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We simulate the hystereses and phase transition properties of ferroelectric films with 
space charges in thick (~200 nm) and thin structures (~20 nm). Epitaxial (001) 
PbZr0.3Ti0.7O3 thin films sandwiched between metallic electrodes on (001) SrTiO3 

substrate is taken as a model system. We show that space charge accumulated near the 
metal-ferroelectric interfaces gives rise to a very strong imprint where only one 
polarization orientation is favored regardless of the sign of the external field. The space 
charges, when asymmetrically distributed, also lead to a smearing of the phase transition. 
Single-domain approximation for asymmetrical distributions of planar space charges are 
discussed.  
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1. INTRODUCTION 
 
 Developments in the integrated circuit technologies have created new demands 
for capacitive materials that sustain functionality at reduced thicknesses on dissimilar 
substrates. Ferroelectrics (FEs) have become a strong candidate in this regard owing to 
their switchable electric polarization below the Curie point, high dielectric, piezoelectric 
and pyroelectric properties. The sensitivity of ferroelectric systems to defects is well 
known since several decades and formation of defects during thin film fabrication is an 
evitable aspect that can significantly alter the properties. Defects could be that of strain-
field inducing or electric field inducing type that often lead to inhomogeneities [1]. 
Defect fields can couple to the eigen strains or the electric dipole moment magnitudes at 
relatively large distances depending on the boundary conditions. These materials are also 
wide band-gap semiconductors that produce Schottky-type interfaces when brought in 
contact with metallic electrodes. [2-6]  
 Among the defect-induced changes in properties that are often considered as loss 
of functionality, an important degradation type often observed in FEs is imprint. The 
most common characteristic of imprint is the displacement of the polarization versus the 
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applied electric field hysteresis loop along the electric field axis. This gives rise to an 
asymmetry in the remnant polarization and also an effective variation in the coercive 
field defined by an off-set, -+ -=D

��
��� , where +�

�  and -�
� are the coercive fields on 

the right and left side of the hysteresis loop, respectively. Imprinted hysteresis loops can 
emanate from variations in deposition conditions of thin film materials that are often far 
from ideal. Hence, kinetic factors play an important role in the ultimate spatial 
stoichiometry of the film. [7-10] As perovskite FEs have a mix of ionic and covalent 
interatomic bonding, local deviations from the exact stoichiometry can create frozen 
dipoles and electrostatic fields emanating from these complexes. Furthermore, it has 
often been discussed that these “defects” can then trap carriers and become p- or n-type 
centers in the deep-trap limit. [3-6, 11] As an example, the surfaces of FE thin films are 
highly susceptible to creation of oxygen vacancies during processing and an electrode-FE 
film interface is often thought to be forming a Schottky contact accompained by a 
depletion layer. While the effect of the internal electric fields due to surfaces, structural 
variations, and trapped charges, and other defect microstructures on the properties of FEs 
is well-understood, theoretical studies of the imprint phenomenon have focused on charge 
injection and frozen average electrostatic fields. [4,5,12,13,14-20] The motivation behind 
exploring the charge effects is that these formations could reduce the polarization 
stability and the dielectric response. [21, 22, 23] 

In a recent article, we showed that internal voltage off-sets and imprint can result 
from asymmetrically distributed trapped space charges described through a constant 
planar space charge density in a simple FE capacitor structure using a non-linear 
thermodynamic analysis coupled with electrostatics. [24] In that work, we accounted for 
the space charge in discrete 2D planar layers. Our current work focuses on FE films 
sandwiched between metallic electrodes and we introduce position-dependent, 
continuous distribution of space charge along the thickness of the film. These charges are 
thought as fixed-field defects and are distributed inside the film as a function of position. 
We find that hysteresis characteristics of FE films can be altered dramatically under 
asymmetric spatial variations of the space charge density. It is also shown that space 
charges in FE thin films result in variation in the FE-paraelectric phase transition (PT)  
behavior, commensurate with a reduction in the transition temperature and a smearing of 
the transition over a temperature range instead of the sharp dielectric anomaly at the bulk 
Curie temperature compared to defect-free “ideal” FEs of the same composition. 
Following the analysis of the single domain state films with perfect electrodes, we 
simulate thin films structures with dead layers and check whether asymmetrically 
distributed space charges could favor single domain states in films with thin dead layers.  

 
 
2. THEORY AND METHODOLOGY  

 
Before we proceed with the thermodynamics of a FE film with an arbitrary 

volumetric variation of space charges, we first focus on the distribution of these in 
vacuum between two planar electrodes and their potential. To study the single domain FE 
film with space charges, we form a one-dimensional system where there could either be a 
discrete or a continuous distribution of charges. The system analyzed here has its 
boundaries along the z-axis and is infinite along other directions. A simple sandwich-type 
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capacitor structure with a sheet charge situated at a point k will have an internal potential 
at a point j given by: 
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which correspond to the analytical solutions of the Poisson’s equation at all other points 
other than the charge location when the electrodes are kept at zero potential. In Eqs. (1) 
and (2), r  is the charge density, A is the area of the capacitor, L is the distance between 
the electrodes, 0e  is the permittivity of free space. The indices serve to distinguish the 

position of the sheet charge and its potential at a given location such that kj ,f  stands for 

the potential at j due to a charge density situated at a point k. For example, it is clear that 
there will be two different fields in +z and –z whose magnitudes are equal (but of 
opposite sign) when the sheet charge is in the middle of the capacitor. We note that in the 
presence of a material between the electrodes, 0e  should be replaced with �ee ×�  where 

�e  is the background dielectric constant that is basically a measure of electronic 
polarizability of the ions. For a sheet of charger  fixed in the center, the fields pointing 
along +z and –z will be 02/ er±  when there is no material and reer 02/±  in the 
presence of a dielectric. For this study, �e  is taken as 10, corresponding to an optical 
frequency refractive index of ~3.16. [25] 

In a periodic or random distribution of space charge, there can be a bias field 
along either +z or –z directions depending on the charge density as a function of position. 
We assign each discrete point k a planar charge density that is infinite along x- and y-
axes, i.e., in the plane of the film-substrate interface. Hereafter, we approximate the total 
potential at each point inside the capacitor as a sum of all potentials due to all charges in 
the system at that point (excluding the particular point itself). Using this superposition 
principle of electrostatic potential due to a charge distribution in the space between two 
electrodes, we can discrete-wise approximate the total potential, f  at a point j due to the 
space charges situated at all k in our system as: 

�=
�

��� �ff .     (3) 

Thus, jf  defines the total potential at a point j due to all charges at points k. We consider 

three cases corresponding to the following distributions: 
i) exponentially but asymmetrically decaying charge density to zero from 

interfaces 1 (bottom electrode-FE) and 2 (FE-top electrode) towards the 
interior of the film [Figure 1 (a)] along with the induced built-in fields due to 
these distributions given in Figure 1 (b), 

ii)  symmetrical charge at both interfaces decaying to zero in the middle of the 
film [Figure 1 (c)] with the corresponding built-in field in Figure 1 (c) 

iii)  random distribution of space charge throughout the entire film, and, 
iv) no space charge as the reference state.  
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The first and second distributions are chosen to simulate interfaces that either have high 
concentration of traps at the FE-electrode interfaces or are due to a Schottky-behavior 
resulting from band bending. The third case corresponds to film with high density of 
charge trapping defects throughout the volume. The total number of discrete points in the 
system is 500 and each cell length is taken as 0.4 nm, close to the unit cell parameter of 
prototypical perovskite FEs such as barium titanate [BaTiO3 (BT)] or lead zirconate 
titanate [PbZr1-xTixO3 (PZT x/1-x)] with Ti-rich stoichiometries. Once the total built-in 
potential at each point in the system is established, the local internal field E can simply be 
computed from the gradient of the potential f j along the z-axis via: 

��� f-Ñ=      (4) 

We should also mention here that the above approach is for a capacitor whose 
electrodes are kept at zero potential. In the presence of an externally applied potential, 
where experimentally one electrode often attains a particular sign while the other is kept 
at ground, the internal total potential due to the space charge distribution might vary as 
the boundary conditions change for the solution of the Poisson’s equation. Throughout 
the current work, we consider that the interaction of the applied potential with the space 
charge is via a straightforward vectorial addition of the electric fields at each point.  

We now proceed with the thermodynamics of the ferroelectric film sandwiched 
between two electrodes and how space charge is introduced to the system energy. The 
Landau-Ginzburg-Devonshire (LGD) free energy for an epitaxial monodomain (001) 
ferroelectric film on a (001) cubic substrate can be expressed as: 
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where L is the film thickness, F0 is the energy of the paraelectric state,  
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(6)  

is the energy due to the polarization Pi (i=1,2,3) in the ferroelectric state, and a i, a ij, and 
a ijk are the dielectric stiffness coefficients [26]. FE in Eq. (5) is the internal elastic energy 
due to epitaxy given by:  
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where um is the in-plane polarization-free misfit strain, �
��� 
�  is the self-strain in the 

plane of the film due to polarization along the film thickness, and Qij and Sij are the 
electrostrictive coefficients and the elastic compliances at constant polarization, 
respectively, in the contracted notation.   

The gradient energy in Eq. (5) is given by: 
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where Gij are the gradient energy coefficients.  
The last term entering Eq. (5) is the electrostatic energy. In its most general form, 

it can be expressed as: 
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 and the total field  E3 at a position j due to the electrostatic interactions is given as: 
����� ������ ��

 -+=     (10) 

In Eqs (9) and (10), EAPP is the external applied field, E(z) is the built-in field due to the 
space charges attaining its value from Eq. (4), and ED is the depolarization field arising 
due to the polarization variations at the interfaces resulting in bound charges. E(z) and ED 
are both functions of position and the latter is given as:   
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 For thin layers (at the order of a few nanometers) and highly inhomogeneous 
structures, the gradient energy may have a significant effect on polarization and cannot be 
neglected. In our calculations, we shall assume that the gradient energy is isotropic, and 
thus ���� === ������ . Furthermore, the in-plane biaxial internal stress state with 
equal orthogonal components due to epitaxy require that �� 

 = . Thus we obtain the 
following Euler-Lagrange relations from the equations of state �� � =¶¶ 
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where the �
�a , �

��a , �
��a  are the renormalized dielectric stiffness coefficients, modified 

by the misfit strain, the depolarizing field, and the two-dimensional clamping of the film. 
[27] We note that the only dielectric stiffness coefficient that is renormalized due to the 
depolarizing field is m

3a  and is given by: 
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as a result of the emergence of the �
�

� � e
  term coming from the depolarization field 
energy [Eq. (9-11)]. The boundary conditions at the interfaces employed for the films are: 
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and l  is the extrapolation length. Eq. (15b) implies that there are no surface fields at the 
FE-electrode interfaces. Therefore, the only depolarizing field contribution in the system 
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are due to the local variations of P3 induced by space charges, which are weakly screened 
by the background dielectric constant. The materials system considered in this study is a 
200 nm thick heteroepitaxial (001) PZT 30/70 on a (001) SrTiO3 (ST) substrate with 
pseudomorphic top and bottom metallic electrodes. The equations of state given in Eq. 
(12) and (13) have to be solved simultaneously with the boundary conditions given in 
Eqs. (15a) and (b). To obtain the polarizations at different space charge and applied fields 
and different temperatures, we use a Gauss-Seidel iterative scheme where we start with 
random polarization distributions in the system that converges to the real solution after a 
number of iterations.  

The temperature-polarization (T- P3) curves reflect the equilibrium polarization at 
each temperature interval in the presence and absence of space charge distribution. The 
quasi-static P3- EAPP hysteresis curves are at room temperature (RT=25oC) obtained by 
applying a triangular field that has a maximum amplitude of 5́ 108 V/m and incremental 
values of 2.5́107 V/m, adding up to a total of 100 steps. At each field, the polarization as 
a function of position is computed using the iterative method detailed above. In both the 
temperature dependence of the polarization and the hysteresis loop computations, the 
values of polarization obtained for a given state are fed as initial values for the next 
iterative run, ensuring high convergence precision. The small signal average dielectric 
constant of the system along z is found from: 
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where 3D  is the dielectric displacement of the film along the z-axis obtained at the end of 

the numerical iteration for zero field followed by for a small signal field, 1=SE  V/m. 
The in-plane misfit strain considered in all computations corresponds to a pseudomorphic 
(001) PZT 30/70 film on a (001) ST substrate (-1.66 % at room temperature). During the 
numerical iteration, although we took into account the possible presence of an in-plane 
polarization in PZT 30/70, the solution of the in-plane components comes out as zero for 
the considered strain state. In the T- P plots, to be able clearly judge the effect of space 
charge and avoid complications due to thermal strain effects on the PT characteristics, we 
assumed both the substrate and the ferroelectric film have the same thermal expansion 
coefficients. The reason for this assumption is that while thermal strains as well as stress 
relaxation due to the formation of interfacial dislocations can easily be incorporated into 
the current analysis, these might mask space charge related changes in the polarization 
and dielectric response.  
 For the sake of clarity and completeness, we also would like to indicate here the 
modifications to the above model when one wants to consider the formation of electrical 
domains. To do so, we first construct a two dimensional grid with a sandwich type 
capacitor geometry that is 200n x kn cells where k (200) is the number of cells along the 
film thickness (width) and each cell, n, has a dimension of 0.4 nm, imitating the unit cell 
dimensions of PZT. The LGD volumetric free energy for an epitaxial single domain (001) 
ferroelectric film on a (001) cubic substrate now has to be modified to take into account 
dead layers and can be expressed as: 

[ ]dVFwFFFFFwF
V

DLESGEPT � -+-+++= )1()( 0

 (17) 
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where w becomes zero (0) in the dead layer and is one (1) in the ferroelectric film. F0 is 
the energy of the paraelectric state and FP is the energy due to the polarization Pi 
(i=1,2,3) in the ferroelectric state as in Eqn. (6). FE is the internal elastic energy both due 
to the misfit between the film and the substrate as well as the self-strain given by:  

    
( )( )00

2
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klklijijijklE CF eeee --=
   (18)  

which is a more general form of Eqn. (7) where Cijkl is the elastic stiffness for a cubic 
crystal, � 11= � 22 is the film-substrate misfit strain in the pseudocubic limit, � ij  is the self-
strain energy due to the paraelectric-ferroelectric phase transition in the pseudocubic film. 
The gradient energy has to now also take into account the variations in Pi in all directions 
given by: 
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where Gij are the gradient energy coefficients and we shall assume that it is isotropic for 
convenience, namely G. We also neglect the variations along P2 along y in the 2D limit. 
FES is the electrostatic energy of the system, iiES PEF -=  where iE  is found from the 

Maxwell equation 0=idivD and iD are the dielectric displacement components. Note that 

Eqn. (11) is also a solution for 0=idivD  for a single domain FE film. FDL is the energy 
of the dead layer that is assumed to be a linear dielectric. Equation (17) is minimized and 
the corresponding Euler-Lagrange equations are obtained from where we find the P 
components in the system. The dead layer, when present, is assumed to be a high-k 
dielectric whose dielectric constant is chosen as 20 with thicknesses as either one (s=1) or 
two (s=2) unit cells when specified.The boundary conditions we employed for P3,1 are 
dPz/dz and dPx/dx at the top and bottom electrode-film interface of the ferroelectric layer, 
consistent with Eqn. (15). The periodic boundary conditions used along the sides (x-axis) 
are; 

),()0,( 33 LxzPxzP === , ),()0,( 11 LxzPxzP ===   (20) 
Pi are coupled with the electric fields both via the equation of state and the 

Maxwell equation. Dirichlet boundary conditions are applied at the dead layer-electrode 
interface. The equations of state and the Maxwell equation are solved simultaneously 
employing a Gauss-Seidel iterative scheme subject to boundary conditions mentioned 
above. We again limit ourselves to 5000 iterations converging to a difference of 10-8 
between consecutive iterative P solution steps when ferroelectricity exists. We only 
check the stability of a FE phase when interfacial space charges are present and do not 
attempt to reveal the domain contributions to the electrical properties.  
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3. RESULTS AND DISCUSSION 
 
3.1. FE Hysteresis Loops 
 As one of the prominent observations in FE thin films compared to their bulk 
counterparts is the asymmetry in the P- EAPP (P=P3) hysteresis loops , we first focus on 
the effect of charge distributions at interfaces that decay exponentially towards the 
interior of the film. Such an accumulated charge density near interfaces will induce 
asymmetric potentials in the film resulting in internal electric fields that might favor an 
asymmetric variation of P(z). An example of the charge distribution at interface 1 with a 
maximum planar density amplitude of 0.05 C/m2 at interface 1 and 1/10th of this value at 
interface 2 (denoted as distribution 1 or d1), and vice versa (distribution 2, d2) are given 
in Figure 1(a). The built-in fields associated with d1 and d2 are plotted in Figure 1(b). 
The gradient of the potential is steeper towards interfaces, creating the highest internal 
fields in this region for both of the two cases. The maximum amplitude of the charge 
density can be adjusted or a random distribution could also be defined. We did so for 
maximum asymmetric local density amplitudes of 0.05 C/m2 and 0.075 C/m2 for both d1 
and d2. Such a spatial density of space charge accumulating on either side of the 
capacitor structure should be expected to pin the polarization when the bias field it 
creates is comparable to the thermodynamic coercive field.  

 

 

 
Figure 1. (Color online) (a) The space charge distribution for the case of asymmetric 
exponential decay from both film-electrode interfaces towards the interior of the film. d1 
and d2 correspond to exponential charge injection from the top and bottom electrodes, 
respectively; (b) the built-in field due to charge distributions d1 and d2 in (a); (c) a 
symmetric distribution of space charges and the corresponding built-in field. 
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Assuming perfect electrodes and infinite extrapolation length at the interfaces, 

together with incorporation of the small screening contribution from the background 
dielectric constant to the depolarizing field term, we find the spontaneous polarization at 
zero field and RT the same as the analytically computed value (~ 0.7 C/m2, TC ~ 900ºC) 
for a mono-domain pseudomorphic (001) PZT 30/70 film on (001) ST. For a perfect film 
with perfect electrodes and infinite extrapolation length, there is no depolarization as the 
polarization is homogeneous. The P- E hysteresis in Figures 2(a) and (b), respectively are 
computed for the charge density distributions given in Figure 1 with the form of d1 and 
d2 for maximum planar densities of 0.05 C/m2 and 0.075 C/m2.  

 

 

 
Figure 2. The displacement of the polarization-applied electric field hysteresis curves 
due to asymmetrically exponential decay of space charge distributions with a maximum 
amplitude of (a) 0.05 C/m2 and (b) 0.075 C/m2 with charge distribution d1 and d2, 
respectively; and (c) fully symmetric charge distribution with 0.05 C/m2 at each interface. 
The hysteresis curves outlined by solid squares in (a), (b), and (c) correspond to films 
with no space charges. 
 
As shown in Figure 2, the shift of the hysteresis loops depends on the way space charge is 
distributed as well as its local concentration in the film. We note that we only exchange 
the amplitudes of planar space charges to obtain d1 and d2 but not the sign of charge. 
Furthermore, another important finding is that the P-  EAPP loops under asymmetrically 
distributed high space charge densities near the interfaces (such as in the case of 0.075 
C/m2 local planar density) can be shifted along the applied field axis such that 
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��  or �� <+- ��

��  compared to charge-free films for which +- =
��

��  and 

�=-=D -+ ��
���  [also shown in Figures 2 (a)-(c) as a reference]. Similar behavior was 

discussed in Ref. [1] where irradiated triglycine sulphate (TGS) samples were shown to 
display strongly shifted or deformed hysteresis response.  

To elucidate the formation of space charges even in nearly defect-free films where 
behavior similar to that in Figure 2 might be observed, we provide the following 
example. Epitaxial growth of FE films on metallized single-crystal substrates is usually 
carried out at relatively high temperatures (typically in the range of 500-800oC) in 
controlled oxygen atmospheres followed by cooling. The sample is then taken out of the 
chamber for the placement of a mask to enable the growth of top electrodes, typically 
achieved via rf-sputtering or thermal evaporation. The diameter of the top electrodes may 
vary from a few hundred nanometers to a few tens of microns. This processing sequence 
may actually promote an asymmetric charge injection at the two FE-electrode interfaces 
just because a different deposition method at a different temperature was used to grow the 
bottom electrode, the FE film, and the top electrode. Moreover, the formation of 
asymmetrical space charges may result from the termination of different atomic planes of 
the FE film. One must also note that an average negative bias due to asymmetric surface 
effects or near-interface charges displaces the hysteresis loop towards the positive 
EAPP- axis and vice versa.  

In order to provide a complimentary view of the effect of distribution of the space 
charges throughout the film, we give in Figure 2(c) the hysteresis loop of a FE film when 
there are equal concentrations of fixed space charges that decay exponentially from both 
interfaces. Due to the symmetry of the internal electric field distribution in the film, there 
is no displacement of the hysteresis loops but there is a considerable reduction in the 
coercive field, consistent with our recent findings 17. This is due to the the depolarization 
field that arises from the inhomogeneous variation of the polarization along the film 
thickness as well as the commensurate gradient energy. As such, the phase transition 
temperature TC is reduced. The behavior of the total polarization as a function of the 
temperature is discussed in the next section. 

 
3.2. Phase Transition Temperature and Dielectric Properties 
 Using the methodology described in the previous section, we calculated the total 
polarization and the dielectric response of the FE film as a function of the temperature for 
a perfect film with no space charges and a film with asymmetric distribution of space 
charge densities. Figure 3 plots the temperature dependence of the polarization and the 
dielectric constant of the (001) PZT 30/70 film on (001) ST with no space charges and a 
space charge distribution d1 with a maximum amplitude of 0.05 C/m2. For the case for 
r =0, the spontaneous polarization in the film vanishes above TC, and, as expected, there 
is a l -type anomaly in the dielectric response at TC. However, if there is an 
inhomogeneous distribution of the space charges, the phase transformation is “smeared” 
over a temperature interval rather than a singular transition point as it is the case for r =0. 
Furthermore, there is also a significant reduction in the dielectric properties near TC for 
films with asymmetric space charge distributions (Figure 3).  
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Figure 3. (Color online) Total polarization and the dielectric constant as a function of 
temperature in the absence of space charges and with space charges (d1, with a maximum 
of 0.05 C/m2).  
 
For asymmetric variations of the space charge, there is a nearly temperature-insensitive 
polarization above the effective TC that is essentially the built-in polarization due to the 
space charges. In the case of higher values of the space charge density, the transition 
becomes a very gradual one, almost a linear variation of polarization with temperature 
with no apparent phase transformation point. While there is a small reduction in the 
polarization values and TC, the latter is considerably more pronounced for a system with a 
random distribution of space charges. We note here the space charge concentrations may 
not necessarily remain constant as it is assumed in our analysis at temperatures near TC 
and could be expected to be reduced (or entirely neutralized) via thermally excited 
carriers. Such a process may thus reduce (or completely eliminate) the built-in fields at 
temperatures near the TC of strained PZT 30/70.  

In Figure 4, we provide the temperature dependence of the total polarization and 
the dielectric response for the case of a random space charge variation throughout the 
film thickness. Such a distribution introduces almost a linearly varying built-in field that 
changes sign near the middle of the film. This field results in a drastic reduction in TC 
while there is a sharper dielectric anomaly at TC compared to the conditions 
corresponding to asymmetric distribution of space charges discussed in connection with 
Figure 3. We also note that the dielectric constant of the film with random variation of 
high density space charges at RT given in Figure 4 is higher than the films with r =0 
because of the significant reduction in TC. Above the effective TC , there is nearly no net 
built-in polarization due to the opposite but nearly equal polarization profile in the two 
halves of the film with respect to the middle of the film at zero field. 
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Figure 4. (Color online) Total polarization and the dielectric constant as a function of 
temperature in the absence of space charges and with randomly distributed space charges 
with a maximum planar density of 0.05 C/m2.  
 

In Figure 5, we give the temperature dependence of the total polarization and the 
dielectric response in the case of a symmetrical charge distribution given in Figure 1(c). 
A symmetrical variation in the planar space charge concentration removes any net 
internal bias in the system and the dielectric anomaly at TC is nearly the same as that of 
the perfect film with no net built-in polarization except a slight reduction in TC and P. 
From Figure 5, one can observe a near zero net built-in polarization above TC as a 
consequence of the nearly equal internal field due to space charges in the two halves of 
the film. Due to the absence of a net bias field, the induced polarization due to space 
charges is weak and there is no smearing of the dielectric response at TC.  
 

 
Figure 5. (Color online)  Total polarization and the dielectric constant as a function of 
temperature in the absence of space charges and with a completely symmetrical 
continuous distribution of space charge at both interfaces decaying exponentially towards 
the interior of the film. 
 
The fields due to space charges are mostly confined to the near-interface regions with 
exactly equal but opposite signs, giving rise to a symmetrical polarization variation below 
TC. Thus, the small reduction in the remnant polarization at all temperatures below TC 
compared to the charge-free film is mostly due to the inhomogeneous variation of the 
local polarization near the film-electrode interfaces. The changes in the polarization near 



 13 

the electrode interfaces also increases the gradient energy increase in the film. Therefore, 
the combination of both the depolarization and the gradient energy act to slightly reduce 
TC.  

As a result, the gradual nature of the transition in the presence of asymmetric 
space charge dramatically reduces the dielectric anomaly that is a characteristic of the 
charge-free film in addition to a considerable drop in TC. For thinner films, the same 
charge density distribution whose potential will become steeper (for zero potential at the 
electrodes), creating larger internal built-in fields can be expected to render a stronger P 
pinning highly probable. The strongly inhomogeneous fields acting at distances at the 
order of a few nanometers due to space charge lead to greater spatial variation of the 
polarization and hence yield higher depolarizing fields, resulting in a larger reduction in 
TC, similar to the finite size effect.36 This decrease should certainly be much more 
dramatic for highly asymmetrical distributions of space charges. We note that even if the 
switchable FE polarization disappears at temperatures above TC, the space charge induced 
temperature-independent polarization will remain. In addition, a stronger smearing of the 
transition temperature could also be expected as discussed in Ref. 28. This is, of course, 
possible for materials with low TC wherein thermally excited neutralization mechanisms 
of space charges will not be significant. For films with high TC, thermally excited carriers 
from the traps could take effect in neutralization of the space charges at elevated 
temperatures, reducing the smearing effects. 
 
3.3. Impact on electrical domain formation 
 In this section, we discuss the RT results for electrical domain stabilities when 
one of the interfaces in a thin PZT 30/70 film has a high concentration of charge. We take 
into account the presence of space charge as a “sheet potential” that correspond to a weak 
charge density of around 1x10-19 /nm2. Note that this sheet potential is placed at the dead 
layer-FE film interface. We realize that a thin dead layer at the order of one or two unit 
cell thickness is not sufficient to trigger electrical domains in a 200 nm thick film and 
therefore we focus on a 20.8 nm thick film (52 unit cells). The 20.8 nm thick film splits 
into domains when s=2 that creates imperfect screening of the polarization charges at the 
interfaces as seen in Figure 6a. The dielectric constant of the dead layer is taken as 20 for 
demonstrative purposes. It must be kept in mind that the domain period is a function of 
the dielectric constant of the dead layer and that very high values can even stabilize a 
single-domain state. The latter option, however, is kept outside the scope of this section 
for a compact and focused discussion.  
 
 
 
 



 14 

 
 

 
 

Figure 6. (a) Electrical domains stabilized due to the presence of a dead layer (s=2) at the 
film-electrode interface and (b) A nearly single domain state when a layer of space 
charge exists at the bottom film-dead layer interface. Both runs were limited to 5000 
iterations. The scale in both (a) and (b) stand for Pz (C/m2). 
 
Clearly, rather low densities of asymetrical space charge can overcome the depolarizing 
fields through altering the potential distribution in the films. The position of the charges 
with respect to the electrode-film interfaces plays an important role in the way the 
charge-induced fields interact with the depolarizing fields. To check with this, we placed 
the sheet of potential imitating a sheet of space charge in the middle of the film and ran 
our simulations. After 5000 iterations, we obtained a nearly monodomain, negatively 
polarized system with the two halves with respect to the sheet potential in the centerline 
having a step-wise difference. Keeping in mind that the FE film has dead layers, this case 
demonstrates the probable impact of localized charges on domain stabilities. It is 
straightforward to notice that the FE film does not get polarized in +z and –z respectively 
but along –z only due to the large electrostatic energy cost as well as the gradient energy 
cost at the center where Pz would change sign. Quite large densities of local charges 
might change this picture but to stay focused, we refrain ourselves from analyzing 
extreme cases which is possible otherwise. In addition, we present here a 20.8 nm thick 
film: The competition between the depolarizing effects and the space charge fields should 
be expected to become more prominent in structures that are just a few nanometers thick, 
namely ultrathin films. 
 
 
4. CONCLUSIONS 

In this work, using the LGD formalism coupled with an electrostatic analysis, we 
have investigated the effects of a continuous distribution of planar space charges along 

(a) 

(b) 
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the film thickness on the phase transition characteristics, hysteresis response, and 
dielectric properties of epitaxial (001) PZT 30/70 films between metallic electrodes on 
(001) STO substrates. Asymmetrically distributed space charges result in displacements 
in the P-  EAPP hysteresis curves along the applied field axis and may even give rise to 
coercive fields �� >+- ��

��  or �� <+- ��
��  compared to charge-free films for which 

+- =
��

��  and �=-=D -+ ��
��� .  These trapped charges residing at deep levels may 

significantly smear out the FE phase transition and reduce TC. If the space charges are 
symmetrically distributed, the FE hysteresis loops shrink along both the polarization and 
the applied field axes but remain centered at the origin. For relatively high charge 
densities, we find that a monodomain FE film cannot be switched from one polarization 
state to another under typical cyclic (e.g., completely reversed sinusoidal) electrical bias 
with an amplitude 2×EAPP. A polydomain structure may form in FE films with dead layers 
to minimize internal depolarizing fields originating from local variations in the 
polarization. However, the strong internal bias due to an asymmetric charge distribution 
may preclude the generation of electrical domains. The latter should certainly be a strong 
function of film thickness, especially for the ultrathin structures. Our analysis presented 
herein is in the limit of thermodynamics and future time-dependent studies should focus 
on nucleation and growth kinetics of domains during switching in the presence of a 
spatial space charge distribution.  
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