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We construct a uni�ed semiclassical theory of charge and spin transport in chaotic ballistic and
disordered di�usive mesoscopic systems with spin-orbit interaction. Neglecting dynamic e�ects of
spin-orbit interaction, we reproduce the random matrix theory results that the spin conductance
�uctuates universally around zero average. Incorporating these e�ects in the theory, we show that
geometric correlations generate �nite average spin conductances, but that they do not a�ect the
charge conductance to leading order. The theory, which is con�rmed by numerical transport calcu-
lations, allows us to investigate the entire range from the weak to the previously unexplored strong
spin-orbit regime, where the spin rotation time is shorter than the momentum relaxation time.

PACS numbers: 73.23.-b, 85.75.-d, 72.25.Dc

At low temperatures, linear electric transport proper-
ties of complex mesoscopic systems are statistically deter-
mined by the presence of few symmetries only, most no-
tably time-reversal and spin rotational symmetry [1, 2].
This character of universality is believed to be indepen-
dent of the source of scattering in the system, and to exist
in both ballistic chaotic quantum dots or di�usive disor-
dered conductors [3]. Universality in electric transport
holds not only for global properties such as the conduc-
tance, but also for correlators of transmission amplitudes
between individual channels. Thus, it is natural to ex-
pect that all transport properties that depend solely on
the scattering matrix are universal as well. This conjec-
ture has been theoretically veri�ed for all charge trans-
port properties, under the sole assumption that scatter-
ing generates complete ergodicity. Inspired by Ref. [4],
several recent theoretical works [5�7] have further sug-
gested that spin transport in mesoscopic systems with
spin-orbit interaction (SOI) also displays universal ran-
dom matrix theory (RMT) behavior. The agreement be-
tween numerics for a disordered lattice [8] and the RMT
prediction [4] for the mesoscopic �uctuations of the spin
Hall conductance indeed seems to imply that RMT uni-
versality also exists in magnetoelectric transport.

In this work, we go beyond the conventional semiclas-
sical theory of transport and show that even when all re-
quirements for universality are met and the �uctuations
of the spin and charge conductance as well as average
charge conductance remain universal, the average spin
conductance (SC) is �nite in disagreement with the RMT
prediction. This e�ect originates from the SOI through
which the electron spin perturbs the electron dynamics in
such a fashion that, certain dynamical correlations sur-
vive despite the self-averaging nature of ergodic dynam-
ics. These correlations depend on the geometry of the
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Figure 1: (Color online) Spin-dependent transmission coef-
�cients T

y0
21 , Eq. (3), for (a) weak and (b) extended range

of SOI showing the crossover from cubic (green line) to linear
(blue line) behavior for the two-terminal chaotic quantum dot
shown in the inset of panel (a). (c) Spin current polarization
angle θ = arctan(Ty0

21/T
x0
21 ), for the system shown in the inset,

where the right lead encloses an angle of ϕ with the x-axis in
the linear (cubes) and the cubic (circles) regimes.

system, namely the relative positions of the leads con-
necting the system to external electronic reservoirs as
well as the form of the SOI. As an example, we consider
a two-dimensional quantum dot with Rashba SOI [9] and
�nd that the average two-terminal SC Gµ is proportional
to (ẑ×R)µ. Here the vector R connects the two termi-
nals, ẑ is the unit vector perpendicular to the dot and µ
is the spin component. This is illustrated in Fig. 1(a) for
the corresponding spin transmission. The polarization of
the average spin current is thus determined by the di-
rection of the average electronic �ow. In bulk di�usive
systems, when the mean free path ℓd is shorter than the
spin rotation length, this e�ect reduces to the extraction
of the current-induced spin accumulation (CISA) and the
spin Hall e�ect (SHE) [10�12] in �nite systems. We stress
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however that the consequences of these geometric corre-
lations have been considered in neither charge nor spin-
transport in quantum dots. Moreover, our calculations
extend the existing theory for CISA and SHE in �nite dif-
fusive systems to the strong SOI regime (i.e. ℓd is longer
than the spin rotation length). It is of practical impor-
tance to point out that the process that leads to �nite
SC is robust against temperature smearing or dephasing.
From the point of view of mesoscopic spintronics, this
opens up possibilities towards an electrically controlled
generation and detection of pure spin currents, since the
uncontrolled mesoscopic �uctuations are suppressed by
simply raising the temperature.
We consider a mesoscopic quantum dot with no par-

ticular spatial symmetry as sketched in the insets of
Fig. 1. We treat impurity and boundary scattering on
equal footing and consider di�usive as well as ballistic
chaotic charge dynamics. The dot is connected to two
or more external leads. For simplicity, we assume ideal-
ized re�ectionless leads in which the SOI vanishes. The
realistic case of �nite SOI in the leads can then be ob-
tained by combining the scattering matrices of the realis-
tic leads with that of the quantum dot. This choice allows
us to uniquely de�ne transport spin currents through a
cross-section of the leads without the ambiguities that
plagued bulk calculations [13]. The leads are maintained
at di�erent electrochemical potentials eVi, but have no
spin accumulation. The scattering approach to trans-
port gives the spin and charge currents in lead i as
Iµi = e2

h

∑
j T

µ0
ij (Vi−Vj) [14]. Here the generalized, spin-

dependent transmission coe�cients Tµν
ij are obtained by

summing over all transport channels in leads i and j [4, 7],

T
µν
ij =

∑
m∈i,n∈j

tr[t†mnσµtmnσν ], µ, ν = 0, x, y, z . (1)

Here, σµ are Pauli matrices (σ0 is the identity matrix)
and the trace is taken over the spin degree of freedom.
The transmission amplitudes in Eq. (1) can be expressed
in terms of the Green's function [15]. Next, we obtain the
full Green's function GR(r, r′) by either (i) the conven-
tional Born approximation for impurity scattering inside
the conductor or (ii) by a multiple re�ection expansion
for boundary scattering [16, 17]. In case (ii), GR(r, r′) is
expressed as an iterative solution of

GR(r, r′) = GR
0 (r, r

′)− 2

∫
dα ∂GR

0 (r, α)G
R(α, r′), (2)

where ∂GR
0 (r, α) = n̂α · ∇GR

0 (r,x)|x=α, with n̂α the (in-
ner) unit normal vector at the boundary point α. Finally,
we evaluate the surface integrals in Eq. (2) asymptoti-
cally as kFL → ∞, where kF is the Fermi wavenumber
and L is the linear size of the conductor [17]. We obtain

T
µ0
ij =

∫
i

dy

∫
j

dy0
∑
γ,γ′

AγA
∗
γ′ei(Sγ−Sγ′ )tr[VγσµV

†
γ′ ], (3)

where the sums run over all trajectories γ starting at y0
on a cross-section of the injection lead and ending at y
on the exit lead. The classical action of γ is Sγ in units
of ~ and its stability is given by Aγ which includes a
prefactor (2πi~)−1/2 as well as Maslov indices. For the
spin dependent part, we specialize to the Rashba SOI
HR = (~kα/m)(pxσy − pyσx), where k−1

α is the spin pre-
cession length [9]. We then obtain

Vγ =

Nγ∏
i=1

Vi,γ =

Nγ∏
i=1

Ui,γ(1 + δUi,γ + ξ δUhw
i,γ ) (4)

δUi,γ =
kα
4kF

(
sin(kα|ri|)

kα|ri|
− 1

)
η · r̂i (5)

δUhw
i,γ =

kα
2kF

(
sin(kα|ri|)

kα|ri|
− 1

)(
η · r̂i −

η · n̂i

cos θi

)
+

σz sin θi
2kF|ri| cos θi

(1− cos(kα|ri|)) . (6)

Here ξ = 0 for a disordered system with weak, short-
ranged impurities and ξ = 1 for a ballistic quantum dot
with hard-wall con�nement or a disordered system with
strong, extended impurities. In both cases γ consists of
segments ri = (xi, yi, 0) with i = 1, 2, ...Nγ , r̂i = ri/|ri|,
n̂i is the (inner) unit normal vector and θi is the angle of
incidence at the ith re�ection point, η = ẑ×σ and Ui,γ =
exp[−ikαη·ri/2] is the Rashba spin rotation matrix along
that segment. We note that there are also corrections to
Aγ which we have already ignored here, because they do
not contribute to the SC. The Eqs. (3-6) fully describe
spin and charge dynamics of coherent conductors.
The conventional semiclassical theory is obtained via

the approximation Vγ ≈
∏Nγ

i=1 Ui,γ , which leads to the
universal RMT predictions for charge transport [18, 19].
We now show that this approximation also leads to
RMT results for spin transport. We �rst start from
the diagonal approximation, where γ = γ′, and obtain
tr[VγσµV

†
γ ] = 0, showing that the diagonal contribu-

tion to the spin current vanishes. The next-order con-
tributions within the conventional semiclassical theory
of transport are the loop corrections, in which a self-
crossing trajectory γ, is paired with a path γ′ avoid-
ing the crossing and going around the loop in the the
opposite direction [20, 21]. Along the loop, γ′ is the
time-reversed of γ, and the loop contributions are pro-
portional to ⟨tr[Uγl

σµUγl
]⟩ , where Uγl

gives the spin
rotation along the loop only. For large SOI, Uγl

is ran-
dom, thus averaging produces vanishing weak localiza-
tion correction to the SC. For weaker SOI, we expand
all spin rotation angles to second order in kαL to obtain⟨
tr[Uγl

σµUγl
]
⟩
≈ 2iδµz

⟨
sin

(
k2α δAγl

)⟩
. The area di�er-

ence δAγl
is given approximately by twice the directed

area of the weak localization loop. For a chaotic sys-
tem, the areas are symmetrically distributed around zero,
thus the average vanishes. We note that extending the
semiclassical approach of Ref. [22] to the calculation of
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the variance of the SC, one reproduces the leading-order
RMT results of Ref. [4]. Details of this calculation will be
presented elsewhere [17]. We conclude that conventional
semiclassical theory, which neglects e�ects of spin on the
charge dynamics, only reproduces RMT predictions.
We next include the e�ects of SOI on the electronic dy-

namics and consider a two-dimensional conductor which
can be either a ballistic quantum dot with hard-wall con-
�nement, or a disordered system with short-ranged im-
purities. To do this, we go back to Eqs. (4-6) and include
the corrections to the amplitude A and the spin matrix
U to order O(kα/kF) and O(1/kF|ri|) . We now assume
that di�erent trajectory segments are uncorrelated and
de�ne Ul,γ =

∏Nγ

i=l+1 Ui,γ to obtain

⟨tr[Vγ V
†
γ σµ]⟩ =

⟨
Nγ∑
l=1

tr
[
Ul,γ Vl,γV

†
l,γ U

†
l,γ σµ

]⟩
γ

. (7)

We see that spin currents have contributions from ev-
ery trajectory segment, which are further rotated by
the �uctuating spin-orbit �elds of the subsequent re�ec-
tions. We distinguish three di�erent regimes that de-
pend on the balance between linear system size L, the
mean distance between (boundary or impurity) scatter-
ings ℓ = ⟨|rl|⟩, and SOI length k−1

α : (i) the spin-ballistic
small SOI limit kαL, kαℓ ≪ 1, (ii) the spin-di�usive limit
kαℓ ≪ 1 ≪ kαL, (iii) the spin-chaotic strong SOI limit
kαL, kαℓ ≫ 1. In regimes (i) and (iii), the orbital dy-
namics can be chaotic ballistic or di�usive depending on
the ratio between ℓ and L. We will be focusing on long
ergodic or di�usive trajectories γ for which we ignore the
averages ⟨sin θi⟩γ and ⟨n̂i⟩γ for all three regimes, save for
the case of a quantum dot in regime (i) (see below).
In the small SOI regime (i), we expand the rhs of

Eq. (7) to leading order in kαℓ setting Ul,γ = 11 and
1− sin(kα|rl|)/kα|rl| ≃ (kα|rl|)2/6 in Eqs. (5,6). We get

⟨tr[Vγ V
†
γ σµ]⟩ ≈

k3α(1 + 2ξ)

6kF

⟨
Nγ∑
l=1

|rl|(ẑ× rl)µ

⟩
γ

. (8)

We now perform the average ⟨. . .⟩γ over the set of tra-
jectories γ. Although individual ri are pseudorandom
in length and direction, being generated by the cav-
ity's chaotic dynamics, they satisfy

∑
i r

γ
i ≈ Rij , where

Rij is the γ-independent vector connecting the injec-
tion and exit terminal. We thus obtain ⟨tr[Vγ V

†
γ σµ]⟩ =

C[k3αℓ(1 + 2ξ)/(3kF)](ẑ ×Rij)µ. Here C is a number of
order one that depends on geometric details of the cavity.
This factor multiplies the independently averaged orbital
terms in Eq. (3) for γ = γ′, which we compute as in, e.g.
Ref. [21]. We estimate ℓ = ⟨|rl|⟩ ≃ πA/L for a chaotic
dot of area A and perimeter L, and ℓ = ℓd for a di�usive
system. We �nally obtain

⟨Tµ0
ij ⟩ = C

k3αℓ(1 + 2ξ)

3kF
(ẑ×Rij)µ×

{
NiNj

NT
, ℓ & L ,

kFWℓ
L , ℓ ≪ L ,

(9)

with the number Ni = Int(kFWi/π) of channels in lead i,
NT =

∑
i Ni and W = minWi the width of the narrowest

lead. In the ballistic limit, this formula has an additional

term k3
αℓ2ξNiNj

3kFN2
T

∑
l Nl(ẑ× R̂l)µ, where Rl is the average

momentum direction of electrons entering through lead
l, originating from nonzero ⟨n̂i⟩γ [17]. We see that the
average spin-dependent transmission, and thus the aver-
age spin currents, are determined by the relative position
of the injection and exit lead and are proportional to the
classical conductance from j to i.
In the spin-di�usive case (ii), L ≫ k−1

α ≫ ℓ, the spins
precess around randomly oriented SOI �elds, thus relax-
ing via the Dyakonov-Perel mechanism. In particular, we
can no longer set Ul,γ = 11 in Eq. (7). Instead, we assume
that γ is a stochastic sequence of segments with random
orientations φi, which determine the spin rotation Ui,γ .
The sequence of rotations is computed by averaging over
φi. For a general Pauli spin matrix s · σ one has∫

dφi

2π
Ui,γ s · σU†

i,γ = cos2(kα|ri|/2) s · σ (10)

+(|ri|2/2) sin2(kα|ri|/2)η (s · σ)η .

This average is di�erent for in-plane and out-of-plane po-
larization, which is the origin of the anisotropy of the
Dyakonov-Perel spin-relaxation time. In our case, the
generated spin is in-plane and the second term in Eq. (10)
vanishes [24]. We have

⟨Vγ V
†
γ ⟩ − 1

1 + 2ξ
≈ −

⟨
Nγ∑
l=1

e−k2
αℓvFτl

kα
2kF

k2αℓ

6
η · rl

⟩
γ

, (11)

where we used kαℓ ≪ 1 ≪ kαL, approximated |ri| ≈ ℓ,
∀i and introduced the duration τl of the �rst l segments
of γ. For each possible choice of l, the spin rotation
thus separates into a spin independent piece for segments
1, · · · , l−1, a spin generation piece on segment l, and spin
relaxation pieces on segments l + 1, · · · , Nγ . Fixing the
endpoint rl of segment l and summing over all possible γ
we obtain that the SC is proportional to a product of (i) a
di�usive probability P (xl,xj) to go from the injection
lead to rl, (ii) a spin generation factor (1+2ξ)k3αℓη ·(xl−
xl′)/12kF times the probability of ballistic propagation
from xl to xl′ , (iii) a di�usive probability to propagate
from point xl′ to the exit lead times the probability that
the spin survives this di�usion. Thus we have

⟨Tµ0
ij ⟩ ∝ ϵ3µν

k3αℓ

kF

∫
dxi dxj dxl dxl′P (xl,xj)(xl − xl′)

ν

× (1 + 2ξ)
e−|xl−xl′ |/ℓ

2π|xl − xl′ |
P (xi,xl′)e

−kα|xl′−xi|. (12)

Since the length scale characterizing P (xl,xj) is L, we
evaluate the integrals above asymptotically in the limit
kαℓ ≪ 1 ≪ kαL. After some algebra we �nally obtain

⟨Tµ0
ij ⟩ ∝ sgn(kα)(1 + 2ξ)

k2αℓ
2W

L2
(ẑ×Rij) , (13)
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up to a factor of order unity depending on details of how
the leads (with widthW ) are attached to the cavity. Not-
ing that for our geometry Rij is in the direction of the
current �ow and its magnitude is L, we obtain that the
spin conductivity is σs ∝ ek2αℓ

2 in agreement with the
spin di�usion equation calculations [10, 12].

Spin chaos regime (iii): Similar to regime (ii), we
average over uncorrelated direction angles θi but do
not Taylor-expand sin(kα|rl|)/kα|rl| − 1. We instead
take the average over the segment lengths |r|i as∏Nγ

i=l+1⟨cos2(kα|ri|/2)⟩ ≈ 2Nγ−l in a chaotic/stochastic
system with kαL ≫ 1. Eq. (11) is then replaced by

⟨Vγ V
†
γ ⟩ − 1

1 + 2ξ
=

⟨
Nγ∑
l=1

2l−Nγ
kα
2kF

(
sin(kα|rl|)

kα|rl|
− 1

)
η · r̂l

⟩
γ

.

Averaging over γ we see that the dominant contribu-
tion is the last term. We thus approximate the sum by
its last term, and take kα|rNγ | ≃ kαL ≫ 1 to obtain
⟨Vγ V

†
γ ⟩γ = 1+(C ′kα/2kF)η · R̂j . Here C ′ is (1 + 2ξ)

times a constant of order unity that depends on the de-
tails of the scattering near the lead. We �nally obtain
the transmission coe�cient

⟨Tµ0
ij ⟩ = C ′ kα

2kF
(ẑ× R̂j)µ ×

{
NiNj/NT ℓ & L ,
kFWℓ/L ℓ ≪ L .

(14)

Equations (9), (13) and (14) are our main results.
They show how a �nite SC emerges from classical geomet-
ric correlations depending on the positions of the leads.
These equations can be straightforwardly extended to
Dresselhaus SOI by substituting ẑ × Q → (Qx,−Qy, 0)
for Q = Rij [Eqs. (9) and (13)] or Q = Rj [Eq. (14)].
To check these predictions we performed quantum

transport calculations for a tight-binding Hamilto-
nian [23] with Rashba SOI and evaluated the spin-
resolved transmission probabilities between two leads as
de�ned in Eq. (1) for both the chaotic and di�usive cases.
We computed the transmission for chaotic cavities, shown
as insets in Fig. 1, averaged over 2000 di�erent con�gu-
rations of the Fermi energy and the position and ori-
entation of the central antidot. Panel a) shows for the
small α = a kα regime (i) that the numerically obtained
T
y0
21 (dots) for the cavity in the inset agrees very well

with the predicted cubic behavior, Eq. (9), (solid line) for
C =1. In panel b) T

y0
21 is depicted for the same chaotic

cavity (black circles) and for a square cavity with Ander-
son disorder (violet triangles) for the entire range from
weak to strong SOI (regime (i) to (iii)) demonstrating
the crossover from cubic to linear behavior according to
Eqs.(9) and (14). In panel c) we numerically con�rm
the predicted direction of the in-plane spin polarization
θ = arctan(Ty0

21/T
x0
21 ) for regime (i) (dashed line, Eq. (9))

and regime (iii) (solid line, Eq. (14)) by rotating the right
lead around the semicircle billiard shown in the inset.

In conclusion, we have presented a semiclassical calcu-
lation of spin transport in mesoscopic conductors which
incorporates next-to-leading order corrections to the
semiclassical Green's function. We showed that in con-
trast to RMT predictions, the average SC does not van-
ish, even if all the conventional conditions for universality
are met. Our method moreover allowed us to investigate
the strong SOI regime for �nite di�usive systems for the
�rst time, Eq. (14).
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