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Abstract

We consider designing decentralized estimation schemes over bandwidth limited communication links with a

particular interest in the tradeoff between the estimationaccuracy and the cost of communications due to, e.g., energy

consumption. We take two classes of in–network processing strategies into account which yield graph representations

through modeling the sensor platforms as the vertices and the communication links by edges as well as a tractable

Bayesian risk that comprises the cost of transmissions and penalty for the estimation errors. This approach captures a

broad range of possibilities for “online” processing of observations as well as the constraints imposed and enables a

rigorous design setting in the form of a constrained optimization problem. Similar schemes as well as the structures

exhibited by the solutions to the design problem has been studied previously in the context of decentralized detection.

Under reasonable assumptions, the optimization can be carried out in a message passing fashion. We adopt this

framework for estimation, however, the corresponding optimization schemes involve integral operators that cannot

be evaluated exactly in general. We develop an approximation framework using Monte Carlo methods and obtain

particle representations and approximate computational schemes for both classes of in–network processing strategies

and their optimization. The proposed Monte Carlo optimization procedures operate in a scalable and efficient fashion

and, owing to the non-parametric nature, can produce results for any distributions provided that samples can be

produced from the marginals. In addition, this approach exhibits graceful degradation of the estimation accuracy

asymptotically as the communication becomes more costly, through a parameterized Bayesian risk.
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I. I NTRODUCTION

The introduction of wireless sensor networks and their envisioned applications has nurtured the research on

decentralized versions of canonical statistical inference problems in signal processing including detection, estimation

and fusion. Typically, a large amount of observations induced by multiple quantities of interest are collected by

sensor platforms at distinct locations and possibly in various modes [1]. While this spatially distributed nature

neccessitates some communications, it is often the case that the components rely on limited energy stored in

batteries [2] and transmitting bits is far more costly than computing them in terms of energy dissipation [3]. There

are also resource limitations regarding sensing and computations and, therefore, any feasible processing scheme

needs to take the relevant tradeoffs into account and ensurea collaborative operation of the components [4].

This work is motivated by the interest in designing decentralized processing schemes for estimation subject to

a number of constraints regarding communications. The platforms setup a connected ad–hoc network on which

it is possible to establish links between any two nodes and maintain higher level topologies yielding multi-tier

architectures (see, e.g., [5]–[7]). These links are of finite capacity constraining the set of feasible symbols that can

be transmitted over them and vary in length in the number of hops. The tradeoff between estimation accuracy and

the cost of these transmissions is of concern to us. One possible way to abstract the energy cost of communications

is to consider the number of hops and utilize a first order radio model, i.e., a model of energy dissipation for

transmitting and receivingk bits atd meters distance (see e.g. [8]).

The phenomenon to be sensed is modeled by a collection of spatially correlated random variables. Such random-

field models have been proposed in a variety of contexts including turbulent flow (Chp. 12 of [9]) and geostatistics

data [10] such as temperature measurements over a field (Chp.1 of [11]).

Previous work on decentralized estimation includes the canonical approach that assumes a star topology and

bandwidth (BW) limited links in which a fusion center (FC) performs the estimation task based on messages from

a finite alphabet sent by the so-called peripheral sensors. The transmitted symbols are quantized measurements

and the design of quantizers together with a fusion rule is ofconcern in order to improve the estimation accuracy

in various settings including Bayesian (e.g., [12], [13]),non-Bayesian (e.g., [14]), unknown prior and/or noise

distribution (e.g., [15]–[17]), vector valued parameter (e.g., [18]) as well as the estimation of a random field (e.g.,

[19]–[21]). These treatments are limited in capturing certain aspects of the problem. First of all, the communication

structures for which results can be produced are restrictedto star topologies. Furthermore, the cost of transmissions

from peripherals to the FC which possibly varies considering the multi–hop nature is not explicitly accounted for.

Finally, often, a common random variable is of concern and estimation is performed only at the FC. This restricts

the amount of collaboration among platforms for online processing of observations and opens up a possibility for a

computational bottleneck in the case of multiple random variables (or a vector valued state) which can possibly be

distributed over the nodes. We address these limitations through two classes of in–network strategies which capture

a much broader range of communication and computation structures.

The decentralized random field estimation strategy in [19] utilizes bi-directional communications over a star
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topology and narrows the interval of uncertainty regardingthe common variable based on reciprocal messaging bet-

ween the FC and the peripherals. However, the variable representing the decision on the partition selection does not

provide conditional independence for the observations, and exact fusion of messages is not tractable (which is carried

out approximately using Monte Carlo approximations). Time-evolving random field estimation/prediction through

Kalman-Bucy filtering (KBF) is considered in [22] and [23]. In particular, [23] addresses decentralized estimation

through distributing the realization of the KBF, whereas [22] considers a center for filtering and communication

constraints through surrogate communication costs and an estimation penalty. In order to reduce the amount of

transmissions to the FC, model reduction is performed by variable selection at each step in a combinatorial setting.

The problem we consider differs from this work in that, rather than considering a dynamical problem involving

the processing of observations collected at consecutive time steps due to dynamical state transitions and modifying

the model of the static estimation problem arising at each time step, we are interested in a static problem and

optimization of a broader class of strategies such that graceful degradation is featured addressing the tradeoff.

Graphical models together with message passing algorithmshas proved useful for decentralized statistical infer-

ence in sensor networks (see e.g., [24] and the references therein). In this framework, efficient statistical inference

is achieved through message passing algorithms over a graphrepresentation that reveals the probabilistic model

underlying the estimation problem, which is often distinctfrom any graph representation of the available links. After

mapping the former onto the latter, a decentralized inference scheme is obtained which can be realized provided that

the underlying communication network supports the required messaging. It is often the case that the BW limitations

necessitate approximations of the messages and consequently degrade the inference performance. Although it is

possible to analyze the effects of these errors to some extent [25], it is hard to solve the problem taking into account

the available links and capacities together with the cost oftransmission over them (see e.g., Chp. 5 of [26]).

We consider two classes of in–network processing strategies that are composed of local communication and

computation rules and operate over a subset of all availablecommunication links. For the first class, a directed

acyclic graph (DAG) is rendered through the following: Treating the set of platforms as the vertex set of a graph,

each node is associated with a (set of) random variable(s) from the collection, possibly with the variable(s) of a

random field that model the phenomenon of interest at the location of the platform. Each link is represented by a

directed edge starting from the source and terminating at the sink node. In addition, a set of admissible symbols

that comply with the link capacity is associated with each edge. Given a set of links that renders a directed acyclic

graph, a strategy is achieved by having all nodes produce outgoing messages to their children and an estimate of

the random variable they are associated with based on the incoming messages from their parents as well as the

measurements they receive. Given aprior distribution for the random field and a tractable cost, this class yields a

tractable Bayesian risk under a number of reasonable assumptions.

The second class allows bi–directional communications andconsidering edge pairs between two nodes that

can perform peer–to–peer communications, renders an Undirected Graph (UG). Similar to that for the in–network

strategies over DAGs, each link is associated with a number of symbols according to the BW but, in contrast, local

processing of nodes take place in two–stages. In the first stage, each node delivers messages to their neighbors
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based on its measurement. In the second stage, having received messages from their neighbors, each node perform

estimation based on both the incoming messages and its measurement. One of the reasons for a two–stage strategy

is to avoid possible deadlocks in the processing of the observations. Second, the assumptions that guarantee a

tracktable Bayesian risk in the DAG case is not sufficient forstrategies over UGs but the structure introduced by

two–stage processing renders them sufficient.

As a result, both classes of strategies yield rigorous designs problems for decentralized inference under commu-

nication constraints in the form of constrained optimization problems in which the objective functions are Bayesian

risks that penalize both estimation errors and the transmissions, and the feasible set of strategies is constrained by

the corresponding graph representation that captures the availability and the capacity of links.

These classes of strategies together with the structures exhibited by the solutions have been recently studied in

[27] (see also [28]–[31]) in the context of decentralized detection. For each class, after a Team Decision Theoretic

investigation, an iterative procedure is obtained which, starting from an initial strategy, converges to a person–

by–person optimal one and can be realized as a message passing algorithm, provided that certain assumptions

hold.

We adopt this framework for decentralized estimation in which the variables of concern take values from

denumerable sets, and hence yield expressions with integral operators that cannot be evaluated exactly in general.

In order to keep the fidelity to the problem setting, we introduce an approximation framework utilizing Monte

Carlo (MC) methods such that particle representations and approximate computational schemes for the operators

replace the original expressions in both the strategies andtheir optimization. As a result, the iterative solutions are

transformed to MC optimization algorithms which also maintain the following benefits of the original scheme: First,

this framework enables us to consider a broad range of communication and computation structures for the design

of decentralized estimation networks. Second, in the case that a dual objective is selected as a weighted–sum of

the estimation performance and the cost of communications,a graceful degradation of the estimation accuracy is

achieved as communication becomes more costly. The resulting pareto–optimal curve enables a quantification of the

tradeoff of concern. Under reasonable assumptions, the optimization procedure scales with the number of platforms

as well as the number of variables involved and can be realized as message passing algorithms matching a possible

self-organization requirement, provided that certain assumptions hold. Lastly, since the approach is Bayesian, it

is possible to introduce information on the process of concern through a prior density function. In addition, the

MC optimization schemes we propose feature scalability with the cardinality of the sample sets required and can

produce results for any set of distributions provided that independent samples can be generated from the marginals.

In the next section we introduce both classes of strategies,and then we define the problem in a constrained

optimization setting. After presenting the Team Decision Theoretic investigation in Section III, we introduce our

MC optimization framework for in–network processing strategies over DAGs and two–stage strategies over UGs

in Sections IV and V respectively. Then we demonstrate the aforementioned features through several examples
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in Section VI1. Finally we provide some observations together with possible future directions, and conclude in

Section VII.

II. PROBLEM DEFINITION

We start this section with a number of basic definitions aboutour graphical representation of the problem and

the variables involved in that representation. Then in Section II-A, we present the in-network processing paradigm

over DAGs for network constrainedonline processing of the set of collected observations, which was previously

studied in [27] for detection such that the elements of the earlier work (e.g., [34] [35] [35]) are unified including a

DAG network topology, low–rate communication links between nodes and a spatially–distributed decision objective

[31]. Then, in Section II-B, the two–stage strategies over UGs are introduced which enable modeling bi–directional

links. Subsequently, in Section II-C, we state the design problem for the processing strategy taking into account

communication constraints in a constrained optimization setting, which is to be solved “offline,” i.e., before

processing the observations.

Common for both classes, a graphG = (V , E) represents an “online” communication and computation structure

where each platform is associated with a nodev ∈ V . An edge(i, j) ∈ E corresponds to the finite capacity

communication link from platformi to j on which i can transmit a symbolui→j without errors from the set

of admissible symbolsUi→j . The number of elements inUi→j , i.e., |Ui→j |, is finite and in accordance with the

link capacity capturing the bandwidth constraints2. Note that, ifG is a DAG, then a forward (backward) partial

ordering is implied with respect to the reachability relation starting to count form the parentless (childless) nodes

and proceeding forwards (backwards). If the links allow forbi–directional communication, i.e.,(i, j) ∈ E implies

that (j, i) ∈ E , thenG is an undirected graph.

We consider the joint distributionPX,Y (X,Y ) whereX = (X1, X2, ..., XN )T is the random variable subject to

estimation and takes values from a denumerable setX = X1 × X2 × ... × XN . Similarly Y = (Y1, Y2, ..., YM )T

takes values from a denumerable setY = Y1 × Y2 × ... × YM and is the collection of all observations induced

by X . It holds thatN,M ≥ 1 anddim(Xj), dim(Yk) ≥ 1 for j = 1, ..., N andk = 1, ...,M respectively. A node

v ∈ V collectsYv ⊆ {Y1, ..., YM} and can be associated withXv ⊆ {X1, ..., XN} for which case it estimatesXv.

This mapping which distributes the observed state over nodes is arbitrary, in principle, and enables decentralized

inference with a broad range of possibilities. For simplicity, we assume that there areN platforms withM = N

observations and givenu, v ∈ V , Xu andXv are mutually exclusive foru 6= v throughout.

A. In–network processing strategies over DAGs

We first consider the class of strategies over DAGs for which the graphG = (V , E) modeling the communication

and computation structure is directed and acyclic. Letuπ(j) denote the incoming messages to nodej from its parent

1The preliminary results of the proposed schemes appear in [32] and [33].

2For example, it is possible to represent a link with capacitylog2 dij bits with, e.g., selectingUi→j such that|Ui→j | = dij + 1 where

0 ∈ Ui→j indicates no transmission and enables a message cencoring or selective communication scheme. In [27], communication link errors

are also considered which we do not take into account throughout.
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(a) (b)

Fig. 1. Online processing scheme modelled with a DAGG = (V , E): (a) The viewpoint of nodej in G which evaluates its local ruleγj

based on its measurementyj as well as on the received messagesuπ(j) and produces an inference on the value of the random variableit is

associated with, i.e.,̂xj , together with outgoing messagesuj to its children. (b) The global view of the decentralized strategy overG where a

random vectorX takes the valuex as the outcome of an experiment and induces observationsy.

nodesπ(j), given byuπ(j) , {ui→j|i ∈ π(j)}. Let Uπ(j) denote the set from whichuπ(j) takes values. This set

is constructed through consecutive Cartesian products given byUπ(j) , ⊗
i∈π(j)

Ui→j where⊗ denotes consecutive

Cartesian Products3. The set of outgoing messages from nodej to child nodesχ(j), given byuj , {uj→k|k ∈ χ(j)},

takes values from the setUj which can be defined in a similar way to that forUπ(j) asUj , ⊗
k∈χ(j)

Uj→k.

As nodej measuresyj ∈ Yj and receivesuπ(j) ∈ Uπ(j), it evaluates a function, called its local rule, defined by

γj : Yj × Uπ(j) → Uj ×Xj

which produces an estimatêxj ∈ Xj as well as outgoing messagesuj ∈ Uj . The space of rules local to nodej is

given by

ΓG
j , {γj|γj : Yj × Uπ(j) → Uj ×Xj}

where the superscriptG denotes that the definition of the set relies onG. Considering the space of all possible

estimators, i.e.,Γ , {γ|γ : Y → X}, it holds thatΓG ⊂ Γ. Note that{Ui→j |(i, j) ∈ E} also relies onG through

the edge setE .

A DAG implies a partial ordering and it is possible to obtain aforward and backward partial ordering in accordance

with the reachability relation such that the parentless andthe childless nodes have the smallest order respectively.

The directed acyclic nature ofG leads to causal online processing of the observations when the nodes execute their

local rules in accordance with the forward partial order, i.e., starting from the parentless nodes, at each step, nodes

with the corresponding order evaluate their local rules andprocessing stops after the childless nodes. The process

from nodej’ s point of view is illustrated in Fig. 1(a).

ConsideringV = {1, 2, ..., N}, the aggregation of local rules denoted byγ is called a strategy, i.e.,γ =

(γ1, γ2, ..., γN ), and takes values from the set of feasible strategies given by

ΓG = ΓG
1 × ΓG

2 × ...× ΓG
N

3 In other words, e.g.,X = X1 ×X2 × X3 andX = ⊗
i∈{1,2,3}

Xi are synonymous.
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which will simply be denoted byΓG = ⊗
v∈V

ΓG
v . The set of all messages in the network arising for the “online”

processing of the observations is given byu , {ui→j |(i, j) ∈ E}, and takes values fromU , ⊗
(i,j)∈E

Ui→j . The

global view of this paradigm is illustrated in Fig. 1(b).

B. Two–stage in–network processing strategies over UGs

Given a UGG = (V , E), it holds for all edges inG, i.e., (i, j) ∈ E , that (i, j) ∈ E ⇔ (j, i) ∈ E establishing a

bi–directional setting. Unlike the DAG case, the local rules operate in two–stages: In the first stage, having observed

yj ∈ Yj , nodej transmits a messageuj→i taking values fromUj→i to each of its neighborsi ∈ ne(j) constituting

uj = {uj→i|i ∈ ne(j)}. The set of all possible outgoing messages is given byUj = ⊗
i∈ne(j)

Uj→i. In the second

stage, an inference on the value ofXj is drawn based on the observationyj and the incoming messages from

neighboring nodes given byune(j) = {ui→j |i ∈ ne(j)}. The set of all possible incoming messages is given by

Une(j) = ⊗
i∈ne(j)

Ui→j .

A causal online processing of measurements takes place wheneachj ∈ V , first performs its local communi-

cation ruleµj : Yj → Uj acting on onlyyj, and afterune(j) is received, proceeds with the local decision rule

νj : Yj × Une(j) → Xj . Hence, the local rule of nodej is a pair given byγj = (µj , νj).

Similar to the discussion in the DAG case, it is possible to define the space of all first–stage (communication)

rules as

MG
j = {µj |µj : Yj → Uj}

and the second-stage (estimation) rule space by

NG
j = {νj|νj : Yj × Une(j) → X}

The local rule spacesΓG
j = MG

j ×NG
j for j ∈ V construct the strategy spaceΓG = ⊗

v∈V
ΓG
v .

C. Design problem in a constrained optimization setting

For any such in–network processing strategy, it is possibleto select a costc such that an estimation error penalty

for the pair(x, x̂) and a cost due to the corresponding set of messagesu are assigned, i.e.,c : U × X × X → R. In

addition, givenγ = (γ1, ..., γN ) ∈ ΓG , the tuple(UT , X̂T )T = γ(Y ) is a random variable conditionally independent

of X given Y , denoted by(UT , X̂T )T ⊥⊥ X |Y , and the distributionp(u, x̂|y) is specified byγ and denoted by

p(u, x̂|y; γ). Note that, by construction, considering the causal onlineprocessing in the DAG and UG cases

p(u, x̂|y; γ) =
N
∏

j=1

p(uj , x̂j |yj , uπ(j); γj) (1)

and

p(u, x̂|y; γ) =
∏

j∈V
p(uj , x̂j |yj , une(j); γj)

=
∏

j∈V
p(uj |yj ;µj)p(x̂j |yj , une(j); νj) (2)



TECHNICAL REPORT - SABANCI UNIVERSITY 8

hold respectively.

Consider a Bayesian risk, i.e.,E {c(u, x, x̂); γ}. The distribution used to perform the expectation operation is

specified byγ and can be constructed through Eq. (1) and Eq. (2) for the strategies over DAGs and two–stage

strategies over UGs respectively as

p(u, x̂, x; γ) =

∫

Y

dyp(u, x̂|y; γ)p(y, x) (3)

Therefore, for any given strategyγ ∈ ΓG , there corresponds a Bayesian risk and the problem of findingthe

best strategy for estimation under communication constraints described byG turns into a constrained optimization

problem given by

(P) : min J(γ) (4)

subject toγ ∈ ΓG

whereJ(γ) = E {c(u, x, x̂); γ}.

It can be shown that if there exists an optimal strategy, thenthere exist an optimal deterministic strategy [36].

Therefore it suffices to consider the deterministic local rule spaces which consequently implies a treatment of the

distributionp(uj , x̂j |yj , uπ(j); γj) as a finite set of distributions parameterized onuj in the DAG case, i.e.,

p(uj , x̂j |yj , uπ(j); γj) = puj
(x̂j |yj, uπ(j); γj) (5)

p[γj(yj ,uπ(j))]Uj

(x̂j |yj , uπ(j); γj) = δ(x̂j −
[

γj(yj , uπ(j))
]

Xj
) (6)

where we denote with[.]X the element of its n-tuple argument that takes values from the setX and δ is Dirac’

s delta distribution. Hence, the local ruleγj and the distribution familypuj
(x̂j |yj , uπ(j); γj) specify each other

accordingly. Moreover, Eq.(5) substituted in Eq.(1) constructs the distribution given by Eq.(3) which underlies

Problem (P).

Similarly, for the two–stage strategies over UGs, the localfirst and second stage rules determine the following

distributions

p(uj|yj ;µj) = δuj ,µj(yj) (7)

p(x̂j |yj, une(j); νj) = δ(x̂j − νj(yj , uπ(j))) (8)

whereδi,j is the Kronecker’ s delta. For the case, the distribution given by Eq.(3) is constructed by substituting

Eq.s (7) and (8) in Eq.(2). It is also possible to express the two–stage in–network processing strategies by unwrapping

the UG to a directed graph which is bipartite and hence acyclic [30]. Consider, for example, the undirected graph

and its unwrapped directed counterpart in Fig. 2. Nodes1−4 perform only the stage-one communication rules, i.e.,

µjs, and nodes1′ − 4′ are associated only with the stage-two estimation rules, i.e., νjs. Nodej andj′ correspond

to the same physical platform but different processing tasks, in this respect. The unwrapped counterparts enable us

to apply the solutions to the design problem for the DAG case for two–stage strategies over UGs as well.
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Fig. 2. (a) A loopy UG of 4 nodes (b) the DAG counterpart regarding the two–stage online processing: Nodes1–4 correspond to platforms1–4

but only performing the first–stage communication rules, whereas nodes1′–4′ correspond to platforms1–4 but only performing the second–stage

estimation rules.

Algorithm 1 Iterations converging to a person-by-person optimal strategy.

1: Chooseγ0 = (γ01 , γ
0
2 , ..., γ

0
N ) such thatγj ∈ ΓG

j for j = 1, 2, ..., N ; Chooseε ∈ R
+ ;l = 0 ⊲ Initiate

2: l = l + 1

3: For j = N,N − 1, . . . , 1 Do γlj = arg min
γj∈ΓG

j

J(γl−1
1 , ..., γl−1

j−1, γj , γ
l
j+1, ..., γ

l
N ) ⊲ Update

4: If J(γl−1)− J(γl) < ε STOP, else, GO TO 2; ⊲ Check

Note that, it is possible to express the treatment in [12], [13] as well as the bounded parameters estimation setting

utilized in [14], [17] through a non–informative prior and acost functionc penalyzing only estimation errors, i.e.,

c : X × X → R, within the framework above.

III. T EAM DECISION THEORETIC INVESTIGATION

Problem (P) in (4) is a typical team decision problem [37] andsuch problems are intractable in various settings,

including conventional decentralized detection in which star–topologies are considered andX is finite [36]. Never-

theless, necessary (but not sufficient) conditions of optimality yield nonlinear Gauss-Seidel iterations which converge

to a person–by–person optimal strategy. Given an optimal strategyγ∗ ∈ ΓG it holds thatJ(γ∗j , γ
∗
\j) ≤ J(γj , γ

∗
\j)

for all γj ∈ ΓG
j where\j denotesV \ j andγ∗\j = {γ∗1 , γ∗2 , ..., γ∗j−1, γ

∗
j+1, ..., γ

∗
N} 4. Equivalently a relaxation of

(P) is to find a Nash equilibirium where no change in a single local rule yields a better objective value, i.e., one

is interested in findingγ∗ = (γ∗1 , ..., γ
∗
n) such that

γ∗j = arg min
γj∈Γj

J(γj , γ
∗
\j) (9)

for all j ∈ {1, 2, ..., N}. Such a solution is also said to be person–by–person (pbp) optimal and it is possible to

converge to one starting from an initial strategy by the immediate iterations given by Algorithm 1.

Considering problem (P) in the detection setting, the optimal strategies from the classes of concern lie in a finitely

parameterized subspace ofΓG under certain conditions [28], [30] and consequently tractable “offline” optimization

4Note that, when it is obvious from the context, we abuse the notation and denote{xi|i ∈ I} by xI whereI is an index set for the collection

of variables{x1, x2, ..., xN}.
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algorithms are obtained for both strategies over DAGs and two–stage strategies over UGs which operate in an

iterative fashion. We adopt the elaborate investigation ofKreidl (Chp.s 3 and 4 in [27]) for decentralized estimation

under communication constraints and obtain variational forms for the pbp optimal local rules which differ from

that in the detection setting in that, functions over denumerable domains parameterize the pbp optimal local rules.

A. Pbp optimal in–network strategies over DAGs

In this Section, we present the pbp optimal strategies for in–network strategies over DAGs which are estimation

counterparts of those in the detection setting together with conditions under which an efficient online processing is

achieved [31].

The pbp optimal strategies exhibit certain structures provided certain assumptions hold. The first condition that

leads a useful form for the pbp optimal local rules is the conditional independence of observations:

Assumption 1:(Conditional Independence) The noise processes of the sensors are mutually independent and

hence given the state ofX , the observations are conditionally independent, i.e.,p(x, y) = p(x)
∏N

i=1 p(yi|x).
Proposition 3.1: (Proposition 3.1 in [27] for estimation) Consider (P) underAssumption 1. Thej th pbp optimal

rule given by Eq.(9) reduces to

γ∗j (yj , uπ(j)) = arg min
(uj ,x̂j)∈Uj×Xj

∫

X
dx p(yj |x)θ∗j (uj , x̂j , x;uπ(j)) (10)

where

θ∗j (uj , x̂j , x, uπ(j)) = p(x)
∑

u\ {j}∪π(j)

∫

X\j

dx̂\j c(u, x̂, x)
∏

i6=j

∫

Yi

dyi p(yi|x)p(ui, x̂i|yi, uπ(i); γ∗i ) (11)

for all uπ(j) ∈ Uπ(j) andyj ∈ Yj with non-zero probability, i.e.,p(yj , uπ(j); γ∗\j) > 0.

Proof: The proof follows the factorization ofJ(γ) = J(γj , γ\j) after substitutingγ\j = γ∗\j , Eq.s(1),(5),(6)

and Assumption 1 together with the fact that if a pbp local rules exists, then a deterministic pbp local rule exists

[36].

After substitutingγ\j = γ∗\j , Eq.(1) and Assumption 1 inJ(γ) = J(γj , γ\j) we obtain

J(γj , γ
∗
\j) =

∫

X
dx

∫

X
dx̂

∑

u∈U
c(u, x, x̂)p(x)p(uj , x̂j |x, uπ(j); γj)

N
∏

i6=j

p(ui, x̂i|x, uπ(i); γ∗i )

=

∫

Yj

dyj

∫

Xj

dx̂j
∑

uj∈Uj

∑

uπ(j)∈Uπ(j)

p(uj , x̂j |yj , uπ(j); γj)
∫

X
dxp(yj |x)p(x)

∑

u\{j}∪π(j)

∫

X\j

c(u, x, x̂)

N
∏

i6=j

p(ui, x̂i|x, uπ(i); γ∗i ) (12)

Consider deterministic local rules such thatγj ∈ ΓG
j and Eq.s(5) and (6). Given(uπ(j), yj) ∈ Uπ(j) × Yj with

non-zero probability,γ∗j minimizes Eq.(12) with probability1 provided that for(u∗j , x̂
∗
j )

puj
(x̂j |yj , uπ(j); γj) =











δ(x̂j − x̂∗j ) , if uj = u∗j

0 , otherwise
(13)
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where the weight of(u∗j , x̂
∗
j ) in Eq.(12), i.e.,

∫

X

dxp(yj |x)p(x)
∑

u\{j}∪π(j)

∫

X\j

dx̂\jc(u, x, x̂\j , x̂j = x̂∗j )
∏

i6=j,i/∈χ(j)

∫

Yi

dyip(ui, x̂i|uπ(i), yi; γ∗i )

∏

i6=j,i∈χ(j)

∫

Yi

dyip(ui, x̂i|u∗j→i ∪ {ui′→i|i′∈π(i)\j}, yi; γ∗i )p(yi|x) (14)

is minimum. Hence, for all(uπ(j), yj) ∈ Uπ(j) × Yj with non-zero probability

γ∗j (yj , uπ(j)) = arg min
(uj ,x̂j)∈Uj×Xj

∫

X
dxp(yj |x)θ∗j (uj , x̂j , x;uπ(j))

whereθ∗j is identified as

θ∗j (uj , x̂j , x, uπ(j)) = p(x)
∑

u\j∈U\j

∫

X\j

dx̂\j c(u, x̂, x)
∏

i6=j

∫

Yi

dyi p(yi|x)p(ui, x̂i|yi, uπ(i); γ∗i ) (15)

Regarding Proposition 3.1, it can be shown that
∫

X
dxp(Yj |x)θ∗j (uj , x̂j , x;Uπ(j)) ∝ E{c(u\j, uj, x, x̂\j , x̂j)|Yj , Uπ(j); γ

∗
\j}

whereuj andx̂j are free variables5 and in this respect it is revealed that thejth pbp optimal rule involves minimizing

the conditional expected cost given the incoming messagesuπ(j) and the measurementyj where the underlying

distribution is specified by all the local rules other than the jth.

Note that in Eq.(10),θ∗j does not depend on the observationyj and the likelihoodp(yj|xj) acts as sufficient

statistics. Hence,θj provides a useful parameterization for thejth pbp optimal rule, which unlike its appearance

as a finite dimensional vector in the detection setting [29],is a function over a denumerable domain. In addition, it

is useful to treat the right hand side (RHS) of Eq. (11) as an operatorψ such that given any set of local rules for

nodes other than thejth, i.e., γ\j ∈ ΓG
\j , fixed not necessarily at an optimum,ψ producesθj , i.e., θj = ψj(γ\j).

Then, the corresponding local rule for thejth node is obtained through Eq.(10) which can also be treated asan

operator givenθj , i.e., γj = ςj(θj). Therefore, it is possible to obtain an iterative scheme which, starting from an

initial strategy, converges to a pbp optimal one, in principle, by replacing theUpdate step of Algorithm 1 with

θlj = fj(θ
l−1
1 , ..., θl−1

j−1, θ
l
j+1, ..., θ

l
N ) (16)

for j = 1, 2, ..., N wherefj denotes the composite operator (obtained after substituting ςi(θi) for all i ∈ \j in

ψj). Note that, as a consequence of the fact thatX is denumarable, the fixed point equations{θj = fj(θ\j)}j∈V

corresponding to Algorithm 1 with the aforementioned modification are not practically solvable in general.

Nevertheless, optimality in a pbp sense has been consideredin the decentralized estimation literature for the

canonical star–topology. For example, Proposition 3.1 applied for quantizer peripherals and a fusion center setting

together with a squared error cost, i.e.,c(u, x̂, x) = (x̂− x)2, specializes to the optimality conditions presented in

[12]. For this case, the structure of the local rules as givenabove do not yield closed form representations in general,

5Note thatc(u, x, x̂) is written asc(u\j , uj , x, x̂\j , x̂j) to explicitly show the free variablesuj and x̂j of the jth local rule.
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altough relatively straightforward numerical computations are involved when the joint densityp(x, y1, ..., yN) is

Gaussian andx is a scalar. The fact that the fusion rule is not scalable in the number of peripherals raises the

potential issue of computational bottlenecks. This consideration has led to a fusion rule which is linear in the

received symbols [13].

1) Efficient Online Strategies:We continue with conditions under which an efficient online processing is achieved

[31]:

Assumption 2:(Measurement Locality) Every nodej observesyj due to onlyxj , i.e., p(yj|x) = p(yj |xj).
Corollary 3.2: (Corollary 3.2 in [27] for Estimation) Under Assumptions 1 and 2, thejth pbp optimal rule given

by Proposition 3.1 reduces to

γ∗j (Yj , Uπ(j)) = arg min
uj×x̂j∈(Uj×Xj)

∫

Xj

dxjp(Yj |xj)φ∗(uj , x̂j , xj ;Uπ(j)) (17)

where

φ∗j (uj , x̂j , xj ;uπ(j)) =

∫

x\j∈X\j

dxjθ
∗
j (uj , x̂j , x;uπ(j)) (18)

Proof: Substitutep(yj |x) = p(yj|xj) in Eq.(10) and rearrange the terms.

Under Assumptions 1 and 2, the local rules evaluate marginalizations over only the set from which the associated

variable takes values from, i.e.,Xj , rather thanX and become independent of the number of nodes. This provides

scalability in the number of nodes (and correspondingly thenumber of variables) and hence efficiency for online

processing.

2) Efficient Offline Optimization:The efficiency in online processing through Corollary 3.2 lacks for specifying

the pbp optimal local rules sinceφ∗j given by Eq.(18) depends on all the nodes other than thejth. Under additional

assumptions, the “offline” optimization scales with the number of nodes:

Assumption 3:(Cost Locality) The Bayesian cost function is additive overthe nodesj ∈ V , i.e.,

c(u, x̂, x) =
∑

j∈V
cj(uj , x̂j , xj) (19)

Assumption 4:(Polytree Topology) GraphG = (V , E) is a polytree, i.e.,G is a directed acyclic graph with an

acyclic undirected counterpart6.

Proposition 3.3: (Proposition 3.2 in [27] for estimation) Consider Problem (P) given in (4) such thatX andX̂

take values from a denumerable setX . Under Assumptions 1–4 , Eq.(17) applies with

φ∗j (uj , x̂j , xj ;uπ(j)) ∝ p(xj)P
∗
j (uπ(j)|xj)

[

cj(uj, x̂j , xj) + C∗
j (uj , xj)

]

(20)

whereP ∗
j (uπ(j)|xj) is the incoming message likelihood given by the forward recursion

P ∗
j (uπ(j)|xj) =















1 , if π(j) = ∅
∫

Xπ(j)

dxπ(j)p(xπ(j)|xj)
∏

i∈π(j)

P ∗
i→j(ui→j |xi) , otherwise

(21)

6Note that a polytree implies a forward (backward) partial–order starting from the parentless (childless) nodes with respect to the reachability

relation.
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with terms regarding influence ofi ∈ π(j) on j given by

P ∗
i→j(ui→j |xi) =

∑

uχ(i)\j∈Uχ(i)\j

∑

uπ(i)∈Uπ(i)

P ∗
i (uπ(i)|xi)

∫

Xi

dx̂i

∫

Yi

dyi p(ui, x̂i|yi, uπ(i); γ∗i )p(yi|xi) (22)

and the conditional cost termC∗
j (uj, xj) which is added to the local cost and given by the backward recursion

C∗
j (uj , xj) =











0 , if χ(j) = ∅
∑

k∈χ(j) C
∗
k→j(uj→k, xj) , otherwise

(23)

with terms regarding the influence ofk ∈ χ(j) on j given by

C∗
k→j(uj→k, xj) =

∫

Xπ(k)\j

dxπ(k)\j

∫

Xk

dxkp(xπ(k)\j , xk|xj)
∑

uπ(k)\j∈Uπ(k)\j

∏

m∈π(k)\j
P ∗
m→k(um→k|xm)×

I∗k (uπ(k), xk; γ
∗
k) (24)

and

I∗k (uπ(k), xk; γ
∗
k) =

∫

Yk

dyk

∫

Xk

dx̂k
∑

uk∈Uk

[ck(uk, x̂k, xk) + C∗
k(uk, xk)] p(uk, x̂k|yk, uπ(k); γ∗k)p(yk|xk) (25)

Proof: (Sketch) First, we recognize that the DAG structure together with Assumption 2 implies that the set

of incoming messagesuπ(j) depends on not all the rules other than thejth but only those of the ancestors ofj

denoted byan(j), i.e., p(uπ(j)|x; γ∗\j) = p(uπ(j)|xan(j); γ∗an(j)). Under Assumption 3 the output of thejth local

rule, i.e.,(uj , x̂j), does not affect the costs of nodes other than the descendants of j denoted byde(j), i.e.,

E{
∑

i∈\j
c(ui, x̂i, xi)|uj , x̂j ; γ∗\j} = E{

∑

i∈\j\de(j)
c(ui, x̂i, xi); γ

∗
\j}+ E{

∑

i∈de(j)

c(ui, x̂i, xi)|uj, x̂j ; γ∗\j}

In other words, optimization ofγj can be performed equivalently with an objective regarding the costs only on

nodej and its descendants. Under Assumption 4, the operation of rules local to the ancestors ofj and descendants

of j are mutually exclusive and the incoming message likelihoods and the expected costs yield the structure given

by Eq.(20). Moreover, Assumption 4 guarantees that there are no parent nodes with common ancestors and no child

nodes with common descendants yielding the multiplicativestructure in Eq.s(21)-(22) and the additive structure of

the expected costs in Eq.s(23)-(25). A detailed proof is provided in Appendix A.

Considering Eq.(21) and (22) we note thatP ∗
i→j(ui→j |xi) is the likelihood ofxi based on the particular message

ui→j on the link from nodei to j and under Assumption 4P ∗
j (uπ(j)|xj) is the likelihood ofxj for the particular

incoming message vectoruπ(j), i.e., p(uπ(j)|xj ; γan(j)). A similar treatment of Eq.(23) and (24) reveals that

C∗
k→j(uj→k, xj) terms are the expected cost if the actual value of the random variable associated with nodej

takes the valuexj and nodej sends the messageuj→k on the link to its childk. Hence, under a polytree topology

C∗
j (uj , xj) is the total expected cost induced on the descendats ofj for transmittinguj. This cost is added to the

local costcj(uj , x̂j , xj) in Eq.(20) which also penalizes the transmission cost. Alsoconsidering Eq.(17) and (20),

and noting that under these assumptionsp(xj)p(yj |xj)P (uπ(j)|xj) ∝ p(xj |yj , uπ(j)), we conclude that given the

measurementyj and the incoming messagesuπ(j), nodej chooses the output with the minimum expected cost
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where the cost terms are sum of that due to the rules local toj and its descendants and the underlying distribution

is determined by the ascendants.

Similar to the treatment regarding Proposition 3.1 to yieldthe set of fixed point equations given by Eq.17, it

is possible to consider Eq.s (21)-(25) as operators for any given (not neccessarily optimal) strategyγ\j ∈ ΓG
\j .

Similarly, it is possible to summarize this treatment bydj , fj , gj andhj such that

φj = dj(Pj , Cχ(j)→j) (26)

Pj = fj(Pπ(j)→j) (27)

Pj→χ(j) = gj(φj , Pj) (28)

Cj→π(j) = hj(φj , Pπ(j)→j , Cχ(j)→j) (29)

wherePπ(j)→j = {Pi→j}i∈π(j), Cχ(j)→j = {Ck→j}k∈χ(j) andCj→π(j) = {Cj→i}i∈π(j). Note thatdj , fj, gj and

hj are specified by the RHSs of Eq.s(20) and (23), Eq.(21), Eq.(22), and finally Eq.s(24) and (25) respectively.

Consequently, the forward recursion implied byfj andgj with respect to the forward partial–ordering ofG together

with the backward recursion implied byhj anddj with respect to the backward partial–ordering yields Algorithm 2

after replacing theUpdate step of Algorithm 1 as described.

It is possible to perform this algorithm in a message passingfashion treating each nodej ∈ V as an entity which

can perform computations and communications. Each nodej ∈ V starts only with the knowledge ofp(xj , xπ(j))

and c(uj , x̂j , xj) and an initial local ruleγ0j ∈ ΓG
j which determinesp(uj, x̂j |yj, uπ(j); γ0j ). In the forward pass,

starting from the parentless nodes and proceeding in forward partial ordering implied byG, each node receives

Pi→j from its parentsi ∈ π(j), computesPj→k for its childrenk ∈ χ(j) and transmits them. In the backward pass,

starting from the childless nodes and proceeding in the backward partial–ordering, each node receivesCk→j from

its childrenk ∈ χ(j) and computesCj→i for its parentsi ∈ π(j) which involves updating the local rule. Note that,

in contrast with the online processing strategy which assumes a polytree topology allowing only uni–directional

links, the message passing interpretation of the offline strategy optimization requires bi–directional communications.

It is reasonable to assume that both the topology assumed by the online processing and the links required by the

offline optimization are provided by the underlying networklayer through physically available connections and

appropriate protocols [5]–[7].

In Section III-A1, owing to the information structure introduced under Assumptions 1 and 2, an efficient online

processing strategy is achieved. With the addition of Assumptions 3–4, the optimization of the local rules in a

pbp sense admits a message passing algorithm which scales both with the number of variables and the number of

platforms. The resulting iterative scheme given as Algorithm 2 is amenable for network self-organization and for a

network that would execute the resulting strategy for a certain amount of time after initialization, the communication

cost of the optimization procedure might be considered as reasonable [31].

It is often the case that it is hard to achieve consistency in penalizing the estimation errors and communication

costs through an arbitrary selection of the cost functionc : U × X × X → R. It is possible to select one which
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Algorithm 2 Iterations converging to a pbp optimal in-network processing strategy over a DAGG.

1: Chooseγ0 = (γ01 , γ
0
2 , ..., γ

0
N ) such thatγ0j ∈ ΓG

j for j = 1, 2, ..., N ; Chooseε ∈ R
+ ;l = 0 ⊲ Initiate

2: l = l + 1

3: For j = 1, 2, ..., N Do ⊲ Update Step 1: Forward Pass

P l
j = fj(

{

P l
i→j(ui→j |xi)

}

i∈π(j)
)

{

P l
j→k(uj→k|xj)

}

k∈χ(j)
= gj(φ

l−1
j , P l

j )

4: For j = N,N − 1, ..., 1 Do ⊲ Update Step 2: Backward Pass

φlj = dj(P
l
j ,
{

Cl
k→j(uj→k, xj)

}

k∈χ(j)
)

{

Cl
j→i(ui→j , xi)

}

i∈π(j)
= hj(φ

l
j ,
{

P l
i→j(ui→j |xi)

}

i∈π(j)
,
{

Cl
k→j(uj→k, xj)

}

k∈χ(j)
)

5: If J(γl−1)− J(γl) < ε STOP, else GO TO 2 ⊲ Check

results in smooth degradation in the estimation performance as the link utilization is decreased. Also considering

Proposition 3.3, we assume a separable cost and present the reductions that arise in Eq.s(21)-(25):

Assumption 5:(Separable Costs) The global cost functionc(u, x̂, x) is separable to functions penalizing estima-

tion errors and communications. In particular,c(u, x̂, x) = cd(x̂, x) + λcc(u, x) wherecd andcc are cost functions

for estimation errors and communications respectively. Here, λ appears as a unit conversion constant and can be

interpreted as the equivalent estimation penalty per unit communication cost [27]. HenceJ(γ) = Jd(γ) + λJc(γ)

whereJd(γ) = E{cd(x̂, x); γ} andJc(γ) = E{cc(u, x); γ} respectively7.

Note that, Assumption 5, together with Assumption 3 impliesthat the local cost functions are separable, i.e.,

cj(uj , xj , x̂j) = cdj (xj , x̂j) + λccj(uj , xj) (30)

Corollary 3.4: Consider Proposition 3.3, if the local costs are separable,i.e., Assumption 5 holds in addition to

Assumptions 1-4, then the pbp optimal local rule in the variational form given by Eq.(17) is separated into two

rules for estimation and communication asγ∗j = (ν∗j , µ
∗
j ) given by

x̂j = ν∗j (yj , uπ(j)) = argmin
x̂j∈Xj

∫

xj∈Xj

dxjp(xj)p(yj |xj)P ∗
j (uπ(j)|xj)cdj (x̂j , xj) (31)

uj = µ∗
j (yj , uπ(j)) = argmin

uj∈Uj

∫

xj∈Xj

dxjp(xj)p(yj |xj)P ∗
j (uπ(j)|xj)

[

λccj(xj , uj) + C∗
j (uj , xj)

]

(32)

7Note that convex combinations of dual objectives, i.e.,J ′(γ) = αJd(γ) + (1 − α)Jc(γ), yield pareto-optimal curves parameterized by

α. This setting preserves the pareto-optimal front sinceλ = (1 − α)/α andJ(γ) ∝ J ′(γ) yielding a graceful degradation of the estimation

performance withλ.
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Moreover, the corresponding distributionp(uj , x̂j |yj , uπ(j); γ∗j ) given by Eq.(5) takes the form

p(uj, x̂j |yj, uπ(j); γ∗j ) = p(x̂j |yj, uπ(j); ν∗j )p(uj |yj , uπ(j);µ∗
j ) (33)

Proof: After substituting the separable local cost in Eq.(20) and Eq.(17), the optimization is separated into

two problems over argumentŝxj ∈ X anduj ∈ Uj . This separation also implies thatUj andX̂j are conditionally

idependent denoted byUj ⊥⊥ X̂j | (Yj , Uπ(j)) yielding Eq.(33) by definition.

Example 3.5:Consider a separable local cost where the estimation penalty is given bycdj (x̂j , xj) = (x̂j − xj)
2

as in the conventional mean squared error (MSE) estimator. We obtain a closed form expression for the estimation

rule regarding the variational form in Eq.(31) after differentiating with respect tôx and setting the result equal to

zero:

x̂j = ν∗j (Yj , Uπ(j)) =

∫

Xj

dxj xjp(xj)p(Yj |xj)P ∗
j (Uπ(j)|xj)

∫

Xj

dxj p(xj)p(Yj |xj)P ∗
j (Uπ(j)|xj)

(34)

Note that the information structure implies thatP ∗
j (uπ(j)|xj) = p(uπ(j)|xj ; γ∗\j) holds which in turn is equal to

p(uπ(j)|xj ; γ∗an(j)) due to the polytree topology. In addition the conditional independence relationUπ(j) ⊥⊥ Yj |Xj

holds such that equivalentlyp(xj , yj, uπ(j)) = p(xj)p(yj |xj)p(uπ(j)|xj). Hence the denominator in Eq.(34) is

nothing butp(yj , uπ(j)) = p(yj , uπ(j); γ
∗
an(j)) and the estimator is given by

x̂j = ν∗j (yj , uπ(j)) =

∫

Xj

dxj xjp(xj |yj , uπ(j); γ∗an(j))

which is the center of gravity of the posterior density conditioned on both the observation and the incoming messages

(this density is specified by the rules local to ancestors ofj, i.e., γ∗an(j) , under Assumptions 1-4, which are fixed

at the optimum). Hence, any selection of the communication rules for ancestors manifest themselves in the optimal

estimation rule for nodej through the likelihoodP ∗
j (uπ(j)|xj). Under this particular choice of the decision cost,

uπ(j) is treated as another conditionally independent observation while utilizing the MSE estimator based on the

posterior.

If the local cost functions are separable, similar simplifications to those in Proposition 3.3 take place.

Corollary 3.6: Consider Proposition 3.3, if the local costs are separable,thenI∗(uπ(k), xk; γ∗k) given by Eq.(25)

takes the form

I∗(uπ(k), xk; γ
∗
k) = Jd|xk,uπ(k)

+ Jc|xk,uπ(k)
(35)

whereJd|xk,uπ(k)
is the local expected estimation cost conditioned onxk anduπ(k) given by

Jd|xk,uπ(k)
=

∫

Xk

dx̂k c
d
k(x̂k, xk)p(x̂k|xk, uπ(k); ν∗k) (36)

and Jc|xk,uπ(k)
is the total expected cost of transmitting the symboluk conditioned onxk and uπ(k), including

costs induced on the descendats, i.e.,C∗
k (uk, xk), and the transmission cost captured bycck(uk, xk), i.e.,

Jc|xk,uπ(k)
=

∑

uk∈Uk

(λcck(uk, xk) + C∗
k(uk, xk)) p(uk|xk, uπ(k);µ∗

k) (37)
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Moreover, the conditional pdf of the estimations specified by ν∗k is given by

p(x̂k|xk, uπ(k); ν∗k) =
∫

Yk

dyk p(x̂k|yk, uπ(k); ν∗k)p(yk|xk) (38)

and the conditional pmf of the outgoing messages specified byµ∗
k is given by

p(uk|xk, uπ(k);µ∗
k) =

∫

Yk

dyk p(uk|yk, uπ(k);µ∗
k)p(yk|xk) (39)

Proof: After substituting the separable local cost for nodek given by Eq.(30) in Eq.(25) and rearranging terms

I∗k (uπ(k), xk; γ
∗
k) =

∫

Xk

dx̂kc
d
k(x̂k, xk)

∫

Yk

dykp(x̂k|yk, uπ(k); ν∗k)p(yk|xk)

+ λ
∑

uk∈Uk

[λcck(uk, xk) + C∗
k (uk, xk)]

∫

Yk

dykp(uk|yk, uπ(k);µ∗
k)p(yk|xk) (40)

is obtained.

Therefore, under Assumptions 1– 5, sufficient conditions ofoptimality in a pbp sense are provided by Eq.s (20)–

(24) together with Eq.s (35)–(39) implying an iterative optimization scheme. In principle, once the operators implied

by these expressions are utilized in Algorithm 2, it is possible to find a pbp optimal decentralized estimation strategy

starting with an initial one.

Finally, the corresponding Bayesian risk at thelth step, i.e.,J(γl), which is also required by theCheck step of

Algorithm 2 is obtained as

J(γl) =
∑

j∈V
Gj(γ

l
j) (41)

where

Gj(γ
l
j) =

∫

Xj

dxjp(xj)
∑

uπj∈Uπj

P l+1
j (uπ(j)|xj)

∫

Yj

dyj

∫

Xj

dx̂j
∑

uj∈Uj

cj(uj , x̂j , xj)

p(uj , x̂j |yj , uπ(j); γlj)p(yj |xj) (42)

B. Pbp optimal two–stage in–network processing strategiesover UGs

The information structure of the directed case yield the conditions given by Proposition 3.1 provided that

Assumption 1 holds which specializes to Proposition 3.3 if additionally Assumptions 2-4 are satisfied. On the

other hand, considering decentralized strategies constrained by an undirected graph, Proposition 3.1 applies to the

unwrapped directed counterpart under Assumption 1 and the following [30]:

Assumption 6:The global cost function is the sum of costs due to the stage-one communication rules and stage-

two decision rules, which are in turn additive over the nodes, i.e.,

c(u, x̂, x) =

N
∑

i=1

[

cdi (x̂i, x) + λcci (ui, x)
]

(43)
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Note that, simultaneous satisfaction of Assumptions 3 and 5is equivalent to simultaneous satisfaction of Assump-

tions 3 and 6. If Assumptions 1 and 5 hold together with Assumptions 2 and 3, then Proposition 3.3 applies to the

unwrapped directed counterpart of the two–stage strategy over a UG [27] and the following holds:

Proposition 3.7: (Proposition 4.3 in [27] for estimation) Under Assumptions1–3 and 5,J(γ) = Jd(γ) + λJc(γ)

holds and given a pbp optimal strategyγ∗ = (γ∗1 , ...γ
∗
N ) constituted of two–stage local rules over an undirected

graph and fixing all local rules other than thejth, the jth optimal rule reduces to local stage–one communication

rule given by

µ∗
j (yj) = arg min

uj∈Uj

∫

Xj

dxjp(yj |xj)α∗
j (uj , xj) (44)

where

α∗
j (uj , xj) ∝ p(xj)[λc

c
j(uj, xj) + C∗

j (uj , xj)] (45)

for all yj ∈ Yj with nonzero probability and stage two–estimation rule given by

ν∗j (yj , une(j)) = arg min
x̂j∈Xj

∫

Xj

dxjp(Yj |xj)β∗
j (xj , x̂j , une(j)) (46)

where

β∗
j (xj , x̂j , une(j)) ∝ p(xj)P

∗
j (une(j)|xj)cdj (x̂j , xj) (47)

for all yj ∈ Yj and for allune(j) ∈ Une(j) with nonzero probability.

The incoming message likelihood is given by

P ∗
j (une(j)|xj) =

∫

Xne(j)

dxne(j)p(xne(j)|xj)
∏

i∈ne(j)

P ∗
i→j(ui→j |xi) (48)

with terms regarding influence ofi ∈ ne(j) on j given by

P ∗
i→j(ui→j |xi) =

∑

ui\ui→j

p(ui|xi;µ∗
i ) (49)

for all ui→j ∈ Ui→j where

p(ui|xi;µ∗
i ) =

∫

Yi

dyip(yi|xi)p(ui|yi;µ∗
i ) (50)

In addition for alluj ∈ Uj

C∗
j (uj , xj) =

∑

i∈ne(j)

C∗
i→j(uj→i, xj) (51)

holds with terms regarding the influence ofj on i ∈ ne(j) given by

C∗
i→j(uj→i, xj) =

∫

Xne(i)\j

dxne(i)\j

∫

Xi

dxip(xne(i)\j , xi|xj)

∑

une(i)\j

∏

j ′∈ne(i)\j
P ∗
j ′→i(uj ′→i|xj ′)I∗i (une(i), xi; γ

∗
i ) (52)

such that

I∗i (une(i), xi; ν
∗
i ) =

∫

Yi

dyi

∫

Xi

dx̂i c
d
i (x̂i, xi)p(x̂i|yi, une(i); ν∗i )p(yi|xi) (53)
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Algorithm 3 Iterations converging to a pbp optimal two–stage in-network processing strategy over an UGG.

1: Chooseγ0 = (γ01 , γ
0
2 , ..., γ

0
N ) such thatγ0j ∈ ΓG

j for j = 1, 2, ..., N ; Chooseε ∈ R
+ ;l = 0 ⊲ Initiate

2: l = l + 1

3: For j = 1, 2, ..., N Do ⊲ Update Step 1: Compute message likelihoods

P l
j→ne(j) = gj(α

l−1
j )

4: For j = 1, 2, ..., N Do ⊲ Update Step 2: Update the stage--two rules

P l
j = fj(P

l
ne(j)→j)

βl
j = qj(P

l
j)

Cl
j→ne(j) = hj(βj , P

l
ne(j)→j)

5: For j = 1, 2, ..., N Do ⊲ Update Step 3: Update the stage--one rules.

αl
j = rlj(C

l
ne(j)→j)

6: If J(γl−1)− J(γl) < ε STOP, else GO TO 2 ⊲ Check

Proof: Apply Corollary 3.3 on the unwrapped directed couterpart ofthe undirected graphG together with the

two–stage local rules. Note that thejth pbp optimal local rule given in Proposition 3.3 reduces to the form given

in Corollary 3.4 under Assumption 5 which is implied by Assumptions 3 and 6.

Through Proposition 3.7, given a person-by-person optimalstrategy, we obtain stage–one communication and

stage–two estimation rules local to nodej in a variational form, based on the rules local to the the remaining

nodes. Considering Eq.s(48) and (49),P ∗
j (une(j)|xj) is the likelihood ofxj givenune(i). Eq.s(51)-(53) reveal that

C∗
j (uj , xj) is the total expected cost induced on the neighbors byuj, i.e.,E{cd(x̂ne(j), xne(j))|uj , xj ; γ∗\j}. Since

p(xj)p(yj |xj)P (une(j)|xj) ∝ p(xj |yj , une(j)) holds under Assumptions 1-3 and 5, thejth optimal communication

rule selects the message that results with a minimum contribution to the overall cost and the optimal estimation

rule selectŝxj that yields minimum expected penalty givenyj andune(j).

Similar to the specification of Algorithm 2 by employing Proposition 3.3 in Algorithm 1, it is possible to obtain

an iterative scheme which, starting with an initial two-stage strategy, converges to a person–by–person optimal one.

The treatment of the RHSs of Eq.s (45), (47)-(53) as operators that can act on any set of their arguments, not

necessarily optimal, is summarized byrj andqj together withfj , gj andhj given by

αj = rj(Cne(j)→j) (54)

βj = qj(Pj) (55)

Pj = fj(Pne(j)→j) (56)

Pj→ne(j) = gj(αj) (57)
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Cj→ne(j) = hj(βj , Pne(j)→j) (58)

wherePne(j)→j = {Pi→j}i∈ne(j), Cne(j)→j = {Ci→j}i∈ne(j) and Cj→ne(j) = {Cj→i}i∈ne(j). The resulting

iterative scheme after deploying the operators given by Eq.s(54)–(58) is given by Algorithm 3.

Finally, the objective value at thelth step is easily found to be

J(γl) =
∑

i∈V
Gd

i (ν
l
i) + λ

∑

i∈V
Gc

i (µ
l
i) (59)

where

Gd
i (ν

l
i) =

∑

une(i)

∫

Xi

dxip(xi)P
l+1
i (une(i)|xi)Ii(une(i), xi; νli) (60)

and

Gc
i (µ

l
i) =

∑

ui

∫

Xi

dxic
c
i (ui, xi)p(xi)p(ui|xi;µl

i) (61)

in terms of the expressions discussed above.

Note that, similar to that for optimizing in–network strategies over DAGs, theUpdate step of Algorithm 3 also

admits a message passing interpretation. In the first pass, all nodes compute and send forward likelihood terms to

their neighbors. In the second pass, upon receiption of the likelihood messages, all nodes update their stage–two

estimation rules and compute and send expected cost messages to their neighbors. After receiving cost messages

from neighbors, each node update its stage–one communication rule. This structure of the optimization scheme

renders it suitable for a possible network self–organization requirement similar to Algorithm 2.

IV. MC OPTIMIZATION FRAMEWORK FOR IN-NETWORK PROCESSING STRATEGIES OVERDAGS

In Section III-A1 and III-A2 we have provided conditions of optimality in a person–by–person sense rendering

Algorithm 2 for theoffline optimization of the class of decentralized estimation strategies of concern. Specifically,

provided that Assumptions 1–4 hold, the operator representationsdj , fj , gj andhj given by Eq.s(26)–(29) summarize

Eq.s (21)-(25) respectively applied to local rules not necessarily optimal. If, in addition, Assumption 5 holds, the

structures exhibited in Corollaries 3.4 and 3.6 are inducedon the operators. However, it is not possible to evaluate

the right hand side (RHS) of these equations and correspondingly dj , fj , gj andhj exactly, in general, for arbitrary

prior marginalsp(xj), observation likelihoodsp(yj |xj) and rules local to nodes other thanj, i.e., γ\j . A similar

problem arises in message passing algorithms over continous Markov random fields and has been the motivation

for algorithms relying on particle representations together with approximate computational schemes including Non-

parametric Belief Propagation [38], [39] which has been successfully applied in a number of contexts including

articulated visual object tracking [40], [41].

In this section, we propose particle based representationstogether with approximate computational schemes so

that Algorithm 2 can be realized. We exploit the Monte Carlo method [42], [43] and Importance Sampling [44],

[45] such that independent samples generated from only the marginal distributions ofX andY are required, i.e.,

Sxj
, {x(1)j , x

(2)
j , ..., x

(Mj)
j } such thatx(m)

j ∼ p(xj) for m = 1, 2, ...,Mj (62)
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and

Syj
, {y(1)j , y

(2)
j , ..., y

(Pj)
j } such thaty(p)j ∼ p(yj) for p = 1, 2, ..., Pj (63)

for j ∈ V . Although the sizes of these sets might vary for eachj ∈ V , we assume thatMj = M andPj = P for

j ∈ V for simplicity of the discussion throughout.

Generating independent samples provides scalability in the number of variablesN and the number of samples

M together with ease of application for a number of reasons. First, considering a single random variable, it is a

relatively straightforward task to generate pseudo randomnumbers from an arbitrary probability density function

provided that the inverse of the corresponding cumulative distribution can be evaluated (see, e.g., Chp. 2 in [45]).

In addition, the neccessary knowledge of distributions to utilize Algorithm 2, i.e., p(xπ(i), xi) and p(yi|xi) for

all i ∈ V , implies that the marginals are already known and hence we donot require the knowledge of any

additional distributions. Besides, we consider independent generations that require no coordinations. For the case in

which we consider scalability with the number of random variables involved, sampling from the joint distribution

is cumbersome where scalability can be maintained up to a degree with coordinated generation schemes, which

require the evaluation of characterizing densities such asthe conditionals. For example Gibbs sampling introduced

in [46] requires the so called full conditionals{p(xj |x\j)}j∈V whereas the Substitution Sampling method requires

N(N − 1) conditionals forN components [47].

We proceed by considering the sufficient condition of person-by-person optimality for thejth rule given by

Proposition 3.3. The Monte Carlo optimization algorithm wepropose follows successive approximations to the ex-

pressions comprising thejth pbp optimal local rule. In Section IV-A we approximate the optimal rule assuming that

the parameterizing functionθ∗j is known over its entire domain. In the second step we proceedwith approximating

θ∗j through the incoming message likelihood (Sec.IV-B). In Section IV-C, the node–to–node terms, i.e.,P ∗
i→j and

C∗
k→j for i ∈ π(j) andk ∈ χ(j) respectively, are approximated and finally in Section IV-D all the approximations

are utilized together comprising the proposed algorithm after a treatment of the approximations as operators in a

similar fashion to that employed in Section III-A2.

A. Approximating the person-by-person optimal local rule

Given a pbp optimal strategyγ∗ ∈ ΓG , consider thejth optimal local rule given by Eq.s(17) and (20) in the case

that the remaining are fixed at the optimumγ\j = γ∗\j . After substituting Eq.(20) in Eq.(17) we obtain

γ∗j (Yj , Uπ(j)) = arg min
uj×x̂j∈(Uj×Xj)

R∗
j (uj , x̂j ;Yj , Uπ(j)) (64)

where

R∗
j (uj , x̂j ; yj, uπ(j)) =

∫

Xj

dxjp(xj)p(yj |xj)P ∗
j (uπ(j)|xj)

[

cj(uj , x̂j , xj) + C∗
j (uj , xj)

]

(65)

for all uj ∈ Uj, uπ(j) ∈ Uπ(j), yj ∈ Yj andx̂j ∈ Xj where unlike the detection problem in [31],Xj is a denumerable

set and the RHS of Eq.(65) involves an integral overXj . It is reasonable to assume that the observation likelihood

p(yj |xj) and the costcj(uj, x̂j , xj) are known. However, the incoming message likelihood, i.e.,P ∗
j (uπ(j)|xj),
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together with the conditional cost induced on the descendants, i.e.,C∗
j (uj , xj), depend on the remaining local rules

γ∗\j (see Section III-A2) and do not necessarily admit closed form expressions for arbitraryγ\j ∈ ΓG
j .

Suppose that for allxj ∈ Xj , P ∗
j (uπ(j)|xj) andC∗

j (uj , xj) are known, i.e., it is possible to evaluate them over

their entire domains. The integral on the RHS of Eq.(65) still preventsR∗
j to be evaluated exactly, in general.

However, an approximation is possible through the classical Monte Carlo method givenM independent samples

generated fromp(xj), i.e.,Sxj
given by Eq.(62),

R̃∗
j (uj, x̂j ; yj, yπ(j)) =

1
∣

∣Sxj

∣

∣

∑

xj∈Sxj

p(yj |xj)P ∗
j (uπ(j)|xj)

[

cj(uj, x̂j , xj) + C∗
j (uj , xj)

]

(66)

where tilde denotes an approximation, i.e.,R̃∗
j (uj , x̂j ; yj , yπ(j)) ≈ R∗

j (uj , x̂j ; yj , yπ(j)) over its entire domain.̃R∗
j

substituted in Eq.(64) in place ofR∗
j corresponds to a local rule, which is an approximation toγ∗j . Let us represent

the approximation to the optimal local rule bỹγ∗j
1

where the superscript1 denotes that the approximation involves

a single MC approximated function, theñγ∗j
1
(yj , uπ(j)) ≈ γ∗j (yj , uπ(j)) for all yj ∈ Yj and for alluπ(j) ∈ Uπ(j)

with nonzero probability.

Since we have assumed thatP ∗
j andC∗

j are known, it is implied that they can be evaluated atxj ∈ Sxj
, for all

uπ(j) ∈ Uπ(j) anduj ∈ Uj respectively.R̃∗
j substituted in Eq.(64) in place ofR∗

j corresponds to a local rule, which

is an approximation toγ∗j . Let us represent the approximation to the optimal local rule by γ̃∗j
1

where the superscript

1 denotes that the approximation involves a single MC approximated function, theñγ∗j
1
(yj , uπ(j)) ≈ γ∗j (yj , uπ(j))

for all yj ∈ Yj and for alluπ(j) ∈ Uπ(j) with nonzero probability.

Consider Corollary 3.4. The objective of minimization in the variational form of thejth local rule given by Eq.(64)

is separable, i.e.R∗
j (uj , x̂j ; yj, uπ(j)) = R∗

j,d(x̂j ; yj , uπ(j)) + R∗
j,c(uj ; yj, uπ(j)), under a separable cost function

local to nodej and yields two separate problems and corresponding rules for estimation and communication denoted

by νj andµj respectively. Similarly the approximatioñR∗
j given by Eq.(66) splits trivially to two approximations,

i.e., ν̃j1 and µ̃j
1.

Example 4.1:Consider Example 3.5, Eq.(66) substituted in Eq.(64) implies that the explicit solution for the

quadratic estimation error given by Eq.(34) is approximated by

x̂j = ν̃j
1(yj , uπ(j)) =

M
∑

m=1
x
(m)
j p(yj |x(m)

j )P ∗
j (uπ(j)|x

(m)
j )

M
∑

m=1
p(yj |x(m)

j )P ∗
j (uπ(j)|x

(m)
j )

(67)

B. Approximating the message likelihood function

In the previous section, we proposed an approximation to thejth optimal rule which requires the incoming

message likelihoodP ∗
j (uπ(j)|xj) and the conditional expected costC∗

j (uj, xj) to be known atxj = x
(m)
j for

m = 1, 2, ...,M , for all uπ(j) ∈ Uπ(j) and for alluj ∈ Uj respectively. Since it is not possible to express these

functions in closed form for an arbitrary set of local rulesγj ∈ ΓG
j , in this step, we consider Eq.(21) and Eq.(23).

We continue the discussion by considering Eq.(21) for the case in whichπ(j) 6= ∅. Suppose that the forward

node–to–node terms, i.e.,P ∗
i→j(ui→j |xi) for i ∈ π(j), are known such that we can evaluate them atxi = x

(m)
i
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wherex(m)
i ∈ Sxi

and for allui→j ∈ Ui→j . This assumption is justified by the fact that if the1–step approximation

described in Section IV-A were to be applied to the rules local to nodesi ∈ π(j), thenSxi
would be utilized.

Next, we note that it is possible to treat the concatenation of the elements of the parent sample sets, i.e.,Sxi
for

i ∈ π(j), as a sample set that is drawn by the product of distributionsgenerated them. In other words, consider

x
(m)
π(j) , (x

(m)
i )i∈π(j) for m = 1, 2, ...,M wherex(m)

i ∈ Sxi
for i ∈ π(j). These elements constitute a sample set

Sπ(j) , {x(m)
π(j)|x

(m)
π(j) = (x

(m)
i )i∈π(j)} and it holds thatx(m)

π(j) ∼
∏

i∈π(j) p(xi).

This observation enables the Importance Sampling approximation (see, e.g., Chp. 3 in [45]) forP ∗
j through the

importance sampling distribution
∏

i∈π(j) p(xi). Then the importance weights are given by

ω
(m)(m′)
j = p(x

(m′)
π(j) |x

(m)
j )/

∏

i∈π(j)

p(x
(m′)
i )

with the corresponding approximation

P̃j
∗
(uπ(j)|x(m)

j ) =
1

M
∑

m′=1

ω
(m)(m′)
j

M
∑

m′=1

ω
(m)(m′)
j

∏

i∈π(j)

P ∗
i→j(ui→j |x(m

′)
i ) (68)

for m = 1, 2, ...,M and for alluπ(j) ∈ Uπ(j).

Now let us turn to the computation of the conditional expected costC∗
j (uj , xj) and consider Eq.(23) for the case

in whichχ(j) 6= ∅. We assume that the node–to–node backward cost terms, i.e.,for all k ∈ χ(j), C∗
k→j(uj→k, xj),

are known atxj = x
(m)
j for m = 1, 2, ...,M and for alluj→k ∈ Uj→k. Then the required values, i.e.C∗

j (uj, x
(m)
j )

for m = 1, 2, ...,M and for alluj ∈ Uj can be computed exactly using Eq.(23).

From nodej’ s point of view, given node–to–node termsP ∗
i→j andC∗

k→j evaluated at points generated from the

appropriate marginal distributions, a further approximation to thejth pbp optimal rule is obtained by computing

P̃ ∗
j andC∗

j at values of their arguments required in Eq.(66) and substituting P̃ ∗
j in place ofP ∗

j . Let γ̃∗j
2

denote the

corresponding rule, theñγ∗j
2
(yj , uπ(j)) ≈ γ̃∗j

1
(yj , uπ(j)) ≈ γ∗j (yj , uπ(j)) for all yj ∈ Yj and for alluπ(j) ∈ Uπ(j)

with nonzero probability.

C. Approximating the node–to–node terms

In the previous section, the approximation to thejth local rule is introduced under the conditions that for all

i ∈ π(j), P ∗
i→j(ui→j |xi) is known for allui→j ∈ Ui→j andxi = x

(m)
i for x(m)

i ∈ Sxi
. Another requirement is to

be able to evaluateC∗
k→j(uj→k, xj) for all uj→k ∈ Uj→k andxj = x

(m)
j wherex(m)

j ∈ Sxj
. Therefore, a further

step involves approximating the node-to-node termsP ∗
i→j andC∗

k→j evaluated at the discretization of their domains

provided by the sample sets.

We consider the parent nodesi ∈ π(j) and consider evaluation of Eq.(22) at the required values ofits arguments.

Suppose thatγ∗i is fixed at the optimum, implying also thatp(ui, x̂i|yi, uπ(i); γ∗i ) is specified through Eq.s(5) and

(6) for all i ∈ π(i). The multiple integral term in Eq.(22), rewritten here as

p(ui|xi, uπ(i); γ∗i ) =
∫

Xi

dx̂i

∫

Yi

dyi p(ui, x̂i|yi, uπ(i); γ∗i )p(yi|xi)
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for convenience, should be evaluated atxi = x
(m)
i for m = 1, 2, ...,M , for all ui ∈ Ui and for alluπ(i) ∈ Uπ(i).

Since there is no closed form solution for arbitrary choice of γ∗i and the likelihoodp(yi|xi), we perform an

Importance Sampling approximation through the importancesampling distributionp(yi). Utilizing y
(p)
i ∈ Syi

and

the importance weights given by

ω
(m)(p)
i = p(y

(p)
i |xmi )/p(y

(p)
i )

an importance sampling approximation top(ui|x(m)
i , uπ(i); γ

∗
i ) for m = 1, 2, ...,M , for all ui ∈ Ui and for all

uπ(i) ∈ Uπ(i) is given by

p̃(ui|x(m)
i , uπ(i); γ

∗
i ) =

1
P
∑

p=1
ω
(m)(p)
i

P
∑

p=1

ω
(m)(p)
i δ

ui,[γ∗
i
(y

(p)
i

,uπ(i))]Ui

(69)

whereδ denotes the Kronecker’s delta. Note that, if Assumption 5 holds, the estimation and communication rules

separate and the discussion above applies withp(ui|xi, uπ(i); γ∗i ) = p(ui|xi, uπ(i);µ∗
i ).

Regarding Eq.(22), having approximated the multiple integral term forj ∈ V , we similarly assume thatP ∗
i (uπ(i)|xi)

is known wherei ∈ π(j), for xi = x
(m)
i such thatx(m)

i ∈ Sxi
and for alluπ(i) ∈ Uπ(i). Together with Eq.(69) we

obtain

P̃ ∗
i→j(ui→j |x(m)

i ) =
∑

uχ(i)\j∈Uχ(i)\j

∑

uπ(i)∈uπ(i)

P ∗
i (uπ(i)|x(m)

i )p̃(ui|uπ(i), x(m)
i ; γ∗i ) (70)

for m = 1, 2, ...,M and for allui→j ∈ Ui→j . It is possible to replace the node–to–node terms assumed tobe known

in Eq.(68) with Eq.(70) and obtain a further step in the progressive approximations toγ∗j .

The remaining term to consider is the conditional expected costs induced on the descendants ofj on the branch

initiating with its child k, i.e.,C∗
k→j(uj→k, xj), for all k ∈ χ(j), evaluated atxj = x

(m)
j wherex(m)

j ∈ Sxj
and

for all uj→k ∈ Uj→k. A similar reasoning leads to approximating the required values through utilizing Monte Carlo

methods on the RHS of the expression obtained by substituting Eq.(25) in Eq.(24).

Consider Eq.(25) and suppose thatγ∗k is known for anyk ∈ χ(j) also implying thatp(uk, x̂k|yk, uπ(k); γ∗k) is

determined. Substituting Eq.(5) and (6) in Eq.(25) yields

I∗(uπ(k), xk; γ
∗
k) =

∫

Yk

dyk [ ck( [γ
∗
k(yk, uπ(k))]Uk

, [γ∗k(yk, uπ(k))]Xk
, xk)

+ C∗
k( [γ

∗
k(yk, uπ(k))]Uk

, xk) ]p(yk|xk) (71)

evaluation of which can be approximated atxk = x
(m)
k for all x(m)

k ∈ Sxk
and for all uπ(k) ∈ Uπ(k) by the

Importance Sampling method, using the importance densityp(yk). AssumingC∗
k(uk, xk) is known atxk = x

(m)
k

wherex(m)
k is an element of the usual sample set local tok, i.e.,Sxk

, and for alluk ∈ Uk and utilizingy(p)k ∈ Syk

together with the importance weights

ω
(m)(p)
k = p(y

(p)
k |x(m)

k )/p(y
(p)
k )
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we obtain

Ĩ∗(uπ(k), x
(m)
k ; γ∗k) =

1
P
∑

p=1
ω
(m)(p)
k

P
∑

p=1

ω
(m)(p)
k [ ck( [γ

∗
k(y

(p)
k , uπ(k))]Uk

, [γ∗k(y
(p)
k , uπ(k))]Xk

, xk)

+ C∗
k( [γ

∗
k(y

(p)
k , uπ(k))]Uk

, xk) ] (72)

for m = 1, 2, ...,M and for alluπ(k) ∈ Uπ(k) such thatĨ∗(uπ(k), x
(m)
k ; γ∗k) ≈ I∗(uπ(k), x

(m)
k ; γ∗k) holds8.

In addition, if Assumption 5 holds, we consider Corollary 3.6 yielding the Importance Sampling approximations

to Eq.(36) and Eq.(37) evaluated atx(m)
k anduπ(k) to be similarly obtained as

J̃
d|x(m)

k
,uπ(k)

=
1

P
∑

p=1
ω
(m)(p)
k

P
∑

p=1

ω
(m)(p)
k cdk(ν

∗
k(y

(p)
k , uπ(k)), x

(m)
k )

J̃
c|x(m)

k
,uπ(k)

=
∑

uk

(

λcck(uk, x
(m)
k ) + C∗

k (uk, x
(m)
k )

)

p̃(uk|x(m)
k , uπ(k);µ

∗
k)

respectively. TheñI∗(uπ(k), x
(m)
k ; γ∗k) = J̃

d|x(m)
k

,uπ(k)
+ J̃

c|x(m)
k

,uπ(k)
holds.

Eq.(24) requires message likelihood terms from all parentsof nodek except nodej and it is reasonable to

assume that for anyj′ ∈ π(k) \ j, P ∗
j′→k(uj′→k|x′j) is known atx′j = x

(m)
j′ for x(m)

j′ ∈ Sxj′
and for alluj′→k ∈

Uj′→k. Similarly, we observe that the set which is constituted of elements that are concetanation of elements

from the usual sample sets local toj′ ∈ π(k)\j is distributed from the product of the corresponding marginals.

In other words, let us definex(m)
π(k)\j , (x

(m)
j′ )j′∈π(k)\j . Then it holds thatx(m)

π(k)\j ∼
∏

j′∈π(k)\j p(xj′ ) and an

importance sampling approximation to Eq.(24) is possible through the importance distribution
∏

j′∈π(k)\j p(xj′ ).

Having computedĨ∗(uπ(k), x
(m)
k ; γ∗k) and utilizing the usual sample sets local to nodesj′ ∈ π(k)\j together with

the importance sampling weigths

ω(m)(m′) = p(x
(m′)
π(k)\j , x

(m′)
k |x(m)

j )/p(x
(m′)
k )

∏

j′∈π(k)\j
p(x

(m′)
j′ )

we obtain

C̃∗
k→j(uj→k, x

(m)
j ) =

1
M
∑

m′=1

ω(m)(m′)

M
∑

m′=1

ω(m)(m′)
∑

uπ(k)\j

∏

j′∈π(k)\j
P ∗
j′→k(uj′→k|x(m

′)
j′ )Ĩ∗(uπ(k), x

(m′)
k ; γ∗k) (73)

for m = 1, 2, ...,M and for alluj→k ∈ Uj→k which9, after substituting in place ofC∗
k→j in the RHS of Eq.(23)

for χ(j) 6= ∅ yields C̃∗
j , i.e.,

C̃∗
j (uj , x

(m)
j ) =

∑

k∈χ(j)

C̃∗
k→j(uj→k, x

(m)
j ) (74)

for m = 1, 2, ...,M and for alluj ∈ Uj .

8Note that[γ∗
k(y

(p)
k , uπ(k))]Uk

and [γ∗
k(y

(p)
k , uπ(k))]Xk

are simply the communication symbol and estimation output of γ∗
k evaluated at

the tuple(y(p)k , uπ(k)).

9Note that we have approximated the forward likelihood termsregarding nodej and its parents, i.e.P ∗
i→j for i ∈ π(j). However, we still

assume that node-to-node terms regarding other nodes including P ∗
j′→k

for j′ ∈ π(k)\j wherek ∈ χ(j) are known over all their domains.
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As a result, after substituting̃P ∗
i→j in place ofP ∗

i→j in the RHS of Eq.(68), we obtain a further approximation

to P ∗
j given by

P̃ ∗
j

2
(uπ(j)|x(m)

j ) =
1

M
∑

m′=1

ω
(m)(m′)
j

M
∑

m′=1

ω
(m)(m′)
j

∏

i∈π(j)

P̃ ∗
i→j(ui→j |x(m

′)
i ) (75)

for m = 1, 2, ...,M and for alluπ(j) ∈ Uπ(j). This approximation together with̃C∗
k→j given by Eq.(74) employed in

R̃∗
j yields γ̃∗j

3
(yj, uπ(j)) ≈ γ̃∗j

2
(yj , uπ(j)) ≈ γ̃∗j

1
(yj , uπ(j)) ≈ γ∗j (yj , uπ(j)) for all yj ∈ Yj and for alluπ(j) ∈ Uπ(j)

with nonzero probability.

D. MC Optimization of in–network processing strategies over DAGs

In Section IV-A–IV-C we have introduced a Monte Carlo approximation framework regarding the sufficient

conditions of person–by–person optimality given in Proposition 3.3. Considering a pbp optimal decentralized

estimation strategy constrained by a polytreeG, i.e., γ∗ ∈ ΓG and havingγ\j fixed at the corresponding set

of optimal local rules, i.e.γ\j = γ∗\j , we have constructed a rule local forj, γ̃∗j
3
(yj , uπ(j)) such that it is an

approximation to the optimal ruleγ∗j given by Eq.(17) following the progression

γ̃∗j
1
(yj , uπ(j)) = arg min

uj×x̂j∈(Uj×Xj)

∑

xj∈Sxj

p(yj |xj)P ∗
j (uπ(j)|xj)

[

cj(uj , x̂j , xj) + C∗
j (uj , xj)

]

whereSxj
is given by Eq.(62),

γ̃∗j
2
(yj , uπ(j)) = arg min

uj×x̂j∈(Uj×Xj)

∑

xj∈Sxj

p(yj |xj)P̃ ∗
j (uπ(j)|xj)

[

cj(uj , x̂j , xj) + C∗
j (uj , xj)

]

whereP̃ ∗
j is given by Eq.(68),

γ̃∗j
3
(yj , uπ(j)) = arg min

uj×x̂j∈(Uj×Xj)

∑

xj∈Sxj

p(yj |xj)P̃ ∗
j

2
(uπ(j)|xj)

[

cj(uj , x̂j , xj) + C̃∗
j (uj, xj)

]

(76)

whereC̃∗
j (uj , xj) and P̃ ∗

j

2
are given by Eq.s (74) and (75) respectively. Hence, in orderto obtain γ̃∗j

3
we have

utilized the proposed particle representations and approximate computational schemes for all terms that depend on

γ∗\j including the node–to–node terms, although it is assumed that γ∗\j are known exactly.

On the other hand, givenSxj
and Syj

, the approximation framework is valid for the rules local toany node

j ∈ V : Owing to fusing the forward message likelihoods via importance sampling, the node–to–node terms given by

Eq.s(70) and (73) utilize the discretization provided by these sets regardless of which node’ s local rule is subject

to approximation. Hence, it is possible to treat the RHS of the expressions within the framework as operators valid

for any strategyγ ∈ ΓG including those in the “approximating” form given by Eq. (76). For the rest of this paper,

an approximation to a function that appear in the local rulesrefers to its correspondant in Eq.(76) and we denote

them without any further superscripts, e.g., we denoteγ̃∗j
3

with γ̃∗j . Let us summarize the Monte Carlo framework
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with

φ̃j(Sxj
, x̂j) = d̃j(P̃j(Sxj

), C̃χ(j)→j)

P̃j(Sxj
) = f̃j(P̃π(j)→j)

P̃j→χ(j) = g̃j(φ̃j(Sxj
, x̂j), P̃j(Sxj

))

C̃j→π(j) = h̃j(φ̃j(Sxj
, x̂j), P̃π(j)→j , C̃χ(j)→j)

where

P̃j(Sxj
) = {(P̃j(uπ(j)|xj), uπ(j), xj)|uπ(j) ∈ Uπ(j) ∧ xj ∈ Sxj

}

P̃π(j)→j = {P̃i→j(Sxi
)}i∈π(j)

P̃i→j(Sxi
) = {(P̃i→j(ui→j , xi), ui→j , xi)|ui→j ∈ Ui→j ∧ xi ∈ Sxi

}

P̃j→χ(j) = {P̃j→k(Sxj
)}k∈χ(j)

C̃χ(j)→j = {C̃k→j(Sxj
)}k∈χ(j)

and φ̃j(Sxj
, x̂j) is given by

{

(p(yj |xj)P̃j(uπ(j)|xj)
[

c(uj , x̂j , xj) + C̃j(uj , xj)
]

, uj , xj)|uj ∈ Uj , uπ(j) ∈ Uπ(j), xj ∈ Sxj

}

Note thatC̃k→j(Sxj
) implies a definition in a similar fashion to that for̃Pi→j(Sxi

). Note also that̃φj(Sxj
, x̂j) is not

a complete discretization ofφj , i.e., considering Eq.(20), for the evaluation ofφj(uj , x̂j , xj ;uπ(j)), the argument

x̂j needs not to be discretized since onlyc(uj , x̂j , xj) acts on it and it is assumed to be known over its entire

domain. Thereforêxj is a free variable that can take values fromXj . On the other hand, the conventional Monte

Carlo approximation dropsp(xj) and discretizesφ in xj .

It is immediately possible to employ this framework in Algorithm 2 and achieve a Monte Carlo optimization

algorithm which, starting with initial local rules, iteratively results in a strategy that corresponds to performing

computations to approximate a person-by-person optimal one. Given by Algorithm 4, this scheme maintains the

message passing interpretation appearing in theUpdate step.

Starting withG = (V , E) and {Ui→j |(i, j) ∈ E}, each node initially maintains the knowledge ofp(xπ(j), xj)

and c(uj , x̂j , xj). As soon as samples from the marginal distributions, i.e.,Sxj
, together with samples from the

marginal distributions of the observation processes, i.e., Syj
, are generated for allj ∈ V and an initial local rule

γ0j ∈ ΓG
j is selected, the iterative scheme yields a set of local rulessuch that each node performs computations

corrresponding to an approximation to a person–by–person optimum.

The approximate computation of the expected cost required in the Check step of Algorithm 4 for any given

strategy, i.e.,J̃(γ) is obtained through a Monte Carlo approximationG̃j(γ
l
j) to Eq.(42) using the usual sample sets,
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Algorithm 4 Iterations converging to an approximate pbp optimal decentralized estimation strategy over a DAGG.

1: Chooseγ0 = (γ01 , γ
0
2 , ..., γ

0
N ) such thatγ0j ∈ ΓG

j for j = 1, 2, ..., N ; Chooseε ∈ R
+ ;l = 0 ⊲ Initiate

2: l = l + 1

3: For j = 1, 2, ..., N Do ⊲ Update Step 1: Forward Pass

P̃j
l
(Sxj

) = f̃j(
{

P̃ l
i→j(Sxi

)
}

i∈π(j)
)

{

P̃ l
j→k(Sxj

)
}

k∈χ(j)
= g̃j(φ̃j

l−1
(Sxj

, x̂j), P̃ l
j(Sxj

))

4: For j = N,N − 1, ..., 1 Do ⊲ Update Step 2: Backward Pass

φ̃j
l
(Sxj

, x̂j) = d̃j(P̃j
l
(Sxj

),
{

C̃l
k→j(Sxj

)
}

k∈χ(j)
)

{

C̃l
j→i(Sxi

)
}

i∈π(j)
= h̃j(φ̃j

l
(Sxj

, x̂j),
{

P̃ l
i→j(Sxi

)
}

i∈π(j)
,
{

C̃l
k→j(Sxj

)
}

k∈χ(j)
)

5: If τ(J̃(γ̃l), J̃(γ̃l−1), ..., J̃(γ̃0)) < ε STOP, else GO TO 2 ⊲ Check

i.e., Sxj
andSyj

, as

G̃j(γ̃
l
j) =

1

M

M
∑

m=1

∑

uπ(j)∈Uπ(j)

P̃ l+1
j (uπ(j)|x(m)

j )×

1
P
∑

p=1
ω
(m)(p)
k

P
∑

p=1

ω
(m)(p)
k cj( [γj(y

(p)
j , uπ(j))]Uj

, [γj(y
(p)
j , uπ(j))]Xj

, x
(m)
j ) (77)

whereω(m)(p)
k = p(y

(p)
k |x(m)

k )/p(y
(p)
k ). If Assumption 5 holds, the expression above turns to

G̃j(γ̃
l
j) =

1

M

M
∑

m=1

∑

uπ(j)∈Uπ(j)

P̃ l+1
j (uπ(j)|x(m)

j )



J̃
d|x(m)

j
,uπ(j)

+ λ
∑

uj∈Uj

ccj(uj, x
(m)
j )p̃(uj |x(m)

j , uπ(j);µ
l
j)



 (78)

and after distributing the multiplication in the RHS of the equation above and substituting in Eq.(41) in place of

Gj(γ
l
j), we obtainJ̃(γ̃) = J̃d(γ̃) + λJ̃c(γ̃).

Note that{J(γl)|l = 0, 1, 2, ...} obtained through Algorithm 2 is non–increasing whereas{J̃(γ̃l)}, being a Monte

Carlo approximation to the former, does not necessarily exhibit this property. Let us define an approximation error

sequenceerr[l] = J(γl) − J̃(γ̃l). This sequence will be identically zero with probability one asM,P → ∞. For

finite M andP , it is possible to smooth the fluctuation oferr[l] through filtering and utilize the corresponding

termination condition, e.g., check whetherJ̃(γ̃l) ∗ h[l] < ε whereh[l] is the impulse response of a linear, time

invariant filter and∗ denotes convolution. In general, a sequence that is non–increasing with high probability can

be obtained through an operatorτ (Check step of Algorithm 4), investigation of which is beyond the scope of this

work.
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V. MC OPTIMIZATION FRAMEWORK FOR TWO-STAGE IN-NETWORK PROCESSING STRATEGIES OVERUGS

In Section III-B, we presented the structure of person–by–person optimal local rules for two–stage in-network

processing strategies over undirected graphs provided that certain assumptions hold. Specifically, thejth local

rule pair constituted of the stage–one communication and stage–two estimation rules is given by Proposition 3.7

under Assumptions 1-3 and 5. The operator representationsrj , qj , fj , gj andhj given by given by Eq.s (54)–(58)

summarize Eq.s (45), (47)-(53) respectively and can be applied to arbitrary local rules not necessarily optimal. The

steps of Algorithm 3 involve these operators and hence it is not possible to carry out them exactly, in general,

similar to the DAG case. We similarly employ particle representations and approximate computational schemes

through Monte Carlo methods in accordance with Proposition3.7.

In Algorithm 3, each nodej ∈ V starts with the knowledge ofp(xne(j), xj) andp(yj |xj) together with an initial

local ruleγ0j ∈ ΓG
j . We consider the sample sets given by Eq.(62) and (63) forj ∈ V and assume thatMj = M

andPj = P for simplicity. Similar to the discussion in Section IV, we approximate the expressions involved in the

jth pbp optimal local rule given in Proposition 3.7 in a progressive fashion. In Section V-A we approximate to the

local rule pair under the assumption that bothα∗
j andβ∗

j are known. In the next step, we approximateβ∗
j through

the incoming message likelihood function (Sec. V-B) and then proceed with the computations of the node–to–node

terms at the sample points and obtain further approximations to bothβ∗
j andα∗

j (Sec. V-C). Finally in Section V-D

we employ all the previous steps simultaneously in Algorithm 3 and obtain a Monte Carlo optimization scheme

which scales with both the sample sizes and the number of nodes. In addition, the message passing structure in the

Update step of Algorithm 3 together with the amenability for network self-organization are also preserved.

A. Approximating the person–by–person optimal local rule

Consider Proposition 3.7 and thejth person–by–person optimal local rule pair of stage–one communication and

stage–two estimation rules given by Eq.s(44),(45) and (46),(47) respectively. Suppose that bothα∗
j given in Eq.(45)

andβ∗
j given in Eq. (47) are known over their entire domains. Although it is relatively reasonable to assume that we

are able to evaluatep(yj |xj) , ccj(uj, xj) andcdj (x̂j , xj) for their entire domains, the incoming message likelihood

and the conditional expected cost, i.e.,P ∗
j (une(j)|xj) andC∗

j (uj , xj) depend on the remaining local rule pairs and

do not necessarily lead to tractable forms for arbitraryγ\j ∈ ΓG
j . Moreover, the local rules given in Eq.(44) and

Eq.(46) are in a variational form such that the costs requireintegrations overXj and hence, it is not possible to

evaluate them exactly.

In the first step, we approximate these costs through the conventional Monte Carlo method with the aforementioned

assumption that all the integrands are known over their entire domains. Given the usual sample setSxj
as defined

in Eq.(62) and considering Eq.(44) the Monte Carlo method yields

µ̃∗
j

1
(yj) = arg min

uj∈Uj

∑

xj∈Sxj

p(yj |xj)[λccj(uj , xj) + C∗
j (uj , xj)] (79)

as an approximation to the stage–one communication rule forall yj ∈ Yj with non-zero probability, i.e.,̃µ∗
j

1
(yj) ≈

µ∗
j (yj) where the superscript1 denotes that the expression involves a single MC approximation.



TECHNICAL REPORT - SABANCI UNIVERSITY 30

Considering the local estimation rule given by Eq.(46) the Monte Carlo method yields

ν̃∗j
1
(yj , une(j)) = arg min

x̂j∈Xj

∑

xj∈Sxj

p(yj |xj)P ∗
j (une(j)|xj)cdj (x̂j , xj) (80)

for all yj ∈ Yj andune(j) ∈ Une(j) with non-zero probability such that̃ν∗j
1
(yj , une(j)) ≈ ν∗j (yj , une(j)).

Example 5.1:Consider the squared error penalty for the estimation error, i.e., cdj (x̂j , xj) = (x̂j −xj)
2. Then the

one–step approximation to thejth person–by–person optimal estimation rule given by Eq.(80)yields

ν̃∗j
1
(yj , une(j)) =

M
∑

m=1
x
(m)
j p(yj |x(m)

j )P ∗
j (une(j)|x

(m)
j )

M
∑

m=1
p(yj |x(m)

j )P ∗
j (une(j)|x

(m)
j )

B. Approximating the message likelihood function

The one–step approximation to the estimation rule local to nodej (Eq.(80)) requires that the message likelihood

function, i.e.,P ∗
j (une(j)|xj) is known atxj = x

(m)
j for m = 1, 2, ...,M and for all une(j) ∈ Une(j). Since the

RHS of Eq.(48) do not lead tractable expressions, in general, for arbitrary choices ofγ\j ∈ ΓG
j , (considering the

recursion involving Eq.s(49) and (50)) we approximate toP ∗
j in this step.

Suppose that the node–to–node terms from the neighbors, i.e., P ∗
i→j(ui→j , xi) for i ∈ ne(j), are known at

xi = x
(m)
i wherex(m)

i ∈ Sxi
and for allui→j ∈ Ui→j . Note that if the one–step approximations to the rule pairs

for the other than thejthe are employed, thenSxi
s would be employed.

We consider Eq.(48) and costruct a new sample set whosemth element is the vector obtained by concatenating

mth elements fromSxi
for all i ∈ ne(j), i.e., Sne(j) , {x(m)

ne(j)|x
(m)
ne(j) = (x

(m)
i )i∈ne(j)}. Note thatx(m)

ne(j) ∼
∏

i∈ne(j) p(xi) and an Importance Sampling approximation toP ∗
j (une(j)|x

(m)
j ) is possible utilizing the importance

sampling density
∏

i∈ne(j) p(xi) with the importance weights

ω
(m)(m′)
j =

p(x
(m′)
ne(j)|x

(m)
j )

∏

i∈ne(j)

p(x
(m′)
i )

as

P̃ ∗
j

1
(une(j)|x(m)

j ) =
1

M
∑

m′=1

ω
(m)(m′)
j

M
∑

m′=1

ω
(m)(m′)
j

∏

i∈ne(j)

P ∗
i→j(ui→j |x(m

′)
i ) (81)

such thatP̃ ∗
j

1
(une(j)|x(m)

j ) ≈ P ∗
j (une(j)|x

(m)
j ) for all une(j) ∈ Une(j) and for allx(m)

j ∈ Sxj
.

After replacingP ∗
j with P̃ ∗

j

1
in Eq.(80), we obtain a further step approximation (two–steps approximation) for

the person-by-person optimal estimation rule local to nodej, i.e.,

ν̃∗j
2
(yj , une(j)) ≈ ν̃∗j

1
(yj , une(j)) ≈ ν∗j (yj , une(j))

for all yj ∈ Yj andune(j) ∈ Une(j) with non-zero probability provided that the node-to-node likelihood termsP ∗
i→j

for all i ∈ ne(j) are known at the required points of its domain.
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Similarly, considering Eq.(79), the evaluation ofC∗
j given by Eq.(51) is required, and at this point, it is convenient

to assume that the node–to–node conditional cost terms, i.e., C∗
i→j(uj→i, xj) for i ∈ ne(j), at uj→i ∈ Uj→i and

xj = x
(m)
j wherex(m)

j ∈ Sxj
, are known leading to an exact evaluation ofµ̃∗

j

1
.

C. Approximating the node–to–node terms

In the previous section, an approximation to the local estimation rule ν̃∗j
2
(yj , une(j)) is constructed under the

conditions that the message likelihood termsP ∗
i→j(ui→j , xi) from all neighbor nodesi ∈ ne(j), atxi = x

(m)
i where

x
(m)
i ∈ Sxi

and for all ui→j ∈ Ui→j . Similarly, the1–step approximation to the local communicatin rule given

by Eq.(79) requires the expected cost termsC∗
i→j(uj→i, xj) for i ∈ ne(j), at uj→i ∈ Uj→i andxj = x

(m)
j where

x
(m)
j ∈ Sxj

. In this Section, we approximate these node–to–node terms and obtain a further step approximation to

the local rule pair.

First, we note that Eq.(49) and note thatP ∗
i→j is a marginalization ofp(ui|xi;µ∗

i ). Then, we consider Eq.(50) and

the assumption of Proposition 3.7 that all the rules local tonodes other thanjth are fixed at the optimum yielding

µi = µ∗
i for all i ∈ ne(j). Also considering Eq.(7), it is possible to employ the method of Importance Sampling

for approximating top(ui|xi;µ∗
i ) at xi = x

(m)
i for x(m)

i ∈ Sxi
and for allui ∈ Ui through the instrumental density

p(yi) and utilizing the sample setSyi
together with the importance weights given by

ω
(m)(p)
i =

p(y
(p)
i |x(m)

i )

p(y
(p)
i )

and obtain

p̃(ui|x(m)
i ;µ∗

i ) =
1

∑P
p=1 ω

(m)(p)
i

P
∑

p=1

ω
(m)(p)
i δ

ui,µ∗
i
(y

(p)
i

)

for all ui ∈ Ui and for allx(m)
i ∈ Sxi

. In other words̃p(ui|x(m)
i ;µ∗

i ) ≈ p(ui|x(m)
i ;µ∗

i ) and after replacing the latter

with the former in Eq.s(49) we achievẽP ∗
i→j(ui→j |x(m)

i ) ≈ P ∗
i→j(ui→j |x(m)

i ). Similarly, replacing the latter with

the former in Eq.(81), we obtain

P̃ ∗
j

2
(une(j)|x(m)

j ) =
1

M
∑

m′=1

ω
(m)(m′)
j

M
∑

m′=1

ω
(m)(m′)
j

∏

i∈ne(j)

P̃ ∗
i→j(ui→j |x(m

′)
i ) (82)

and after replacing̃P ∗
j

2
(une(j)|x(m)

j ) with P ∗
j (une(j)|x

(m)
j ) in Eq.(80) a futher approximation to the estimation rule

is achieved. Let us denote the3–step approximation to the estimation rule byν̃∗j
3
(yj , une(j)), thenν̃∗j

3
(yj , une(j)) ≈

ν̃∗j
2
(yj , une(j)) ≈ ν̃∗j

1
(yj , une(j)) ≈ ν∗j (yj , une(j)) holds.

Next, we consider evaluating the remaining node-to-node term at the required points of its domain utilizing

Eq.s(52) and (53). ConsiderC∗
i→j and suppose that fori ∈ ne(j) I∗i (une(i), xi; ν

∗
i ) is known for allune(i) ∈ Une(i)

andxi ∈ Xi (Note that, in Proposition 3.7,γ\j is fixed atγ\j = γ∗\j). We also assume that for allj ′ ∈ ne(i) \ j,
P ∗
j ′→i(uj ′→i|xj ′) is known for alluj ′→i ∈ Uj ′→i andxj ′ ∈ Xj ′ . However, the right hand side of Eq.s(52) still

does not yield a solution that can be practically carried outin general and we resort to Monte Carlo methods in

order to approximately evaluateC∗
i→j at the required points of its domain.
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Let us construct a new sample set by concatenating themth samples of the usual sample sets of neighbors ofi

other thanj, i.e. Sxj ′ for j ′ ∈ ne(i) \ j given by

Sxne(i)\j
, {x(m)

ne(i)\j |x
(m)
ne(i)\j = (x

(m)
j ′ )j ′∈ne(i)\j}

We apply the same procedure withSxi
andSxne(i)\j

yieldingSxi∪ne(i)\j
= {x(m)

i∪ne(i)\j} and observe thatx(m)
i∪ne(i)\j ∼

p(xi)
∏

j′∈ne(i)\j p(xj′ ) for all x(m)
i∪ne(i)\j ∈ Sxi∪ne(i)\j

. Then, it is possible to utilize this sample set for an

Importance Sampling approximation implying the importance densityp(xi)
∏

j′∈ne(i)\j p(xj′ ) together with the

importance weights

ω
(m)(m′)
i =

p(x
(m′)
ne(i)\j , x

(m′)
i |x(m)

j )

p(x
(m′)
i )

∏

j′∈ne(i)\j
p(x

(m′)
j′ )

and obtain

C̃∗
i→j(uj→i, x

(m)
j ) =

∑

une(i)\j

1
∑M

m′=1 ω
(m)(m′)
i

M
∑

m′=1

ω
(m)(m′)
i ×

∏

j′∈ne(i)\j
P ∗
j′→i(uj′→i|x(m

′)
j′ )I∗i (une(i), x

(m′)
i ; ν∗i ) (83)

After replacingC∗
i→j with C̃∗

i→j in the one–step approximated local communication rule local to nodej given by

Eq.(79), we obtainµ̃∗
j

2
such thatµ̃∗

j

2
(yj) ≈ µ̃∗

j

1
(yj) for all yj ∈ Yj with non-zero probability.

Having proposed approximations for the node–to–node terms, we finally handle the evaluation ofI∗i (une(i), xi; ν
∗
i )

at all une(i) ∈ Une(i) andxi = x
(m)
i for all x(m)

i ∈ Sxi
that is required in Eq.(83). Note that substituting Eq.(8) in

Eq.(53) yields

I∗i (une(i), xi; ν
∗
i ) =

∫

Yi

dyic
d
i (ν

∗
i (yi, une(i)), xi)p(yi|xi)

for which the utilization of the sample setSyi
implies an Importance Sampling approximation using the instrumental

densityp(yi) together with the importance weights

ω
(m)(p)
i =

p(y
(p)
i |x(m)

i )

p(y
(p)
i )

given by

Ĩ∗i (une(i), x
(m)
i ; ν∗i ) =

1
P
∑

p=1
ω
(m)(p)
i

P
∑

p=1

ω
(m)(p)
i cdi (ν

∗
i (y

(p)
i , une(i)), x

(m)
i )

for all une(i) ∈ Une(i) and x(m)
i ∈ Sxi

such thatĨ∗i (une(i), x
(m)
i ; ν∗i ) ≈ I∗i (une(i), x

(m)
i ; ν∗i ). ReplacingI∗i with

Ĩ∗i in Eq.(83) and Eq.(79), we obtaiñµ∗
j

3
such thatµ̃∗

j

3
(yj) ≈ µ̃∗

j

2
(yj) ≈ µ̃∗

j

1
(yj) for all yj ∈ Yj with non-zero

probability.

D. MC optimization of two–stage in–network processing strategies over UGs

In Sections V-A–V-C,similar to that presented in Section III-A for in–network processing strategies constrained

by DAGs, we have provided a Monte Carlo framework for approximating thejth person–by–person optimal local
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rule when all the other rules are fixed at the optimal, i.e.,γ\j = γ∗\j . for decentralized estimation networks

constrained by DAGs. In particular, regarding Proposition3.7 and givenγ∗\j ∈ ΓG
\j , the proposed framework yields

γ̃∗j = (µ̃∗
j

3
(yj), ν̃∗j

3
(yj , une(j))) such thatµ̃∗

j

3
(yj) ≈ µ∗

j (yj) and ν̃∗j
3
(yj , une(j)) ≈ ν∗j (yj , une(j)) for all yj ∈ Yj

andune(j) ∈ Une(j) with nonzero probability.

It is possible to utilize the approximations for all local rules, i.e.,γj for all j ∈ V , and the node–to–node terms

would require the usual sample sets utilized for one–step approximations to the local rules. In addition, the particle

representations and approximate computations are valid for any set of two-stage local rules over an undirected

graph, including those in an “approximating” form. Let us summarize the Monte Carlo framework with

α̃j(Sxj
) = r̃j(C̃ne(j)→j)

β̃j(Sxj
, x̂j) = q̃j(P̃j(Sxj

))

P̃j(Sxj
) = f̃j(P̃ne(j)→j)

P̃j→ne(j) = g̃j(α̃j(Sxj
)

C̃j→ne(j) = h̃j(β̃j(Sxj
, x̂j), P̃ne(j)→j)

where

α̃j(Sxj
) = {(λccj(uj , xj) +

∑

i∈ne(j)

C̃i→j(uj→i, xj), uj , xj)|uj ∈ Uj , xj ∈ Sxj
}

C̃ne(j)→j = {C̃i→j(Sxj
)|i ∈ ne(j)}

C̃i→j(Sxj
) = {(C̃i→j(uj→i, xj), uj→i, xj)|uj→i ∈ Uj→i, xj ∈ Sxj

}

P̃j(Sxj
) = {(P̃j(une(j), xj , une(j), xj)|une(j) ∈ Une(j), xj ∈ Sxj

}

P̃ne(j)→j = {P̃i→j(Sxi
)|i ∈ j}

P̃i→j(Sxi
) = {(Pi→j(ui→j , xi), ui→j , xi)|ui→j ∈ Ui→j , xi ∈ Xi}

P̃j→ne(j) = {P̃j→i(Sxj
)|i ∈ ne(j)}

C̃j→ne(j) = {C̃j→i(Sxi
)|i ∈ ne(j)}

The Monte Carlo optimization scheme which is obtained through employing the framework in theUpdate

step of Algorithm 3 is given by Algorithm 5. Finally, the objective value corresponding a strategyγ ∈ ΓG , i.e.,

J(γ) = Jd(γ) + λJc(γ) given by Eq.s(59)–(61), can be computed approximately by

J̃(γ̃l) =
∑

i∈V
G̃d

i (ν̃
l
i) + λ

∑

i∈V
G̃c

i (µ̃
l
i) (84)

where

G̃d
i (ν̃

l
i) =

∑

une(i),m

P̃ l+1
i (une(i)|x(m)

i )Ĩ li(une(i), x
(m)
i ; ν̃li) (85)
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Algorithm 5 Iterations converging to an approximate pbp optimal two–stage in-network processing strategy over

an UGG.

1: Chooseγ0 = (γ01 , γ
0
2 , ..., γ

0
N ) such thatγ0j ∈ ΓG

j for j = 1, 2, ..., N ; Chooseε ∈ R
+ ;l = 0 ⊲ Initiate

2: l = l + 1

3: For j = 1, 2, ..., N Do ⊲ Update Step 1: Compute message likelihoods

P̃ l
j→ne(j) = g̃j(α̃

l−1
j )

4: For j = 1, 2, ..., N Do ⊲ Update Step 2: Update the stage--two rules

P̃ l
j(Sxj

) = fj(P̃
l
ne(j)→j)

β̃l
j = q̃j(P

l
j)

C̃l
j→ne(j) = h̃j(β̃j , P̃

l
ne(j)→j)

5: For j = 1, 2, ..., N Do ⊲ Update Step 3: Update the stage--one rules.

α̃l
j = r̃lj(C̃ne(j)→j)

6: If τ(J̃(γ̃l), J̃(γ̃l−1), ..., J̃(γ̃0)) < ε STOP, else GO TO 2 ⊲ Check

and

G̃c
i (µ̃

l
i) =

∑

ui,m

cci (ui, x
(m)
i )p(ui|x(m)

i ; µ̃l
i) (86)

Similar to the discussion presented in Section IV-D for the DAG case, in contrary to{J(γl)}, the sequence

of approximated objectives, i.e.{J̃(γ̃l)}, is not necessarily non–increasing and considering the error sequence

err[l] = J(γl) − J̃(γ̃l) will be identically zero with probability one asM,P → ∞. Investigation of an operator

τ (Check step of Algorithm 5) that would yiled a non–incereasing error sequence with high probability for finite

M,P is beyond the scope of this work.

VI. EXAMPLES

In this section, we demonstrate the Monte Carlo optimization algorithms, i.e., Algorithms 4 and 5, introduced

in Section IV and V respectively, in various scenarios including Gaussian priors, non-Gaussian priors and random

large graphs.

A. A Simple Gaussian Example

We consider a small network example in which a decentralizedestimation network composed of four platforms

perform an estimation task. A Gaussian random fieldX = {X1, X2, X3, X4} is of concern and platformj is

associated withXj . In the first scenario, we consider the underlying communication structure represented by the

polytree in Fig. 3(a) , a structure not covered by the star–topology paradigms (e.g., [13] and [19]), as well as
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Fig. 3. (a) Illustration of the DAGG = (V ,X ) whereV = {1, 2, 3, 4} andE = {(1, 3), (2, 3), (3, 4)}, (b) illustration of the Markov Random

Field GX subject to estimation by the decentralized estimation network, (c) illustration of the UG that the decentralized estimation strategy is

based in the example scenario.

stringent BW constraints such thatU1→3 = U2→3 = U3→4 = {0, 1, 2}. The online processing scheme operates as

given in Section II-A: Since nodes1 and2 are parentless, upon measuringy1 andy2 ∈ R induced byX1 andX2,

they evaluate their local rules as(u1→3, x̂1) = γ1(y1) and(u2→3, x̂2) = γ2(y2) respectively. Upon receiving these

messages and measuringy3 ∈ R induced byX3, node3 evaluates its local rule(u3→4, x̂3) = γ3(y3, u1→3, u2→3),

and similarly node 4 evaluateŝx4 = γ4(y4, u3→4). The strategyγ =(γ1, ..., γ4) is subject to design, which we

perform through Algorithm 4.

In addition we comply with Assumption 3 and select separablelocal costs also enabling Assumption 5 to hold.

The cost function local to nodej is given bycj(uj , x̂j , xj) = cdj (xj , x̂j) + λccj(uj , xj) and

ccj(uj, xj) =
∑

k∈χ(j)

ccj→k(uj→k, xj)

whereccj→k(uj→k) is the cost of transmitting the symboluj→k on the link (j, k) ∈ E . It is selected as

ccj→k(uj→k, xj) =











0, if uj→k = 0

1, otherwise

indicating the link use. Hence,Uj→k together withccj→k define a selective communication scheme whereuj→k = 0

indicates no communications anduj→k 6= 0 indicates transmission of a one bit message. The estimationerror is

penalized bycdj (xj , x̂j) = (xj − x̂j)
2. Hence the total cost of a strategy isJ(γ) = Jd(γ)+λJc(γ) whereJd is the

MSE andJc is the total link use rate.

The random field of concern is a multivariate Gaussian, i.e.,x ∼ N (0,CX), and Markov with respect to the

graphGX presented in Fig. 3(b). The covariance matrix is given by

CX =





















2 1.125 1.5 1.125

1.125 2 1.5 1.125

1.5 1.5 2 1.5

1.125 1.125 1.5 2





















(87)

which conforms with the Markov properties ofGX . Altough the communication structure of the decentralized

estimation network is not related with the MRF representation of X and Algorithm 4 would produce results for
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any choice, for the sake of simplicity we selected the graph in Fig. 3(b) as the undirected counterpart of that in

Fig. 3(a).

The noise processesnj for j ∈ V are additive, mutually independent and given bynj ∼ N (0, 0.5), so that

Assumption 1 holds. In addition, we suppose that Assumption2 holds and the observation likelihoods arep(yj |xj) =
N (xj , 0.5). ConsideringCX , each sensor has an SNR of6dB.

Since separable local cost functions are utilized, the pbp optimal rules are also split into estimation and commu-

nications functions given by Eq.(31) and (32) respectively. Moreover, owing to the squared error local estimation

penalty given bycdj , the local estimation rules take the form given in Eq.(34). We initialize the local rules, i.e.,ν0j

andµ0
j for j ∈ V , as follows:

1) Each node applies a myopic inference rule, i.e., performsestimation solely based on its local measurements.

This rule is selected as the MMSE estimation rule, i.e.,E{Xj |Yj = yj} given by

ν0j (yj , uπ(j)) =

∞
∫

−∞

dxj xjp(xj |yj) (88)

2) All the nodes apply an initial communication rule as a quantization of the observationyj, i.e.,

µ0
i (yi, uπ(i)) =























1 , yi < −2σn

0 , − 2σn 6 yi 6 2σn

2 , yi > 2σn

(89)

ConsideringJ(γ) = Jd(γ)+λJc(γ) and pbp optimal strategies achieved through Algorithm 2, inprinciple, different

values ofλ would yield different performance points(Jc(γ∗), Jd(γ∗)). Moreover, in this case, after a certain value

λ = λ∗, the communication costλJc will dominate such that the decrease in the decision costJd with the

contributions of the communicated symbols will not be enough to decreaseJ and symbol0 will be the best

choice. Moreover, the individual estimators will be the myopic rules, since myopic rules with no communications

constitute a pbp optimal strategy. Hence, it is possible to interpretλ∗ as the maximum price per bit that the system

affords to decrease the expected estimation error. As we increaseλ from 0 we approximate samples from the

corresponding pareto–optimal curve which enables us to quantify the tradeoff between the cost of estimation errors

and communication.

We use2000 and 30000 samples for eachSxi
and Syi

generated fromp(xi) and p(yi) respectively and use

Algorithm 4 for varyingλ from 0 with 0.001 steps. Example converged local communication and estimation rules

are presented in Fig. 4(a) and (b) for node3 and4 respectively, whereλ = 0.1 and convergence is declared after

4 “offline” iterations. Note that the initial communication rule shown at the top row of Fig. 4(a) and the initial

estimation rule illustrated by the black dashed line in Fig.4(b) are valid for all of the nodes with appropriate

choices of the domain and range labels. The pbp optimal communication rule local to node3 can be treated as a

collection of threshold rules for each incoming message value (some of which are illustrated in Fig. 4(a)). Now,

let’s turn to the estimation rule in Fig. 4(b). If message received by node4 suggests a high/medium/low value for

x4 that is consistent withy4, then the pbp estimation rule local to node4 acts similar to the myopic rule (Note the
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Fig. 4. Example converged rules regarding the Gaussian DAG problem ((a),(b)) and the Laplacian DAG problam ((c)). (a) Communication rules

for node3: (from top to bottom) the initial communication rule, i.e.,u3→4 = µ0
3(y3, uπ(3)) and illustrations of the converged communication

rule for the Gaussian example forλ = 0.1 at the end of the4th step, specifically,u3→4 = µ4
3(y3, uπ(3)) for uπ(3) = {2, 2}, {0, 0} and

{1, 1} respectively. (b) Illustrations of the initial and converged estimation rules for node4 for the Gaussian example at the end of the4th

step, i.e.,ν04 and x̂4 = ν̃44 (y4, uπ(4)) respectively. (c) For the Laplacian example; the convergedestimation rule local to node4 at the end of

the 3rd step, i.e.,x̂4 = ν̃34(y4, uπ(4)).

asymptotic behaviour of̃v44 for u3→4 = 2 andu3→4 = 1 respectively in comparison with the initial rule as well as

ṽ44 for u3→4 = 0 in Fig. 4(b)), otherwise, the estimate diverts from the nominal values as implied by the incoming

message.

The approximate performance points, i.e.,(J̃c, J̃d) pairs whereJ̃c is the approximate total link use rate and̃Jd

is the approximate total MSE, of the converged strategiesγ̃∗ are presented in Fig. 3(a)(black ‘+’s). The upper and

lower bounds are MSEs corresponding to the myopic rule and the centralized optimal rule respectively. We repeat

the same scenario with different BW constraints, i.e.,|Ui→j |s. We test the condition
∣

∣

∣
J̃(γ̃l−1)− J̃(γ̃l)

∣

∣

∣
< 1.0e− 4

in the Check step of Alg.4. The average number of steps for convergence (within ±3σ) are3.6 ± 1.5, 4.2± 2.0

and 4.1 ± 1.8 for 1, 2 and 3–bit schemes respectively. Note that, for the squared errorcost, optimal centralized

rule given byE{X |Y = y} yields a communication cost ofJc = 3Q whereQ is the number of bits used to

represent a real number, i.e.,yj, before transmitting to the fusion center. Considering(J̃c, J̃d) pairs for the 1-bit

selective communication scheme, forλ = 0, the transmission has no cost, but the link use rate is well below 75%

of the total 3 bits. This indicates that the information of receiving no messages is successfully maintained in this

perspective. Moreover, the communication stops forλ∗ ≈ 0.355. Similarly, approximate points for2–bit and3–bit

schemes indicate that, ifλ is small enough, we can achieve smaller MSE for the same totalcommunication load

as we increase the link capacities.

Next, we consider a two–stage strategy over the undirected graph given in Fig. 3(c) for the same estimation

problem. The set of admissible symbols is given byUi→j = {0, 1, 2} for all (i, j) ∈ E . In contrast with the directed

case, the online processing starts with each node evaluating its stage–one communication function on its measure-

ment, i.e.,u1→3 = µ1(y1), u2→3 = µ2(y2), (u3→1, u3→2, u3→4) = µ3(y3) andu4→3 = µ4(y4) simultaneously. As

soon as all the messages from the neigbors (or lack thereof) are received, stage two estimation rules are evaluated

as x̂1 = ν1(y1, u3→1),x̂2 = ν2(y2, u2→3), x̂3 = ν3(y3, u1→3, u2→3, u4→3) and x̂4 = ν4(y4, u3→4). We design the
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Fig. 5. The approximate performance points converged revealing the tradeoff together with the lower bounds (blue dashed-lines) and the

upper bounds (red dashed-lines) of the problems given by theestimation performance measured in MSE for the optimum centralized and the

myopic rules respectively.

(a) Gaussian DAG problem: The estimation network in Fig. 3(a) is subject to optimization through Alg. 4 starting with theinitial rules given

by Eq.s(88) and (89) which achieve(Jc(γ0), Jd(γ
0)) (black ‘x’). The pareto–optimal performance curves, achieved for the approximate pbp

optimal strategies whileλ is increased from0 with steps of0.001, are approximated by{(J̃c(γ̃∗
λ), J̃d(γ̃

∗
λ))} where γ̃∗

λ is the approximated

optimum strategy forλ. Results for1, 2 and3 bit selective communication schemes are presented.

(b) Gaussian UG problem: The estimation network in Fig. 3(c)is subject to optimization through Algorithm 5 The initial strategy achieves

(Jc(γ0), Jd(γ
0)) (black ‘x’). The pareto–optimal performance curves, achieved for the approximate pbp optimal strategies whileλ is increased

from 0 with steps of0.001, are approximated by{(J̃c(γ̃∗
λ), J̃d(γ̃

∗
λ))} whereγ̃∗

λ is the approximated optimum strategy forλ. Results for1 and

2 bit selective communication schemes are presented.

(c) Heavy tailed (Laplacian) prior problem with a DAG: Approximate performance points are presented which are achievedfor the heavy tailed

prior case, for various values ofλ and10 sample sets for eachλ through Alg. 4.

(d) Heavy tailed (Laplacian) prior problem with a UG: Approximate performance points are presented which are achieved for the heavy tailed

prior case, for various values ofλ and10 sample sets for eachλ through Alg. 5.

strategyγ = (γ1, ..., γ4) whereγj = (µj , νj) using Algorithm 5.

The cost functions are those utilized for the DAG case and similarly, for each platformj, the initial local estimation

rule is the myopic mimimum MSE estimator which is based only on yj, i.e.,ν0j (yj , une(j)) =
∫∞
−∞ dxj xjp(xj |yj),

and the communication rule is a threshold rule quantizingyj similar to that used in the DAG case with the difference
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that thejth rule takes as argument the messages from all of the neighborsof nodej.

Similarly we approximate to the samples from the pareto–optimal performance curve as we increaseλ from 0

and obtain a strategy using Algorithm 5, which in turn provides a quantification for the trade–off between the cost

of estimation errors and communication.

In Fig. 5(b) we present these pairs, i.e.,(J̃c, J̃d), for different choices ofλ and |Ui→j |s. The upper and

lower bounds are mean squared errors (MSEs) corresponding to the myopic rule and the centralized optimal

rule10respectively.(J̃c, J̃d) points for the1–bit selective communication scheme reveal that altough the transmission

has no cost forλ = 0, the total link use rate is only slightly higher than50% of the total capacity of 6 bits indicating

that the information from receiving no messages is successfully utilized. Moreover, the MSE performance is closer

to that of the centralized scheme than the myopic scheme. Thecommunication stops forλ∗ ≈ 0.3. Approximate

performance points for2–bits case present the decrease in MSE for the same network load as we increase the link

capacities for small values ofλ which is competetive with that of the centralized rule.

Comparing the approximated performance points of the directed and undirected strategies presented in Fig. 5(a)

and (b) respectively for1 bit and2 bits selective communication schemes, we observe the benefits of bi–directional

communications employed by the strategy over the undirected graph. For the directed case, nodes1 and 2 are

parentless and hence do not have means to exploit contributions from other platforms. Specifically all parentless

nodes apply the initial rule, which has been selected as the myopic estimator. Therefore the nodes with more

ancestors are more likely to benefit the contribution of other nodes whereas for the undirected case, the nodes with

more neighbors pose advantegous. The price paid is that the information horizon is limited with the observation of

the neighbors whereas the local rules depend on a two–hop neighborhood due to the two stage mechanism necessary

for causality.

B. A Simple Heavy Tailed Example

The MC framework applies for arbitrary distributions provided that samples can be generated from their marginals.

This can be an important advantage in certain problem settings in which it is not possible to obtain closed form

expressions even for the centralized rule. We consider sucha scenario in whichX is distributed by a heavy tailed

prior p(x), specifically a multivariate-symmetric Laplacian (MSL) given by

p(x) =
2

(2π)d/2|Cx|1/2
(

xTC−1
x x

2

)1−d/2

K1−d/2(
√

2xTC−1
x x) (90)

whered is the dimension ofx, Cx is a covariance matrix, andKη(u) is the Bessel function of the second kind of

orderη (See, e.g. [48]). Let us denote this distribution bySLd(CX). Unlike the Gaussian case, uncorrelatedness

does not imply independence and not being a member of the exponential family,SLd(CX) does not imply a

Markov random field.

10For c(x, x̂) = (x− x̂)T (x− x̂), the optimal centralized estimate is the mean vector ofp(x1, ..., x4|y1, ..., y4) which yields a minimum

of Jc=3Q bits whereQ is the number of bits used to representyj before transmission.
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On the other hand, it is possible to generate samples from a multivariate symmetric Laplacian utilizing samples

generated from a multivariate Gaussian of zero mean and the desired covariance matrix together with samples drawn

from the unit univariate exponential distribution. Givenu ∼ N (0,CX) and z ∼ e−z, generate samples ofX by

x =
√
zu, thenx ∼ SLd(Cx). Therefore, it is possible to expressSLd(CX) as

p(x) =

∫ ∞

0

N (0, zCX)p(z)dz (91)

wherep(z) = e−z. This form, being a scaled sum of Gaussians, generalizes Gaussian mixtures and hence also

referred to as ascale mixture of Gaussians11.

Similar to that in the previous section, we assume the underlying communication structure described byG = (V , E)
in Fig. 3(a) together with a1–bit selective communication scheme on each link and similar cost functions, observation

likelihoods and initial local rules.

The Monte Carlo framework extends trivially for (finite) Gaussian Mixture Models which can be used to represent

arbitrary priors. To the best knowledge of the authors, in the case of a MSL prior, even the centralized paradigm

fails to provide a solution without employing numerical approximations.

For our case, we considerX = {X1, X2, X3, X4} such thatpX(x) = SL4(CX) whereCX is given by Eq.(87)

and we exploit the fact that thejth marginal distribution ofSLd(CX) is given by SL1([CX ]j,j) and it is

straightforward to generate samples from these marginals [51]. For the observations, although the marginal densities

yield closed form expressions12, it is not easy to sample from this density since it does not yield a distribution

function in closed form. However, considering the mixture approximation
∑

x
(m)
j

∈Sxj

p(yj |x(m)
j ) ≈ p(yj) where

Sxj
= {x(1)j , x

(2)
j , ..., x

(M)
j }, it is possible to draw samples fromp(yj) approximately by sampling fromp(yj|x(m)

j )

for m = 1, 2, ...,M until the densitymixes.

We generate
∣

∣Sxj

∣

∣ = 3000 samples from the prior marginals and
∣

∣Syj

∣

∣ = 45000 samples from the aforementioned

mixture densities. We run Algorithm 4 for different choicesof λ and for 10 different sample sets. An example

converged estimation rule is illustrated in Fig. 4(c) whichis local to node3 and convergenced forλ = 0.1 after 3

“offline” iterations. Note that, contrary to that in the Gaussian example, the initial myopic estimation rule for any

node is not linear (black dashed curve in Fig. 4(c)) and is successfully represented within the MC framework. The

asymptotic behaviours in the case that the measurement and the incoming message confirm each other are similar

to that in the Gaussian example.

In Fig. 5(c), approximate performance points for the converged strategies are presented where the upper and

lower bounds are the MSEs corresponding to the myopic and centralized rules respectively. For eachλ we observe

a cluster around the corresponding point from the pareto–optimal curve with a reasonable variability over sample

sets (Fig. 5(c)). This is in accordance with the expectationthat heavy tailed distributions require utilization of larger

11This family of distributions has been employed to model multiple variables that exhibit uncorrelatedness yet dependence such as the statistics

of natural images (see, e.g., [49] and [50]).

12It can be shown thatp(yj) = 0.1410
√
πe−yj+1/4

(

e2yj + 1− Φ(yj + 1/2) e2yj + Φ (yj − 1/2)
)

for j ∈ V whereΦ is the error

function.
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sample sets. Nevertheless, the framework we propose produces distributed solutions in problem settings which do

not admit straightforward solutions even in the centralized case.

Next, we present Algorithm 5 in a similar setting. The undirected graph of concern is given in Fig. 3(c). For

various values ofλ, and the Algorithm is run for10 different sample sets. The initial rules, costs and the likelihood

is similar to those used for the Gaussian UG example in the previous section.

The approximated performance points are presented in Fig. 5(d). Similar to the Gaussian case, for small values

of λ, a decentralized strategy with a comparable performance tothe centralized rule is achieved. The benefits of the

undirected topology is apparent comparing the MSE performance with that presented in Fig. 5 (c) for the directed

case.

C. Examples with Large Graphs

In this section, we demonstrate Algorithms 4 and 5 in relatively large scale problems;50 platforms are randomly

deployed over an area of100 unit squares and each locationsj ∈ R
2 is associated with a scalar random variable,

xj . We assume that the random fieldX = (X1, X2, ..., X50)
T is Gaussian with zero mean, i.e.,X ∼ N (0,Cx) and

Cx = [Ci,j ] complies with the Matern covariance function which is commonly utilized in spatial data modeling

[10] and given by

Ci,j =











τ2 + σ2, h = 0

σ2

2(η−1)Γ(η)

(

2
√
ηh

φ

)η

2Kη

(

2
√
ηh

φ

) , h > 0

whereh , ‖si − sj‖, Kη is a modified Bessel function of the second kind of orderη andτ2, σ2 are parameters

that determine the decaying characteristics. Such a covariance matrix is presented in Fig. 6(a) corresponding to

an example random deployment for which the Gabriel graph is presented in Fig. 6(b). We generate a polytree by

randomly selecting6 childless nodes and employing Kruskal’ s algorithm on this graph (Fig. 6(c)).



TECHNICAL REPORT - SABANCI UNIVERSITY 42

Different from the previous scenarios, only the variables associated with the childless nodes are of concern and

only the childless nodes perform estimation whereas the remaining operate in a fusion setting such that they only

provide information to the children based on the incoming messages from the parent nodes and the measurement

they make. We consider a1–bit selective communication scheme on each link and the communication cost considers

the link use rate. The estimation error iscdj (xj , x̂j) = (xj − x̂j)
2 if j is childless and identically zero otherwise.

Similar to the previous examples, the initial communication rules are quantization of the observations and the

childless nodes are initiated with the corresponding myopic estimation rules (forτ2 + σ2 = 1 andσ2
nj

= 0.25 for

all j ∈ V).

We employ Algorithm 4 for a geometrically increasing sequence λ = 0.0005, 0.00158, ..., 0.158 and for 10

different sample sets such that
∣

∣Sxj

∣

∣ = 2000 and
∣

∣Syj

∣

∣ = 30000 (over the polytree in Fig. 6(c)). An example

converged estimation rule is illustrated in Fig. 6(d). We consider node10 in Fig. 6(c); the initial myopic rule is

linear with the observationy10, however, the converged strategy, as expected consideringthe previous examples,

exhibits a highly nonlinear behaviour as the incoming messages suggest less likely (high or low) values forx10.

When no messages is sent, the pbp optimal rule is similar to a mid–way between the estimator functions selected

when incoming messages imply a high and a low value forx10 respectively.

The Monte Carlo estimates of the performances of approximate pbp optimal strategies are given in Fig. 6(e). Note

that the myopic MSE for each platform is0.2 yielding a total of1.2 whereas the centralised MSE (blue dashed–line)

is specified by the deployment (throughCx). The MC framework successfully performs in large graph scenarios

and makes it possible to identify clusters around points from the pareto–optimal curve capturing the trade–offs.

One observation is that the approximate pbp optimal strategy converged through the MC framework might stop

communicating over certain links, even if the approximatedstrategy does not yield any dead links. This is due to

failing to represent, e.g., quantization rules that utilize thresholds exceeding the bounds of the produced samples. For

example, suppose the pbp optimal local rule requires thresholds t1, t2 such thatt1 < min(Syj
) andt2 > max(Syj

)

for a particular set of incoming messages. Then the approximate local communication rule represents this rule

through stoping the communication completely if that particular set of incoming messages is received. An example

is presented in Fig. 6(f) in which the converged approximatepbp optimal strategy selects to stop all transmissions

over the magenta edges. In other words, over the magenta edges, no transmissions are made for any set of incoming

messages.

Nevertheless, the Monte Carlo framework we proposed successfully produces results for ramdon large graphs.

Next, we consider5 different graphs and employ Algorithm 4 forλ = 0.005, 0.05 and 5 different sample sets

for each value. We consider a1-bit selective communication scheme over each link which yields a total network

capacity of49 bits. Note that for each graph the pareto–optimal curve as well as the lower bound would differ.

The Monte Carlo estimates of the performance points of the approximate pbp strategies are given in Fig. 7(a). The

mean number of iterations for convergence is4 (with σ = 0.9 any heavy on the values greater than4).

In a similar setting, we consider the two-stage strategies over undirected graphs and assume that the underlying

structure is a subgraph of the Gabriel graph corresponding to the random deployment (e.g., Fig. 6(b)). The initial
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communication rules as well as the costs are similar to that for the random large graph experiments considering a

DAG except that all nodes perform estimation in this setting. Note that for a1-bit selective communication scheme

over each direction over an undirected link, each graph differs in the total network capacity. For the case, the

capacities corresponding to UG1–5 are132, 128, 130, 134and140 bits respectively. The approximate performance

points of the strategies obtained through Algorithm 5 forλ = 0.005, 0.05 are presented in Fig. 7(b). The number

of iterations for convergence has a minimum and mean value of3 and4 respectively (withσ = 1.1 heavy over the

values greater than4).

VII. C ONCLUSION

In this work, we have considered the design of decentralizedestimation strategies. Motivated by sensor network

applications, we take the communication constraints into account including the availability and BW of the links as

well as the cost of transmissions that arise during the “online” processing. We are particularly interested in trading

off estimation accuracy with the utilization of communication resources and utilize a Bayesian framework which

yields an optimization problem that explicitly involves costs for estimation errors and communications. This setting

has led scalable “offline” optimization procedures for certain classes of in–network processing strategies including

the scheme which is constituted of local rules operating in accordance with a (forward) message–passing structure

on a DAG and the family in which the local rules operate in two stages over an UG [27]. There are a number of

benefits provided by these two classes of strategies including that i) they cover any association of the nodes with

the variables that comprise the global state, ii) they are valid for any supported graph structure (DAG and UG)

presumably supported by the available set of links, and iii)they yield tractable offline optimization procedures in a

message passing fashion provided that reasonable assumptions hold. For a parametric dual-objective Bayesian risk

a pareto–optimal curve is obtained revealing the graceful degradation of the accuracy of inference with the resource

utilization [31] [27].

Furthermore, the two–stage strategies over UGs turn to a particular subclass of strategies over DAGs under certain

conditions [27]. The in-network strategies over DAGs also provide the benefit of investigating this family which

render intertwined local star–graphs under certain assumptions and arguably better match some scenarios including

the estimation of a random field.

Our first contribution is an extension of these results for the estimation problem and rephrasings of the offline opti-

mization procedures which are composed of consecutive messages over the graph representations. These approaches

differ from the previous work on decentralized estimation in the following: First, the cost of communications is

explicitly considered in the problem setting. Second, it ispossible to model a broader range of constraints on the

communication structure underlying the “online” processing. For example, it is possible to consider extensions

of the conventional star–topology since it is a particular polytree structure. In addition, it is possible to model

selective communication schemes through an appropriate selection of the communication cost(s). The graphical

model perspective in decentralized estimation take the communication constraints into account to a certain extent,

nevertheless a generic framework which captures the cost oftransmissions especially under stringent constraints
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similar to those of our concern has not been introduced.

However, in contrast with the detection problem, the globalstate vector takes values from an Euclidean space

in our case, and consequently the messages for the iterativeoptimization procedures require the computation of

integral operators which cannot be evaluated exactly, in general.

We overcome this problem through our second contribution which are Monte Carlo frameworks under which

particle representations together with approximate computational schemes are utilized for all expressions involved,

including the local rules. Doing that, we provide a feasiblecomputational scheme while we conserve the appealing

features of the original frameworks which include scalability with the number of platforms as well as the number

of variables involved. The proposed algorithms also scale with the sample set sizes and produces results for any set

of disributions provided that samples can be generated fromthe marginals. We have demonstrated these features

through several examples including a Gaussian problem, a non-Gaussian prior case and random large graph scenarios

in Section VI. The MC optimizations result with reasonable sets of local rules and the estimation accuracy is traded–

off with communication cost as we vary their relative emphases on the total cost. Equivalently, the performances

achieved approximate the corresponding pareto–optimal curve. In addition, the proposed optimization approaches

can also potentially be applied for hybrid in–network processing strategies whihc employ both families [52].

There is a number of issues left beyond the scope of this work.In contrast with the non-approximated case, the

performance sequence yield after iterations is not necessarily a monotonically decreasing sequence. Investigation of

a robust stopping condition remains as future work togetherwith the introduction of possible smoothing approaches

through kernel methods. The IS estimate of an integral is known to be mildly biased and the investigation of

biasedness of the resulting strategies remains open as wellas the graph structure that achieves the best performance

for the pbp optimal strategy given an a-priori distribution.

APPENDIX

PROOF OFPROPOSITION3.3

Provided that Assumption 1 holds, the underlying distribution to the Bayesian framework is given by

p(u, x, x̂; γ) =

∫

Y
dy

N
∏

i=1

p(ui, x̂i|yi, uπ(i); γi)
N
∏

k=1

p(yk|x)p(x)

= p(x)

N
∏

i=1

p(ui, x̂i|x, uπ(i); γi) (92)

which further implies that

p(u, x̂|x; γ) =
N
∏

i=1

p(ui, x̂i|x, uπ(i); γi) (93)

First, consider Eq.(11) and the term

∏

i6=j

p(ui, x̂i|x, uπ(i); γi) =
∏

i6=j

∫

Yi

dyi p(yi|x)p(ui, x̂i|yi, uπ(i); γ∗i )
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The conditional distribution that equals to the product above is obtained by dividing both sides of Eq.(93) by the

contribution of thejth rule, i.e.,

∏

i6=j

p(ui, x̂i|x, uπ(i); γi) =
p(u, x̂|x; γ)

p(uj, x̂j |x, uπ(j); γj)

=
p(u\π(j), x̂|x, uπ(j); γ)p(uπ(j)|x; γ)

p(uj, x̂j |x, uπ(j); γj)
= p(u\j∪π(j), x̂\j |x, uπ(j), uj, x̂j ; γ)p(uπ(j)|x; γ)

= p(u\j, x̂\j |x, uj ; γ\j) (94)

for which after applying the chain and Bayes’ rule, we have substituted the conditional independence properties

uπ(j) ⊥⊥ (uj, x̂j)|x; γan(j) wherean(j) are the set of ancestor nodes ofj and (u\j , x̂\j) ⊥⊥ x̂j |x, uj ; γ\j due to

the directed acyclic nature in the last step.

Then we follow similar steps with that for the detection casein [27] whereas in our setting,X takes values from

a denumarable setX and we do not utilize a channel model, i.e., we assume that alllinks are error free.

Consider Eq.s(11) and (18) together with Eq.(94). After substituting the mathematical expression of the cost

locality assumption, i.e., Eq.(19), in Eq.(18) we obtain

θ∗j (uj , x̂j , x, uπ(j))

=
∑

i∈V

∑

u\{j}∪π(j)

∫

X\j

dx̂\j c(ui, xi, x̂i)p(u\j, x̂\j , x|uj ; γ∗\j)

= p(uπ(j)|x; γ∗\j)p(x)c(uj , xj , x̂j) +
∑

i∈V\j

∑

u\{j}∪π(j)

∫

X\j

dx̂\j c(ui, xi, x̂i)p(u\j , x̂\j , x|uj ; γ∗\j)

and treat the summation overi ∈ V\j in three groups:de(j) ∈ V\j denoting the decendants of nodej, π(j) ∈ V\j
denoting the parent of nodej andan(j)\π(j) ∈ V\j denoting the ancestors of nodej that are not its parents. Due

to the directed acyclic nature, these sets are mutually exclusive. Hence

∑

i∈V\j

∑

u\{j}∪π(j)

∫

X\j

dx̂\j c(ui, xi, x̂i)p(u\j , x̂\j , x|uj ; γ∗\j)

=
∑

m∈de(j)

∑

u\{j}∪π(j)

∫

X\j

dx̂\j c(um, xm, x̂m)p(u\j , x̂\j , x|uj ; γ∗\j)

+
∑

k∈π(j)

∑

u\{j}∪π(j)

∫

X\j

dx̂\j c(uk, xk, x̂k)p(u\j , x̂\j , x|uj ; γ∗\j)

+
∑

n∈an(j)\π(j)

∑

u\{j}∪π(j)

∫

X\j

dx̂\j c(un, xn, x̂n)p(u\j , x̂\j , x|uj ; γ∗\j)

Consider the first group on the right hand side of the equationabove. The following holds

∑

m∈de(j)

∑

u\{j}∪π(j)

∫

X\j

dx̂\j c(um, xm, x̂m)p(u\{j}∪π(j), x̂\j |x, uj , uπ(j); γ∗\j)p(uπ(j)|x; γ∗\j)p(x)

=
∑

m∈de(j)

∑

um

∫

Xm

dx̂m c(um, xm, x̂m)
∑

u\{j,m}∪π(j)

∫

X\{j,m}

dx̂\{j,m} p(u\{j}∪π(j), x̂\j |x, uj , uπ(j); γ∗\j)p(uπ(j)|x; γ∗\j)p(x)
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= p(uπ(j)|x; γ∗\j)p(x)
∑

m∈de(j)

∑

um

∫

Xm

dx̂m c(um, xm, x̂m)p(um, x̂m|x, uj , uπ(j); γ∗\j)

= p(uπ(j)|x; γ∗\j)p(x)
∑

m∈de(j)

∑

um

∫

Xm

dx̂m c(um, xm, x̂m)p(um, x̂m|x, uj ; γ∗\j)

where we apply the chain rule and rearrange the order of operators except that in the last step we assert the

assumption thatG is a polytree whenp(um, x̂m|x, uj , uπ(j); γ∗\j) is reduced top(um, x̂m|x, uj ; γ∗\j) for m ∈ de(j).

Since the polytree topology implies that there are no paths from any of the ancestors of nodej to any of its

decendats that does not pass throughj, given uj and havingγ∗\j determined,uπ(j) has no bearing on(um, x̂m)

wherem ∈ de(j) which would not necessarily be the case ifG were not a polytree.

Considering the summation over the second group, similar rearrangements are performed yielding

∑

k∈π(j)

∑

u\{j}∪π(j)

∫

X\j

dx̂\j c(uk, xk, x̂k)p(u\j, x̂\j , x|uj ; γ∗\j)

=
∑

k∈π(j)

∫

Xk

dx̂k c(uk, xk, x̂k)p(x)
∑

u\{j}∪π(j)

∫

X\{j,k}

dx̂\{j,k} p(u\j, x̂\j |x, uj; γ∗\j)

=
∑

k∈π(j)

∫

Xk

dx̂k c(uk, xk, x̂k)p(x)p(uπ(j), x̂k|x, uj; γ∗\j)

=
∑

k∈π(j)

∫

Xk

dx̂k c(uk, xk, x̂k)p(x)p(uk, x̂k|x, uj , uπ(j)\k; γ∗\j)p(uπ(j)\k|x, uj ; γ∗\j)

=
∑

k∈π(j)

∫

Xk

dx̂k c(uk, xk, x̂k)p(x)p(uk, x̂k|x; γ∗\j)p(uπ(j)\k|x; γ∗\j)

= p(x)p(uπ(j)\k|x; γ∗\j)
∑

k∈π(j)

∫

Xk

dx̂k c(uk, xk, x̂k)p(uk, x̂k|x; γ∗\j)

where in the first two steps, we rearrange operators and perform marginalization, in the third step we apply the chain

rule. In the fourth step, theuj anduπ(j)\k arguments of the conditional drops since due to the polytreetopology

no two parents of nodej shares a common ascendant and these arguments are non-informative for (uk, x̂k) when

γ∗k ∈ γ∗\j is determined. Also note that, at the last step, the terms contain no contribution of(uj , x̂j) and hence

have no bearing on the optimization regarding the person-by-person optimal rule of nodej.

A similar treatment of the third group yields

∑

n∈an(j)\π(j)

∑

u\{j}∪π(j)

∫

X\j

dx̂\j c(un, xn, x̂n)p(u\j , x̂\j , x|uj ; γ∗\j)

=
∑

n∈an(j)\π(j)

∑

un

∫

Xn

dx̂n c(un, xn, x̂n)
∑

u\{j,n}∪π(j)

∫

X\{j,n}

dx̂\{j,n} p(u\j, x̂\j , x|uj ; γ∗\j)

=
∑

n∈an(j)\π(j)

∑

un

∫

Xn

dx̂n c(un, xn, x̂n)p(x)p(un, x̂n|uπ(j), uj , x; γ∗\j)p(uπ(j)|uj, x; γ∗\j)

=
∑

n∈an(j)\π(j)

∑

un

∫

Xn

dx̂n c(un, xn, x̂n)p(x)p(un, x̂n|x; γ∗\j)p(uπ(j)|x; γ∗\j)

= p(x)p(uπ(j)|x; γ∗\j)
∑

n∈an(j)\π(j)

∑

un

∫

Xn

dx̂n c(un, xn, x̂n)p(un, x̂n|x; γ∗\j)
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revealing that it has no contribution on the optimization regarding the person-by-person optimal rule of nodej

either.

Therefore

θ∗j (uj , x̂j , x, uπ(j)) ∝

p(x)p(uπ(j)|x; γ∗\j)



c(uj , xj , x̂j) +
∑

m∈de(j)

∑

um

∫

Xm

dx̂m c(um, xm, x̂m)p(um, x̂m|x, uj; γ∗\j)





holds and under the measurement locality assumption, Eq.(18) easily yields

φ∗j (uj, x̂j , xj , uπ(j)) ∝

p(xj)p(uπ(j)|xj ; γ∗\j)



c(uj , xj , x̂j) +
∑

m∈de(j)

∑

um

∫

Xm

dx̂m c(um, xm, x̂m)p(um, x̂m|xj , uj; γ∗\j)



 (95)

after marginalization.

Now that we have obtained the form in Eq.(20) it remains to show thatp(uπ(j)|xj ; γ∗\j) is equal toP ∗
j (uπ(j)|xj)

given by the forward likelihood recursion Eq.s(21) and (22)together with that the summation over descendants is

equal toC∗
j (uj , xj) given by the induced cost recursion Eq.s(23) and (24).

We start with a general termp(uπ(j)|x; γ) determined by the strategyγ and fist note that the directed acyclic nature

together with the online processing in accordance with the forward ordering,uπ(j) received from parents depend on

γan(j) andxan(j) yielding the equivalencep(uπ(j)|xan(j); γ∗an(j)) ≡ p(uπ(j)|x; γ∗) (Figure 8). In addition, starting

with parentless nodes for whichp(uπ(j)|x; γ∗) = 1 the following recursion holds where we denote byuπ2(j) the

set of incoming messages to parents of nodej:

p(uπ(j)|xan(j); γ∗an(j)) =
∑

u
π2(j)

∫

Xπ(j)

dx̂π(j) p(uπ2(j), uπ(j), x̂π(j)|xan(j); γ∗an(j))

=
∑

u
π2(j)

∫

Xπ(j)

dx̂π(j)p(uπ2(j)|xan(j); γ∗an(j))p(uπ(j), x̂π(j)|uπ2(j), xan(j); γ
∗
an(j))

=
∑

u
π2(j)

p(uπ2(j)|xan(j)\π(j); γ∗an(j)\π(j))
∏

i∈π(j)

∫

Xi

dx̂i
∑

ui\ui→j

p(ui, x̂i|xi, uπ(i); γ∗i )

(96)

In addition, the polytree topology implies that no two parents of nodej share a common ancestor and moreover

the sets of ancestors of parents of nodej are disjoint. Hence

p(uπ2(j)|xan(j)\π(j); γ∗an(j)\π(j)) =
∏

i′∈π(j)

p(uπ(i′)|xan(i′); γ∗an(i′))
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and after substituting in Eq.(96) we obtain

p(uπ(j)|xan(j); γ∗an(j)) =
∑

u
π2(j)

∏

i′∈π(j)

p(uπ(i′)|xan(i′); γ∗an(i′))
∏

i∈π(j)

∫

Xi

dx̂i
∑

ui\ui→j

p(ui, x̂i|xi, uπ(i); γ∗i )

=
∑

u
π2(j)

∏

i∈π(j)

p(uπ(i)|xan(i); γ∗an(i))
∑

ui\ui→j

∫

Xi

dx̂ip(ui, x̂i|xi, uπ(i); γ∗i )

=
∏

i∈π(j)

∑

uπ(i)

∑

ui\ui→j

p(uπ(i)|xan(i); γ∗an(i))
∫

Xi

dx̂ip(ui, x̂i|xi, uπ(i); γ∗i ) (97)

Finally, in order to obtainp(uπ(j)|xj ; γ∗an(j)) we multiply both sides of the above equation withp(xan(j)|xj)
and marginalizeXan(j), i.e.,

p(uπ(j)|xj ; γ∗an(j)) =

=

∫

Xan(j)

dxan(j) p(xan(j)|xj)
∏

i∈π(j)

∑

uπ(i)

∑

ui\ui→j

p(uπ(i)|xan(i); γ∗an(i))
∫

Xi

dx̂ip(ui, x̂i|xi, uπ(i); γ∗i )

=

∫

Xπ(j)

dxπ(j)

∫

Xan(j)\π(j)

dxan(j)\π(j) p(xπ(j)|xj)p(xan(j)\π(j)|xπ(j), xj)
∏

i∈π(j)

p(ui→j |xi, xan(i); γ∗i , γ∗an(i))

=

∫

Xπ(j)

dxπ(j) p(xπ(j)|xj)
∫

Xan(j)\π(j)

dxan(i)\π(j)
∏

i′∈π(j)

p(xan(i′)|xπ(j), xj , ...)
∏

i∈π(j)

p(ui→j , x̂i|xi, xan(i); γ∗i , γ∗an(i))

=

∫

Xπ(j)

dxπ(j) p(xπ(j)|xj)
∏

i∈π(j)

∫

Xan(i)

dxan(i)p(xan(i)|xi, ...)p(ui→j |xi, xan(i); γ∗i , γ∗an(i))

=

∫

Xπ(j)

dxπ(j) p(xπ(j)|xj)
∏

i∈π(j)

p(ui→j |xi; γ∗i , γ∗an(i))

=

∫

Xπ(j)

dxπ(j) p(xπ(j)|xj)
∏

i∈π(j)

∑

uπ(i)

∑

ui\ui→j

p(uπ(i)|xi; γ∗an(i))
∫

Xi

dx̂ip(ui, x̂i|xi, uπ(i); γ∗i )

which is nothing but Eq.(22) substituted in Eq.s(21), whereP ∗
j (uπ(j)|xj) represents

p(uπ(j)|xj ; γ∗an(j)) andP ∗
i→j(uj→i|xi) is identified asp(ui→j |xi; γ∗i , γ∗an(i)). In the first step above, we exploit

the chain rule and in the next step, we substitute the disjointness of ancestors of parents of nodej due to the

polytree topology while factorizingp(xan(j)\π(j)|xπ(j), xj). To show that the factorization holds, let the parents of

nodej be π(j) , {i1, ..., iP }. Then applying the chain rule consecutively we obtain

p(xan(j)\π(j)|xπ(j), xj)

= p(xan(i1)|xπ(j), xj)p(xan(j)\π(j)∪an(i1)|xπ(j), xj , xan(i1))

= p(xan(i1)|xπ(j), xj)p(xan(j)\π(j)∪an(i1)∪an(i2)|xπ(j), xj , xan(i1), xan(i2))p(xan(i2)|xπ(j), xj , xan(i1))

...

= p(xan(i1)|xπ(j), xj)p(xan(i2)|xπ(j), xj , xan(i1))...p(xan(iP )|xπ(j), xj , xan(i1), ..., xan(iP−1))

Moreover(ui, x̂i) are independent from any fields ofX given (Xi, Xan(i)) with γ∗i andγ∗an(i) determined.
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Similar steps show that the cost recursion given by Eq.s(23)and (24) hold, i.e., Eq.(24) substituted in Eq.s(23)

is equal to summation overm ∈ de(j) in Eq.(95). Consider

∑

m∈de(j)

∑

um

∫

Xm

dx̂m c(um, xm, x̂m)p(um, x̂m|xj , uj ; γ∗\j)

=
∑

k∈χ(j)





∫

Xk

∑

uk

c(uk, xk, x̂k)p(uk, x̂k|xj , uj; γ∗\j) +
∑

m∈de(k)

dx̂m
∑

um

c(um, xm, x̂m)p(um, x̂m|xj , uj; γ∗\j)





and let the summation overm ∈ de(j) be denoted byC∗
j (uj , xj). Then the expression above becomes

C∗
j (uj , xj)

=
∑

k∈χ(j)

[

∫

Xk

dxk
∑

uk

c(uk, xk, x̂k)p(uk, x̂k|xj , uj; γ∗\j) +
∫

Xk

dxk
∑

uk

C∗
k(uk, xk)p(uk, x̂k|xj , uj ; γ∗\j)

]

=
∑

k∈χ(j)

∫

Xk

dxk
∑

uk

[c(uk, xk, x̂k) + C∗
k(uk, xk)] p(uk, x̂k|xj , uj ; γ∗\j) (98)

where it is possible to extend the distributionp(uk, x̂k|xj , uj ; γ∗\j) such that it is expressed in terms of the

contributions of the rule local to nodek, i.e.,

p(uk, x̂k|xj , uj ; γ∗\j) =
∫

Xπ(k)\j

dxπ(k)\j

∫

Xk

dxk
∑

uπ(k)\j

p(xπ(k)\j , xk|xj)p(uπ(k)\j |xπ(k)\j ; γ∗\j)×

p(uk, x̂k|xj , xπ(k)\j , xk, uj , uπ(k)\j ; γ∗\j)

=

∫

Xπ(k)\j

dxπ(k)\j

∫

Xk

dxk
∑

uπ(k)\j

p(xπ(k)\j , xk|xj)
∏

m∈π(k)\j
p(um→k|xm; γ∗m, γ

∗
an(m))p(uk, x̂k|xk, uπ(k); γ∗k) (99)

where we identifyp(um→k|xm; γ∗m, γ
∗
an(m)) as P ∗

m→k(um→k|xm) and substituted in Eq.(99) and Eq.(98) yields

the cost recursion Eq.s(23) and (24). �
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Fig. 6. Regarding the50 randomly deployed nodes: (a)Cx through the Matern covariance function, (b) UG generated asa sparsified Gabriel

Graph of the deployment, (c) the polytree generated from a spanning tree of the Gabriel Graph of the deployment after randomly selecting6

childless nodes; parentless and childless nodes are shown by red triangles and red squares (e.g. node10) respectively, (d) converged estimation

rule local to (childless) node10 for λ = 0.005 at the end of6 iterations, (e) approximate performance points of converged strategies for

λ = 0.0005, 0.0015..8, ., 0.158 and 10 sample sets. The upper and lower bounds of the problem are themyopic and the centralized MSEs

shown by the solid red line and the dashed blue line respectively.

(c) 50 randomly deployed nodes and the polytree generated from a spanning tree of the Gabriel Graph of the deployment after randomly

selecting6 childless nodes; parentless and childless nodes are shown by red triangles and red squares (e.g. node10) respectively, (d) converged

estimation rule local to (childless) node10 for λ = 0.005 at the end of6 iterations, (d) approximate performance points of converged strategies

for λ = 0.0005, 0.00158, ..., 0.158 and10 sample sets. The upper and lower bounds of the problem are themyopic and the centralized MSEs

shown by the solid red line and the dashed blue line respectively. (f) Polytree with dead links after convergence.
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Fig. 7. The approximate performance points of the strategies converged by (a) Algorithm 4 for5 polytrees generated for random deployments

and for5 sample sets for each deployment. The parameterλ is selected asλ = 0.005, 0.05 considering a1–bit selective communication scheme

and squared error estimation error penalty for the childless nodes. (b) Algorithm 5 for5 UGs for random deployments and for5 sample sets

for each deployment. The parameterλ is selected asλ = 0.005, 0.05 considering a1–bit selective communication scheme and squared error

estimation error penalty for all nodes. Note that the centralised MSE (showed by a solid red–line in both figures) is same for all deployments

whereas the myopic MSE (the lower bound) vary for each deployment.
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Fig. 8. A polytree from the viewpoint of nodej: The parent nodesi1, i2, ..., iP do not have a common ancestor and the child nodes

k1, k2, ..., kC do not have a common descendant.
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