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ABSTRACT

Digital identity and trust management mechanisms play an im-
portant role on the Internet. They help users make decisions on
trustworthiness of digital identities in online communities or e-
commerce environments, which have significant security conse-
quences. This work aims to contribute to construction of an analyt-
ical foundation for digital identity and trust by adopting a quanti-
tative approach. A game theoretic model is developed to quantify
community effects and other factors in trust decisions. The model
captures factors such as peer pressure and influence of community
leaders. The existence and uniqueness of a Nash equilibrium so-
lution is studied and shown for the trust game defined. In addi-
tion, synchronous and asynchronous update algorithms are shown
to converge to the Nash equilibrium solution. A numerical analysis
is provided for a number of scenarios that illustrate the interplay
between user behavior and community effects.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Communications Ap-
plications; G.1.6 [Optimization]: Gradient methods; K.4.4 [Electronic
Commerce]: Security
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1. INTRODUCTION
Digital identity constitutes one of the building blocks of theWorld
Wide Web for all types of activities ranging from social networking
to e-commerce. During the explosive growth phase of the Web, a
variety of digital identity and trust management mechanisms have
been developed organically to satisfy the emerging needs. How-
ever, most of these existing solutions have been either ad-hoc or
heuristic in nature [1]. An analytical foundation for digital iden-
tity and trust can play an important role in continuing growth of
interactive nature of Web services and social networks.
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Game theory provides a rich set of mathematical abstractions and
frameworks suitable for a quantitative treatment of digital identity
and trust problems. Since it studies multi-person decision making
with conflicting interests, game theory naturally supports develop-
ment of an analytical foundation in this area. Quantitative models
are useful for generalization of problems, combining the existing
ad-hoc schemes, and opening doors to novel solutions. Hence, they
bring a unique advantage over heuristic schemes which are prob-
lem specific and error prone. This paper presents such a quanti-
tative model that formalizes community interactions in the context
of trust in online environments. The objective is to gain additional
insights to basic principles and develop algorithms that address ex-
isting and future digital identity and trust-related problems.
Digital trust and reputation are two concepts that are closely re-

lated to each other. An individual often decides to trust a digital
identity or not based on the reputation of that identity. Therefore,
reputation of a digital identity can be seen as a aggregate metric
which is a function of the trust of community members in that dig-
ital identity. Online environments allow for quick dissemination
and sharing of such trust decisions (user opinions) through rating
systems. It is worth to noting that the term “trust” is used in this
paper in a social context, in the sense of trusting a digital identity.
This should be distinguished from trust in “trusted computing” or
“trusted systems”, where the term denotes consistent behavior en-
forced by hardware in the former and reliance upon a system to
enforce a specified security policy in the latter.
The game theoretic model in this paper differentiates from ear-

lier studies [2–7] by taking into account community influences and
interactions explicitly. Factors such as peer pressure, personality
traits such as timidness or reluctance to pass judgment, and in-
fluence of community leaders are investigated in a noncooperative
game setting. The players (users) take part in a digital trust man-
agement system where they explicitly share their opinions on an ex-
ternal digital identity (e.g. seller in e-commerce). After a dynamic
evaluation process, the resulting opinion is a mixture of their own
individual assessment and community influences. The effect of var-
ious parameters on the final outcome as well as equilibrium and
convergence properties of the iterative process are rigorously stud-
ied. The approach and results are illustrated and discussed based
on three example scenarios.
The main contributions of this paper include: (a) a novel game

theoretic model of community effects on trust in digital identities
that captures factors such as peer pressure and influence of commu-
nity leaders (b) rigorous study and proof of existence and unique-
ness of a Nash equilibrium in the noncooperative digital trust game
(c) global convergence analysis of parallel update algorithms for
solving the trust game in a distributed manner.
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2. DIGITAL TRUST GAME
Consider a set of agents, A := {a1, . . . , ai, . . . , aN}, which
can represent users of a social network (e.g. Facebook or Slashdot)
or participants in an e-commerce environment such as the one pro-
vided by Amazon or Ebay. For simplicity, each agent is associated
with a single digital identity which is issued by a digital identity
provider. This role is customarily played by the respective owner
of the social networking or e-commerce site itself as in the case of
Amazon, Facebook, or Ebay.
The digital trust game is played among N agents in the set A,
who evaluate a single given identity or seller s over a certain finite
time interval. In the remainder of the paper the terms agent, user,
and buyer as well as the terms evaluated identity and seller will be
used interchangeably without any loss of generality. It is assumed
here that the seller has a stationary initial reputation over this time
window. The perceived initial image of the seller by individual
agents may, however, vary according to personal experiences and
observations. The digital trust game allows agents to form new
opinions on the seller by sharing their evaluations and may result
in a community reputation (aggregate trust) that differs from the
initial reputation.
Given the initial reputation of the seller, rs ∈ R, the initial image
(or trust level), ei ∈ R perceived by an agent ai can be considered
as a noisy measurement of rs and defined by

ei := rs + ni. (1)

The bias term, ni, captures the individual variation in initial opin-
ion of agent i on the seller. This may be a result of varying personal
experiences or observational limitations and distortions. Depend-
ing on the specific system, the vector n = [n1, . . . , nN ] can be
modeled as additive (zero-mean) Gaussian noise.
Using the initial image ei as a starting point, an agent ai forms an
opinion (trust), xi ∈ R, of the seller after exchanging information
with the rest of the community. The individual opinion or trust, xi,
is influenced by various community effects as well as individual
properties of the agent. The opinions of all the agents represented
by the vector

x = [x1, . . . , xN ] ∈ X ⊂ R
N

define the decision space of the digital trust game. In many cases,
the opinions are time-dependent as they are formed over time through
an iterative update process.
In the game, xi = 0 corresponds to a neutral or default opinion
of agent ai on the seller. Consequently, the positive values, xi > 0
represent a positive opinion and negative ones, xi < 0, a negative
opinion. The same convention is also applied to the variables rs

and e, which have similar interpretations.
The agents’ opinions are not only a function of the initial reputa-
tion and image but also of factors capturing community influences.
The decision process of an agent ai can be modeled by the mini-
mization of a well-defined cost function that quantifies the factors
affecting the opinion of the agent. One possible cost function of
agent ai adopted in this paper is

Ji(xi,x−i) :=
αi

2
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where 0 ≤ αi, βi, γi ≤ 1, αi + βi + γi = 1 ∀i, and x−i :=
[x1, . . . , xi−1, xi+1, . . . , xN ]. It is naturally possible to consider
different types of cost functions. This particular one is chosen for
its nice analytical properties as a first order approximation.
The first term, αix

2
i , in the cost function (2) quantifies the timid-

ness of agent ai. The term quadratically penalizes any positive or
negative opinion of the agent forcing it to the neutral or zero opin-
ion. Agents with different properties can be represented by choos-
ing the weighting parameter α appropriately. A timid agent, who is
reluctant to pass judgment, is expected to have a high α whereas a
self-assertive or opinionated one is captured by a small α parameter
value. The second term in the cost function quantifies the influence
of peer pressure on the agent. Here, peer pressure is modeled us-
ing a quadratic cost on any opinion deviating from the mean value
of others. An individualistic or independent agent is represented
with a small β value. On the other hand, an agent who follows the
crowd is expected to have a high-valued β parameter. The third
term, γi(xi − ei)

2, captures the effect of the initial image ei of an
agent ai on the final opinion xi. A steadfast agent who does not
change own opinion as a result of community interactions or shar-
ing is represented by a high γ value. On the other hand, an agent
who updates its opinion easily has a small γ parameter in the re-
spective cost function. Notice that the weighting parameters α, β,
γ are normalized in such a way that the factors discussed above are
balanced with each other. Hence, the inherent trade-offs between
the factors are captured by the cost function and the game.
The set of players or agentsA, the decision spaceX , and the cost

functions Ji ∀i define together the digital trust game, G1(A,X , J).
In this noncooperative game each individual agent ai minimizes
own cost Ji by choosing own opinion (trust decision), xi ∈ R,
given the opinions (trust decisions) of others, x−i, i.e.

xi = arg min
xi

Ji(xi,x−i). (3)

2.1 Equilibrium Analysis
The well-known concept of Nash equilibrium [8] provides an

appropriate solution for the digital trust game. In this context, Nash
equilibrium is defined as a set of agent opinions x∗ of a given seller
(and the corresponding costs J∗), with the property that no agent
has any incentive for modifying own opinion while the other agents
keep theirs fixed.
The opinion of an agent given the opinions of others is uniquely

determined by the best response function defined in (3). Since Ji is
a polynomial strictly convex in xi, the minimization in (3) admits a
unique globally optimum solution. Consequently, the decision, xi,
of agent ai is a unique response to any given x−i.
If the agents (players) are symmetric in their properties, i.e.

αi = α, βi = β, and γi = γ ∀i, then the Nash equilibrium
solution of the digital trust game can be explicitly characterized
with an analytical expression. Let x̄ =

P

i
xi and ē =

P

i
ei.

Due to strict convexity of J , it is sufficient to check the first order
necessary condition for optimality

∂Ji

∂xi

= 0 ⇒ x
∗
i =

0

@

β
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X
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x
∗
j + γei

1
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After simple algebraic manipulations, the unique Nash equilibrium
of the game G1 is computed as

x
∗
i =

γ

N − 1 + β

„

β

1 − β
ē + (N − 1) ei

«

∀i.

Even when the agents are not symmetric, the uniqueness of
Nash equilibrium is preserved. The best response functions of the
agents can be written at the Nash equilibrium, x∗, in matrix form
x
∗ = Ax

∗ + c, where ci = γiei ∀i and the matrix A is defined
accordingly. Hence, the Nash equilibrium is

x
∗ = (I − A)−1

c,
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where I is the identity matrix and (·)−1 denotes matrix inversion
operation. Notice that the matrix I − A is diagonally dominant as
Aii = 1 >

P

j
|Aij | = βi ∀i. Therefore, it is of full rank and

invertible. Consequently, the digital trust game G1 always has a
unique Nash equilibrium solution.

2.2 Dynamics and Convergence
The agents participating in the digital trust game usually cannot
reach a stable opinion in a single round. They may also change their
decisions dynamically while interacting with each other, unless the
system is at the Nash equilibrium. These agent dynamics can be
modeled using iterative update algorithms. Parallel and Random
Update Algorithms and their convergence analysis are of practical
importance and provide valuable insights into the dynamical as-
pects of digital reputation systems.
In Parallel Update Algorithm (PUA), each agent ai updates
own opinion xi(t) together (in parallel) with all other agents at the
same discrete time instances t = 1, 2, . . . according to its own best
response function:

xi(t + 1) =
βi

N − 1

X

j 6=i

xj(t) + γiei, ∀i. (4)

Therefore, PUA is also known as synchronous update algorithm.
Algorithm 1 summarizes the steps of the PUA.
From the Perron-Frobenius theorem [9], the eigenvalues, λ of
the matrixA satisfy

min
i

βi ≤ |λ| ≤ max
i

βi, i = 1, 2, . . . , N.

Hence, all of the eigenvalues of the linear system in (4) are inside
the unit circle, and the PUA globally geometrically converges to
the unique Nash equilibrium of the game, x∗.

Algorithm 1 Parallel Update Algorithm (PUA)

Input: Individual trust values e, convergence threshold ε.
Initialize trust values xi(0) = ei ∀i and time step t = 0.
while ‖x(t + 1) − x(t)‖ > ε do

t = t + 1
Compute s(t) :=

P

i
xi(t)

for i = 1 to N do

Compute xi(t + 1) =
βi

N − 1
(s(t) − xi(t)) + γiei.

end for

end while

In many practical cases, such as in peer-to-peer (P2P) networks
or e-commerce, it is not always possible to ensure that all agents
update their trust decisions sequentially or synchronously in paral-
lel. For example, some of the agents may be offline or their deci-
sion update messages may be received with delay. Asynchronous
Update Algorithm (ASU), where only a random subset of agents
update their opinions at a given time instance, provides a realistic
alternative schemes for such settings.
The ASU can be seen as a natural generalization of the PUA due
to its parallel and asynchronous nature. ASU is a more suitable
scheme for practical scenarios when it is difficult for the agents to
synchronize their exact update instances. The ASU is defined as

xi(t + 1) =

8

<

:

βi

N − 1

P

j 6=i
xj(t) + γiei ,if ai ∈ U(t)

xi(t) ,if ai ∈ Ū(t)
, (5)

where the random set U(t) represents the updating agents at time
t and Ū(t) the non-updating agents. Naturally, U(t) ∪ Ū(t) = A.

Algorithm 2 summarizes the steps of the ASU.

Algorithm 2 Asynchronous Update Algorithm (ASU)

Input: Individual trust values e, convergence threshold ε.
Initialize trust values xi(0) = ei ∀i and time step t = 0.
while ‖x(t + 1) − x(t)‖ > ε do

t = t + 1
Compute s(t) :=

P

i
xi(t)

for i = 1 to N do

if agent i updates then

Compute xi(t + 1) =
βi

N − 1
(s(t) − xi(t)) + γiei.

else

No change in decision, xi(t + 1) = xi(t).
end if

end for

end while

The ASU converges to the unique Nash equilibrium of the trust
game as it satisfies the synchronous convergence condition, which
follows from the spectral radius of the matrix |A| being less than
one, ρ(|A|) < 1, and the box condition. Hence, global geometric
convergence of ASU is established by Proposition 3.1 [10, p. 435].
For a scenario with 20 symmetric agents and parameters,

[α, β, γ] = [0.2, 0.3, 0.5], the iterative evolution of trust under
PUA is shown in Figure 1. The speed of convergence to Nash equi-
librium values, which are shown with dashed lines in the figure, is
geometric.
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Figure 1: Evolution of trust under parallel update algorithm.

3. NUMERICAL ANALYSIS
This section presents a numerical analysis of the digital trust

game using based on example scenarios, which illustrate the un-
derlying concepts discussed such as community effects and agent
properties. In each of the following scenarios, the digital trust game
is played among 20 agents, who have a random initial trust level
(image) of the seller, ei, i = 1, . . . , 20. The same initial values
are used for all tests. Since the convergence properties of various
update schemes are already established, the focus here is on the ini-
tial and final (Nash equilibrium) trust values of the agents, which
are depicted with dark and light bars, respectively.
The first scenario studies the effects of peer pressure on agents,

for example, in an online community. If the term β, which quan-
tifies the influence of peer pressure on the agent is dominant in
the cost function (2), then the agents have a strong incentive for
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not to deviate from the mean value of others. The parameters are
[α, β, γ] = [0.2, 0.6, 0.2]. The results show that the trust levels of
all agents converge close to a common value, which can be inter-
preted as community opinion, as illustrated in Figure 2.
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Figure 2: Initial and Nash equilibrium trust values for agents under
strong peer pressure.

The second scenario investigates the case when the agents are
timid, i.e. undecided or reluctant to trust or mistrust, is captured
by dominant α value in the cost function. Such agents are hes-
itant to trust or mistrust a digital identity which causes the trust
decisions converge to values close to zero (neutral opinion). The
initial and final Nash equilibrium values for timid agents with the
parameter set [α, β, γ] = [0.6, 0.3, 0.1] are depicted in Figure 3.
On the other hand, if the agents are self assertive (opinionated)
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Figure 3: Initial and Nash equilibrium trust values for timid agents.

which is captured by having a dominant γ value, they will stick
to their initial opinion on the reputation of seller. The results of a
numerical analysis with self assertive agents and the parameter set
[α, β, γ] = [0.1, 0.2, 0.7] are illustrated in the Figure 4. It is ob-
served that there are only slight deviations in agents opinions from
their initial values.

4. CONCLUSION
This paper presents a game theoretic model for studying evolu-
tion of trust in online communities. The quantitative model takes
into account community influences and interactions between indi-
vidual agents explicitly. Factors such as peer pressure and person-
ality traits such as timidness or reluctance to pass judgment are
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Figure 4: Initial and Nash equilibrium trust values for self assertive
agents.

investigated in a noncooperative game setting. The effect of var-
ious parameters on the final outcome as well as equilibrium and
convergence properties of the iterative process are studied. Subse-
quently, the trust game and its parameters are numerically analyzed
in various example scenarios.
The game theoretic framework in this paper can be seen as an

initial step towards more complete and realistic models. Future
research directions include an experimental study and analysis of
the framework as well as further development of the game theoretic
model to capture additional factors such as agent inertia.
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