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Abstract

We consider designing decentralized estimation schemes fmandwidth limited communication links with a
particular interest in the tradeoff between the estimagiocuracy and the cost of communications due to, e.g., energy
consumption. We take two classes of in—network procesgnagegies into account which yield graph representations
through modeling the sensor platforms as the vertices amatdmmunication links by edges as well as a tractable
Bayesian risk that comprises the cost of transmissions andlfy for the estimation errors. This approach captures a
broad range of possibilities for “online” processing of ebations as well as the constraints imposed and enables a
rigorous design setting in the form of a constrained optatian problem. Similar schemes as well as the structures
exhibited by the solutions to the design problem has beatiestipreviously in the context of decentralized detection.
Under reasonable assumptions, the optimization can béedaout in a message passing fashion. We adopt this
framework for estimation, however, the corresponding rofation schemes involve integral operators that cannot
be evaluated exactly in general. We develop an approximdtamework using Monte Carlo methods and obtain
particle representations and approximate computatiatarees for both classes of in—network processing strategie
and their optimization. The proposed Monte Carlo optimaraprocedures operate in a scalable and efficient fashion
and, owing to the non-parametric nature, can produce segoitany distributions provided that samples can be
produced from the marginals. In addition, this approachikétsh graceful degradation of the estimation accuracy
asymptotically as the communication becomes more cositgugh a parameterized Bayesian risk.
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|I. INTRODUCTION

The introduction of wireless sensor networks and their ®amed applications has nurtured the research on
decentralized versions of canonical statistical infeegmmblems in signal processing including detection, extion
and fusion. Typically, a large amount of observations irliby multiple quantities of interest are collected by
sensor platforms at distinct locations and possibly inagimodes []1]. While this spatially distributed nature
neccessitates some communications, it is often the casethtbacomponents rely on limited energy stored in
batteries[[2] and transmitting bits is far more costly thamputing them in terms of energy dissipation [3]. There
are also resource limitations regarding sensing and caatipos and, therefore, any feasible processing scheme
needs to take the relevant tradeoffs into account and emsaodiaborative operation of the components [4].

This work is motivated by the interest in designing decdizgd processing schemes for estimation subject to
a number of constraints regarding communications. Thequtas setup a connected ad—hoc network on which
it is possible to establish links between any two nodes anthtaia higher level topologies yielding multi-tier
architectures (see, e.d.J [S]-[7]). These links are ofdigipacity constraining the set of feasible symbols that can
be transmitted over them and vary in length in the number psh@he tradeoff between estimation accuracy and
the cost of these transmissions is of concern to us. Onelpessay to abstract the energy cost of communications
is to consider the number of hops and utilize a first orderaadodel, i.e., a model of energy dissipation for
transmitting and receiving bits atd meters distance (see e.gl [8]).

The phenomenon to be sensed is modeled by a collection dékpabrrelated random variables. Such random-
field models have been proposed in a variety of contexts direguturbulent flow (Chp. 12 of [9]) and geostatistics
data [10] such as temperature measurements over a field (Coip[11]).

Previous work on decentralized estimation includes theow@al approach that assumes a star topology and
bandwidth (BW) limited links in which a fusion center (FC)rfiems the estimation task based on messages from
a finite alphabet sent by the so-called peripheral sensdrs.tfansmitted symbols are quantized measurements
and the design of quantizers together with a fusion rule isoofcern in order to improve the estimation accuracy
in various settings including Bayesian (e.d.,1[12],][13}hn-Bayesian (e.g.| [14]), unknown prior and/or noise
distribution (e.qg.,[[15]+[17]), vector valued parameterg(, [18]) as well as the estimation of a random field (e.g.,
[19]-[21]). These treatments are limited in capturing @eraspects of the problem. First of all, the communication
structures for which results can be produced are restrictatar topologies. Furthermore, the cost of transmissions
from peripherals to the FC which possibly varies considgthre multi-hop nature is not explicitly accounted for.
Finally, often, a common random variable is of concern arin@dion is performed only at the FC. This restricts
the amount of collaboration among platforms for online ps®ing of observations and opens up a possibility for a
computational bottleneck in the case of multiple randoniakdes (or a vector valued state) which can possibly be
distributed over the nodes. We address these limitatiasigh two classes of in—network strategies which capture
a much broader range of communication and computationtates:

The decentralized random field estimation strategy in [1tljzas bi-directional communications over a star
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topology and narrows the interval of uncertainty regardimggcommon variable based on reciprocal messaging bet-
ween the FC and the peripherals. However, the variable septimg the decision on the partition selection does not
provide conditional independence for the observations gxact fusion of messages is not tractable (which is carried
out approximately using Monte Carlo approximations). Tevelving random field estimation/prediction through
Kalman-Bucy filtering (KBF) is considered in_[22] and [23h particular, [23] addresses decentralized estimation
through distributing the realization of the KBF, whereag][2onsiders a center for filtering and communication
constraints through surrogate communication costs andsamagion penalty. In order to reduce the amount of
transmissions to the FC, model reduction is performed bialte selection at each step in a combinatorial setting.
The problem we consider differs from this work in that, rattiean considering a dynamical problem involving
the processing of observations collected at consecutive steps due to dynamical state transitions and modifying
the model of the static estimation problem arising at eagte tstep, we are interested in a static problem and
optimization of a broader class of strategies such thatefudcdegradation is featured addressing the tradeoff.

Graphical models together with message passing algorittaasgproved useful for decentralized statistical infer-
ence in sensor networks (see e.g.] [24] and the refereneesirth In this framework, efficient statistical inference
is achieved through message passing algorithms over a gegpbsentation that reveals the probabilistic model
underlying the estimation problem, which is often distiffoin any graph representation of the available links. After
mapping the former onto the latter, a decentralized infegestheme is obtained which can be realized provided that
the underlying communication network supports the reguinessaging. It is often the case that the BW limitations
necessitate approximations of the messages and conskygdegtade the inference performance. Although it is
possible to analyze the effects of these errors to sometg&8lp it is hard to solve the problem taking into account
the available links and capacities together with the cogtarfsmission over them (see e.g., Chp. 5[af [26]).

We consider two classes of in—network processing stragethiat are composed of local communication and
computation rules and operate over a subset of all availedlemunication links. For the first class, a directed
acyclic graph (DAG) is rendered through the following: Tieg the set of platforms as the vertex set of a graph,
each node is associated with a (set of) random variablegs) the collection, possibly with the variable(s) of a
random field that model the phenomenon of interest at theitocaf the platform. Each link is represented by a
directed edge starting from the source and terminating eatsthk node. In addition, a set of admissible symbols
that comply with the link capacity is associated with eacheedsiven a set of links that renders a directed acyclic
graph, a strategy is achieved by having all nodes produapomg messages to their children and an estimate of
the random variable they are associated with based on tlning messages from their parents as well as the
measurements they receive. Givepréor distribution for the random field and a tractable cost, thésg yields a
tractable Bayesian risk under a number of reasonable asgunsp

The second class allows bi-directional communications emusidering edge pairs between two nodes that
can perform peer—to—peer communications, renders an ébtdd Graph (UG). Similar to that for the in—network
strategies over DAGSs, each link is associated with a numbsgyrabols according to the BW but, in contrast, local

processing of nodes take place in two-stages. In the firgestach node delivers messages to their neighbors
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based on its measurement. In the second stage, havingedaaizssages from their neighbors, each node perform
estimation based on both the incoming messages and its reezexut. One of the reasons for a two—stage strategy
is to avoid possible deadlocks in the processing of the ehtiens. Second, the assumptions that guarantee a
tracktable Bayesian risk in the DAG case is not sufficientdivategies over UGs but the structure introduced by

two—stage processing renders them sufficient.

As a result, both classes of strategies yield rigorous desigoblems for decentralized inference under commu-
nication constraints in the form of constrained optimiaatproblems in which the objective functions are Bayesian
risks that penalize both estimation errors and the trarsioms, and the feasible set of strategies is constrained by
the corresponding graph representation that capturesviilility and the capacity of links.

These classes of strategies together with the structutabied by the solutions have been recently studied in
[27] (see alsol[28]-[31]) in the context of decentralizededton. For each class, after a Team Decision Theoretic
investigation, an iterative procedure is obtained whidartsg from an initial strategy, converges to a person—
by—person optimal one and can be realized as a message goasganithm, provided that certain assumptions
hold.

We adopt this framework for decentralized estimation in alihthe variables of concern take values from
denumerable sets, and hence yield expressions with ihtegeaators that cannot be evaluated exactly in general.
In order to keep the fidelity to the problem setting, we introel an approximation framework utilizing Monte
Carlo (MC) methods such that particle representations gpdoaimate computational schemes for the operators
replace the original expressions in both the strategiesttagid optimization. As a result, the iterative solutions ar
transformed to MC optimization algorithms which also maintthe following benefits of the original scheme: First,
this framework enables us to consider a broad range of cornwation and computation structures for the design
of decentralized estimation networks. Second, in the dagea dual objective is selected as a weighted—sum of
the estimation performance and the cost of communicati@arggaceful degradation of the estimation accuracy is
achieved as communication becomes more costly. The megylireto—optimal curve enables a quantification of the
tradeoff of concern. Under reasonable assumptions, thmigation procedure scales with the number of platforms
as well as the number of variables involved and can be rehizemessage passing algorithms matching a possible
self-organization requirement, provided that certairuagstions hold. Lastly, since the approach is Bayesian, it
is possible to introduce information on the process of comgkrough a prior density function. In addition, the
MC optimization schemes we propose feature scalability whe cardinality of the sample sets required and can
produce results for any set of distributions provided thdependent samples can be generated from the marginals.

In the next section we introduce both classes of strategied,then we define the problem in a constrained
optimization setting. After presenting the Team Decisidredretic investigation in Sectidn]lll, we introduce our
MC optimization framework for in—network processing stigies over DAGs and two-stage strategies over UGs

in Sectiond IV and_V respectively. Then we demonstrate tloeeafentioned features through several examples
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in Sectioan. Finally we provide some observations together with pdssibture directions, and conclude in

Section VII.

Il. PROBLEM DEFINITION

We start this section with a number of basic definitions atmutgraphical representation of the problem and
the variables involved in that representation. Then in iBa@-A] we present the in-network processing paradigm
over DAGs for network constrainegnline processing of the set of collected observations, which wasigusly
studied in [[27] for detection such that the elements of théezavork (e.qg., [34] [35] [35]) are unified including a
DAG network topology, low-rate communication links betwewdes and a spatially—distributed decision objective
[31]. Then, in Sectiof 1I-B, the two—stage strategies ov&slare introduced which enable modeling bi-directional
links. Subsequently, in Sectidn TIFC, we state the desigyblem for the processing strategy taking into account
communication constraints in a constrained optimizatiettirsy, which is to be solved “offline,” i.e., before
processing the observations.

Common for both classes, a gragh= (V, £) represents an “online” communication and computationcsiine
where each platform is associated with a nade V. An edge(i,j) € £ corresponds to the finite capacity
communication link from platform to j on whichi can transmit a symbol,_,; without errors from the set
of admissible symbol#,_,;. The number of elements #,_,;, i.e., |U;,;|, is finite and in accordance with the
link capacity capturing the bandwidth constra@mtslote that, ifG is a DAG, then a forward (backward) partial
ordering is implied with respect to the reachability redatistarting to count form the parentless (childless) nodes
and proceeding forwards (backwards). If the links allow lérdirectional communication, i.e(j, j) € £ implies
that (j,¢) € £, theng is an undirected graph.

We consider the joint distributio®y y (X,Y) where X = (X1, Xa, ..., Xy)7T is the random variable subject to
estimation and takes values from a denumerabletset X} x X, x ... x Xy. Similarly Y = (Y1,Ys, ..., Yar) T
takes values from a denumerable 3&t= YV, x Vs x ... x Vi; and is the collection of all observations induced
by X. It holds thatN, M > 1 anddim(&}),dim(),) > 1 for j =1,..., N andk = 1,..., M respectively. A node
v € V collectsY, C {Y1,..., Yy} and can be associated wifti, C {X;,..., Xny} for which case it estimateX,,.
This mapping which distributes the observed state over sigglarbitrary, in principle, and enables decentralized
inference with a broad range of possibilities. For simpficive assume that there afé platforms withM = N

observations and given, v € V, X,, and X,, are mutually exclusive for, # v throughout.

A. In—network processing strategies over DAGs

We first consider the class of strategies over DAGs for whiehgraphg = (V, £) modeling the communication

and computation structure is directed and acyclic.iLg) denote the incoming messages to ngdeom its parent

1The preliminary results of the proposed schemes appearinajad [33].

2For example, it is possible to represent a link with capabily, d;; bits with, e.g., selecting/;_,; such that|if;_, ;| = d;; + 1 where
0 € U;_,; indicates no transmission and enables a message cencorsgjeotive communication scheme. Inl[27], communicatiok &rrors
are also considered which we do not take into account thimutgh
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Fig. 1. Online processing scheme modelled with a DEG= (V,£): (a) The viewpoint of nodg in G which evaluates its local rule;
based on its measurement as well as on the received messaggs;) and produces an inference on the value of the random variide
associated with, i.eZ;, together with outgoing messages to its children. (b) The global view of the decentralizedatdgy overG where a

random vectorX takes the value: as the outcome of an experiment and induces observations

nodesn(j), given byu, ;) £ {ui;li € n(j)}. LetU, ;) denote the set from which,;, takes values. This set
is constructed through consecutive Cartesian productngdy U ;) = ieg@(j)qu where® denotes consecutive
Cartesian ProdudisThe set of outgoing messages from ngde child nodesy(5), given byu; = {u;_x|k € x(j)},
takes values from the sét; which can be defined in a similar way to that @y ;, asi/; = ke@ U

X
As nodej measureg; € ); and receivesi, ;) € Uy (;, it evaluates a function, called its local rule, defined by
Vi 0 Vi X Un() = Uy X A

which produces an estimafg € X; as well as outgoing messages € U/;. The space of rules local to nogeis
given by
L7 & (vl Vi x Uy = Uy x X5}

where the superscrigi denotes that the definition of the set relies @nConsidering the space of all possible
estimators, i.e.]' £ {vy|y: Y — &}, it holds thatl'Y C T. Note that{i/;_,;|(,7) € £} also relies ong through
the edge set.

A DAG implies a partial ordering and it is possible to obtaifmavard and backward partial ordering in accordance
with the reachability relation such that the parentless thedchildless nodes have the smallest order respectively.
The directed acyclic nature ¢f leads to causal online processing of the observations wienddes execute their
local rules in accordance with the forward partial order., istarting from the parentless nodes, at each step, nodes
with the corresponding order evaluate their local rules pratessing stops after the childless nodes. The process
from node;’ s point of view is illustrated in Figl]JL(R).

ConsideringV = {1,2,..., N}, the aggregation of local rules denoted byis called a strategy, i.ey =

(71,72, ---, Y~ ), and takes values from the set of feasible strategies giyen b

M9 =T xT§ x ... xT%

3 In other words, e.g.¥ = X1 x X3 x X3 andX = ® X; are synonymous.
ie{1,2,3}
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which will simply be denoted b9 = ® T'9. The set of all messages in the network arising for the “ailin
veV

processing of the observations is given ®y& {u,;;|(i,7) € £}, and takes values fromd £ ® U;_,;. The
(i,5)€€
global view of this paradigm is illustrated in Figl_Tj(b).

B. Two-stage in—network processing strategies over UGs

Given a UGG = (V,€), it holds for all edges irg, i.e., (i,j) € &, that (i, j) € £ < (4,i) € £ establishing a
bi—directional setting. Unlike the DAG case, the local sutgerate in two—stages: In the first stage, having observed
y; € V;, nodej transmits a message_,; taking values froni/;_,; to each of its neighborse ne(j) constituting
u; = {u;—ili € ne(j)}. The set of all possible outgoing messages is giverd{py- iesze)(j)uj_}i. In the second
stage, an inference on the value &f is drawn based on the observatign and the incoming messages from
neighboring nodes given by, ;) = {ui-;|i € ne(j)}. The set of all possible incoming messages is given by
Uney) = | & Ui

A causal online processing of measurements takes place edem; < V, first performs its local communi-
cation ruley; : Y; — U; acting on onlyy;, and afteru,,; is received, proceeds with the local decision rule

: YVj X Unej) — X;. Hence, the local rule of nodgis a pair given byy; = (i, ;).
Similar to the discussion in the DAG case, it is possible tbngethe space of all first—stage (communication)

rules as
MG = {ujlu; = Vs — U}
and the second-stage (estimation) rule space by
Y ={vlvy 0 Yy X Unejy = X'}

The local rule spaceE$ = MY x Njg for j € V construct the strategy spaté = ® T9.
: : : veV

C. Design problem in a constrained optimization setting

For any such in—network processing strategy, it is possthbkelect a cost such that an estimation error penalty
for the pair(z, £) and a cost due to the corresponding set of messages assigned, i.ec,: U X X x X — R. In
addition, giveny = (71, ...,7n) € I'9, the tuple(U”, XT)T = ~(Y) is a random variable conditionally independent
of X givenY, denoted by(U”, X7)T 1L X |Y , and the distribution(u, Z|y) is specified byy and denoted by

p(u, Z|y;v). Note that, by construction, considering the causal onfirezessing in the DAG and UG cases

p(u, &y; ) Hp i, 5 [Yss ()i V5) 1)
and
p(U,fC|y,’7) = Hp(ujaj?ﬂyjaune(j);’}/j)
JEV
= Hp(uj|yj;ﬂj)p(i.j|yjaune(j); Vj) (2)

jev
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hold respectively.
Consider a Bayesian risk, i.ef {c¢(u,x,Z);~v}. The distribution used to perform the expectation operat®o
specified byy and can be constructed through Hg. (1) and Eh. (2) for theéegies over DAGs and two-stage

strategies over UGs respectively as

p(u, &,2;7) =/dyp(u,:%|y;7)p(y,:v) ®)
hY
Therefore, for any given strategy € T'9, there corresponds a Bayesian risk and the problem of fintlieg

best strategy for estimation under communication conmggalescribed by turns into a constrained optimization

problem given by
P) : min J () (4)
subject toy € T'Y

where J(v) = E {c(u,x,2); v}
It can be shown that if there exists an optimal strategy, themne exist an optimal deterministic strate@y![36].
Therefore it suffices to consider the deterministic locé repaces which consequently implies a treatment of the

distributionp(u;, &;|y;, ux(;);v;) as a finite set of distributions parameterizedwgnin the DAG case, i.e.,

(s, T5|Y5, Un ()i Vi) = Puy (25|Y5, Un (i) V5) %)

Pl gy uncy)], (Eal¥i0 Uni)iv5) = 0(&5 — [7i W55 umi))] ) (6)

Uj
where we denote witl],, the element of its n-tuple argument that takes values froens#tX’ and¢ is Dirac’
s delta distribution. Hence, the local rule and the distribution familyp,,; (% |y;, u~(;);v;) Specify each other
accordingly. Moreover, Eq.I5) substituted in Ef.(1) camsts the distribution given by E@I(3) which underlies
Problem (P).
Similarly, for the two—stage strategies over UGs, the Idirat and second stage rules determine the following

distributions

P(wilYs3 15) = Oujops(yy) (7)
P31y tne(iy; Vi) = 0(25 = v5(Ys, Un(s))) (8)

whered; ; is the Kronecker’ s delta. For the case, the distributioregiby Eql(B) is constructed by substituting
Eq.s[7) and(8) in E4.{2). It is also possible to expresswloe-stage in—network processing strategies by unwrapping
the UG to a directed graph which is bipartite and hence acy8ll]. Consider, for example, the undirected graph
and its unwrapped directed counterpart in Eig. 2. Nodes! perform only the stage-one communication rules, i.e.,
u;S, and nodes’ — 4’ are associated only with the stage-two estimation rules,.;s. Node;j andj’ correspond

to the same physical platform but different processingdaskthis respect. The unwrapped counterparts enable us

to apply the solutions to the design problem for the DAG casefo—stage strategies over UGs as well.
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(b)

Fig. 2. (a) A loopy UG of 4 nodes (b) the DAG counterpart regagdhe two—stage online processing: Noded correspond to platforms—4

but only performing the first-stage communication rulesergas nodes’—4’ correspond to platforms—4 but only performing the second-stage

estimation rules.

Algorithm 1 Iterations converging to a person-by-person optimal efat
1: Choosey? = (79,49, ...,7%) such thaty; € Ff.’ for j =1,2,...,N; Chooses € RT ;I =0 >lnitiate

21l=10+1

3 For j=N,N—-1,...,1Do 75- = arg ming J(%*l,...,vé:i,'}/j,véﬂ,...,'yfv) > Updat e
’ 'YJ'GFJ' | .

4 1f Jy=Y —J(') <e STOP, else, GO TO2; > Check

Note that, it is possible to express the treatment in [13] fls well as the bounded parameters estimation setting
utilized in [14], [17] through a non—informative prior andcast functionc penalyzing only estimation errors, i.e.,

c: X x X — R, within the framework above.

IIl. TEAM DECISION THEORETICINVESTIGATION

Problem (P) in[(4) is a typical team decision problém| [37] andh problems are intractable in various settings,
including conventional decentralized detection in whitdr-stopologies are considered afdis finite [36]. Never-
theless, necessary (but not sufficient) conditions of oglitsnyield nonlinear Gauss-Seidel iterations which cagee
to a person—-by—person optimal strategy. Given an optimategtyy* € I'Y it holds thatJ('yj,yi‘j) < J('yj,vikj)
for all v; € Ff.’ where\j denotesy \ j and 7@. = {73, Y1 Vir1s - Ya ) 0. Equivalently a relaxation of
(P) is to find a Nash equilibirium where no change in a singt@laule yields a better objective value, i.e., one

is interested in finding/* = (17, ...,7;:) such that

v; = arg min J(vis ) 9)
for all j € {1,2,..., N}. Such a solution is also said to be person—-by—person (phphapand it is possible to
converge to one starting from an initial strategy by the irdiag iterations given by Algorithii] 1.

Considering problem (P) in the detection setting, the oalistrategies from the classes of concern lie in a finitely

parameterized subspaceltf under certain conditions [28], [30] and consequently tiblke “offline” optimization

“Note that, when it is obvious from the context, we abuse thatiom and denotéz;|i € I} by 2; wherel is an index set for the collection

of variables{z1, z2,...,zn}.
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algorithms are obtained for both strategies over DAGs ana-$tage strategies over UGs which operate in an
iterative fashion. We adopt the elaborate investigatioKrefidl (Chp.s 3 and 4 in_[27]) for decentralized estimation
under communication constraints and obtain variationahfofor the pbp optimal local rules which differ from

that in the detection setting in that, functions over denatble domains parameterize the pbp optimal local rules.

A. Pbp optimal in—network strategies over DAGs

In this Section, we present the pbp optimal strategies fenétwork strategies over DAGs which are estimation
counterparts of those in the detection setting togethdr vanditions under which an efficient online processing is
achieved|[31].

The pbp optimal strategies exhibit certain structures iplexy certain assumptions hold. The first condition that
leads a useful form for the pbp optimal local rules is the dtokl independence of observations:

Assumption 1:(Conditional Independence) The noise processes of theorsemase mutually independent and
hence given the state of, the observations are conditionally independent, pér, y) = p(zx) vazlp(yikc).

Proposition 3.1:(Proposition 3.1 in[[27] for estimation) Consider (P) undasumptior[ll. The *" pbp optimal
rule given by Eqg[(P) reduces to

Wj(yj,u,,(j)) = arg(ujyigleirbl{jxxj /Xd:vp(yﬂ:v)@j(uj,ij,x;uﬁ(j)) (10)
where
9;(uj7jjvxvu7r(j)) = p(z) Z dx\y U, T, T H/ dyi p(yilx)p(ui, #ilyi, u U (4)5 i) (11)

uy {530m() ¥ N i£]
for all u,(;) € Uyr(;) andy; € V; with non-zero probability, i.ep(y;, ur(j); W\J) > 0.

Proof: The proof follows the factorization of (v) = J(v;,7;) after substitutingy, ; = 7%, Eq.s(1)[(5)[(b)
and Assumptiofi]1 together with the fact that if a pbp locagésuéxists, then a deterministic pbp local rule exists
[386].

After substitutingy, ; = 2IvT Eq.(1) and Assumptionl 1 id(y) = J(v;, 7 ;) we obtain

N
J(v, %) = / dx/ dxz c(u, z, 2)p(x)p(uj, 5|2, ur(j); v Hp Ui, Ti| 2, Un(i); V5 )
u€ i#j

/ dyg/ di; >y p(uj,ifjlyj,um);vj)/xd:rp(yjlx)p(fr)

uj €U Ur () EUR(5)

N
Z C(u,I,QA?)HP(U,L,Z%JI,UW(Z),V;‘) (12)

uygiyum( N i#]
Consider deterministic local rules such thgt € 1“9 and Eq.$(b) and_(6). Givefu,(;y,y;) € Uy x V; with

non-zero probabilityy ¥ minimizes Eq[(IR) with probability provided that for(u}, %)

Pu; (T51y5, Un ()i Vs) = . (13)
0 , otherwise
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where the weight ofu},27) in Eq.(12), i.e.,

/dffp(yﬂff)l?(x) Z / diyje(u, z, 2y, T = 27) H dyip(ui, Ti|n(s), Yis 77 )
X uy oGy NN i£5,iEx() y),

H /dyip(uiafﬂu;_)i U {ui’%i\i’Eﬂ-(i)\j}ayi;V:)p(yilx) (14)
i#5,i€x() Y,

is minimum. Hence, for allu.(;),y;) € Uy x YV; with non-zero probability

Yy, ur(y) = arg min /d:vpy-:vé”-‘ Wi, Tj, T U (s
]( j (J)) (g s ety x Xy ) 3 (yjlz) g( VR (J))

whered; is identified as
65wy um) =ple) Y [ diselwd) [T [ dvplulop(un dilys unii) - (@15)
uy €Uy T M ij Vi
[
Regarding Proposition 3.1, it can be shown that

/X de(}/JLCC)G; (ujv :Eja X Uﬂ'(])) X E{C(u\jv Uj, T, j:\ja jjj)nfja UT((])? 7?7}

whereu; andz; are free variabl&nd in this respect it is revealed that ti& pbp optimal rule involves minimizing
the conditional expected cost given the incoming messaggs and the measuremept where the underlying
distribution is specified by all the local rules other thaa jh*.

Note that in Eq[(IO)ﬂ; does not depend on the observatignand the likelihoodp(y;|z;) acts as sufficient
statistics. Hence; provides a useful parameterization for t}i¢ pbp optimal rule, which unlike its appearance
as a finite dimensional vector in the detection setting [&9§ function over a denumerable domain. In addition, it
is useful to treat the right hand side (RHS) of Hq.l(11) as aratpr:) such that given any set of local rules for
nodes other than thg", e, € F%, fixed not necessarily at an optimum,producesd;, i.e., 8; = ¥;(n;)-
Then, the corresponding local rule for th&" node is obtained through Eg.{10) which can also be treateghas
operator givery,, i.e.,v; = ;(8;). Therefore, it is possible to obtain an iterative schemechyhstarting from an

initial strategy, converges to a pbp optimal one, in prifeipy replacing theJpdat e step of Algorithn{1 with
0 = (007", 0000k Bly) (16)

for j = 1,2,..., N where f; denotes the composite operator (obtained after subattyt(¢;) for all i € \j in
;). Note that, as a consequence of the fact thials denumarable, the fixed point equatiofts = f;(6\;)},ecv
corresponding to Algorithal1 with the aforementioned maedifion are not practically solvable in general.
Nevertheless, optimality in a pbp sense has been considertte decentralized estimation literature for the
canonical star—topology. For example, Proposition 3.diegdor quantizer peripherals and a fusion center setting
together with a squared error cost, i€, #,2) = (2 — x)?, specializes to the optimality conditions presented in

[12]. For this case, the structure of the local rules as gatmwve do not yield closed form representations in general,

5Note thatc(u, x, &) is written asc(uy 5, uj,x, \ j, ;) to explicitly show the free variables; and; of the 5" local rule.
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altough relatively straightforward numerical computaticare involved when the joint densip(z, y1,...,yn) iS
Gaussian and: is a scalar. The fact that the fusion rule is not scalable exrthmber of peripherals raises the
potential issue of computational bottlenecks. This casrsiion has led to a fusion rule which is linear in the
received symbols [13].

1) Efficient Online StrategiesiVe continue with conditions under which an efficient onlimeqessing is achieved
[31]:

Assumption 2:(Measurement Locality) Every nodeobservesy; due to onlyz;, i.e., p(y;|z) = p(y;|z;).

Corollary 3.2: (Corollary 3.2 in [27] for Estimation) Under Assumptidds ddé2, the;j* pbp optimal rule given
by Propositiori 3J1 reduces to

(Y5, Up(s)) = i da;p(Yj|x;) 6" (uj, 25, 253 Un(s 17
7]( J TF(])) arguj-xijlg(llflljx?fj)/ 'rjp( J|xj)¢ (ujaxjv'rja Tr(])) ( )
Xj

where
(b;(ujaj:jaxj;uﬂ'(j)):/ dz; 07 (uj, Tj, 5 ur(j)) (18)
o\ €Y
Proof: Substitutep(y;|z) = p(y;|z;) in Eq.(I0) and rearrange the terms. [ ]

Under Assumptionis]1 arid 2, the local rules evaluate maigatains over only the set from which the associated
variable takes values from, i.eY;;, rather than¥ and become independent of the number of nodes. This provides
scalability in the number of nodes (and correspondinglyrthmber of variables) and hence efficiency for online
processing.

2) Efficient Offline OptimizationThe efficiency in online processing through Corollaryl 3.&kkmfor specifying
the pbp optimal local rules sineg given by EqI(1B) depends on all the nodes other thanjtheUnder additional
assumptions, the “offline” optimization scales with the h@mnof nodes:

Assumption 3:(Cost Locality) The Bayesian cost function is additive otlex nodesj € V), i.e.,

c(u, &, x) = ch(uj,fcj,xj) (19)
JEV

Assumption 4:(Polytree Topology) Graply = (V,€) is a polytree, i.e.G is a directed acyclic graph with an
acyclic undirected counterp@art

Proposition 3.3:(Proposition 3.2 in[[27] for estimation) Consider Problef) given in [#) such thak and X
take values from a denumerable $et Under Assumptionk] [3-4 , EQ.{17) applies with

¢>; (uja jjja Lj; u‘ﬂ'(j)) X p('rj)P; (uﬂ'(j) |'rj) [Cj (ujv :Ejv 'rj) + C;k (uja IJ)} (20)
where P} (ur(;|z;) is the incoming message likelihood given by the forward reicn

1 ,ifn(f) =0

P} (ur(jles) = . (21)
3@ [ deayp(anglz;) TI Pry;(uissle:) , otherwise
X,r(]') iEﬂ'(j)

6Note that a polytree implies a forward (backward) partieden starting from the parentless (childless) nodes wispeet to the reachability
relation.
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with terms regarding influence ofe «(j) on j given by
Pl = Y ST P (tngpla) / da; / dyi p(us, &ilys, un(iy; 7 )0 (yile)  (22)
Une(i)\g EUx ()\5 Wr (i) EUR (i) X; Vi
and the conditional cost teri@> (u;, z;) which is added to the local cost and given by the backwardrsemu

0 ,ifx(4)=0
Cr (uj,acj) = (23)

J .
> kex() Crsj(Wjmk, ;) otherwise

with terms regarding the influence éfe x(j) on j given by

Oz%j(uj%kaxj):/ dxfr(k)\j/dzkp(xw(k)\,jvxk|xj) > | | (A P

X (k)\j X Un (k)\j EUr (k)\ s MET(K)\J

I (Un(rys TrsvE) - (24)

and

Fiumgy i) = [ dun [ i 3 fen(uns s o) + Cug, )] s by, sy p(nlen) — (@5)
Vi p uk €U,

Proof: (Sketch) First, we recognize that the DAG structure togewi¢h Assumption 2 implies that the set
of incoming messagesg, ;) depends on not all the rules other than i but only those of the ancestors pf
denoted byan(j), i.e., p(ur(j)|2;1;) = P(Un(j)[Tan(§); Vap(s))- Under Assumption]3 the output of th&" local
rule, i.e.,(u;, Z;), does not affect the costs of nodes other than the descenohdenoted byde(j), i.e.,

B s, i wi)luy a7t = B{ Y elus @ mi)iniy b+ ELY . eui, @i, 30)ug, 35597}
i€\j i€\j\de(s) iede(j)

In other words, optimization of;; can be performed equivalently with an objective regardimg ¢osts only on
nodej and its descendants. Under Assumpfibn 4, the operationl@$ tocal to the ancestors gfand descendants
of j are mutually exclusive and the incoming message likelilscmtl the expected costs yield the structure given
by Eq.[20). Moreover, Assumptidh 4 guarantees that thereamparent nodes with common ancestors and no child
nodes with common descendants yielding the multiplicadivecture in Eq.8(21J-(22) and the additive structure of
the expected costs in Eq.s[2B)4(25). A detailed proof isviged in AppendixA. [ |

Considering Ed.(21) and (P2) we note tHt, ; (u;;|x;) is the likelihood ofr; based on the particular message
u;—; on the link from node to j and under Assumption £ (u,;|z;) is the likelihood ofz; for the particular
incoming message vectar,(;), i.e., p(ur(;)|Z;; Yan(;))- A Similar treatment of Ed.(23) and_(24) reveals that
Ci_;(ujr, ;) terms are the expected cost if the actual value of the randariable associated with node
takes the value;; and nodej sends the message_,; on the link to its childk. Hence, under a polytree topology
C7(uj,z;) is the total expected cost induced on the descendafsfaf transmittingu;. This cost is added to the
local costc;(uj,&;,z;) in Eq.(20) which also penalizes the transmission cost. Atsesidering Ed.(17) and(R0),
and noting that under these assumptipQs; )p(y;|x;)P(ur)|z;) o< p(w;]y;, ux(;)), we conclude that given the

measuremeny; and the incoming messages;,, hode;j chooses the output with the minimum expected cost
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where the cost terms are sum of that due to the rules localiad its descendants and the underlying distribution
is determined by the ascendants.

Similar to the treatment regarding Propositfon] 3.1 to yitild set of fixed point equations given by [Ed.17, it
is possible to consider Eq.5_{21)-(25) as operators for amgng(not neccessarily optimal) strategy; € ng.

Similarly, it is possible to summarize this treatmentdy f;, g; andh; such that

¢; = di(P;,Cx()—j) (26)
P = [i(Prg)—>s) (27)
Py = 9i(¢5.5)) (28)
Cisny = hi(95, Pr(j)=j> Cx()—7) (29)

where Py ;) —; = {Pissjtier() Ox()— = {Ck—j trex() aNdCj_ 15y = {Cj—i}ien(j)- Note thatdy, f;, g; and
h; are specified by the RHSs of E.S(20) ahd (23),[Ed.(21)[ By.@nd finally Eq.§(24) and_(R5) respectively.
Consequently, the forward recursion implied fyandg; with respect to the forward partial-ordering®together
with the backward recursion implied By andd; with respect to the backward partial-ordering yields Aithon[2
after replacing théJpdat e step of Algorithnl as described.

It is possible to perform this algorithm in a message paskiagion treating each nodec V as an entity which
can perform computations and communications. Each njodé) starts only with the knowledge of(z;, 7 ;)
and c¢(uj, ;, z;) and an initial local ruley) e Fjg. which determines(u;, &;|y;, ux(j); 7). In the forward pass,
starting from the parentless nodes and proceeding in farartial ordering implied by, each node receives
P,_,; from its parents € ©(j), computesP;_,, for its childrenk € x(j) and transmits them. In the backward pass,
starting from the childless nodes and proceeding in the waak partial-ordering, each node receivgs.; from
its childrenk € x(j) and computeg’;_,; for its parents € = (j) which involves updating the local rule. Note that,
in contrast with the online processing strategy which agsum polytree topology allowing only uni—directional
links, the message passing interpretation of the offlirsesgry optimization requires bi—directional communicasio
It is reasonable to assume that both the topology assumelebgrtline processing and the links required by the
offline optimization are provided by the underlying netwdayer through physically available connections and
appropriate protocols [5]H7].

In SectionIII-AJ, owing to the information structure inthaced under Assumptio$ 1 and 2, an efficient online
processing strategy is achieved. With the addition of Agsions[3£4, the optimization of the local rules in a
pbp sense admits a message passing algorithm which scadtesvitio the number of variables and the number of
platforms. The resulting iterative scheme given as Algoni2 is amenable for network self-organization and for a
network that would execute the resulting strategy for aated@mount of time after initialization, the communication
cost of the optimization procedure might be considered asorable[[31].

It is often the case that it is hard to achieve consistencyeimafizing the estimation errors and communication

costs through an arbitrary selection of the cost functiori/ x X x X — R. It is possible to select one which
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Algorithm 2 Iterations converging to a pbp optimal in-network procegsitrategy over a DAG.
1: Choosey” = (77,79, ...,7%) such thaty) e Fjg. for j =1,2,...,N; Chooses € Rt ;I =0 >lnitiate

20l=1+1
3: For 7=1,2,...,N Do > Update Step 1: Forward Pass
Pl = f;({ Pl (uingle) } i)
{P;ﬂk(ujﬂkuj)}kex(j) = gj((blljila le)
4. For j=N,N—-1,...1Do > Update Step 2: Backward Pass
(bl] = dj (le’ {Cllc—xj (u.jﬁkvxj)}ke)((j))
{Cniluing,zi) } iy = ha(@5 AP (winslo)} oy - ACkos (imk 20} )

5 1f J(v'!) = J(y!) <e STOP, el se GO TO2 > Check

results in smooth degradation in the estimation perforrmagthe link utilization is decreased. Also considering
Propositio 3.8, we assume a separable cost and preserdhetions that arise in Ed.s{21)-(25):

Assumption 5:(Separable Costs) The global cost functign, z, x) is separable to functions penalizing estima-
tion errors and communications. In particulafy, #, z) = c¢%(%, z) + Ac®(u, ) wherec? andc® are cost functions
for estimation errors and communications respectivelyelH® appears as a unit conversion constant and can be
interpreted as the equivalent estimation penalty per wnitraunication cost [27]. Hencé(~) = Ja(7) + AJ:(7)
where J;(v) = E{c%(#,z);v} and J.(y) = E{c*(u,z);~v} respectively.

Note that, Assumptioh]5, together with Assumption 3 imptiest the local cost functions are separable, i.e.,

cj(uj, @y, &5) = cHaj, &) + A (uy, ;) (30)

Corollary 3.4: Consider Proposition 3.3, if the local costs are separalele, Assumptiofi 5 holds in addition to
Assumptiong {34, then the pbp optimal local rule in the wawal form given by Eql{17) is separated into two

rules for estimation and communication@s= (v;, ;) given by

&5 = v (Y), un(j)) = a{geniin / da i p(2;)p(y;|2;) P (un( l25) (@5, 2;) (31)
£ E€X;
ijXj

uj = ,u;f (), Un(s) = argergin / dxjp(xj)p(yjkvj)P; (ur(jy|zs) [)\c;(:vj, uj) + C;-‘ (uy, ,TJ)} (32)
v g T;EX;

"Note that convex combinations of dual objectives, i.E.(y) = aJy(vy) + (1 — a)Jc(7), yield pareto-optimal curves parameterized by
«. This setting preserves the pareto-optimal front since (1 — a)/a and J(v) o« J'(v) yielding a graceful degradation of the estimation

performance with\.
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Moreover, the corresponding distributigiu;, @;]y;, ux(;);7;) given by Eq(b) takes the form
P, &51Yz, uniy; Vi) = P(E51Y5, Un ()i v )P Y55 tn(y; 115) (33)

Proof: After substituting the separable local cost in Eq.(20) amd{El), the optimization is separated into
two problems over arguments € X’ andu; € U;. This separation also implies th&l; and X; are conditionally
idependent denoted Hy; 1L X | (Y}, Ur;)) Yielding Eq.(38) by definition. [ ]

Example 3.5:Consider a separable local cost where the estimation peisaffiven byc(i;,z;) = (2; — x;)?
as in the conventional mean squared error (MSE) estimaterol¥ain a closed form expression for the estimation
rule regarding the variational form in EQ.{31) after diffatiating with respect t@: and setting the result equal to

zero: )
I dajaip(a;)p(Yila;) P (Unylas)

X
b= (Y5, Uyy) = 2
1y = v %5 Usy) [ dzj p(x;)p(Yla;) Py (Us sy l25)
X.

J

Note that the information structure implies thaf (u,(; |z;) = p(ux(;lz;;7;) holds which in turn is equal to

(34)

P(Ur )|z VZn(j)) due to the polytree topology. In addition the conditionalépendence relatioli ;) 1L Y; | X;
holds such that equivalently(z;,y;, ur(;)) = p(z;)p(yjle;)p(urc)lz;). Hence the denominator in Hg.(34) is
nothing butp(y;, ur(;)) = p(yj,u,,(j)w;n(j)) and the estimator is given by
&j = v (Y, tn(j)) = / daj 2;p(2; |Yj ()i Van(s))
X
which is the center of gravity of the posterior density cdiodied on both the observation and the incoming messages

(this density is specified by the rules local to ancestors, dfe., v under AssumptionislI}4, which are fixed

an(j)
at the optimum). Hence, any selection of the communicatibesrfor ancestors manifest themselves in the optimal
estimation rule for nodg through the likelihoodP; (u,(j)|z;). Under this particular choice of the decision cost,
ur(;) is treated as another conditionally independent obsenvatihile utilizing the MSE estimator based on the
posterior.

If the local cost functions are separable, similar simpifiens to those in Propositidn 3.3 take place.

Corollary 3.6: Consider Proposition 3.3, if the local costs are separalda [* (u, (i), 7x; ;) given by Eql(2b)

takes the form

I*(Un(k)afkﬁ/:) = Jd\zk,uﬂ(k) + Jc|mk,u,,(k) (35)
WhereJd‘%uﬂ(k) is the local expected estimation cost conditionedrgrand u.(;) given by
Jdlepuny = /di?k R (Eh, )P (B Ths ) Vi) (36)
Xy,
and Jelapun is the total expected cost of transmitting the symbglconditioned onz;, and u ), including

costs induced on the descendats, (& (ux, z;), and the transmission cost captureddjyus, xx), i.e.,

Jelaiuny = Z (A (u, z) + Cf (ur, or)) p(ur|r, Un(ry; 1g) (37)

uk EU
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Moreover, the conditional pdf of the estimations specifigdp is given by

P(Tr|Th, Ur(r)s Vi) = /dykp(i'kw}’cauﬂ(k);VZ)p(yk|$k) (38)
Vi
and the conditional pmf of the outgoing messages specified;big given by

P(ur|Tr, Un(r); 17) = /dykp(wlyk,uw(k);u?i)p(yklxk) (39)
Vi
Proof: After substituting the separable local cost for nddgiven by Eql(3D) in Eq{25) and rearranging terms

I (Un (k) Ths V) = /dikCZ(ik,Ik)/dykp(ffklymun(k);VZ)P(yklivk)

Xk Vi
+A D [)\CZ(Uk,ivk)+CZ(Uk,SCk)]/dykp(uk|yk7Uﬂ(k);u}i)p(yﬂf%) (40)
wup EUL Ve
is obtained. [ |

Therefore, under Assumptiobk [I- 5, sufficient conditionspifmality in a pbp sense are provided by Ed.s] (20)—
(24) together with Eq.$ (35)=(B9) implying an iterativeiopzation scheme. In principle, once the operators implied
by these expressions are utilized in Algorithim 2, it is pbigsto find a pbp optimal decentralized estimation strategy
starting with an initial one.

Finally, the corresponding Bayesian risk at the step, i.e.,J(v!), which is also required by théheck step of

Algorithm[2 is obtained as

T =G0 (41)
JEV
where
Gl = [ duptes) X P oley) [ aus [ ds 3 estug i

J Upj GZ/{Trj U.jEZ/{j

p(us, 5|y, uniy VDY l2;)  (42)

B. Pbp optimal two—stage in—network processing strategies UGs

The information structure of the directed case yield thediions given by Propositiof 3.1 provided that
Assumption[l holds which specializes to Proposifion 3.3délisonally Assumption$1234 are satisfied. On the
other hand, considering decentralized strategies cansttay an undirected graph, Propositlon] 3.1 applies to the
unwrapped directed counterpart under Assumption 1 andalfewing [30]:

Assumption 6:The global cost function is the sum of costs due to the stageeommunication rules and stage-

two decision rules, which are in turn additive over the nodes,
N

c(u, 2, z) = Z [cf(ﬁci,x) + )\cf(ui,x)} (43)

=1
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Note that, simultaneous satisfaction of Assumptidns 3[dmlegjuivalent to simultaneous satisfaction of Assump-
tions[3 andb. If Assumptiorid 1 ahdl 5 hold together with Asdiimng[2 and B, then Propositibn 8.3 applies to the
unwrapped directed counterpart of the two—stage strategy @ UG [27] and the following holds:

Proposition 3.7: (Proposition 4.3 in[[27] for estimation) Under Assumpti@id and b,/ (y) = Ja(y) + AJe(v)
holds and given a pbp optimal strategy = (7, ...7x) constituted of two—-stage local rules over an undirected
graph and fixing all local rules other than tli&, the j** optimal rule reduces to local stage—one communication

rule given by

H;(%) = arg melg /dxjp(yﬂxj) i (g, 25) (44)
uj 3

J
where

O‘;'(Uja Tj) o p(xj)[)\cj (uj, ;) + O (uj, )] (45)

for all y; € V; with nonzero probability and stage two—estimation ruleegiby

V}‘(yj,une(j)) = arg min / dxjp(Y}|xj)B;‘ (25,25, Une(j)) (46)
acj EXJ Xj
where
B; (Ija jjjv une(j)) X p('rj)P; (une(j) |xj)cg('ija Ij) (47)

for all y; € J; and for allu,,(;) € Up(;) With nonzero probability.
The incoming message likelihood is given by
P;(une(j)lxj) :/ dxne(J)p xne |$C7 H 1HJ ul_>j|:1ci) (48)
Fne) i€ne(y)

with terms regarding influence afc ne(j) on j given by

P (uisjlry) = Z puiles; gy ) (49)
Wi \Ui—s j
for all u;—,; € U;—,; where
p(uilzis ) = / dyip(yilwi)p(uilyis w7 ) (50)
In addition for allu; € U;
Crluj,zy) = Y Cpyilujsi, ;) (51)
i€ne(j)

holds with terms regarding the influence pbn i € ne(j) given by

Cl?k*)j(u.j—)“xj):/ dffne(i)\j/ d2ip(Tne(i)j, Til5)
Xne(i)\j X

Z H P’—n(”] —>l|x7) (une(z zi;7;)  (52)
Une(i)\j j ' Ene(i)\j
such that
I} (tpegiy, 265 77) = / dy: / A2 (s, 2)p(Eilyi tunegsy; v )p(uil:) (53)

Vi X
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Algorithm 3 Iterations converging to a pbp optimal two—stage in-nekwmocessing strategy over an Ug
1: Choosey” = (77,79, ...,7%) such thaty) e Fjg. for j =1,2,...,N; Chooses € Rt ;I =0 >lnitiate

20l=1+1
3 For j=1,2,...,N Do > Update Step 1: Conpute nessage |ikelihoods
Pl ey = 9i(05)
4: For 7=1,2,...,N Do > Update Step 2: Update the stage--two rules
Pj = [i(Phe()—s)
Bk = q;(P})
l _ !
Oj%ne(j) - h’j(ﬂj? Pne(j)%j)
5: For j=1,2,....N Do > Update Step 3: Update the stage--one rules.
[ l
a;j = 75(Cre()—5)
6: 1f J(v'~1)—J(7!) <e STOP, el se GO TO2 > Check

Proof: Apply Corollary[3.3 on the unwrapped directed couterparthef undirected grap§ together with the

two—stage local rules. Note that th& pbp optimal local rule given in Propositidn 8.3 reduces t® fibrm given
in Corollary[3.4 under Assumptidd 5 which is implied by Asqtions[3 andb. [ |

Through Proposition 317, given a person-by-person optistiategy, we obtain stage—one communication and
stage—two estimation rules local to noglen a variational form, based on the rules local to the the remg
nodes. Considering Ed.s{48) andl(48Y,(unc(;)|=;) is the likelihood ofz; givenu,.;. Eq.s(E1){(SB) reveal that
Ci(uj,z;) is the total expected cost induced on the neighbors py.e., E{cd(:kne(j),:cne(j))|uj,:cj;'y§*j}. Since
p(2;)p(y;|2;)P(tne(jy ;) o< p(25]y;, tne(;)) holds under Assumptions 1-3 and 5, tj#é optimal communication
rule selects the message that results with a minimum caotiib to the overall cost and the optimal estimation
rule selectst; that yields minimum expected penalty givenpandu,,.(;)-

Similar to the specification of Algorithiinl 2 by employing Pogition[3.3 in Algorithn{lL, it is possible to obtain
an iterative scheme which, starting with an initial twoggastrategy, converges to a person—by—person optimal one.
The treatment of the RHSs of Eqls{459),1(4)}(53) as opesdtwat can act on any set of their arguments, not

necessarily optimal, is summarized by and ¢; together withf;, g; andh; given by

Q= rj(Cne(j)ﬂj) (54)
Bi = ¢(P)) (55)
Pi = fi(Puej)—i) (56)

Pj—>ne(j) = gj (aj) (57)
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Oj—>ne(j) = hj (ﬂja Pne(j)—>j) (58)

Wherepne(j)%j = {H—)j}iene(j), Cne(j)%j = {Ci—>j}i€ne(j) and Cj%ne(j) = {Cj—n'}iene(j)- The reSUlting
iterative scheme after deploying the operators given by({Ed)-{58) is given by Algorithria] 3.

Finally, the objective value at th&" step is easily found to be

T =D G+ 2> Gsuh) (59)
=3 i€V

where

Glw) = [ dwip(w) PP (une(iy @) Ti(uneiy, 45 ) (60)
Une(i) i
and

Gc(l_ Az cS(u;. 1 . Ao gt 61
i Mi)_z N szi(Uz7$z)p($z)p(uz|$uﬂi) ( )

in terms of the expressions discussed above.

Note that, similar to that for optimizing in—network strgi@s over DAGs, théJpdat e step of AlgorithnB also
admits a message passing interpretation. In the first phssodes compute and send forward likelihood terms to
their neighbors. In the second pass, upon receiption ofikediHood messages, all nodes update their stage—two
estimation rules and compute and send expected cost mesgateeir neighbors. After receiving cost messages
from neighbors, each node update its stage—one commuricatie. This structure of the optimization scheme

renders it suitable for a possible network self-organimatequirement similar to Algorithinl 2.

IV. MC OPTIMIZATION FRAMEWORK FOR IN-NETWORK PROCESSING STRATEGIES OVERAGS

In SectioII=AT and[1I-A2 we have provided conditions gptamality in a person—-by—person sense rendering
Algorithm 2 for theoffline optimization of the class of decentralized estimationtsgi@s of concern. Specifically,
provided that Assumptiofi$ I-4 hold, the operator reprasiensd;, f;, g; andh; given by Eq.$(26)£(29) summarize
Eq.s [21){(2b) respectively applied to local rules not sseeily optimal. If, in addition, Assumptidd 5 holds, the
structures exhibited in Corollariés 8.4 dnd]3.6 are indumethe operators. However, it is not possible to evaluate
the right hand side (RHS) of these equations and correspglydi;, f;, g; andh; exactly, in general, for arbitrary
prior marginalsp(z;), observation likelihoodg(y;|z;) and rules local to nodes other thani.e., v\ ;. A similar
problem arises in message passing algorithms over comstifarkov random fields and has been the motivation
for algorithms relying on particle representations togethith approximate computational schemes including Non-
parametric Belief Propagation [38], [39] which has beencessfully applied in a number of contexts including
articulated visual object tracking [40], [41].

In this section, we propose particle based representatagether with approximate computational schemes so
that Algorithm 2 can be realized. We exploit the Monte Carletinod [42], [43] and Importance Samplirig [44],

[45] such that independent samples generated from only dirginal distributions ofX andY are required, i.e.,

Su; 2 {2V, 2, MY such thata(™ ~ p(z)) for m=1,2, ..., M; (62)

J J J
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and

Sy, £ {y§1),y§-2), ...,yJ(-Pj)} such thatyj(-p) ~p(y;) for p=1,2,..., P (63)

for j € V. Although the sizes of these sets might vary for eaeh), we assume that/; = M and P; = P for
j €V for simplicity of the discussion throughout.

Generating independent samples provides scalability énntimber of variablegV and the number of samples
M together with ease of application for a number of reasonst,Féonsidering a single random variable, it is a
relatively straightforward task to generate pseudo randombers from an arbitrary probability density function
provided that the inverse of the corresponding cumulatig&itdution can be evaluated (see, e.g., Chp. Z_in [45]).
In addition, the neccessary knowledge of distributions titize Algorithm 2, i.e., p(z~(;), ;) and p(y;|z;) for
all ¢ € V, implies that the marginals are already known and hence wadaorequire the knowledge of any
additional distributions. Besides, we consider indepahdenerations that require no coordinations. For the case i
which we consider scalability with the number of random ahlés involved, sampling from the joint distribution
is cumbersome where scalability can be maintained up to sedegith coordinated generation schemes, which
require the evaluation of characterizing densities sucth@asonditionals. For example Gibbs sampling introduced
in [46] requires the so called full conditionafg(z;|x\;)}jcy Whereas the Substitution Sampling method requires
N(N — 1) conditionals forN components[47].

We proceed by considering the sufficient condition of pefispiperson optimality for thej*” rule given by
Propositio 3.B. The Monte Carlo optimization algorithm prepose follows successive approximations to the ex-
pressions comprising th&" pbp optimal local rule. In Sectidn IVAA we approximate thdiopal rule assuming that
the parameterizing functio is known over its entire domain. In the second step we proeettdapproximating
07 through the incoming message likelihood (§ec.Iv-B). Int®ed[V-C| the node—to—node terms, €%, ; and
Ci_,; fori e n(j) andk € x(j) respectively, are approximated and finally in Secfion IViDtke approximations
are utilized together comprising the proposed algorithtarad treatment of the approximations as operators in a
similar fashion to that employed in Sectibn TIIZA2.

A. Approximating the person-by-person optimal local rule

Given a pbp optimal strategy* € I'Y, consider the/*" optimal local rule given by Eqls{lL7) and {20) in the case
that the remaining are fixed at the optimury = 7. After substituting Eq.{(20) in Eq.(17) we obtain

(Y5, Uniy) = i R (uj, 2 Y;, Un 64
v; (Y5 Un i) I S R (w255 Y5, Un(j) (64)
where
R3 (ug, &5 Y5, Un(j)) = /dxjp(dfj)l)(yj|$g‘)Pf(uw(j)|Ij) [ (ug, &5, 25) + CF (ug, )] (65)
Xj

forall u; € Uj, ur(j) € Ux(y), y; € V; andz; € X; where unlike the detection problem in [3H is a denumerable
set and the RHS of E.(B5) involves an integral odgr It is reasonable to assume that the observation likelihood

p(yjlz;) and the cost;(u;, #;,x;) are known. However, the incoming message likelihood, &&.(ur(j;)|z;),
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together with the conditional cost induced on the descetsdaa.,C’ (u;, z;), depend on the remaining local rules
7@. (see Section [I-AR) and do not necessarily admit closechfexpressions for arbitrary, ; € Ff.’.

Suppose that for alt; € X, P} (uxj)lz;) andC;(u;, ;) are known, i.e., it is possible to evaluate them over
their entire domains. The integral on the RHS of Eg.(65) stievents?; to be evaluated exactly, in general.
However, an approximation is possible through the clakdittnte Carlo method giverd/ independent samples

generated fromp(z;), i.e., S;, given by Eql(GR),

> pwile) Py (unyylz;) [e(ug, &5, 25) + Cj (uj, )] (66)

R (uj, 25595, Yn () = |
J ijSmj

1
|Sa
where tilde denotes an approximation, i.B%(u;, &;; y;, Yr()) ~ B (uj, 25595, y=(;)) OVer its entire domainé;f
substituted in EJ.(84) in place @t; corresponds to a local rule, which is an approximationytoLet us represent

the approximation to the optimal local rule bfyl where the superscrigtdenotes that the approximation involves
a single MC approximated function, the,?jl(yj,u,,(j)) ~ 75 (Yj, ur(y)) for all y; € ¥; and for alluy ;) € Uz
with nonzero probability.

Since we have assumed thdt andC; are known, it is implied that they can be evaluated gt S, for all
Ur(j) € Ur(jy andu; € U; respectivelyﬁ; substituted in Ed.(84) in place @t; corresponds to a local rule, which
is an approximation tg/;. Let us represent the approximation to the optimal loca by{;l where the superscript
1 denotes that the approximation involves a single MC appnaked function, theryf;fl(yj,u,r(j)) ~ 9} (Y, Un(s))
for all y; € Y; and for allu,(;) € Ux(;) with nonzero probability.

Consider Corollarf/ 34. The objective of minimization irtyariational form of the*” local rule given by Eq.(64)
is separable, i.eR} (u;, #;; Yj, ur(j)) = R;_’d(:i:j;yj,u,,(j)) + R} .(uj;9;,ur(;), under a separable cost function
local to nodej and yields two separate problems and corresponding rutesfimation and communication denoted
by v; andu; respectively. Similarly the approximatidl%;f given by Eql(6b) splits trivially to two approximations,
i.e., ;b and ;.

Example 4.1:Consider Examplé_3l5, EQ.(66) substituted in [Ed.(64) ieplihat the explicit solution for the

guadratic estimation error given by HQq.(34) is approxirddig

M

Sy |2 P (e ™)

&5 =0 (yj, tn(y)) =

m=

(67)

Py ™) P (5 ]l™)

ME|"

m=1

B. Approximating the message likelihood function

In the previous section, we proposed an approximation tojtheoptimal rule which requires the incoming
message likelihood®; (ur(j;)|z;) and the conditional expected coSt (u;, ;) to be known atr; = Igm) for
m = 1,2,..., M, for all ur) € Uyr; and for allu; € U; respectively. Since it is not possible to express these
functions in closed form for an arbitrary set of local rutgse Fjg., in this step, we consider EQ.{21) and Egl(23).
We continue the discussion by considering Ed.(21) for theeda whichr(j) # 0. Suppose that the forward
m)

node-to—node terms, i.el)’, . (u;—;|x;) for i € 7(j), are known such that we can evaluate thenx;at- xE
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Where:z:(.m) € S,, and for allu;,; € U;—,;. This assumption is justified by the fact that if thestep approximation
described in Section TVAA were to be applied to the ruleslldeanodesi € = (j), thenS,, would be utilized.

Next, we note that it is possible to treat the concatenatfdhe elements of the parent sample sets, beg,,for
1 € 7(j), as a sample set that is drawn by the product of distributgereerated them. In other words, consider
557(:&)) = (xg"”)ie,,(j) form=1,2,.. M where:v m ¢ , for i € m(j). These elements constitute a sample set
Se(iy 2 {2l e = (@™)ien(} and it holds thabc%) ~ ien(y P(i)-

This observation enables the Importance Sampling appatiom (see, e.g., Chp. 3 in_[45]) far’ through the
importance sampling distributioﬂieﬂ(j)p(:z:i). Then the importance weights are given by

wy ™ = plar ) o T pla™)
icm(j)

with the corresponding approximation

5 ¥ m 1 M (m m’ m’
P (uTr(j)I:c;. )) = W 3 o )( H (g l2™) (68)
w (m)(m '=1 ien(j)

m’'=1
form =1,2,..., M and for allu ;) € Uy(j.

Now let us turn to the computation of the conditional expeatestC’ (u;, z;) and consider Ed.(23) for the case
in which x(j) # (. We assume that the node-to—node backward cost termsoi.all & € x(5), C;_, ; (wj—k, z;),
are known atr; = :c ™) for m = 1,2,...,M and for allu;_,;, € U;_,. Then the required values, |€*(uj, gm))
form =1,2,..., M and for allu; € U; can be computed exactly using Eql(23).

From nodej’ s point of view, given node—to—node termy ,; andCj;_, ; evaluated at points generated from the
appropriate marginal distributions, a further approxiorato the j** pbp optimal rule is obtained by computing
ﬁ; andC7 at values of their arguments required in Eql(66) and switisti ﬁ; in place of P;". Leti;f2 denote the
corresponding rule, theﬁf(yj,uw(j)) ~ 'ysfl(yj,u,r(j)) ~ 7} (Y5, un(;)) for all y; € V; and for allu, ;) € Uz

with nonzero probability.

C. Approximating the node—to—node terms

In the previous section, the approximation to tfié local rule is introduced under the conditions that for all
ien(j), P, (wi—jlx;) is known for allu,_,; € U;—; andx; = :c ™) for :c ) ¢ Sz,;. Another requirement is to

be able to evaluat€’; , . (v, x;) for all u;_ € U;,, andz; = :c( Where:z:( € Sz, Therefore, a further

k—j
step involves approximating the node-to-node teffjis; andCj_, ; evaluated at the discretization of their domains
provided by the sample sets.

We consider the parent nodées = (j) and consider evaluation of Elg.{22) at the required valueéts afrguments.
Suppose that; is fixed at the optimum, implying also thatu,, &;|y:, u.(;); ;) is specified through Eq[S(5) and

©) for all i € 7(¢). The multiple integral term in EQ.(22), rewritten here as

P(Uilwi,uﬁ(i);ﬁ)Z/ di’i/ dyi p(us, Ti|yi, uniys 77 ) (Yilzs)
X; i
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for convenience, should be evaluatedrat= x§m> form =1,2,.., M, for all u; € U; and for allu,;y € Ur)-
Since there is no closed form solution for arbitrary choidevp and the likelihoodp(y;|z;), we perform an
Importance Sampling approximation through the importasam@pling distributiorp(y;). Utilizing y@ € Sy, and

2

the importance weights given by
™ = p(y” ) p )

an importance sampling approximation]ﬁouim(.m),uﬁ(i);ﬁ) form = 1,2,..., M, for all u; € U; and for all
Ur(i) € Ur(s) 1S given by

P
1 (m)(p) 5 (69)

Blu|™ iy 97 = P lei w1 0 o et
whereé denotes the Kronecker’s delta. Note that, if Assumption Bl$iahe estimation and communication rules
separate and the discussion above applies With|x;, ur; v;) = p(wil@i, Ury; 17)-
Regarding Eq.(22), having approximated the multiple irse@rm forj € V, we similarly assume tha;" (u ;) |z;)
is known wherei € ©(j), for z; = x§m> such thatrl(.m) € S,, and for allu,(;y € Uy ;). Together with EqL(89) we

obtain
Pr(uisglai™y = ST P un |2 (i un gy, 2547 (70)

Un()\5 EUx(i)\j Ur(5) Em (i)
form =1,2,...,M and for allu;,—,; € U;_,;. It is possible to replace the node—to—node terms assumigel kaown
in Eq.(68) with Eql(70) and obtain a further step in the pesgive approximations te;.

The remaining term to consider is the conditional expecteiscinduced on the descendants afn the branch

initiating with its child &, i.e., Cy_, ; (uj—k, x;), for all k € x(j), evaluated atr; = x§m) Where:c;m) € S,, and
for all u;_;, € U;_. A similar reasoning leads to approximating the requirddesthrough utilizing Monte Carlo
methods on the RHS of the expression obtained by substit&m[25) in Eq(24).

Consider Eql(25) and suppose thgtis known for anyk € x(j) also implying thatp(ug, T Yk, trk); Vi) 1S

determined. Substituting EQI(5) arid (6) in Eql(25) yields

I (Ur () Ths Vi) Z/y dyr [ ce( v W Un o))t s [V (Wks Ur ()] 2> Tk)

* + O (1 Wk wr () ety s k) 1p(yklzr)  (71)
evaluation of which can be approximatedaat = :v,(cm) for all :v,(cm) € Sg, and for all u, ) € Uy by the
Importance Sampling method, using the importance depsgijy). AssumingC;: (ux, z) is known atzy, = :cg")
Where:cg") is an element of the usual sample set locaktae., S;, , and for allu, € U, and utilizingyff) € Sy,

together with the importance weights

w0 = plyP L™ oy
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we obtain

Pty 25 75) = Zw’"m [ en( e WP o)l s (U i) ) s )

f: (m)(p
=t + G W e leas 1) 1 (72)
for m =1,2,..., M and for allu, k) € Uk such thatf*(u,r(k),x;m);'y;) ~ T (Ui, 2™ ) hoIdsH

In addition, if Assumptioli 5 holds, we consider Corollarg $ielding the Importance Sampling approximations
to Eq.[36) and EJ.(37) evaluated @gjﬂ) andu. () to be similarly obtained as

7 _ (m)(p) d ( (m)
Jd\w;(cm)Mﬂm N (m) Zw (W s (i) 2y )
2w
p=1
7 c m) * m ~ m L%
JC\I;im)vuMk) = Z ()\ck(uk, a:,(c )+ Cf, (uk,:c,(c ))) p(uk|xl(c ), U (k5 15
U

respectively. Therf*(u,r(k),xém);ﬁ) =J

m J, m holds.
d\mi )7u7r(k:) + 0\15@ ))urr(k)

Eq.(24) requires message likelihood terms from all paretﬁtsodek except nodej and it is reasonable to
assume that for any’ € w(k) \ j, P;i%k(uj/_}ﬂx;) is known at:c = :v ™) for :v ) ¢ Sz, and for allu; .y €
Uj . Similarly, we observe that the set which is constituted lefteents that are concetanation of elements
from the usual sample sets local o€ ©(k)\j is distributed from the product of the corresponding maatgin
In other words, let us deflne ,3)\7 (x(-f”))jfeﬁ(k)\j. Then it holds thatxfr’?,z)\j ~ 1 ex@y; Plzj) and an
importance sampling approximation to Eql(24) is possihleugh the importance dIStI’IbUtIOHJ ren(i)\j P p(xj).
Having computed*(u,r(k),:z:§C );'yk) and utilizing the usual sample sets local to nogles 7 (k)\;j together with

the importance sampling weigths

wm ) = p(alnd ™ e pat™) T el
J'en(k)\j
we obtain
_ 1 M _
Ol:—m(ujﬁkv § )) -~ Z wtmm) Z H —>k u] %k|x/ ))I*(uﬂ(k)’xé ;) (73)
S wm)(m’) m'=1 Ur(i\j 5’ €T (k)\J
m/=1

form =1,2,..., M and for allujﬁk € Uik WhicfH, after substituting in place of;_, ; in the RHS of Eq[(23)
for x(j) # 0 yields C;, i
C*(uj,xgm) Z Ckﬁj Ujsk, T § )) (74)
kex(4)

form=1,2,..., M and for allu; € U;.

8Note that[v} (yli”),u,r(k))]uk and [; (y,(f), Ur (k)] x, are simply the communication symbol and estimation outfut;p evaluated at
the tuple(yff’), U (k))-

9Note that we have approximated the forward likelihood tersgarding nodej and its parents, i.eP*

i, ; for i € m(j). However, we still

assume that node-to-node terms regarding other nodeglinglur?, for 5/ € w(k)\j wherek € x(j) are known over all their domains.

i’ —k
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As a result, after substitutiné’;j in place of P, ; in the RHS of Eq(68), we obtain a further approximation
to Pr given by
552 m m m m’
P (uny|25™) = T o 2 Z ™M T P (uing ™) (75)

Z wjm m i€n(j)
m/=1

form =1,2,..., M and for allu,T € Uy, (j. This approximation together wnﬁ,jﬂ given by Eql(7¥) employed in
R: yie|d57~j (Yjs Un(j)) = (yj, Un(j)) & (yj, Un(j)) =V} (Yj, un(j)) forally; € ¥; and for alluy ;) € Uz ()
with nonzero probability.

D. MC Optimization of in—network processing strategiesrdvAGs

In Section[IV-AEIV-G we have introduced a Monte Carlo appneation framework regarding the sufficient
conditions of person—by—person optimality given in Prdas [3.3. Considering a pbp optimal decentralized
estimation strategy constrained by a polyt@ei.e., v* € I'Y and havingy,; fixed at the corresponding set
of optimal local rules, i.eq; = 7{;, we have constructed a rule local fgr {;fB(yj,uw(j)) such that it is an

approximation to the optimal rulg; given by Eql(dl) following the progression
~1 . % .
V5 (Yj un(y)) = arg min > pla) Py (ungyla;) [e5(us, &5, 25) + C; (ug, 25)]

uj XijG(Z/{]‘ XXj) CCjESIj

where S, is given by Eq[(ER),

~2 : D* P *
v5 (Yjs ur(jy)) = arg  min Z Pyl P (uriyl2s) [ (uy, 25, 25) + C; (uy, 25)]
wj X L€ (U X Xj) ;€S0
where P} is given by EqI(EB),
~*3 : ~*2 - Yx
v; (Yjs ur(j)) =arg ~ min > bl P (wegylay) {Cj(uja%awj) +C; (uj,xj)} (76)
Uj XIjE(Z/lj XXj)I'GS
J zj

Where(j;*(uj,:z:j) and 1?;2 are given by Eq.s[(14) an@([75) respectively. Hence, in otderbtainyf;*?’ we have
utilized the proposed particle representations and appaie computational schemes for all terms that depend on
ﬁj including the node—to—node terms, although it is assumady@ are known exactly.

On the other hand, gives,, and S,;, the approximation framework is valid for the rules localaoy node
j € V: Owing to fusing the forward message likelihoods via impode sampling, the node—to—node terms given by
Eq.s(70) and{43) utilize the discretization provided bgsth sets regardless of which node’ s local rule is subject
to approximation. Hence, it is possible to treat the RHS efdkpressions within the framework as operators valid
for any strategyy € I'Y including those in the “approximating” form given by Ef.J76or the rest of this paper,
an approximation to a function that appear in the local ruéders to its correspondant in Hg.[76) and we denote

them without any further superscripts, e.g., we den@t?éwith 7;* Let us summarize the Monte Carlo framework
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with
0j(Suys ;) = dj(Pi(Sa;), Cu(y—i)
Pi(Sz,) = fi(Pajsj)
Pioxi) = 95(i(Se;,25), Pj(Sa,))
Cianiy = hi(05(Sa;s25), Py Ciy )
where

Pj(Sz;) = {(Pj(n(3)|25) s n()s ) |Un(j) € Un(jy ATj € Sy}

Pw(j)—n' = {pi%j(szi)}iew(j)

P (Sz,) = {(Pisj(Wimsj, i), ivsj, i) [uimsj € Uisj Ni € Sg, }

Pioi) = {Pjook(Sa;) bhex(i
Cr(i)—i = {0 (Sa,) Yhexi)
and ¢;(S,,,#;) is given by
{(P(yﬂfj)ﬁj (un(y)lz) [c(uj,;%j,xj) +C (uj,xj)} sy )|y € Uy, un() € Un(y), @5 € Szj}

Note thatCy._,; (S,) implies a definition in a similar fashion to that fé}_, ; (S,,). Note also that; (S, ;) is not

a complete discretization af;, i.e., considering Ed.(20), for the evaluation ®f(u;, Z;, z;; ux(;)), the argument
Z; needs not to be discretized since omly.;, Z;,x;) acts on it and it is assumed to be known over its entire
domain. Therefore; is a free variable that can take values frafi. On the other hand, the conventional Monte
Carlo approximation drops(z;) and discretize® in z;.

It is immediately possible to employ this framework in Algbm [2 and achieve a Monte Carlo optimization
algorithm which, starting with initial local rules, iteratly results in a strategy that corresponds to performing
computations to approximate a person-by-person optimal @iven by Algorithn{#4, this scheme maintains the
message passing interpretation appearing inUpeat e step.

Starting withG = (V, &) and {U;;|(i,7) € £}, each node initially maintains the knowledge ygfr(;), ;)
and c(uj, &;, ;). As soon as samples from the marginal distributions, bg,, together with samples from the
marginal distributions of the observation processes, £g., are generated for ajl € V and an initial local rule
7;-) € Fjg is selected, the iterative scheme yields a set of local rsleh that each node performs computations
corrresponding to an approximation to a person—by—perptimam.

The approximate computation of the expected cost requiretthieé Check step of Algorithm[# for any given

strategy, i.e.,J(7) is obtained through a Monte Carlo approximat'(ay('yj) to Eq.[42) using the usual sample sets,
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Algorithm 4 Iterations converging to an approximate pbp optimal deedineéd estimation strategy over a DAG
1: Choosey” = (77,79, ...,7%) such thaty) e Fjg. for j =1,2,...,N; Chooses € Rt ;I =0 >lnitiate

20l=1+1
3: For 7=1,2,...,N Do > Update Step 1: Forward Pass
5.1 = f.(IP
By (5) = H({PLy (820} )
~ 11 . ~
P}, = (65 (Say,29), Pl(Se,)
4: For j=N,N —1,...,1Do > Update Step 2: Backward Pass
~1 .~ -
Sy, 2)=d;(P; (Sy,),4CL_ (S,
83 (Seyrd3) = ds(By (Se) { Ol (8e)
! b $). 4Pt o
{CJHZ(S )}zeﬂ(J) ((b]( EJ"TJ)’{Pl%j(SIi)}iGﬁ(j)7{Ckﬂj(smj)}kex(j))
5. L f 7(J(3), J(3 1), ..., J(3°)) < e STOP, el se GO TO2 > Check

ie.,S;, andS, , as

g .
i(35) MZ > B (g lag™)x

M=1 ur(j) €Un(j)

1 P

R WP (0 um )ty s 1 ur )y ™) (77)
3w =1

p=1

Wherew,im)(p) = p(y,(cp)|xl(€m))/p( (p)) If Assumption 5 holds, the expression above turns to

M
~ ~ 1 B m T m
G =372 2 P nla)™) T g, +2 D2 &l ™ iula uning) | (78)

m=1 un(j) En(s) u; €U;
and after distributing the multiplication in the RHS of theuation above and substituting in Eql(41) in place of
G;(7}), we obtainJ () = Ja(7) + AJe(%).

Note that{.J(v')|l = 0,1,2, ...} obtained through Algorithil 2 is non—increasing whergasj')}, being a Monte
Carlo approximation to the former, does not necessarilybitxthis property. Let us define an approximation error
sequencerr|l] = J(y') — J(3'). This sequence will be identically zero with probabilityeoasM, P — co. For
finite M and P, it is possible to smooth the fluctuation efr[l] through filtering and utilize the corresponding
termination condition, e.g., check whethé(3') = h[l] < e whereh[l] is the impulse response of a linear, time
invariant filter and« denotes convolution. In general, a sequence that is noreasing with high probability can
be obtained through an operatofCheck step of Algorithn#), investigation of which is beyond thege of this

work.
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V. MC OPTIMIZATION FRAMEWORK FOR TWO-STAGE IN-NETWORK PROCESSING STRATEGIES OVERGS

In SectionI[-B, we presented the structure of person—ys@n optimal local rules for two—stage in-network
processing strategies over undirected graphs providedctiraain assumptions hold. Specifically, thi# local
rule pair constituted of the stage—one communication aagesttwo estimation rules is given by Proposifion 3.7
under AssumptionislI}3 afd 5. The operator representations, f;, g; andh; given by given by Eq.d(54)=(58)
summarize Eq.$ (45)_(#7)-(63) respectively and can beieppb arbitrary local rules not necessarily optimal. The
steps of Algorithn[ B involve these operators and hence itoispossible to carry out them exactly, in general,
similar to the DAG case. We similarly employ particle regmastions and approximate computational schemes
through Monte Carlo methods in accordance with Proposfiah

In Algorithm[3, each nodg € V starts with the knowledge of(x,,..(;), z;) andp(y;|z;) together with an initial
local ruIe7§-J € Ff.’. We consider the sample sets given by [Ed.(62) (63) ferV and assume that/; = M
and P; = P for simplicity. Similar to the discussion in SectibnllV, wpgroximate the expressions involved in the
jt" pbp optimal local rule given in PropositiGn 8.7 in a progness$ashion. In Sectioh V-A we approximate to the
local rule pair under the assumption that bethand 3; are known. In the next step, we approximatethrough
the incoming message likelihood function (Sec. V-B) andhtheoceed with the computations of the node—to—node
terms at the sample points and obtain further approximatiorboth3; anda; (Sec[V=Q). Finally in Sectioh’V-D
we employ all the previous steps simultaneously in AlgonifB and obtain a Monte Carlo optimization scheme
which scales with both the sample sizes and the number ofsndd@ddition, the message passing structure in the

Updat e step of AlgorithmB together with the amenability for netlwaelf-organization are also preserved.

A. Approximating the person—-by—person optimal local rule

Consider Proposition 3.7 and th#& person—by—person optimal local rule pair of stage—one coenication and
stage-two estimation rules given by EQ.$(44),(45) andl, (4) respectively. Suppose that beth given in Eq{(45)
andg; givenin Eq. [(4Y) are known over their entire domains. Altloit is relatively reasonable to assume that we
are able to evaluate(y;|z;) , c§(u;, ;) andcf(jzj,a:j) for their entire domains, the incoming message likelihood
and the conditional expected cost, i.£;;(uyc(; [7;) andC7 (u;, z;) depend on the remaining local rule pairs and
do not necessarily lead to tractable forms for arbitrary € Ff. Moreover, the local rules given in Eq.{44) and
Eq.(46) are in a variational form such that the costs requitegrations overY; and hence, it is not possible to
evaluate them exactly.

In the first step, we approximate these costs through theetdimnal Monte Carlo method with the aforementioned
assumption that all the integrands are known over theiredbmains. Given the usual sample Sgt as defined
in Eq.(62) and considering EQ.(44) the Monte Carlo meth@didgi

~ 1 : c *
K (y;) = arg min > p(yjla) A (ug, z5) + C; (uy, 25)] (79)
/ / T ESIj
. . . . . - . ~ 1
as an approximation to the stage—one communication rulelffgs; € ); with non-zero probability, i.eu} (y;) ~

w;(y;) where the superscrift denotes that the expression involves a single MC approiomat
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Considering the local estimation rule given by Eql(46) thenk Carlo method yields

U (U1 Une(s)) = ang i > Pl Py (e |25)€ (&5, 25) (80)
jESa;
for all y; € V; andu,(;) € Une(;) With non-zero probability such thai;l(yj,une(j)) ~ V(g Une(s))-
Example 5.1:Consider the squared error penalty for the estimation giteorcy (i, z;) = (&; — x;)*. Then the

one—step approximation to th&" person—by—person optimal estimation rule given by[Ed.(8€ls

M
. 2 " p(yil™ )P (unegy ™)
Vi (Y Une(s)) = *=

A (m) (m)
mZ:IIp(yjle )P (e 25

B. Approximating the message likelihood function

The one—step approximation to the estimation rule localaten (Eq.(80)) requires that the message likelihood
function, i.e., P} (upe(j)|x;) is known atz; = x;m) form = 1,2,.., M and for all u,c;y € Uye(;)- Since the
RHS of Eq{48) do not lead tractable expressions, in geptakrbitrary choices ofy, ; € Ff.’, (considering the
recursion involving Eq.5(49) an@ (50)) we approximatetoin this step.

Suppose that the node-to—node terms from the neighborsHie; (ui—;,z;) for i € ne(j), are known at
T; = a:z(.m) Where:cgm) € S;, and for allu;,; € U;—;. Note that if the one—step approximations to the rule pairs
for the other than thg?¢ are employed, thess,.;s would be employed.

We consider EJ.(48) and costruct a new sample set whd&eelement is the vector obtained by concatenating

©) ne(j) "~

, .+ p(z;) and an Importance Sampling approximationp(w,,¢(; ™) is possible utilizing the importance
i€ne(j) )1y

m'" elements fromS,, for all i € ne(j), i.e., Spe;) = {:z:ne(J)|x = (:z:z(.m))iem(j)}. Note thatz

sampling density[ | (wi) with the importance weights

z€ne
(m) | (m)
) _ Pne |5 )
’ T »@a™)
i€ne(j)
as o

s 1 m 1 m m’
Pr (e laf™) = m——— 3" ™) TT Prjluinyle™) (81)

M) ) i€ne(i)

m’'=1

such thatli*l(une(j)|x§m)) ~ P; (une(j)|'r.§'m)) for all w,,.(;) € Uye(;) and for allx§m) S

After replacing P/ with ﬁ;l in Eq.(80), we obtain a further step approximation (twopstapproximation) for

the person-by-person optimal estimation rule local to npdee.,

~ ~1 "
V; (ij une(j)) ~ V; (ij une(j)) ~ v (ij une(j))
forall y; € V; andu,,(;) € Une(;) With non-zero probability provided that the node-to-naélelihood termspP;*

’L—?_]

for all i € ne(j) are known at the required points of its domain.
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Similarly, considering Ed.(79), the evaluation@f given by EqI(5L) is required, and at this point, it is conesi
to assume that the node—to—node conditional cost terms(te ; (u;—i, ;) for i € ne(j), atu;—; € U;—; and

T = :vg.m) wherex§m) € S,,, are known leading to an exact evaluation@fl .

C. Approximating the node—to—node terms

In the previous section, an approximation to the local esiom rulezf’fg(yj,une(j)) is constructed under the
conditions that the message likelihood terfjs, ; (ui—;, z;) from all neighbor nodes € ne(j), atz; = :c( where
x§m> € S, and for all u;—,; € U;—,;. Similarly, the 1-step approximation to the local communicatin rule given
by Eq.[79) requires the expected cost te@ys, ; (uj—i, z;) for i € ne(j), atu;; € U;j; andz; = :v( ™) where
x;m) € S;,. In this Section, we approximate these node-to—node tenti®htain a further step approximation to
the local rule pair.

First, we note that Eq.(49) and note thgt, ; is a marginalization of(u;|z;; uj). Then, we consider Ef.(b0) and
the assumption of Proposition 8.7 that all the rules localddes other thayit" are fixed at the optimum yielding
w; = pt for all ¢ € ne(j). Also conS|der|ng Ed:[?) it is possible to employ the meithod Importance Sampling
for approximating tap(u;|z;; puf) atx; = :v ) for x ) e S.,; and for allu; € U; through the instrumental density

p(y;) and utilizing the sample sef,, together with the importance weights given by

S _ 2™
' py)
and obtain
Plule™: 1f) = s

Zp 19,

for all u; € U; and for allz{™ € S,.. In other wordgé(uikv.m suy) ~ p(ug)z;

w(m

HMw

u 1 (7))

(m)

; u¥) and after replacing the latter
with the former in Eq.§(49) we achie\lé:j (qu|:z:Z(.m)) Py (uHJ|x )) Similarly, replacing the latter with

Z*}‘]

the former in Eqg[(81), we obtain

~ 2 m m’
P (une(j)lxg‘ )) = ) Z W H ’L~>j ul—>]|‘r )) (82)
;1 wjm M) i€ne(j)

and after replacing5*2(une(j)|x(m) With P (tpe(j) |z (m)) in Eq.(80) a futher approximation to the estimation rule
is achieved. Let us denote tBestep approximation to the estimation rulellgy Yjs Une(j))s thenu (yj,une(j)) ~
V3 (02 ne()) B V% (2 () R V7 (g tine() holds.

Next, we consider evaluating the remaining node-to-nodm tat the required points of its domain utilizing
Eq.s(52) and(33). Considét '+ ,; and suppose that fare ne(g) If (Une(s), vi; vi) is known for allu,,q;y € Une(i
andz; € &; (Note that, in Proposition 3.7 ; is fixed aty, ; = yi*j). We also assume that for alt € ne(i) \ 7,

P7 '—i

does not yield a solution that can be practically carriediougeneral and we resort to Monte Carlo methods in

(ujr—ilz;+) is known for allu;,_,; € U;/—,; andz;. € X;.. However, the right hand side of Eq.s(52) still

order to approximately evaluatg;”, ; at the required points of its domain.

02
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Let us construct a new sample set by concatenatingrtffesamples of the usual sample sets of neighbors of

other thanj, i.e. S, , for j’ € ne(i) \ j given by

L (m)
Smne( i)\J {xne(z)\j |xne (\g — (‘Tj' )j’ene(i)\j}

We apply the same procedure with, andsS, yielding S, = {$§Une(1 \j} and observe that{™

ne(i)\Jj iUne(i)\Jj Une(z)\]

p(xi) 1 eneqip,; P(z;y) for all szne(z)\' € Sizu..an,+ Then, it is possible to utilize this sample set for an

Importance Sampling approximation implying the impor@rdensityp(z;) ]| xj) together with the

jrene(ing Pl
importance weights

(m') o (m')p (m)
Ly _ _P@a™12™)
p™) T plag™)
j'€ne(i)\j

and obtain

o (m)y __ (m)(m
Oia,j(uj%ivxj )= Z (m) m’) Zw

Une(i)\j ZM' 1% m/=1
[T Pl NI ey ™5 v7)  (83)
j'€ne(i)\j

After replacingCy, ; with C* ; in the one-step approximated local communication rulellecaode; given by
Eq.[(79), we obtalmj such that;[;fz(yj) ~ ;[;fl(yj) for all y; € V; with non-zero probability.

Having proposed approximations for the node—to—node texadinally handle the evaluation &f (uc(y, z:; V)
at all uye(i) € Upeiy andaz; = a:z(.m) for all :cl(»m) € S, that is required in EJ.(83). Note that substituting Elg.(8) i
Eq.(53) yields

I (i 7) = | A7 0 et ) 2000 )

for which the utilization of the sample s8f, implies an Importance Sampling approximation using therumsental

densityp(y;) together with the importance weights

(P),.(m)
wzgm)(p)zp(yi z)

P
given by
fz* (une(i)axgm); Vz*) = P Zw(m (p) une(l)) x(m))
Z m)(p) =1

(m).

for all upe;) € Upeqy and :vl(.m) € S, such thatf;(une(i),xl(.m);u;) ~ I;‘(une(i),xi

I* in Eq.(83) and E](79), we obtaia{lf;.3 such that@f(yj) ~ ;23?2(%-) ~ p;’;l(yj) for all y; € ¥; with non-zero
probability.

; V). Replacingl with

D. MC optimization of two—stage in—network processingtegsges over UGs

In Sectiong V-AEV-C,similar to that presented in SecfioRAlfor in—network processing strategies constrained

by DAGs, we have provided a Monte Carlo framework for apprating the;j*” person—by—person optimal local
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rule when all the other rules are fixed at the optimal, ig,; = 7@. for decentralized estimation networks
constrained by DAGs. In particular, regarding Proposilgon and givem{‘j € 1“%., the proposed framework yields
5= (05 (03): 7 (0 ne())) SUCh thatis” () ~ 15 () ANV (47, () = V3 (47, () Tor all y; € V)
and ;) € Upe(j) With nonzero probability.

It is possible to utilize the approximations for all locales, i.e.,y; for all j € V, and the node—to—node terms
would require the usual sample sets utilized for one—st@poagmations to the local rules. In addition, the particle
representations and approximate computations are valicig set of two-stage local rules over an undirected

graph, including those in an “approximating” form. Let usrsuarize the Monte Carlo framework with

Q; (Swj) = T (Cne(j)%j)

J(S:Eg) = fj(pne(J)ﬂj)
Picsney) = §(65(Sa,)
C~1j—>ne(j) = h] (Bj(smjvjj)v ~ne(j)—)j)

where
a;(Se,) = {0 (ujz) + D i (Wi, i), ug, 25wy € Uy, x5 € Sy}

i€ne(j)

Cre()—i = {Cimsj(Ss,)li € ne(j)}

Cij(Sa;) = {(Cisj (Wji, 5), wjsiy @) |Ujsi € Ujsiy x5 € Sy}
Py(Su;) = {(P;(tne(s)» T Une()> T tne(s) € Une(j)> 5 € Sy }
Prejy—j = {Pimj(Sz,)li € 5}
Piyj(S2,) = {(Prmsj(tinsgs ), i, )i € Uiyj, i € Xi}
Py sne(s) = {PjilSs,)li € ne(i)}
Cimei) = {Civi(Sa,)li € me(j)}
The Monte Carlo optimization scheme which is obtained tgloemploying the framework in thejpdat e
step of Algorithm[3B is given by Algorithril5. Finally, the objive value corresponding a strategyc I'Y, i.e.,
J(v) = Ja(y) + M(v) given by Eq.4(89)E(B1), can be computed approximately by

JEY =Y GHIH + 2D G (84)
ey ey
where
Gl = S B e |l ™) I (teay, 2™ 71) (85)

Unpe(i),M
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Algorithm 5 Iterations converging to an approximate pbp optimal twagstin-network processing strategy over

an UGG.
1: Choosey” = (77,79, ...,7%) such thaty) e Fjg. for j =1,2,...,N; Choosez € R ;l =0 >lnitiate

20l=1+1
3 For j=1,2,...,N Do > Update Step 1: Conpute nessage |ikelihoods
Pl ey = 3i(657")
4: For j=1,2,...,N Do > Update Step 2: Update the stage--two rules
P;(Srj) = fj(ﬁilze(j)%j)
B} = 4;(P))
~l _ 7 (k. pl
Cj%ne(j) - hj(ﬁj’ Pne(j)%j)
5: For j=1,2,....N Do > Update Step 3: Update the stage--one rules.
d_l] = 7:2 (éne(j)—xj)
6: | f 7(J(3),J(3" 1), ..., J(3°)) < e STOP, el se GO TO2 > Check
and
GE(f) = e Cus, ™ p(uslay™; i) (86)

Similar to the discussion presented in Section IV-D for tha@case, in contrary to[J(7')}, the sequence
of approximated objectives, i.e{j(ﬁl)}, is not necessarily non—increasing and considering ther esequence
err[l] = J(v!) — J(3") will be identically zero with probability one a&/, P — oc. Investigation of an operator
7 (Check step of Algorithn[b) that would yiled a non—-incereasing esequence with high probability for finite
M, P is beyond the scope of this work.

VI. EXAMPLES

In this section, we demonstrate the Monte Carlo optimizatitgorithms, i.e., AlgorithmEl4 arld 5, introduced
in Section IV andV respectively, in various scenarios idahg Gaussian priors, non-Gaussian priors and random

large graphs.

A. A Simple Gaussian Example

We consider a small network example in which a decentralestionation network composed of four platforms
perform an estimation task. A Gaussian random fi&ld= {X;, X5, X3, X4} is of concern and platforny is
associated withX;. In the first scenario, we consider the underlying commuitinastructure represented by the

polytree in Fig.[B(d) , a structure not covered by the stpeiwgy paradigms (e.g./ [13] and[19]), as well as
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OO
%)
)

(b)

Fig. 3. [(@) lllustration of the DAGF = (V, X) whereV = {1, 2,3,4} and€ = {(1, 3), (2, 3), (3,4)},[(B) illustration of the Markov Random
Field Gx subject to estimation by the decentralized estimation oet{c] illustration of the UG that the decentralized estiibn strategy is

based in the example scenario.

stringent BW constraints such thefy .5 = Us_,3 = Us_,4 = {0, 1,2}. The online processing scheme operates as
given in Sectiol I[-A: Since nodesand?2 are parentless, upon measuripigandy> € R induced byX; and X,
they evaluate their local rules 81,3, %1) = v1(y1) and (u2—,3, Z2) = 2(y2) respectively. Upon receiving these
messages and measuripg< R induced byXs, node3 evaluates its local rul€us_,4, Z3) = v3(ys3, U153, U23),
and similarly node 4 evaluates, = v4(y4, us—4). The strategyy =(vy1,...,74) IS subject to design, which we
perform through AlgorithniJ4.

In addition we comply with Assumptidi 3 and select separédal costs also enabling Assumptioh 5 to hold.
The cost function local to nodgis given byc;(u;, 5, 2;) = ¢4(x;, ;) + A5 (uy, z;) and

Sujymy) = > ¢y (i)
kex(s)

Wherecjﬁk(ujﬁk) is the cost of transmitting the symbao}_,;, on the link(j, k) € £. It is selected as

. O, if Uj—k = 0
Cj%k(uj%kv xj) =

1, otherwise

indicating the link use. Hence{;_,;, together Withcf;_)k define a selective communication scheme whgrgy, = 0
indicates no communications ang_,;, # 0 indicates transmission of a one bit message. The estimatiam is
penalized by (z;,2;) = (z; — ;). Hence the total cost of a strategy.i$y) = Ja(y) + AJc(v) whereJ, is the
MSE andJ. is the total link use rate.

The random field of concern is a multivariate Gaussian, ie~; AV'(0, Cx), and Markov with respect to the

graphGx presented in FidJ3(p). The covariance matrix is given by

2 1125 15 1.125]

1.125 2 1.5 1.125
Cx = (87)
1.5 1.5 2 1.5

1.125 1.125 1.5 2

which conforms with the Markov properties ¢fy. Altough the communication structure of the decentralized

estimation network is not related with the MRF represeatatf X and Algorithm[4 would produce results for
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any choice, for the sake of simplicity we selected the grapFig.[J(b) as the undirected counterpart of that in
Fig.[d(a).

The noise processes; for j € V are additive, mutually independent and given by ~ N(0,0.5), so that
Assumptiori 1 holds. In addition, we suppose that Assumf@ibalds and the observation likelihoods atg,|z,) =
N (z;,0.5). ConsideringCx, each sensor has an SNR GufB.

Since separable local cost functions are utilized, the giipnal rules are also split into estimation and commu-
nications functions given by E@.(81) arld(32) respectivBlgreover, owing to the squared error local estimation
penalty given byc?, the local estimation rules take the form given in Ed.(34% Mitialize the local rules, i.eL;;J
and uf for j € V, as follows:

1) Each node applies a myopic inference rule, i.e., perfastisnation solely based on its local measurements.

This rule is selected as the MMSE estimation rule, iE{X,|Y; = y;} given by

oo

V) (Y, tn(s)) = /de zp(wsy;) (88)

— 00

2) All the nodes apply an initial communication rule as a dization of the observatiop;, i.e.,
15 (i un(i)) = 4 0, — 20, < y; < 20, (89)

2,y > 20,
Considering/(v) = J4(v)+AJ. () and pbp optimal strategies achieved through Algorithm 2rinciple, different
values of\ would yield different performance pointg.(v*), J4(7*)). Moreover, in this case, after a certain value
A = \*, the communication cosk.J,. will dominate such that the decrease in the decision ciystith the
contributions of the communicated symbols will not be erfotg decrease/ and symbol0 will be the best
choice. Moreover, the individual estimators will be the migorules, since myopic rules with no communications
constitute a pbp optimal strategy. Hence, it is possiblenterpretA* as the maximum price per bit that the system
affords to decrease the expected estimation error. As wiease) from 0 we approximate samples from the
corresponding pareto—optimal curve which enables us tatifydhe tradeoff between the cost of estimation errors
and communication.

We use2000 and 30000 samples for eacl$,, and S,, generated fromp(z;) and p(y;) respectively and use
Algorithm[4 for varying from 0 with 0.001 steps. Example converged local communication and estmatiles
are presented in Fig] 4{a) and](b) for na¥land 4 respectively, where\ = 0.1 and convergence is declared after
4 “offline” iterations. Note that the initial communicatiomle shown at the top row of Fig] 4{a) and the initial
estimation rule illustrated by the black dashed line in E{p) are valid for all of the nodes with appropriate
choices of the domain and range labels. The pbp optimal carzation rule local to nod8 can be treated as a
collection of threshold rules for each incoming messagee/gésome of which are illustrated in Figl_4(a)). Now,
let's turn to the estimation rule in Fig] 4{b). If messageeieed by nodet suggests a high/medium/low value for

x4 that is consistent witly,, then the pbp estimation rule local to nodlacts similar to the myopic rule (Note the
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45 H 45 P
LM =1 uy =0 uy =2 <
v, €1 T T T | ) L 3 3
736 1 2 0 2 1 6
14374 = 1| Us 0 | Uy g — 2 R 15 15
w1 T T T 1 T 1L
Yl I 4 2 0 I 2 4 6 S = o
S - S
< Us_y |: 1 1 . “3ﬂ4l =0 | I 7"314 2 > - ---0
» L J -15 -15 )

o N 2 Y 2 4 ’ == =0 (ya, uz—q = 2) == =0 (ya,uz—a = 2)
P u,_,=1 | U, =0 | as :_2 -3 —— 7} (ya, uz—q = 0) -3 73 (ya, uz—q = 0)
I T T T T T 1

Vs g 4 RN 2 1 6 g gty — R
45 U (ya, uz—a = 1) 45 73 (ya, uz—a = 1)
-4.5 -3 -15 0 15 3 45 -4.5 -3 -15 0 15 3 45

@) (b) (©)

Fig. 4. Example converged rules regarding the Gaussian DBlgm [(@][.(B)) and the Laplacian DAG problgm | (£))] (e)x@ounication rules
for node3: (from top to bottom) the initial communication rule, i.e3—4 = u3(y3, un(3)) and illustrations of the converged communication
rule for the Gaussian example for= 0.1 at the end of thett" step, specificallyus 4 = p%(yg,uﬁ(;;)) for un(s) = {2,2},{0,0} and
{1, 1} respectively[ (B) lllustrations of the initial and convedgestimation rules for nod¢ for the Gaussian example at the end of tHé
step, i.e.,zxg andz4 = f/ff(y4,u,r(4)) respectively[ (§) For the Laplacian example; the convergiination rule local to nodé¢ at the end of

the 374 step, i.e. &4 = 73 (Y4, Un(a))-

asymptotic behaviour of} for us_,4 = 2 andus_,4 = 1 respectively in comparison with the initial rule as well as
o3 for uz—4 = 0 in Fig.[4(b)), otherwise, the estimate diverts from the nuahivalues as implied by the incoming
message.

The approximate performance points, i.€l,,.J;) pairs where/, is the approximate total link use rate arig
is the approximate total MSE, of the converged strategjieare presented in Fig] 3{a)(black’s). The upper and
lower bounds are MSEs corresponding to the myopic rule aactc#mtralized optimal rule respectively. We repeat
the same scenario with different BW constraints, i#;.,.,|s. We test the conditio"\i(fyl*) —J(AY| < 1.0e — 4
in the Check step of Algl4. The average number of steps for convergenithifw:3c) are3.6 = 1.5, 4.2 £ 2.0
and 4.1 + 1.8 for 1,2 and 3—bit schemes respectively. Note that, for the squared ewet, optimal centralized
rule given by E{X|Y = y} yields a communication cost of. = 3Q where @ is the number of bits used to
represent a real number, i.g.,;, before transmitting to the fusion center. Considerig, .J;) pairs for the 1-bit
selective communication scheme, foe= 0, the transmission has no cost, but the link use rate is wédhb&5%
of the total 3 bits. This indicates that the information ofeiwing no messages is successfully maintained in this
perspective. Moreover, the communication stopsXors 0.355. Similarly, approximate points faz—bit and3—-bit
schemes indicate that, X is small enough, we can achieve smaller MSE for the same ¢otamunication load
as we increase the link capacities.

Next, we consider a two—stage strategy over the undireataphggiven in Fig[[3(¢) for the same estimation
problem. The set of admissible symbols is giverihy,; = {0, 1,2} for all (i, j) € £. In contrast with the directed
case, the online processing starts with each node evajuidsistage—one communication function on its measure-
ment, i.e.,u13 = p1(y1), vo—g = u2(ye2), (Us—1,us—2,us—a) = ps(ys) andug_,3 = pga(ys) simultaneously. As

soon as all the messages from the neigbors (or lack theremfeaeived, stage two estimation rules are evaluated

asi = v1(y1, uz—1),&2 = v2(Y2, u2—3), T3 = v3(Y3, U1-3, U2—3, Us—3) ANd T4 = v4(ya, us—4). We design the
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Fig. 5.  The approximate performance points converged liege¢éhe tradeoff together with the lower bounds (blue ddslkees) and the
upper bounds (red dashed-lines) of the problems given bystimation performance measured in MSE for the optimumrakzed and the
myopic rules respectively.

Gaussian DAG problem: The estimation network in Ejg)|&asubject to optimization through Al] 4 starting with thtial rules given
by Eq.d(88) and{89) which achied.(1°), J4(v°)) (black x’). The pareto—optimal performance curves, aohicfor the approximate pbp
optimal strategies while\ is increased frond with steps 0f0.001, are approximated b){(Jc(’y;), jd(-”y;))} where45 is the approximated
optimum strategy for\. Results forl, 2 and 3 bit selective communication schemes are presented.

[(6) Gaussian UG problem: The estimation network in EJg.]3¢ckubject to optimization through Algorithfd 5 The initigirategy achieves
(Je(v9), Ja(7°)) (black 'x’). The pareto—optimal performance curves, aghiefor the approximate pbp optimal strategies whilis increased
from 0 with steps 0f0.001, are approximated bﬁ(jc(’y;), jd(’yi))} where7; is the approximated optimum strategy for Results forl and
2 bit selective communication schemes are presented.

Heavy tailed (Laplacian) prior problem with a DAG: Appimate performance points are presented which are achfevatie heavy tailed
prior case, for various values of and 10 sample sets for each through Alg.[3.

Heavy tailed (Laplacian) prior problem with a UG: Appimmate performance points are presented which are achieveithd heavy tailed

prior case, for various values of and 10 sample sets for each through Alg.[5.

strategyy = (71, ..., 74) where~y; = (u;,v;) using Algorithm5.
The cost functions are those utilized for the DAG case andagily, for each platformy, the initial local estimation
rule is the myopic mimimum MSE estimator which is based omly i.e., 9 (y;, une()) = [, daj zip(a;y;),

and the communication rule is a threshold rule quantizingimilar to that used in the DAG case with the difference
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that the;j** rule takes as argument the messages from all of the neigbborsde ;.

Similarly we approximate to the samples from the paretanmgdtperformance curve as we increasdrom 0
and obtain a strategy using AlgoritHrh 5, which in turn pr@ddh quantification for the trade—off between the cost
of estimation errors and communication.

In Fig. we present these pairs, i.¢.J.,J;), for different choices of\ and |4 _.;|s. The upper and
lower bounds are mean squared errors (MSEs) correspondiriget myopic rule and the centralized optimal
ruI@respectively(jc, J,) points for thel—bit selective communication scheme reveal that altoughrémsmission
has no cost foih = 0, the total link use rate is only slightly higher thaa% of the total capacity of 6 bits indicating
that the information from receiving no messages is sucokgsftilized. Moreover, the MSE performance is closer
to that of the centralized scheme than the myopic scheme c@henunication stops fok* ~ 0.3. Approximate
performance points foR—bits case present the decrease in MSE for the same netvarila®we increase the link
capacities for small values of which is competetive with that of the centralized rule.

Comparing the approximated performance points of the giceand undirected strategies presented in[fig] 5(a)
and[(b) respectively fot bit and2 bits selective communication schemes, we observe the kenéhi—directional
communications employed by the strategy over the undidegteaph. For the directed case, nodesnd 2 are
parentless and hence do not have means to exploit contnitsufrom other platforms. Specifically all parentless
nodes apply the initial rule, which has been selected as thapim estimator. Therefore the nodes with more
ancestors are more likely to benefit the contribution of ptisdles whereas for the undirected case, the nodes with
more neighbors pose advantegous. The price paid is thahtheriation horizon is limited with the observation of
the neighbors whereas the local rules depend on a two—hghbwihood due to the two stage mechanism necessary

for causality.

B. A Simple Heavy Tailed Example

The MC framework applies for arbitrary distributions praed that samples can be generated from their marginals.
This can be an important advantage in certain problem gsttim which it is not possible to obtain closed form
expressions even for the centralized rule. We consider ausdenario in whichX is distributed by a heavy tailed
prior p(z), specifically a multivariate-symmetric Laplacian (MSLyen by

2 27O\ T2 AT
_ x T—1
p(SC) - (277-)d/2|0z|1/2 ( 2 > Kl—d/Q( 2z CE I) (90)

whered is the dimension of, C, is a covariance matrix, anfl,,(u) is the Bessel function of the second kind of

ordern (See, e.q.[148]). Let us denote this distribution 8%,(Cx ). Unlike the Gaussian case, uncorrelatedness
does not imply independence and not being a member of thenexrpal family, SL;(Cx) does not imply a

Markov random field.

For ¢(x, ) = (x — &) (x — &), the optimal centralized estimate is the mean vectop(afi, ..., z4|y1, ..., y4) Which yields a minimum
of J.=3Q bits whereQ is the number of bits used to representbefore transmission.
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On the other hand, it is possible to generate samples fromlavariate symmetric Laplacian utilizing samples
generated from a multivariate Gaussian of zero mean andetsieed covariance matrix together with samples drawn
from the unit univariate exponential distribution. Giver~ A(0,Cx) andz ~ ™%, generate samples of by

x = y/zu, thenz ~ SL4(Cx). Therefore, it is possible to expresd.4(Cx) as

plz) = /0 N0, 2Cx)p()dz (o1)

wherep(z) = e~*. This form, being a scaled sum of Gaussians, generalizessizaumixtures and hence also
referred to as &cale mixture of Gaussi

Similar to that in the previous section, we assume the upidercommunication structure described®y= (V, &)
in Fig.[d(@) together with a—bit selective communication scheme on each link and sirodat functions, observation
likelihoods and initial local rules.

The Monte Carlo framework extends trivially for (finite) Gasian Mixture Models which can be used to represent
arbitrary priors. To the best knowledge of the authors, & ¢hse of a MSL prior, even the centralized paradigm
fails to provide a solution without employing numerical agamations.

For our case, we considéf = { X, X5, X3, X4} such thatpx (z) = SL4(Cx) whereCyx is given by Eq[(87)
and we exploit the fact that thg!" marginal distribution ofSL,(Cx) is given by SL;([Cx];;) and it is
straightforward to generate samples from these margibBdls fFor the observations, although the marginal densities
yield closed form expressic@s it is not easy to sample from this density since it does netdya distribution
function in closed form. However, considering the mixtum)mximationzmymesmj p(yj|:cl§.m)) ~ p(y;) where
Sz; = {x;;)’ xf), vy I§M)}, it is possible to draw samples fropfy;) approximately by sampling frorp(yj|a:§m))
for m =1,2,..., M until the densitymixes

We generatéS, | = 3000 samples from the prior marginals ah,, | = 45000 samples from the aforementioned
mixture densities. We run Algorithil 4 for different choices A and for 10 different sample sets. An example
converged estimation rule is illustrated in Hi§j. 4(c) whisHocal to node3 and convergenced fox = 0.1 after 3
“offline” iterations. Note that, contrary to that in the Gaia example, the initial myopic estimation rule for any
node is not linear (black dashed curve in Fg. (c)) and icassfully represented within the MC framework. The
asymptotic behaviours in the case that the measuremenhanddoming message confirm each other are similar
to that in the Gaussian example.

In Fig.[H(c), approximate performance points for the cogedrstrategies are presented where the upper and
lower bounds are the MSEs corresponding to the myopic antladized rules respectively. For eaghwe observe
a cluster around the corresponding point from the paretiimap curve with a reasonable variability over sample

sets (Fig[[p(d)). This is in accordance with the expectatiat heavy tailed distributions require utilization ofdar

1This family of distributions has been employed to model iplétvariables that exhibit uncorrelatedness yet deperglsnch as the statistics
of natural images (see, e.d.. [49] and|[50]).

21t can be shown thap(y;) = 0.1410 /me ¥ t1/4 (e +1 — @ (y; + 1/2) e2¥i + @ (y; — 1/2)) for j € V where @ is the error
function.
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sample sets. Nevertheless, the framework we propose pediistributed solutions in problem settings which do
not admit straightforward solutions even in the centralizase.

Next, we present Algorithrh]5 in a similar setting. The undiegl graph of concern is given in Figl 3(c). For
various values of, and the Algorithm is run fot0 different sample sets. The initial rules, costs and thdiliked
is similar to those used for the Gaussian UG example in theique section.

The approximated performance points are presented i I{id). SSimilar to the Gaussian case, for small values
of )\, a decentralized strategy with a comparable performantieetaentralized rule is achieved. The benefits of the
undirected topology is apparent comparing the MSE perfaneavith that presented in Figl[5](c) for the directed

case.

C. Examples with Large Graphs

In this section, we demonstrate Algorithids 4 &hd 5 in reddgivarge scale problemsp platforms are randomly
deployed over an area df)0 unit squares and each locatien € R? is associated with a scalar random variable,
z;. We assume that the random field= (X1, Xs, ..., X50)7 is Gaussian with zero mean, i.&, ~ N (0, C,) and
C, = [C; ;] complies with the Matern covariance function which is comiyautilized in spatial data modeling
[10] and given by
2 4+02,h=0
e (247)" 26 (3%)

whereh £ ||s; — 5|, K,, is a modified Bessel function of the second kind of orgdeand 72, o2 are parameters

Ciyj: h>0

that determine the decaying characteristics. Such a @neagimatrix is presented in Figl §(a) corresponding to
an example random deployment for which the Gabriel graphésgnted in Fig.]J6(b). We generate a polytree by
randomly selecting childless nodes and employing Kruskal’ s algorithm on thispl (Fig.[§(d)).
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Different from the previous scenarios, only the variablesoaiated with the childless nodes are of concern and
only the childless nodes perform estimation whereas theaiir@ng operate in a fusion setting such that they only
provide information to the children based on the incomingsages from the parent nodes and the measurement
they make. We considerla-bit selective communication scheme on each link and thexaamication cost considers
the link use rate. The estimation errord(z;, #;) = (z; — 2;)* if j is childless and identically zero otherwise.
Similar to the previous examples, the initial communicatioles are quantization of the observations and the
childless nodes are initiated with the corresponding myagstimation rules (for? + 02 = 1 and cr,%j = 0.25 for
all j e V).

We employ Algorithm¥% for a geometrically increasing sequeen = 0.0005,0.00158, ...,0.158 and for 10
different sample sets such thef,,| = 2000 and |S,,| = 30000 (over the polytree in FigJ6(c)). An example
converged estimation rule is illustrated in Fi§. 6(d). Wensider nodel0 in Fig. [d(c); the initial myopic rule is
linear with the observation,,, however, the converged strategy, as expected considgringrevious examples,
exhibits a highly nonlinear behaviour as the incoming mgesasuggest less likely (high or low) values fog.
When no messages is sent, the pbp optimal rule is similar tidavmay between the estimator functions selected
when incoming messages imply a high and a low valuezrf@rrespectively.

The Monte Carlo estimates of the performances of approximpiap optimal strategies are given in Hifj. §(e). Note
that the myopic MSE for each platform(s2 yielding a total ofl.2 whereas the centralised MSE (blue dashed-line)
is specified by the deployment (through,). The MC framework successfully performs in large grapmacies
and makes it possible to identify clusters around pointsnftbe pareto—optimal curve capturing the trade—offs.

One observation is that the approximate pbp optimal styategverged through the MC framework might stop
communicating over certain links, even if the approximatedtegy does not yield any dead links. This is due to
failing to represent, e.g., quantization rules that wilizresholds exceeding the bounds of the produced samples. F
example, suppose the pbp optimal local rule requires thidsi , ¢, such thatt; < min(S,;) andty > max(S,,)
for a particular set of incoming messages. Then the apputeifocal communication rule represents this rule
through stoping the communication completely if that malir set of incoming messages is received. An example
is presented in Fig.J6(f) in which the converged approxinpdtp optimal strategy selects to stop all transmissions
over the magenta edges. In other words, over the magents,atggansmissions are made for any set of incoming
messages.

Nevertheless, the Monte Carlo framework we proposed seftdBsproduces results for ramdon large graphs.
Next, we considep different graphs and employ Algorithid 4 for = 0.005,0.05 and 5 different sample sets
for each value. We consider labit selective communication scheme over each link whiaidg a total network
capacity of49 bits. Note that for each graph the pareto—optimal curve db asethe lower bound would differ.
The Monte Carlo estimates of the performance points of theeaimate pbp strategies are given in Hif. J/(a). The
mean number of iterations for convergence iéwvith o = 0.9 any heavy on the values greater thgn

In a similar setting, we consider the two-stage strategies andirected graphs and assume that the underlying

structure is a subgraph of the Gabriel graph correspondirtge random deployment (e.g., Fi§. 6(b)). The initial
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communication rules as well as the costs are similar to twathfe random large graph experiments considering a
DAG except that all nodes perform estimation in this settigte that for al-bit selective communication scheme
over each direction over an undirected link, each graptexfin the total network capacity. For the case, the
capacities corresponding to UG5 are 132,128, 130, 134and140 bits respectively. The approximate performance
points of the strategies obtained through Algorithim 5 o= 0.005,0.05 are presented in Fi@g[ 7{b). The number
of iterations for convergence has a minimum and mean valieanfd4 respectively (withc = 1.1 heavy over the

values greater thas).

VIl. CONCLUSION

In this work, we have considered the design of decentrakztithation strategies. Motivated by sensor network
applications, we take the communication constraints istmant including the availability and BW of the links as
well as the cost of transmissions that arise during the farilprocessing. We are particularly interested in trading
off estimation accuracy with the utilization of communioat resources and utilize a Bayesian framework which
yields an optimization problem that explicitly involvessts for estimation errors and communications. This setting
has led scalable “offline” optimization procedures for agrtclasses of in—network processing strategies including
the scheme which is constituted of local rules operatingctoedance with a (forward) message—passing structure
on a DAG and the family in which the local rules operate in twagses over an UG _[27]. There are a number of
benefits provided by these two classes of strategies imautiiat i) they cover any association of the nodes with
the variables that comprise the global state, ii) they ati&l Var any supported graph structure (DAG and UG)
presumably supported by the available set of links, andhigy yield tractable offline optimization procedures in a
message passing fashion provided that reasonable assamptld. For a parametric dual-objective Bayesian risk
a pareto—optimal curve is obtained revealing the gracefgtallation of the accuracy of inference with the resource
utilization [31] [27].

Furthermore, the two-stage strategies over UGs turn totecplar subclass of strategies over DAGs under certain
conditions [[27]. The in-network strategies over DAGs alsovjle the benefit of investigating this family which
render intertwined local star—graphs under certain assangand arguably better match some scenarios including
the estimation of a random field.

Ouir first contribution is an extension of these results ferdhtimation problem and rephrasings of the offline opti-
mization procedures which are composed of consecutiveagessover the graph representations. These approaches
differ from the previous work on decentralized estimatianttie following: First, the cost of communications is
explicitly considered in the problem setting. Second, ipassible to model a broader range of constraints on the
communication structure underlying the “online” procagsiFor example, it is possible to consider extensions
of the conventional star—topology since it is a particulalypree structure. In addition, it is possible to model
selective communication schemes through an appropridé¢etigen of the communication cost(s). The graphical
model perspective in decentralized estimation take thenzomication constraints into account to a certain extent,

nevertheless a generic framework which captures the costinémissions especially under stringent constraints



TECHNICAL REPORT - SABANCI UNIVERSITY 44

similar to those of our concern has not been introduced.

However, in contrast with the detection problem, the glattate vector takes values from an Euclidean space
in our case, and consequently the messages for the iteigtimization procedures require the computation of
integral operators which cannot be evaluated exactly, megs.

We overcome this problem through our second contributioichviare Monte Carlo frameworks under which
particle representations together with approximate cdatfmnal schemes are utilized for all expressions involved
including the local rules. Doing that, we provide a feasitdenputational scheme while we conserve the appealing
features of the original frameworks which include scalgbilvith the number of platforms as well as the number
of variables involved. The proposed algorithms also scdtle the sample set sizes and produces results for any set
of disributions provided that samples can be generated frmmmarginals. We have demonstrated these features
through several examples including a Gaussian problemng3aussian prior case and random large graph scenarios
in Sectiorf V). The MC optimizations result with reasonat#ésf local rules and the estimation accuracy is traded—
off with communication cost as we vary their relative empmsasn the total cost. Equivalently, the performances
achieved approximate the corresponding pareto—optintakecun addition, the proposed optimization approaches
can also potentially be applied for hybrid in—network prgiag strategies whihc employ both families|[52].

There is a number of issues left beyond the scope of this workontrast with the non-approximated case, the
performance sequence yield after iterations is not nedgsaamonotonically decreasing sequence. Investigation o
a robust stopping condition remains as future work togethittr the introduction of possible smoothing approaches
through kernel methods. The IS estimate of an integral isMnto be mildly biased and the investigation of
biasedness of the resulting strategies remains open assvilie graph structure that achieves the best performance

for the pbp optimal strategy given an a-priori distribution

APPENDIX

PROOF OFPROPOSITIONS.3

Provided that Assumptidd 1 holds, the underlying distifouto the Bayesian framework is given by

N N
p(u, z,3:7) /y dy [ ] p(wis &ilyi, uniy; i) [ [ p(url2)p(z)

i=1 k=1
N
= p(x) Hp(uz'vfﬁﬂxvuw(i);%) (92)
1=1
which further implies that
N
p(u,fch;v) = HP(Ui,@HiU,Uﬁ(i);%) (93)

i=1
First, consider Ed.(11) and the term

Hp(uz',ffﬂfc,uﬂ(i);%) = H/

dys p(ys|2)p(ws, Tilyi, wriys Vi)
i#] i#£] Vi
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The conditional distribution that equals to the productwabis obtained by dividing both sides of Eg{93) by the

contribution of thej*" rule, i.e.,

p(u, Z|z; )
p(u77x7|x Ur(5)3 vj)

Hp(uuffimuﬂ(i);%) =
i#j
P(unr(j)> |2, U () 7)P(Un (|25 7)
p(uj, Z5]@, un(j);v5)

= pluyjur(), T\1T, Un(jy, Wiy Tj57)P(Un(s) 25 7)

= pluyg, &\glz, uiing) (94)

for which after applying the chain and Bayes’ rule, we havbssituted the conditional independence properties
Ur(jy AL (ug, Z5)|7; Yan(;) Wherean(j) are the set of ancestor nodes joénd (uy ;, #\;) AL 5]z, uj;y,; due to
the directed acyclic nature in the last step.

Then we follow similar steps with that for the detection casf27] whereas in our setting¥ takes values from
a denumarable set and we do not utilize a channel model, i.e., we assume thdinkf are error free.

Consider Eq.5(11) and{118) together with EqJ.(94). Afterssiliting the mathematical expression of the cost
locality assumption, i.e., EQ.(119), in Hg.{18) we obtain

0% (uj, T, o, Un(j))

= Z Z / di; c(us, zi, Zi)p(un g, By, zlug; W)

i€V U (jyum(y) TN

Pyl p(@)e(uy, o, 85) + > > / Ay e(ug, iy &3)p(un j, &, 2w 715)
EV\] W\ (jyum(s) © TN

and treat the summation ovee V\j in three groupside(j) € V\j denoting the decendants of nofler(j) € V\j
denoting the parent of nodeandan(j)\x(j) € V\j denoting the ancestors of nogiéhat are not its parents. Due
to the directed acyclic nature, these sets are mutuallyusike. Hence

> X / ddryj euiy @i, &2)p(un g, &g 2lug; ;)

iEV\j U\ (yum() T TN

mede(j) u {5y o (i) Y NI

+ Y)Y / dayj c(uk, Tr, Tr)p(uyj, 25, zlug; W)
kem(§) un (iyum() ¥ NI

+ Z Z / di\] C(Un,xn,j'n)p(u\j,j\j,$|uj;'7<j)
n€an(i)\m(5) W\ (1um() * N
Consider the first group on the right hand side of the equattmve. The following holds

>y / ddj (i, T, T )P(UA (}0r()> B3 12, 5 U ()5 905 )P (U ) |57 )P()
mede(j) u\ (33U () NI

= > Z/dwm (s T &) /dff\{j,m}P(U\{j}uﬁ(j),fﬁ\ﬂw,Uj,uﬁ(j);ﬁj)p(uw(j)kf;7@)29(95)
mede(j) um x| NG mIUTD X g
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= p(ux(jlz;7;)p Z / A2 (U, Ty B )P (Ui s T [T, s, Un ()3 1)
mGde(J) Um

= p(ux(ylz;v;)p Z / A2 (U, Ty B )P (Ui, T |7, w53 77;)
mGde(J) Um

where we apply the chain rule and rearrange the order of tperaxcept that in the last step we assert the
assumption thag is a polytree Whem(uwnm, &m|z, uj, ur(j); ;) is reduced t@(um, Tm|z, u;;13;) for m € de(j).
Since the polytree topology implies that there are no patbmsifany of the ancestors of nodgeto any of its
decendats that does not pass throdglgiven u; and havmgy\ determinedu(;) has no bearing offw,,, Z,,)
wherem € de(j) which would not necessarily be the cas&jifvere not a polytree.

Considering the summation over the second group, simiraagements are performed yielding

> D / Ay c(uk, Tk, Br)p(uy;, &\, Tlug; W)

kem(j) w (gyum() XN

= > /XdikC(Uk,xk,i?k)p(I) > / d 1,63 P(w 55 g |2, ws37;5)
k

kem(j) UN {5 YU () X\ (5,k}
= > / d@y c(ug, i, Be)p(@)p(Ur () Br|z, us5 ;)
kem(j) ¥

P@)p(nipele; 7)Y .. d@k c(ur, zk, Tr)p(uk, Trlz; 1)
kem(j)

where in the first two steps, we rearrange operators andrmperfarginalization, in the third step we apply the chain
rule. In the fourth step, the; and ;)\, arguments of the conditional drops since due to the polytspelogy
no two parents of nodg¢ shares a common ascendant and these arguments are nonaitiferfor (uy, ) when
Vi € 7 is determined. Also note that, at the last step, the termsagomo contribution of(u;, Z;) and hence
have no bearing on the optimization regarding the persepdrgon optimal rule of nodg

A similar treatment of the third group yields

> > / iy c(un, Tn, n)p(un s, &5, ;3 175)
nean(j)\m(j) u jyom() L NI

= Z Z/ dy c(un, Tn, Tn) Z / day gj,ny Py, B\, 2|ug; W)

nean(J)\rr Un U\ {j,n}Un(5) X\{jvn}

= Z Z/ dxn Um«Tmﬁfn)p(iU)p(Umi"an(j)aUj755§VT.j)p(Un(j)WjﬁC;Viﬁj)

nean(j)\7(j) Un

= > Z/ dZp, (Un, Ty &) P(T)P (U, T |25 9P (Ur () |23 935)

n€an(j)\7(j) Un

= p(x)p(uﬂ(j)|x;’7>\kj) Z Z/ dz,c un,xn,xn) (un,:vn|:v ’7\])

nean(j)\7(j) un
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revealing that it has no contribution on the optimizatiogameling the person-by-person optimal rule of ngde
either.

Therefore
07 (uj, 5, T, Un(j)) X

p(iﬁ)p(uw(jﬂx;ﬁj) C(ujvxjaxj Z Z/ dxm Umvxmvxm) (umvxm|'r u]a'}/\])

mede(j) Um

holds and under the measurement locality assumption, 8oedsily yields
¢; (ujv ':Ejv Ly, uﬂ'(j)) X

p(Ij)p(uﬂ(j)uj;'Kj) c(uj,a?j,:cj Z Z/ Ay, c(Um, Ty T )P (U, T 'rj?uja’y\_]) (95)

mede(j) wm
after marginalization.

Now that we have obtained the form in EqJ(20) it remains tonstiwat p(ux(j)|z;517;) is equal toP; (ux(;)|x;)
given by the forward likelihood recursion Ed.s(21) ahd] (B®)ether with that the summation over descendants is
equal toC7 (uj, z;) given by the induced cost recursion EQ.$(23) (24).

We start with a general terp(u(;)|«; ) determined by the strategyand fist note that the directed acyclic nature
together with the online processing in accordance with ¢tinevdird ordering..(;) received from parents depend on
Yan(j) @NAZ4p(;) Yielding the equwalencg(uw(j)|:z:an(j);'yan(j)) = p(ux(j|z;v*) (Figure8). In addition, starting
with parentless nodes for whigh(u;|z;7*) = 1 the following recursion holds where we denote by ;) the
set of incoming messages to parents of ngde

PUn() [ Tan()i Vami) = D / A& (j) P(Ur2(s) s Un(s)s Er () [ Tan(s) Van(s))

Upa gy Y )

A2 () P(Ur2(j)|Tan(); Van() )P(Ur(5)> Ex () [Un2(5)> Tan()s Van(s))

Upa gy Y )
= Z (U 2(])|xan(.7)\ﬂ'(7) ’yan(])\rr H / dxl Z u17x1|x17 Ur (i) 3 Yi )
U2 (j) iem(j) Ui \Ui—sj

(96)

In addition, the polytree topology implies that no two paseaf node; share a common ancestor and moreover

the sets of ancestors of parents of ngdare disjoint. Hence

p(uﬂ'z(j)|:Ean(j)\7r(j);’7an( )\71-(]) H p uﬂ(’L |xan(1 ’7an(1 ))
i’€m(j)
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and after substituting in E¢.(P6) we obtain

Z H p uﬂ’ (i’ |xan(1) /Yan (i’ H / dxz Z u“xllxluuﬂ'(l ’71)

p( |(Ean 4) /Yan( ))

Ur2(5) ¥ Em(H) iemn(f) Ui \Ui—
= Z H p U (7) |:Ean OF ’Yan(z ) Z / d:i'lp(uu ji|xi7 Ur(i)5 ’71*)
Ur2 5y €T (F) Wi \ Ui j Xi

= H Z Z p(uw(z‘)|%n(i);7;n(i))/x d@ip(ui, Tilzi, ur(i); V) (97)

1ET(J) Ur(i) Ui \Uimsj i
Finally, in order to obtairp(u,r(j)|:z:j;'y;n(j)) we multiply both sides of the above equation wijttw,,;|x;)

and marginalizeX,,,(;), i.e.,

P55 Van(s)) =

= / dxan xan(])lxj H Z Z uﬁ(1)|xan(z)7’72n(z))/di'lp(uujz|xzauﬂ'(z)v’yz*)
X

Xon(i) 1ET(F) Um (i) Ui \Uisj

= dzz(j) / dZan(i)\m (i) P@x () [2)P(@an(ine 22y 25) [T Pissl2i Taniyi v s Yoncy)

Xr(s) Xan(G)\=() ien(y)

= /dffw(j)p(%(j)le) / A% an i)\ (j) H P(Tan(in|Tx(), Tjs ) H P(Wissgs TilTis Tan(i)s Vi s Yan(i))

*r) Xan(i)\= () ven(y) ien(s)

= / dxﬂ'(j) p(Iﬂ'(j) |517J) H / dxan(i)p(fpan(i) |xi, )p(ulﬂj |Ii; Tan(i); ,.Y;‘, ’Y;n(z))
X (h) ieﬂ'(j)xan(i)

B / () P(aapleg) [T pluiogles vl vine)
Xr (i) ien(j)

= der(J)p ‘rﬂ’ |$J H Z Z uﬂ—(z)|$€'z,’7;n(z))/di‘lp(u“j-l|x“uﬂ(z)7,ﬁ)
X ) P€m(5) Un (i) Ui \wimsj 3.

which is nothing but Ed.(22) substituted in E[8(21), wher®; (u.lz;) represents
P(Ur() |55 Vo)) @NA P (ujsil:) is identified asp(ui;lzisv)', v, ). In the first step above, we exploit
the chain rule and in the next step, we substitute the disjess of ancestors of parents of nodelue to the
polytree topology while factorizing (., ;)\~ ;)7 (), z;). To show that the factorization holds, let the parents of

nodej be 7 (j) £ {iy,...,ip}. Then applying the chain rule consecutively we obtain

P(Tan()\w () [Tx(s)> T5)

= p(Ian(il) |I7r(j) ) Ij)p(xan(j)\ﬂ(j)Uan(h) |I7r(j) y Ljs Ian(il))

P(Tan(in) [Tr()> T5)P(Tan(G)\x () Uan(iy )uan(is) [ Tx(G)s Tis Tan(in)s Tan(iz))P(Tan(iz) | Tx()> Tjs Tan(ir))

P(Tan(i) | Tr()> 5)P(Tan(iz) | Tx () Tis Tan(in)) - P(Tan(ip) | Tx () Ti> Tan(in)s - Tan(ip_1))

Moreover (u;, ;) are independent from any fields &f given (X, X o)) with ~; and~;, ., determined.
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Similar steps show that the cost recursion given by Eq.s428)[24) hold, i.e., E4.(24) substituted in EQ.$(23)

is equal to summation oven € de(j) in Eq.[95). Consider

Z Z/ d&y, ¢ umaxmaxm) (um,xm|x7,u7,7v)

mede(j) Um

= Z /Zc(ukﬁ%,ik)p(uk,iﬂffjauj;ﬁj)+ Z d‘%mZc(umaxmajm)p(umajm|xj7uj;7<j)

kex() |7 wn mede(k) Unm

and let the summation oven € de(j) be denoted by’ (u;,z;). Then the expression above becomes

O;(ujvxj)

= Z [/ dxkZC(Ukaxkai'k)p(ukai'klxjauj;'7<j)+/ dkaZC;g (ke ) p(uks Tic| s, wi5 %)
) L7

Uk Uk

= Y / dag Y [e(ur, zr, @) + C (wk, )] plur, Txlaj, uj377;) (98)

kex() TN
where it is possible to extend the distributi@t@uk,:i:k|:cj,uj;'y§*j) such that it is expressed in terms of the

contributions of the rule local to node i.e.,

plug, Txlxj, us W) = / dxw(k)\j/dxk > p(@r(eyg Trl)P (U (i) [T g5 70)
Xr(k)\j X (g

Pk, Bk |5, T ()\js Thes s U (k)\j3 VN5

Wr (k)\d

= / dxw(k)\g/dﬂ?k Z k)\pka) H P(Um—k|Tmi Vs Van(m))P(Wk, £k Tk Un (k)i Ve) - (99)
X (i)\g (k)\d

where we |dent|fyp(um_>k|:vm,7m,7an(m)) as P’ ., (um—r|zm) and substituted in EQ.(99) and HQ.(98) yields
the cost recursion Eq[s(23) and24). [ |
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Fig. 6. Regarding th&0 randomly deployed nodels: [&).. through the Matern covariance functign,](b) UG generated sgarsified Gabriel
Graph of the deploymerf,_{c) the polytree generated fromaarsipg tree of the Gabriel Graph of the deployment after sariyg selecting6
childless nodes; parentless and childless nodes are shpwedliriangles and red squares (e.g. nadgrespectively[ (d) converged estimation
rule local to (childless) noda0 for A = 0.005 at the end of6 iterations,[(d) approximate performance points of corsergtrategies for
A = 0.0005, 0.0015..8,.,0.158 and 10 sample sets. The upper and lower bounds of the problem armybeic and the centralized MSEs
shown by the solid red line and the dashed blue line respdytiv

50 randomly deployed nodes and the polytree generated fromaansp tree of the Gabriel Graph of the deployment after oariyg
selecting6 childless nodes; parentless and childless nodes are shpwedhriangles and red squares (e.g. natgrespectively[ (d) converged
estimation rule local to (childless) nod® for A = 0.005 at the end of iterations[(d) approximate performance points of coreergtrategies
for A = 0.0005, 0.00158, ...,0.158 and 10 sample sets. The upper and lower bounds of the problem amaybpic and the centralized MSEs
shown by the solid red line and the dashed blue line resgdetfif)] Polytree with dead links after convergence.
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and squared error estimation error penalty for the chitdtesdes[ (B) Algorithni]5 fos UGs for random deployments and férsample sets
for each deployment. The parameteiis selected as\ = 0.005,0.05 considering al—bit selective communication scheme and squared error

estimation error penalty for all nodes. Note that the céined MSE (showed by a solid red-line in both figures) is saareafi deployments

whereas the myopic MSE (the lower bound) vary for each depéy.

N,

.,ip do not have a common ancestor and the child nodes

Fig. 8. A polytree from the viewpoint of nodg: The parent nodes;, i2,

ki, k2, ..., kc do not have a common descendant.
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