 18 1 1 1

2 1 1 1 1

2 2 1 1

2 3 1 1 1

2 5 1 1

2 6 1 1 1

2 8 1 1 1

2 11 1 1 1

2 12 1 1 1

2 13 1 1 1

2 14 1 1

2 16 1 1

2 17 1 1  

 

Instance 4 

1 1 1 2 2 2

2 3 5 1 4 6

1 1 1 1

1 3 1 1 1

1 5 1 1

1 6 1 1 1

1 8 1 1 1

2 2 1 1

2 4 1 1 1

2 7 1 1 1 1  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Instance 5 

 

1 2 3 4 4 5 5

6 5 4 2 3 1 7

1 4 1 1

1 9 1 1

1 10 1 1

2 5 1 1

2 8 1 1

3 1 1 1 1

3 6 1 1

4 11 1 1

5 2 1

5 3 1 1 1

5 7 1 1  

 

Instance 6 

 

1 2 2 3 3 4 4

6 4 7 2 3 1 5

1 4 1 1

1 11 1 1

2 5 1 1

2 8 1

2 10 1 1

3 2 1 1

3 6 1 1

3 9 1

4 1 1 1

4 3 1 1 1

4 7 1 1

 

Instance 7 

 

1 1 2 2 2 3 3 4

7 8 4 5 6 2 3 1

1 11 1 1 1

1 12 1 1

2 7 1 1 1 1 1

2 8 1 1 1 1

2 9 1 1 1

2 10 1 1 1 1

3 3 1 1 1

3 4 1 1 1

3 5 1 1

3 6 1 1 1

4 1 1 1

4 2 1
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Instance 8 
 

1 1 2 2 3 3 3 3

5 6 1 3 2 4 7 8

1 1 1 1

1 5 1 1

1 10 1 1 1

1 12 1 1 1

1 15 1 1

2 2 1 1

2 8 1 1

2 9 1 1 1

2 11 1 1 1

2 13 1 1

2 14 1 1 1

2 16 1 1

2 17 1 1 1

2 19 1 1

3 3 1 1 1 1 1

3 4 1 1 1 1

3 6 1 1 1 1 1

3 7 1 1 1 1

3 18 1 1 1 1

3 20 1 1 1 1 1

           
Instance 9 

 
1 1 2 2 2 2 2 2

3 7 1 2 4 5 6 8

1 5 1 1 1 1

1 6 1 1 1 1

1 7 1 1 1 1 1

1 8 1 1 1 1 1

1 11 1 1 1 1

1 12 1 1 1 1

1 13 1 1 1 1 1

1 17 1 1 1 1 1

1 20 1 1 1 1 1

2 1 1 1 1 1

2 2 1 1 1 1

2 3 1 1 1 1 1

2 4 1 1 1 1

2 9 1 1 1 1

2 10 1 1 1 1 1

2 14 1 1 1 1

2 15 1 1 1 1

2 16 1 1 1 1 1 1

2 18 1 1 1 1

2 19 1 1 1 1 1 1

 

 
 

Instance 10 
 

1 1 1 1 2 2 2 3 3 3

3 4 6 9 1 7 10 2 5 8

1 1 1 1 1

1 4 1 1 1

1 6 1 1 1

1 9 1 1 1 1

1 14 1 1 1 1

2 2 1 1 1

2 7 1 1

2 10 1 1 1

2 11 1 1 1

2 12 1 1 1

3 3 1 1 1

3 5 1 1 1

3 8 1 1 1

3 13 1 1 1

3 15 1 1 1  
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Instance 11 
 

1 1 1 1 2 2 2 3 3 3

3 4 6 9 1 7 10 2 5 8

1 1 1 1 1

1 4 1 1 1

1 6 1 1 1

1 9 1 1 1 1

1 14 1 1 1 1

2 2 1 1 1

2 7 1 1

2 10 1 1 1

2 11 1 1 1

2 12 1 1 1

3 3 1 1 1

3 5 1 1 1

3 8 1 1 1

3 13 1 1 1

3 15 1 1 1  
 

Instance 12 
 

1 2 2 3 4 4 4 5 5 5 6 6 7 7

12 9 14 10 2 3 11 4 5 7 6 8 1 13

1 9 1 1

1 22

2 6 1 1

2 10 1 1 1 1

2 11 1 1

2 13 1 1

2 15 1 1 1 1

3 24 1

4 4 1 1 1 1

4 5 1 1 1

4 21 1 1

5 2 1 1 1

5 3 1 1 1

5 17 1 1 1

5 19 1

5 20 1 1 1

5 23 1 1 1

6 1 1 1

6 12 1 1 1

6 14 1 1

6 16 1 1

7 7 1 1

7 8 1 1 1 1

7 18 1

 
 
 
 
 
 

 
 
 
 
 
 

Instance 13 
1 2 3 3 4 4 5 5 5 6 6 6 7 7

12 10 9 14 6 8 2 3 11 4 5 7 1 13

1 8 1 1

2 24 1 1

3 5 1 1

3 9 1 1 1 1

3 11 1 1

3 13 1 1

3 15 1 1 1 1

4 10 1 1

4 12 1 1 1

4 14 1 1

4 16 1 1

4 22 1 1

5 3 1 1 1 1

5 4 1 1 1

5 21 1 1

6 1 1 1 1

6 2 1 1 1

6 17 1 1 1

6 19 1

6 20 1 1 1

6 23 1 1 1

7 6 1 1

7 7 1 1 1 1

7 18 1

 
Instance 14 

1 2 2 3 3 3 3 4 4 4 5 5 6 7 8 8

15 9 13 10 11 12 16 1 2 8 7 14 6 5 3 4

1 5

1 6 1 1 1 1

2 7 1 1 1 1 1

2 8 1 1

3 9 1 1 1 1 1

3 11 1 1 1 1

3 14 1 1 1 1 1

3 20 1 1 1 1 1

3 24 1 1 1 1 1 1 1

4 3 1 1 1 1

4 10 1 1 1 1

4 22 1 1 1 1

4 23 1 1 1 1

5 1 1 1 1 1 1

5 4 1 1 1

5 12 1

6 2 1 1 1 1

6 13 1 1

6 15 1 1

6 17 1 1 1 1 1

6 18 1 1

7 21 1 1

8 16 1 1

8 19 1 1 1 1

 
 



 79 

 
Instance 15 

 
1 2 3 3 3 3 3 3 4 4 4 5 5 5 5 6

13 9 1 4 7 8 11 12 3 6 15 5 10 14 16 2

1 3 1 1

1 10 1 1

1 13 1 1

2 5 1 1 1

2 17 1

2 19 1 1

2 28 1 1 1

3 2 1 1 1 1 1

3 4 1 1 1 1 1 1 1

3 7 1 1 1 1 1 1 1

3 9 1 1 1 1

3 12 1 1 1 1 1

3 18 1 1 1 1 1 1 1 1

3 22 1 1 1 1 1

3 30 1 1 1 1 1 1

4 23 1 1 1 1

4 25 1 1 1 1 1

4 27 1 1 1 1 1 1

4 29 1 1 1 1

5 6 1 1 1 1

5 8 1 1 1 1

5 11 1 1 1 1

5 14 1 1 1 1

5 15 1 1 1 1

5 21 1 1 1

5 24 1 1 1

5 26 1 1 1 1

6 1 1

6 16 1

6 20 1 1 1

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

     Instance 16 
 

1 2 2 3 3 3 4 4 5 5 6 7 7 7 8 8

13 7 10 4 5 15 11 12 6 8 1 2 9 16 3 14

1 3 1 1 1

2 1 1 1 1 1

2 13 1 1 1

2 25 1 1

2 26 1

2 31 1 1

2 34 1 1

3 5 1 1 1

3 9 1 1 1 1

3 14 1 1 1 1

3 16 1

3 19 1 1 1 1 1

3 21 1 1 1 1

3 29 1 1

3 33 1 1 1

3 41 1 1 1

4 11 1 1

4 20 1 1

4 22 1

4 24 1 1 1 1

4 27 1 1 1

4 30 1 1

5 8 1 1 1 1

5 12 1 1

5 15 1 1

5 23 1 1 1 1

5 39 1

5 43 1 1 1 1

6 4 1

7 2 1 1 1 1 1 1

7 10 1 1 1

7 18 1 1

7 28 1 1 1

7 32 1 1 1 1

7 37 1 1 1 1 1 1

7 38 1 1 1 1

7 40 1 1 1 1

7 42 1 1 1 1 1

8 6 1 1

8 7 1 1 1

8 17 1 1 1

8 35 1 1

8 36 1
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Instance 17 
 

1 1 1 2 3 4 5 5 6 6 7 7 8 8 9 9 9 9

11 12 14 15 18 13 16 17 8 9 1 2 7 10 3 4 5 6

1 7 1 1 1

1 14 1 1 1

1 18 1 1 1 1

1 21 1 1 1

2 1 1 1

2 13 1 1 1

3 11 1 1

3 16 1 1

4 19 1 1 1

4 22 1 1 1

5 4 1 1 1 1

6 3 1 1 1

6 20 1 1

6 24 1 1 1 1

7 23 1 1 1 1 1

8 6 1 1 1

9 2 1 1 1 1 1

9 5 1 1 1 1 1

9 8 1 1 1 1 1

9 9 1 1 1 1 1

9 10 1 1 1 1

9 12 1 1 1 1 1

9 15 1 1 1 1 1

9 17 1 1 1 1 1

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Instance 18 
 

1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 6 6 6 6 6

3 8 5 7 15 20 1 6 9 16 4 14 18 19 12 2 10 11 13 17

1 5 1 1 1

1 15 1 1 1 1 1

1 20 1 1 1 1 1

2 2 1 1 1 1 1 1 1 1 1 1

2 17 1 1 1 1 1 1

3 1 1 1 1 1 1 1

3 4 1 1 1

3 7 1 1 1 1 1 1 1 1 1

3 9 1 1 1 1 1

3 18 1 1 1 1

4 3 1 1 1 1 1 1 1 1

4 8 1 1 1 1 1 1 1 1

4 11 1 1 1 1 1 1 1

4 12 1 1 1 1 1 1

4 14 1 1 1 1 1

5 6 1 1 1

5 16 1 1 1 1

5 19 1 1

6 10 1 1 1 1 1

6 13 1 1 1 1 1 1 1

 
Instance 19 

 
1 1 2 2 2 3 3 4 4 4 4 4 5 5 6 6 6 6 7 7

7 10 8 14 20 18 19 3 5 6 12 13 11 16 1 4 9 15 2 17

1 7 1 1 1 1 1 1 1

1 8 1 1

1 9 1 1

1 17 1 1

2 12 1 1 1 1 1

2 16 1 1 1 1

3 3 1 1 1 1 1 1

4 1 1 1 1 1 1 1 1 1 1 1 1 1

4 2 1 1 1 1 1

4 4 1 1

4 10 1 1 1 1 1 1 1

4 11 1 1 1 1

4 15 1 1 1 1 1 1 1 1 1 1 1 1

4 18 1 1 1 1 1 1 1

5 5 1 1 1 1 1

5 14 1 1

5 20 1 1 1

6 19 1 1 1

6 21 1 1 1 1

6 22 1 1 1 1 1 1 1 1 1 1

6 23 1 1 1 1

7 6 1 1

7 13 1 1 1
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                         Instance 20 
 

1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 5 5 5

1 3 7 8 17 5 6 9 10 20 11 12 15 16 19 4 13 2 14 18

1 1 1 1 1 1 1

1 3 1 1 1 1 1

1 5 1 1 1 1

1 15 1 1 1 1

1 17 1 1 1 1

1 20 1 1 1 1

1 23 1 1 1 1 1

1 25 1 1 1

1 29 1 1 1

2 8 1 1 1 1 1

2 14 1 1 1 1 1

2 16 1 1 1

2 19 1 1 1 1

2 22 1 1 1

2 26 1 1 1 1

2 34 1 1

3 4 1 1 1 1 1

3 6 1 1 1 1

3 9 1 1 1 1 1

3 11 1 1 1 1 1

3 21 1 1 1 1 1

3 28 1 1 1 1

3 30 1 1 1 1

3 32 1 1 1

4 33 1

4 35 1

5 2 1 1 1 1 1

5 7 1 1 1

5 10 1 1 1

5 12 1 1 1 1 1

5 13 1 1 1 1 1

5 18 1 1 1

5 24 1 1 1 1 1

5 27 1 1 1

5 31 1 1 1 1

 
Instance 21 

1 1 1 1 1 2 2 2 3 3 3 3 3 4 4 4 5 5 5 5

2 4 13 14 18 1 11 16 5 6 9 10 20 12 15 19 3 7 8 17

1 2 1 1 1 1 1

1 7 1 1 1 1

1 10 1 1

1 12 1 1 1 1 1 1 1

1 13 1 1 1 1 1

1 24 1 1 1 1 1 1 1 1

1 26 1 1 1

1 31 1 1 1 1 1

2 6 1 1 1 1 1

2 16 1 1

2 18 1 1 1 1

2 25 1 1 1

2 30 1 1 1 1 1 1 1

2 32 1 1 1 1 1 1

2 34 1

2 35 1 1 1 1 1

3 8 1 1 1 1

3 14 1 1 1 1 1 1

3 19 1 1 1 1 1 1

3 22 1 1 1

3 23 1 1 1 1 1 1

3 29 1 1 1 1 1

4 4 1 1 1 1 1

4 9 1 1 1 1 1 1

4 11 1 1 1 1

4 21 1 1 1

4 27 1 1 1

4 33 1

5 1 1 1 1 1 1

5 3 1 1 1

5 5 1 1 1 1 1

5 15 1 1 1 1 1

5 17 1 1 1 1

5 20 1 1 1 1 1

5 28 1 1  
 
 
 

  
 

Instance 22 
 

1 1 1 2 2 2 2 3 3 3 3 4 4 5 5 5 5 5 6 6 7 7 7 7

9 10 17 2 5 11 19 1 13 21 22 4 16 6 8 12 15 18 3 20 7 14 23 24

1 6 1 1 1

1 7 1 1 1

1 20 1 1 1

1 29 1 1 1

1 40 1 1 1

2 10 1 1 1 1

2 13 1 1 1 1

2 14 1 1 1 1

2 22 1 1 1 1

2 35 1 1 1 1

2 36 1 1 1 1

3 1 1 1 1 1

3 9 1 1 1 1

3 16 1 1 1 1

3 17 1 1 1 1

3 33 1 1 1 1

4 8 1 1

4 19 1 1

4 21 1 1

4 28 1 1

4 37 1 1

4 38 1 1

4 39 1 1

5 4 1 1 1 1 1

5 5 1 1 1 1 1

5 18 1 1 1 1 1

5 26 1 1 1 1 1

5 27 1 1 1 1 1

5 30 1 1 1 1 1

6 2 1 1

6 11 1 1

6 12 1 1

6 15 1 1

6 23 1 1

6 24 1 1

6 31 1 1

6 34 1 1

7 3 1 1 1 1

7 25 1 1 1 1

7 32 1 1 1 1

 
Instance 23 

 
1 1 2 2 3 3 3 3 4 4 4 4 4 5 5 5 6 6 6 6 7 7 7 7

4 16 3 20 7 14 23 24 6 8 12 15 18 9 10 17 2 5 11 19 1 13 21 22

1 8 1 1

1 19 1 1

1 21 1 1

1 28 1

1 37 1 1

1 38 1 1

1 39 1 1

2 2 1 1 1

2 11 1 1

2 12 1 1

2 15 1 1

2 23 1 1

2 24 1 1 1

2 31 1 1 1

2 34 1 1

3 3 1 1 1 1

3 25 1 1 1

3 32 1 1 1 1 1

4 4 1 1 1 1 1

4 5 1 1 1 1 1 1

4 18 1 1 1 1 1

4 26 1 1 1 1 1

4 27 1 1 1 1 1

4 30 1 1 1 1

5 6 1 1 1

5 7 1 1 1

5 20 1 1 1

5 29 1 1

5 40 1 1 1

6 10 1 1 1 1 1

6 13 1 1 1

6 14 1 1 1 1

6 22 1 1 1 1

6 35 1 1 1

6 36 1 1 1

7 1 1 1 1 1

7 9 1 1 1 1

7 16 1 1 1 1

7 17 1 1 1

7 33 1 1 1 1 1
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Instance 24 
 

1 1 1 2 2 3 3 3 3 4 4 4 4 5 5 6 6 6 6 6 7 7 7 7

9 10 17 3 20 7 14 23 24 2 5 11 19 4 16 6 8 12 15 18 1 13 21 22

1 6 1 1

1 7 1 1 1

1 20 1 1 1

1 29 1 1

1 40 1 1 1 1

2 2 1 1 1

2 11 1 1

2 12 1 1

2 15 1 1

2 23 1 1

2 24 1 1 1

2 31 1 1

2 34 1 1

3 3 1 1 1

3 25 1 1 1

3 32 1 1 1 1

4 10 1 1 1 1 1

4 13 1 1 1

4 14 1 1 1 1

4 22 1 1 1 1

4 35 1 1 1

4 36 1 1 1 1

5 8 1 1

5 19 1 1 1 1

5 21 1 1

5 28 1

5 37 1 1

5 38 1 1 1

5 39 1 1

6 4 1 1 1 1

6 5 1 1 1 1 1 1

6 18 1 1 1 1

6 26 1 1 1 1 1

6 27 1 1 1 1 1

6 30 1 1 1 1 1

7 1 1 1 1 1

7 9 1 1 1

7 16 1 1 1 1 1

7 17 1 1 1

7 33 1 1 1 1 1 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Instance 25 
1 1 2 2 3 4 5 5 6 6 6 6 7 7 7 7 8 8 9 9 10 10 11 11

23 24 14 21 9 17 4 16 2 5 11 19 8 12 15 18 6 10 1 7 13 22 3 20

1 2 1 1 1

1 3 1 1 1 1

2 9 1 1

2 16 1 1 1 1

3 6 1 1

3 33 1 1 1 1

3 39 1 1

3 40 1 1 1

4 7 1

4 20 1 1 1

4 29 1 1

4 31 1 1

5 8 1 1

5 11 1 1 1

5 19 1 1 1

5 21 1 1

5 28 1

5 37 1 1

6 10 1 1 1 1

6 13 1 1 1 1

6 14 1 1 1 1 1

6 22 1 1 1 1

6 35 1 1 1 1 1

6 36 1 1 1 1

7 4 1 1 1 1

7 5 1 1 1 1 1

7 18 1 1 1

7 27 1 1 1 1

7 30 1 1 1 1

8 24 1 1 1

8 26 1 1 1 1 1

8 38 1 1

9 25 1 1 1

9 32 1 1 1 1 1

10 1 1 1 1 1

10 17 1 1 1 1

11 12 1 1 1 1

11 15 1 1 1

11 23 1 1 1

11 34 1 1 1

 
Instance 26 

 
1 1 2 2 3 3 3 4 4 5 5 6 6 6 7 7 8 9 9 10 11 11 12 12

4 16 14 15 6 8 18 13 22 10 12 7 23 24 3 20 21 2 19 9 5 11 1 17

1 8 1 1

1 21 1 1

1 28 1 1

1 37 1 1

2 11 1 1 1 1

2 14 1 1 1 1

2 25 1 1 1

3 4 1 1 1

3 5 1 1 1 1

3 18 1 1 1

3 26 1 1 1 1 1

3 30 1 1 1 1

3 38 1 1 1

4 1 1 1 1 1

4 16 1 1 1 1

4 35 1 1 1

5 20 1 1 1

5 24 1 1 1

5 27 1 1 1 1

6 3 1 1 1

6 32 1 1 1 1

7 2 1 1 1

7 12 1 1 1 1 1 1

7 15 1 1 1

7 23 1 1 1

7 34 1 1 1 1

8 9 1 1 1 1

8 33 1 1 1 1

9 13 1 1 1 1

9 36 1 1 1 1

10 6 1 1

10 29 1 1

10 39 1 1

10 40 1 1 1

11 10 1 1 1 1

11 22 1 1 1 1

12 7 1

12 17 1 1 1

12 19 1 1 1

12 31 1 1 1
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Instance 27 
1 1 2 2 3 4 4 5 5 5 6 6 7 7 8 8 9 9 10 10 11 11 12 12

8 22 15 16 4 7 24 3 10 12 5 9 11 21 14 20 2 19 13 23 1 17 6 18

1 1 1 1 1

1 7 1 1

1 16 1 1 1 1

1 39 1 1 1

2 26 1 1 1 1 1

2 27 1 1 1 1

2 37 1 1

3 21 1 1

3 28 1 1

3 38 1 1 1

4 2 1 1 1

4 8 1 1 1

4 32 1 1 1 1

4 34 1 1 1

5 4 1 1 1

5 20 1 1 1

5 24 1 1 1

6 6 1 1 1

6 33 1 1 1 1

6 35 1 1

7 9 1 1 1 1

7 22 1 1 1 1

7 23 1 1

8 11 1 1 1

8 15 1 1 1

8 19 1 1 1

8 25 1 1 1

9 13 1 1 1 1

9 14 1 1 1 1

9 40 1 1 1

10 3 1 1 1 1

10 12 1 1 1 1 1 1

10 36 1 1 1

11 17 1 1 1

11 29 1

11 31 1 1 1

12 5 1 1 1 1

12 10 1 1 1 1 1

12 18 1 1 1

12 30 1 1 1 1

 
 
 
 

Instance 28 
 

1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 4 4 4 5 5 5 5 6 6 6 6 6

3 5 7 8 9 1 2 4 13 16 22 20 21 24 26 15 18 25 6 17 23 27 10 11 12 14 19

1 3 1 1 1 1 1 1 1 1

1 5 1 1 1 1 1 1 1 1 1 1 1

1 7 1 1 1 1 1 1 1 1 1 1 1 1 1

1 8 1 1 1 1 1 1 1 1 1

1 9 1 1 1 1 1 1

1 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1

2 2 1 1 1 1 1 1 1 1 1

2 4 1 1 1 1 1 1 1

2 13 1 1 1 1 1 1 1 1 1 1

2 22 1 1 1 1 1 1 1 1 1 1

3 20 1 1 1 1 1 1 1

3 21 1 1 1 1 1 1 1 1 1

3 24 1 1 1 1 1

3 26 1 1 1 1 1

4 15 1 1 1 1 1 1 1

4 18 1 1 1 1 1 1

4 25 1 1 1 1

5 6 1 1 1 1 1 1 1 1

5 17 1 1 1 1 1 1 1 1 1

5 23 1 1 1 1

5 27 1 1 1 1 1 1 1 1

6 10 1 1 1 1 1 1 1 1 1 1 1

6 11 1 1 1 1 1 1

6 12 1 1 1 1 1 1

6 14 1 1 1 1 1 1 1 1

6 19 1 1 1 1 1 1 1 1 1 1

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Instance 29 
 

1 1 2 2 2 3 3 4 4 4 4 5 5 5 5 6 6 7 7 7 8 8 8 8 9 9 10 10

18 26 3 4 5 1 2 12 13 24 25 19 20 21 22 16 17 6 7 27 8 9 10 15 11 14 23 28

1 17 1 1 1 1 1 1

2 14 1 1 1 1 1 1

2 18 1 1 1 1 1

2 19 1 1 1 1 1

2 20 1 1 1 1 1

2 21 1 1 1 1 1

2 22 1 1 1 1 1

2 23 1 1 1 1 1

2 25 1 1 1 1 1 1 1

2 28 1 1 1 1

2 30 1 1 1 1

2 31 1 1 1 1

3 38 1 1 1

4 40 1 1 1 1 1

4 42 1 1 1 1

4 43 1 1 1

4 46 1 1 1

5 6 1 1 1 1 1

5 8 1 1 1 1

5 9 1 1 1 1

5 10 1 1 1 1

5 11 1 1 1 1

5 32 1 1 1

5 36 1 1 1

6 44 1 1 1 1

6 45 1 1 1 1

7 13 1 1 1 1 1 1 1

7 26 1 1 1 1 1

7 27 1 1 1 1 1

7 29 1 1 1 1

7 35 1 1 1

7 37 1 1 1

8 1 1 1 1 1 1 1 1

8 2 1 1 1 1 1 1 1

8 3 1 1 1 1 1

8 4 1 1 1 1 1

8 5 1 1 1 1 1

8 7 1 1 1 1 1

8 12 1 1 1 1

8 15 1 1 1 1 1

8 16 1 1 1 1 1

8 24 1 1 1 1 1 1 1

9 33 1 1 1

9 34 1 1 1

9 39 1 1 1 1 1

9 41 1 1 1 1
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Instance 30 
 

1 1 1 1 2 2 3 4 4 5 5 5 6 7 7 8 8 9 9 9 10 10 11 11 11 12 12 12 13 14

7 17 18 26 9 29 27 13 24 3 21 22 15 6 16 8 28 19 20 30 14 25 10 12 23 1 2 11 5 4

1 16 1 1 1 1

1 27 1 1 1 1

1 34 1 1 1 1

1 36 1 1 1 1

2 9 1 1

2 13 1 1

2 30 1 1

3 15 1 1

4 19 1 1

4 38 1 1

5 10 1 1 1 1

5 12 1 1 1 1 1 1 1

5 31 1 1 1 1 1

5 32 1 1 1 1 1

5 40 1 1 1 1

6 17 1 1

6 37 1 1

7 6 1 1

7 26 1 1

8 8 1 1 1

8 14 1 1

8 29 1 1

9 1 1 1 1 1 1

9 3 1 1 1 1 1

9 21 1 1 1 1 1

9 22 1 1 1

10 4 1 1

10 18 1 1

11 2 1 1

11 20 1 1

11 23 1 1 1 1 1

11 39 1 1 1 1 1 1 1 1

12 11 1 1

12 33 1 1 1 1

12 41 1 1 1

13 5 1 1

14 7 1 1

14 24 1 1

14 25 1 1

14 28 1 1

14 35 1 1
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Instance 31 

 
1 1 1 2 2 3 3 4 4 4 5 6 6 7 7 7 8 8 8 9 9 10 10 11 11 12 12 13 13 13

6 8 12 1 13 4 11 19 21 23 7 14 16 2 5 9 18 20 22 15 17 3 10 24 30 26 28 25 27 29

1 13 1 1 1

1 14 1 1 1

1 15 1 1 1

1 16 1 1 1

2 5 1 1 1 1

2 6 1 1 1 1 1

2 8 1 1 1

3 1 1 1 1 1 1 1

3 7 1 1 1 1 1 1

3 18 1 1 1 1

4 29 1 1 1

4 31 1 1 1

4 33 1 1 1

4 38 1 1 1

5 9 1 1 1 1 1

5 12 1 1

6 19 1 1

6 21 1 1

6 23 1 1 1

6 26 1 1

6 27 1 1

7 2 1 1 1 1

7 3 1 1 1 1

7 17 1 1 1

8 28 1 1 1

8 30 1 1 1

8 32 1 1 1

8 34 1 1 1

8 35 1 1 1

8 36 1 1 1

8 37 1 1 1

9 20 1 1 1

9 22 1 1

9 24 1 1

9 25 1 1 1

10 4 1 1 1 1

10 10 1 1

10 11 1 1 1

11 39 1 1 1 1

11 42 1 1 1

11 44 1 1 1

11 48 1 1 1

12 43 1 1

12 46 1 1

12 47 1 1

13 40 1 1 1

13 41 1 1 1

13 45 1 1 1

13 49 1 1 1

13 50 1 1
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Instance 32 

 
1 1 1 2 2 3 3 3 4 5 5 6 7 7 7 8 8 9 9 10 10 11 11 12 12 13 13 13 14 14

25 26 27 9 23 2 6 10 15 7 28 22 1 4 14 19 24 16 21 8 30 17 18 5 29 11 13 20 3 12

1 13 1 1 1 1

1 15 1 1 1

1 34 1 1 1 1 1 1 1

2 21 1 1 1 1 1

2 31 1 1 1 1

2 32 1 1 1

2 39 1 1 1 1 1 1 1

3 19 1 1 1 1

3 20 1 1 1 1

3 38 1

4 37 1 1

4 46 1 1 1 1 1

4 47 1 1

5 10 1 1 1

5 12 1 1 1

5 18 1 1

5 40 1 1 1 1

6 29 1 1 1

7 8 1 1 1 1

7 9 1 1 1

7 36 1 1 1

7 41 1 1 1 1

7 49 1 1

8 5 1 1 1 1

8 6 1 1 1

8 26 1 1 1

8 27 1 1

9 2 1 1 1 1

9 3 1 1 1

9 11 1 1

9 44 1 1 1 1

10 7 1 1 1

10 14 1 1

10 35 1 1 1 1

11 28 1 1 1

11 30 1 1 1

11 50 1 1 1

12 23 1 1 1 1

12 24 1 1 1

12 25 1 1 1

13 1 1 1 1 1

13 4 1 1 1

13 16 1 1 1

13 33 1 1 1

13 42 1

13 45 1 1 1 1

14 17 1 1 1 1 1

14 22 1 1 1

14 43 1 1 1 1

14 48 1 1
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Instance 33 
1 2 2 3 4 4 4 4 4 5 6 6 6 7 7 8 9 9 9 9 10 11 11 12 12 13 13 13 14 14 15 15 16 17 17 17

10 1 14 12 16 22 25 27 30 24 5 19 21 9 26 15 11 13 31 33 29 3 4 32 34 6 28 36 7 20 18 35 2 8 17 23

1 10 1

2 16 1 1

2 34 1

2 50 1 1

2 77 1 1 1 1 1 1 1

3 12 1

4 8 1 1 1 1 1 1

4 15 1 1 1 1 1

4 21 1 1 1 1 1 1 1

4 22 1 1 1 1 1 1 1

4 40 1 1 1 1 1 1 1

4 51 1 1 1

4 56 1 1 1 1 1

4 62 1 1 1

4 64 1 1 1 1 1

4 68 1 1 1

4 73 1 1 1 1 1

4 76 1 1 1 1 1 1

4 88 1 1 1 1 1 1

4 90 1 1 1 1 1 1 1 1

5 39 1

6 44 1

6 59 1 1 1

6 65 1 1 1 1 1 1

6 67 1 1 1 1

6 83 1 1 1 1 1 1

6 87 1 1 1 1 1

6 89 1 1 1 1 1 1

7 2 1 1

7 17 1

7 35 1 1

7 42 1 1

7 55 1 1 1 1 1

7 63 1 1 1 1

7 84 1 1 1 1 1 1

8 18 1

9 11 1 1 1 1 1

9 28 1 1 1

9 36 1 1 1 1 1

9 41 1 1 1 1 1 1

9 49 1 1 1 1

9 61 1 1

10 24 1

11 72 1 1 1

12 1 1

12 3 1

12 4 1 1

12 5 1 1

12 6 1

12 7 1

12 9 1 1 1 1 1 1

12 13 1 1 1

12 19 1 1

12 25 1 1

12 27 1 1 1 1

12 29 1 1 1

12 31 1 1 1

12 33 1 1

12 37 1 1

12 43 1 1 1

12 46 1 1

12 54 1 1 1

12 58 1 1

12 60 1 1 1

12 69 1 1 1 1 1

12 70 1 1 1

12 75 1 1

12 79 1 1 1 1 1 1 1 1

13 20 1

13 23 1

13 30 1 1

13 38 1

13 45 1

13 48 1 1 1

13 52 1 1 1

13 74 1 1 1

14 78 1 1 1 1

14 81 1 1 1 1 1 1 1

14 85 1 1 1 1 1 1 1

14 86 1 1 1 1 1 1

15 14 1 1

15 32 1

15 47 1 1

15 53 1

15 57 1 1

15 66 1 1 1

15 80 1 1 1

15 82 1 1 1 1

16 71 1 1 1 1

17 26 1  
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Instance 34 
 

1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

2 5 13 15 20 33 34 35 37 8 11 14 17 18 19 21 23 26 31 1 3 4 6 7 9 10 12 16 22 24 25 27 28 29 30 32 36

1 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 22 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 23 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 29 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 34 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 39 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 40 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 42 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 43 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 44 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 45 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 46 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 47 1 1 1 1 1 1 1 1 1 1 1 1 1

2 48 1 1 1 1 1 1 1 1 1 1 1 1 1

2 49 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 51 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 52 1 1 1 1 1 1 1 1 1 1 1

2 53 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 26 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 27 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 28 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 31 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 32 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 33 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 35 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 36 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 37 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 38 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Instance 35 
1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 5 5 5 5 5 5 6 6 6 7 7 7 8 8 8 8 9 9 9 9 9 10 10 10 10

4 9 20 2 10 16 21 31 15 18 33 34 36 11 13 5 8 22 23 37 39 14 17 35 24 27 29 19 25 28 30 6 12 26 38 40 1 3 7 32

1 3 1 1 1

1 10 1 1 1

1 19 1 1 1

1 20 1 1 1

1 36 1 1 1

1 48 1 1 1

1 50 1 1 1

1 100 1 1 1

2 12 1 1 1 1 1 1

2 13 1 1 1 1

2 54 1 1 1

2 61 1 1 1 1 1 1

2 64 1 1 1 1

2 73 1 1 1 1 1

2 77 1 1 1 1 1 1

2 78 1 1 1 1 1

2 90 1 1 1 1 1

3 23 1 1 1 1 1

3 31 1 1 1 1 1

3 32 1 1 1 1

3 41 1 1 1 1 1

3 51 1 1 1 1

3 74 1 1 1 1 1 1

4 7 1 1

4 11 1 1

4 18 1 1

4 37 1 1 1

4 42 1 1

4 56 1 1 1 1

4 67 1 1 1

4 79 1 1

4 80 1 1 1

4 97 1 1

5 6 1 1 1 1 1 1

5 17 1 1 1 1 1

5 26 1 1 1 1 1 1 1

5 27 1 1 1 1 1

5 28 1 1 1 1 1

5 46 1 1 1 1 1 1

5 55 1 1 1 1 1 1

5 69 1 1 1 1 1 1

5 70 1 1 1 1 1 1

5 76 1 1 1 1 1 1

5 82 1 1 1 1 1 1

5 83 1 1 1 1 1 1

5 88 1 1 1 1 1 1 1

5 89 1 1 1 1 1 1

5 93 1 1 1 1

5 98 1 1 1 1 1 1

5 99 1 1 1 1 1 1

6 21 1 1 1

6 22 1 1 1

6 52 1 1 1

6 75 1 1 1

6 86 1 1 1 1

6 94 1 1

7 8 1 1 1

7 16 1 1 1

7 25 1 1 1

7 34 1 1 1 1

7 35 1 1 1

7 47 1 1 1 1

7 53 1 1 1 1

7 68 1 1 1

7 87 1 1 1

7 96 1 1 1

8 71 1 1 1 1

8 72 1 1 1 1

8 84 1 1 1 1

8 85 1 1 1 1

8 91 1 1 1 1

8 92 1 1 1 1

9 1 1 1 1 1 1

9 2 1 1 1 1 1 1

9 14 1 1 1 1

9 15 1 1 1 1 1

9 29 1 1 1 1

9 30 1 1 1 1 1

9 38 1 1 1 1 1

9 40 1 1 1 1

9 43 1 1 1 1 1

9 44 1 1 1 1 1

9 45 1 1 1 1 1

9 59 1 1 1 1 1 1

9 60 1 1 1 1 1 1

9 62 1 1 1 1

9 63 1 1 1 1

9 95 1 1 1 1 1

10 4 1 1 1 1

10 5 1 1 1 1

10 9 1 1 1

10 24 1 1 1 1

10 33 1 1 1

10 39 1 1 1 1

10 49 1 1 1 1

10 57 1 1 1 1

10 58 1 1 1 1

10 65 1 1 1 1

10 66 1 1 1 1

10 81 1 1 1  
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12 APPENDIX E – Case Results 
MERCAN

M
a
ch

in
es

P
a
rt
s

M
a
ch

in
es

P
a
rt
s

M
a
ch

in
es

M
a
ch

in
es

7 12 1 1 4 6 208 2 3 77 130 192

9 16 5 2 10 9 209 3 4 78 131 193
11 6 10 12 11 210 5 79 132 194

8 124 13 13 211 7 80 134 195
133 15 213 8 81 135 196
145 17 14 82 136 197
207 20 18 83 137 198

22 19 84 140 199
24 21 85 142 200
25 23 86 146 202
26 28 87 147 212
27 29 88 150
32 30 89 151
33 31 93 152
34 43 94 153
35 44 95 154
36 45 96 156
37 46 97 159
38 47 98 162
39 48 99 163
40 49 100 164
41 50 101 165
42 51 102 167
71 52 103 168
90 53 104 169
91 54 105 170
92 55 106 171
128 56 107 172
129 57 108 173
138 58 109 174
139 59 110 175
141 60 111 176
143 61 112 177
144 62 113 178
148 63 114 179
149 64 115 180
155 65 116 181
157 66 117 182
158 67 118 183
160 68 119 184
161 69 120 185
166 70 121 186
201 72 122 187
203 73 123 188
204 74 125 189
205 75 126 190
206 76 127 191
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10 156 5 102 7 248 1 1 8 5 12 28 736 6 2 379 3 14 170 485 2 7 99 225 311 392 448 528 584 639 693 747

18 14 20 266 9 3 19 6 39 737 23 59 604 4 21 176 487 11 8 104 226 312 393 449 530 587 640 694 748
15 21 467 13 4 22 12 41 63 644 25 23 177 489 17 9 105 228 313 394 450 531 588 642 695 749

641 16 48 13 65 64 655 25 178 492 26 10 109 230 315 395 451 532 589 643 696 750
24 53 29 71 106 26 181 493 11 110 231 316 396 452 533 590 645 697 751

331 30 131 107 31 183 498 15 111 233 318 397 454 534 591 646 698 752
336 38 154 108 32 185 506 16 112 234 319 398 462 535 595 647 699 753
406 44 168 122 34 192 508 17 116 235 321 399 469 536 597 648 700 754
546 45 171 136 35 194 509 18 117 236 322 400 470 537 598 649 701 755
583 55 172 148 36 197 518 19 118 237 323 401 471 538 599 650 702 756
658 62 174 155 42 201 519 20 119 238 324 403 472 539 601 652 703 757

70 175 169 43 203 524 22 120 239 325 405 476 540 602 653 704
72 179 173 57 206 547 24 121 240 326 407 478 541 603 654 705
75 186 267 58 207 548 27 123 242 328 408 479 542 605 656 706
76 195 268 61 208 549 33 130 244 329 409 480 543 606 657 707
91 196 289 66 210 573 37 132 245 330 410 481 544 607 659 708
127 205 291 68 212 574 40 133 249 334 411 482 545 608 661 709
139 232 292 69 213 585 46 134 250 335 413 483 550 609 662 710
140 275 293 73 217 586 47 137 251 337 414 486 551 610 663 711
141 278 294 80 219 592 49 138 252 340 415 488 552 611 664 712
161 279 295 82 220 593 50 146 253 341 417 490 553 612 665 713
167 280 296 100 227 594 51 150 254 343 418 491 554 613 666 714
180 283 297 101 229 596 52 159 255 345 419 494 555 614 667 715
182 286 298 103 241 600 54 162 256 355 420 495 556 615 668 716
216 305 300 113 243 660 56 163 257 356 421 496 557 616 669 717
287 306 301 114 246 60 164 258 361 422 497 558 617 670 718
288 344 302 115 247 67 184 259 362 423 499 559 618 671 719
351 347 303 124 310 74 187 260 363 424 500 560 619 672 720
352 348 304 125 402 77 188 261 364 426 501 561 620 673 721
353 349 307 126 412 78 189 262 366 429 502 563 621 674 722
357 404 308 128 416 79 190 263 367 430 503 564 622 675 724
358 456 309 129 425 81 191 264 371 431 504 565 623 676 727
360 458 314 135 427 83 193 265 373 432 505 566 624 677 728
368 460 317 142 428 84 198 269 376 433 507 567 625 678 730
369 464 320 143 443 85 199 270 377 434 510 568 626 679 731
370 465 327 144 453 86 200 271 380 435 511 569 627 680 733
372 525 332 145 455 87 202 272 381 436 512 570 628 681 734
374 527 333 147 457 88 204 273 382 437 513 571 629 682 735
375 529 338 149 459 89 209 274 383 438 514 572 630 683 738
463 562 339 151 461 90 211 276 384 439 515 575 631 684 739

651 342 152 466 92 214 277 385 440 516 576 632 685 740
690 346 153 468 93 215 281 386 441 517 577 633 686 741
723 350 157 473 94 218 282 387 442 520 578 634 687 742
725 354 158 474 95 221 284 388 444 521 579 635 688 743
726 359 160 475 96 222 285 389 445 522 580 636 689 744
729 365 165 477 97 223 290 390 446 523 581 637 691 745
732 378 166 484 98 224 299 391 447 526 582 638 692 746
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