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Abstract—For classifier ensembles, an effective combination method
is to combine the outputs of each classifier using a linearly weighted
combination rule. There are multiple ways to linearly combine classifier
outputs and it is beneficial to analyze them as a whole. We present
a unifying framework for multiple linear combination types in this
paper. This unification enables using the same learning algorithms
for different types of linear combiners. We present various ways to
train the weights using regularized empirical loss minimization. We
propose using the hinge loss for better performance as compared to
the conventional least-squares loss. We analyze the effects of using
hinge loss for various types of linear weight training by running
experiments on three different databases. We show that, in certain
problems, linear combiners with fewer parameters may perform as
well as the ones with much larger number of parameters even in the
presence of regularization.

Keywords-classifier fusion, linear combiners, stacked generalization,
linear classifier learning.

I. INTRODUCTION

Combining multiple classifiers or experts has been a research
area of interest lately. It has been observed in many different
applications that fusing multiple classifier outputs improves the
overall accuracy of classification. This approach is also termed
as decision fusion or combining ensemble of classifiers in some
works. A prominent and early example of this kind of information
fusion is majority voting of multiple experts [1].

There is much interest in obtaining different classifiers that try to
solve the same classification problem in a different way. Diversity
across classifiers is desired since clearly there is a higher chance
of success if the classifiers are independent [1]. In this paper, we
are not interested in how the classifiers are chosen. Our goal is
to combine available classifier results in an optimal fashion using
linear combiners and learn how to combine them automatically.

For classifier combination, there may be fixed combiners or
trainable combiners. Fixed combiners are sum rule, product rule,
max rule, min rule, and others [2]. They are based on combining
the classifier outputs with some fixed rules. One of the most
successful combiners is the linear combiner (or weighted combiner)
which takes a linear combination of classifier outputs to arrive at
a combined decision [3]–[5]. The weight parameters of the linear
combiner can be learned from data. The linear combiner was shown
to outperform other trainable nonlinear combiners in [6]. As we
describe clearly in this paper, there may be multiple types of linear
combination [5], [7], [8]. Each combination type has its advantages
and disadvantages which we explore.

Learning the linear combiner has attracted some interest in the
literature. Usually, a simple sum rule (which corresponds to using
equal weights for each classifier) is considered to be successful
enough for satisfactory results since it is the optimal solution for

unbiased independent classifiers [9], or heuristic hand-assigned
weights are given to each classifier output. Although these simple
approaches may be helpful in certain situations, in general we
show that it is helpful to learn the weight parameters in the linear
combiner. In earlier work, a secondary linear classifier is trained
for combining all first level discriminants in a blind fashion using
stacking [3]. Several authors observed that using a class-conscious
approach may speed up the computation and improve results as
well [5]–[8]. In [10], hard categorical results of classifiers are
combined using Bayesian techniques which may not be trivial to
generalize to continuous outputs. In [4], [11], linear combiners are
analyzed theoretically without providing a method for estimating
the weights.

As mentioned above, for speed and accuracy, it may not be
desired to use all classifier outputs at a time and certain tying and
fixing of weight factors are helpful [5]–[8]. In our work, we provide
a new combined framework for all types of linear weight learning
and use previously unused regularized hinge loss for learning the
weights.

This paper is organized as follows. In section II, we describe the
inputs to the combiner, the idea of stacked generalization, types of
linear combiners and a framework to unify them. We explain how
to learn the weights using regularized loss minimization in section
III. Section IV discusses experimental results.

II. PROBLEM DEFINITION

A. Input to the combiner

Assume that we have M classifiers in an N -way classification
problem. For a given sample, the outputs of each classifier is a set
of scores (discriminants or posterior probabilities) for each class.
Namely, we get N numbers from a classifier which indicate the
relative belief that the sample comes from each class. We can
arrange all outputs of the classifiers in a matrix called a decision
profile matrix for which the (i, j) entry is given by [1]:

Dij(x) = pi,j(x)

where pi,j(x) is the score for class i in classifier j for classi-
fying sample x. The matrix is illustrated in Figure 1. We drop
dependence on x in the following discussion for brevity. We can
re-arrange the information in the decision profile matrix in a vector
form by concatenating the columns of the D matrix. The resulting
vector is of size NM × 1 and we call it the vector of scores f .
Clearly f (j−1)N+i = pi,j for i = 1, . . . , N and j = 1, . . . ,M .

B. Stacked generalization

An important point while training the combiner is that the data
used for training the first level classifiers should not contain the
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Figure 1. Decision profile matrix illustrated.

sample for which the scores are obtained. This is called stacked
generalization [3]. The reason for stacked generalization comes
from the fact that the combiner should consider the performance
of classifiers on unseen data, not on their own training data. In
practice, it may not be possible to train a new classifier for each
sample by leaving out only that sample, so we perform L-fold cross
validation to obtain the posteriors. We split the training data into L
equi-sized parts and train L different classifiers using L−1 subparts
at a time. For each training sample, we use the classifiers which
were trained from the subparts excluding the subpart that contains
the sample. During testing, we use the classifiers trained over all
training data and the combiner trained using stacked generalization
described above.

C. Types of weights

In its most general form, a linear combiner in this context is a
set of weight vectors {wi : i = 1, . . . , N} multiplying the vector
of scores f . The resultant score for class i is

ri = wT
i f , for i = 1, . . . , N.

We choose the highest scoring class by î = arg maxi ri. Each
wi is of dimension MN . We form a full size column vector
by concatenating the weight vectors for each class and call it
w = [wT

1 , . . . ,w
T
N ]T . w contains all the weights to be estimated

and it has a dimension of MN2. This type of linear combination
is termed as type 3 in [5] and it can be considered as a black
box application of linear classification to the vector of scores f .
This approach is called stacking or stacked generalization in some
papers [8] referring to Wolpert’s work [3], although we reserve that
term for the cross-validated training approach we explained above.
Clearly, when the number of classes and classifiers are large, the
dimensionality of the weight matrix is quite high and the resulting
weights become harder to interpret. It may be hard to train these
weights as well in some situations.

On the other extreme, we have type 1 linear combination
which combines discriminants of a class with a single weight per
classifier. This approach is also named as the weighted sum rule or
weighted averaging since it is similar to the sum-rule of combining
classifiers with a weight for each classifier. Here, the discriminants
of other classes are not used in obtaining the combined score of
a class. This can be interpreted as weighting individual classifiers
according to their confidences. In this case, the combined score is

obtained as:

ri =

M∑
j=1

w̃jpi,j , for i = 1, . . . , N.

Note that the weights are independent of the class, but depend
only on the classifier. These weights cannot be obtained by a black
box training from a reduced feature vector since each weight is
multiplied with a different score for each class. The weights for
this kind of combination are usually learned using grid search
over validation data, or other heuristics. When the number of
classifiers are large, principled ways to train these weights should
be considered. This combiner has N parameters to learn. Note that,
this method corresponds to tying some of the weights in the weight
vector w and fixing others to a value of zero.

Another option, which is named type 2 is to use class-dependent
classifier weights, that is

ri =

M∑
j=1

w̃i
jpi,j , for i = 1, . . . , N.

Here we have MN parameters to learn. Each classifier is allowed
to have a different weight to achieve the combined score for each
class. However, still the scores from other classes are not used,
hence the weights corresponding to them are fixed to zero. This
approach is termed StackingC in [7]. It is considered as a fast and
accurate alternative to type 3 weighting [6]–[8].

D. Unifying framework

Now, we show that these three different types of linear weighting
(and much more kinds that can be defined) can be combined
under the same umbrella. To accomplish tying and fixing of weight
parameters, we write the full weight vector as

w = Aw̃ + b,

where w̃ is what we call the unique weight vector. For type 1 and
type 2, the matrix A can be obtained easily and b = 0. When
N = 3 and M = 2, we get the A matrices given in Figure 2. For
type 3, clearly we have w = w̃ which implies A = I and b = 0.
If we would like to fix some values of the weight vector to some
nonzero value, we can use a nonzero b entry with a corresponding
row of zeros in A.
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Figure 2. Illustration of A matrix for type 1 and type 2 tying.

We also define Ak and bk as the sub matrices corresponding to
N consecutive rows of A and b such that

wk = Akw̃ + bk.

Our goal is to learn the unique weights w̃ from training data.



III. LEARNING THE WEIGHTS

We propose using regularized empirical loss minimization for
learning the weights [12]. Assume that we are given (f i, yi) pairs,
for i = 1, . . . , nt, where nt is the number of training samples, f i is
the vector of scores of the ith training sample and yi ∈ {1, . . . , N}
is the label for sample i. We focus on multi-class classification in
this paper, thus N > 2. This approach requires to minimize a
generalized objective function

φ(w̃) =
1

nt

nt∑
i=1

N∑
y=1

l(f i, yi, y, w̃) +R(w̃). (1)

Here R(w̃) is a regularization function on w̃ and can be the
L1, L2 or Lp norms or any mixed norms [13] of the weight
vector. l is the loss function incurred for classifying sample xi

as class y and is a function of the correct class yi as well. This
generalized objective function includes a lot of important linear
(and nonlinear) classification methods such as binary and multi-
class support vector machines (SVMs) [14]–[16] with hinge loss or
squared hinge loss, the LASSO method [8], [17], logistic regression
and many other linear classification methods. Regularization is
important in learning. L2 norm is essential in the SVM formulation
when using the hinge loss. L1 norm induces sparsity in the weight
vector which yields desirable weights in some situations. The loss
function has been traditionally the least squares error criterion, but
recently superiority of other loss functions such as hinge loss or
logistic loss has been shown [12].

Due to the superior performance of SVMs in many classification
tasks, we focus on using the hinge loss with L2 regularization.
When the parameters are tied, this corresponds to using the
following hinge loss function

l(f i, yi, y, w̃) = max
(

0, 1− δ(y, yi)− fT
i (∆i

yw̃ + βi
y)
)
,

(2)
where we define ∆i

y = Ayi−Ay and βi
y = byi−by and δ(y, z) =

1 if y = z and zero otherwise. We also consider the least squares
(LS) loss function [5], [8] as an alternative

l(f i, yi, y, w̃) =
(
δ(y, yi)− fT

i (Ayw̃ + by)
)2

. (3)

Using LS loss is equivalent to solving a regression problem [6],
[17] where the targets for regression are one or zero depending on
the target class. Hinge loss and LS loss are convex losses and we
can implement convergent algorithms for them.

The L2 regularization function is of the form

R(w̃) = λ||Aw̃ + b||22, (4)

where λ is the regularization parameter. Assume we deal with type
3 weighting (namely, A = I and b = 0). In this case, when we
use hinge loss defined in (2) and the regularization function in (4),
the optimization problem is a close relative of the Crammer-Singer
formulation for multi-class SVMs [14]. The difference between
this algorithm and the one in [14] is that, we use a separate slack
variable for each sample-class pair instead of a single slack for
each sample.

In this paper, we implement a weight tying minimization of
the objective function in equation (1) for LS and hinge losses
and L2 regularization. For LS, direct implementation of Newton’s
method works in one iteration since the objective is quadratic. For

the hinge loss, we implemented a primal second order monotonic
algorithm [18]. Due to space limitations and since it is outside the
scope of this paper, we leave the details of weight tying algorithm
implementation for the hinge loss to a broader version of this
work. We provide results with the type 1, type 2 and type 3 linear
combiners trained using the LS and hinge losses in the experiments
section which follows.

IV. EXPERIMENTS

We experimented with the linear combiner on three different
multi-class databases from the UCI repository [19]. Our results are
compared with using equal weights (sum rule). We used UCI stat-
log satellite (sat) data set, UCI image segmentation data set (seg)
and UCI optdigit data sets (opt)1. For constructing base classifiers,
we used 2 different scenarios. In the first scenario, for obtaining
complementary information between classifiers, we trained each
classifier from a subset of training data, in which, instances that
belongs to a particular class are the majority. So, each classifier
is a different class’ expert, so the classifiers have complementary
information. Using stacked generalization, posterior probabilities
are obtained for each data instance. For the second scenario, we
trained six different types of classifiers from the whole training
data. The second scenario was helpful to compare the usefulness
of different combination types when base classifiers use the same
training data. We may say that the second scenario has more
correlated classifiers since they all use the same data for training.

The results for scenario one are presented in Table I. EW denotes
equal weights and corresponds to the sum rule result. In all cases,
we can get improvement upon equal weights by learning the
weights from training data. The results indicate the best testing
accuracy obtained during the iterations of the algorithm after grid
searching for the best λ parameter over the test data, hence a bit
optimistic. Hinge loss function yields better rates than the LS loss
function in general. Among types 1, 2 and 3, for the hinge loss,
we obtain the best results for type 2 over types 1 and 3. This
shows that even with regularization, it is beneficial to structurally
regularize the weight vector by using class-dependent weights. This
is due to the nature of the classifier combination problem and it is
interesting to observe it. For the LS loss, type 3 generally performs
better than type 1 or 2. However, since LS loss yields worse results
as compared to the hinge loss in general, we can say that type 2
is a good choice. For the segment database, LS loss yields an
extremely low accuracy rate for type 1. We attribute this to using
little amount of data in that database for some classifiers and limited
set of weights to adjust for the loss.

Results for scenario two are provided in Table II. Here, we have
six different classifiers trained on the same data. The results are
somewhat different from scenario one results. Here, we have types
1 and 3 usually perform better than type 2. In this scenario, it
appears type 1 weights which do not discriminate between classes
and only weight classifiers yield more stable weights as compared
to type 2. This is understandable since the classifiers do not favor
any class during their training and using class-dependent weights

1UCI statlog satellite data set has a training set of 4435, a test set of
2000 with 6 classes and 36 variables. UCI optdigit data set has a training
set of 3823, a test set of 1797, 10 classes and 64 variables. UCI image
segmentation data set has a training set of 210, a test set of 2100, 7 classes
and 19 variables.



do not help as much. In general, type 3 is better than type 1 as
well since it has more parameters to tune and with proper amount
of regularization, we can get good results. For the UCI optdigits
database, LS loss surprisingly yields the best result with type 3,
but for other databases, we consistently get the best result using
the hinge loss.

Table I
LINEAR COMBINER ACCURACY RESULTS IN SCENARIO ONE.

DB EW LS HINGE
type1 type2 type3 type1 type2 type3

opd 96.7 96.82 98.44 98.44 97.49 98.72 98.60
sat 89.7 88.95 89.45 90.20 89.95 90.90 90.20
seg 80.4 17.57 73.04 82.19 82.19 85.55 81.33

Table II
LINEAR COMBINER ACCURACY RESULTS IN SCENARIO TWO.

DB EW LS HINGE
type1 type2 type3 type1 type2 type3

opd 95.1 95.93 94.65 97.44 97.21 96.04 96.82
sat 86.2 83.65 85.40 91.70 91.10 91.15 92.00
seg 91.7 92.04 91.52 91.66 92.19 91.95 92.38

V. CONCLUSION

We have introduced methods for linear combination of classifier
outputs. We handle different types of linear combination under the
same umbrella by introducing a tying/fixing matrix and a vector.
This framework enables one to estimate weight parameters which
are related to each other in various ways which we have not
explored to the full potential yet and plan to explore further in
our future work. We learn weights of types 1, 2 and 3 using
the introduced method by minimizing a regularized empirical loss
function. We have experimented with hinge loss and LS loss on
three different databases and under two different scenarios and
show that hinge loss yields better results in general. We plan
to perform more extensive experiments in the future. We also
explain the results we get and conclude that each type of weight
combination can be beneficial in certain cases and that one needs to
consider the needs of their own problem and choose an appropriate
method accordingly.
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