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tin Erbatur, Professor Ahmet Onat and Professor Erhan Budak for their involvement

and generous contributions of guidance.

I also would like to thank all of my friends in the Mechatronics Engineering pro-

gram for their sincere friendship. Especially, I would like to acknowledge my friends

in Human-Machine Interaction laboratory, Ahmetcan Erdoğan, Hakan Kapson, and
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Abstract

Wearable force feedback robotic devices, haptic exoskeletons, are becoming in-

creasingly common as they find widespread use in medical and virtual reality (VR)

applications. Allowing users to mechanically interact with computationally medi-

ated environments, haptic exoskeletons provide users with better “immersion” to

VR environments.

Design of haptic exoskeletons is a challenging task, since in addition to being

ergonomic and light weight, such devices are also required to satisfy the demands

of any ideal force-feedback device: ability withstand human applied forces with

very high stiffness and capacity to display a full range of impedances down to the

minimum value human can perceive. If not properly designed by taking these con-

flicting requirements into account, the interface can significantly deteriorate the

transparency of displayed forces; therefore, the choice of the kinematic structure

and determination of the dimensions of this kinematic structure have significant

impacts on the overall performance of any haptic display independent of the control

algorithm employed.

In this thesis, we first propose a general framework for optimal dimensional

synthesis of haptic interfaces, in particular for haptic interfaces with closed kinematic

chains, with respect to multiple design objectives. We identify and categorize the

relevant performance criteria for the force feedback exoskeletons and address the



trade-offs between them, by applying a Pareto-front based multi-objective design

optimization procedure. Utilizing a fast converging gradient-based method, the

proposed framework is computational efficient. Moreover, the approach is applicable

to any set of performance indices and extendable to include any number of design

criteria.

Subsequently, we extend this framework to assist the selection of the most appro-

priate kinematic structure among multiple mechanisms. Specifically, we perform a

rigorous comparison between two spherical parallel mechanisms (SPMs) that satisfy

the ergonomic necessities of a human forearm and wrist and select the kinematic

structure that results in superior performance for force-feedback applications. Utiliz-

ing the Pareto optimal set of solutions, we also assign dimensions to this mechanism

to ensure an optimal trade-off between global kinematic and dynamic performance.

Following the design optimization phase, we perform kinematic and dynamic

analyses of the SPM-based exoskeleton in independent coordinates to facilitate effi-

cient simulation and real-time implementation of model based controllers. We decide

on the hardware components considering human wrist torque and force limits, safety

and ergonomy constraints, and present the CAD model of a prototype of the ex-

oskeleton. Finally, we implement model based task-space position and impedance

controllers in simulation and present the results of them.
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PARALLEL MEKANİZMA TABANLI ALT KOL DIŞ İSKELETİNİN

KONTROLÜ VE TASARIM ENİYİLEŞTİRMESİ

Ramazan Ünal

ME Master Tezi, 2008

Tez Danışmanı: Yrd. Doç. Dr. Volkan Patoğlu

Anahtar Kelimeler: Alt kol dış iskeleti, çok-kriterli tasarım eniyileştirmesi, paralel

mekanizmalar, kuvvet geri-beslemeli robotların pozisyon ve empedans kontrolü.

Özet

Giyilebilir kuvvet yansıtımlı robotlar, haptik dış iskeletler, medikal ve sanal

gerçeklik uygulamalarında geniş kullanım alanı bulduklarından, günümüzde oldukça

yaygınlaşmaya başlamışlardır. Haptik dış iskeletler, bilgisayarda oluşturulmuş or-

tamlarla kullanıcıların mekanik etkileşimine izin vererek onların sanal gerçeklik or-

tamına daha iyi dahil olabilmelerini sağlamaktadırlar.

Haptik dış iskeletlerin tasarımı oldukça zorlu bir görevdir, zira bu cihazların, er-

gonomi ve hafiflik kriterlerinine ek olarak, ideal herhangi bir kuvvet yansıtımlı ma-

kinadan beklenen özellikleri de sağlaması gerekmektir; insan tarafından uygulanan

kuvvetlere çok yüksek katılıkla dayanabilmeli, ayrıca insanın algılayabileceği mini-

mum empedansa kadar inebilen tam impedans aralığını sergileyebilme kapasitesine

sahip olmalıdır. Robot, bu birbiriyle çelişen gereklilikler göz önünde bulunduru-

larak tasarlanmazsa, cihazın kendisi yansıtılan kuvvetlerin şeffaflığını önemli ölçüde

bozabilir. Bu yüzden, kinematik yapının seçimi ve boyutlarının belirlenmesinin,

uygulanan kontrol algoritmasından bağımsız olarak, herhangi bir haptik yansıtımın

genel performansında önemli etkileri vardır.

Bu tezde, ilk olarak haptik aygıtların, özellikle kapalı kinematik yapıdakilerin,

birden çok tasarım amacına göre optimum boyut sentezinde kullanılabilecek genel

bir şablon sunuyoruz. Kuvvet yansıtımlı dış iskeletelerle ilgili performans kriterlerini

belirleyip, sınıflandırıyoruz ve Pareto-front bazlı çok amaçlı tasarım en iyileştirmesi



prosedürünü kullanarak aralarındaki ödünleşimi ifade ediyoruz. önerilen çerçeve,

hızlı yakınsayan gradient bazlı bir metod kullandığından, hesaplama açısından ve-

rimlidir. Ayrıca, bu yaklaşım seçilen performans kriterlerinden bağımsız olup, iste-

nilen sayıda tasarım kriteri için kullanılabilir.

Ardından, bu çerçeveyi en uygun kinematik yapının seçimine yardımcı olacak

şekilde genişletiyoruz. özel olarak, insan ön kolu ve bileğinin ergonomik ihtiyaçlarını

karşılayan iki küresel paralel mekanizmanın (KPM) titiz bir biçimde kıyaslanmasını

gerçekleştirip, kuvvet yansıtımlı uygulamalarda daha iyi performans sergileyen kine-

matik yapıyı seçiyoruz. Ayrıca seçilen mekanizma için, Pareto eğrisindeki en iyi

tasarımların bulunduğu kümeden, kinematik ve dinamik performanslar arasındaki

optimum ödünleşimi sağlayan mekanizma boyutlarını belirliyoruz.

Tasarım en iyileştirilmesi aşamasını takiben, model bazlı kontrolörlerin benzetim

ve gerçek zamanlı uygulamalarını verimli olarak gerçekleştirebilmek için KPM bazlı

dışiskeletin kinematik ve dinamik analizlerini, bağımsız kordinatlarda yapıyoruz.

ınsan bileğinin tork ve kuvvet sınırlarını göz önünde bulundurarak donanım bile-

senlerine karar verip, ilk prototip dış iskeletin tasarım modelini sunuyoruz. Son

olarak, model bazlı görev alanı pozisyon ve empedans tipi kontrolörlerin benzetim-

lerini uygulayıp, sonuçlarını sunuyoruz.
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Özet viii

1 Introduction 1
1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Overview of the Proposed Approaches and the Structure of the Doc-

ument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 A Multi-criteria Design Optimization Framework for

Parallel Robots 6
2.1 Measuring Kinematic and Dynamic Performance . . . . . . . . . . . . 10
2.2 Five-Bar Linkage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . 28

3 Optimal Dimensional Synthesis of Force Feedback Lower-

Arm Exoskeletons 30
3.1 Kinematics of Human Lower-Arm and Spherical Parallel Mechanisms 32
3.2 Kinematic, Dynamic, and Singularity Analyses of 3RPS-RMechanism 36

3.2.1 Kinematic and Singularity Analyses . . . . . . . . . . . . . . . 36
3.2.2 Formulating the Apparent Inertia Matrix . . . . . . . . . . . . 39

3.3 Design Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 Optimization of Spherical Parallel Mechanisms . . . . . . . . . . . . . 43

3.4.1 Multi-criteria Optimization Problem . . . . . . . . . . . . . . 43
3.4.2 Solution Methods . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Comparison, Selection of an Optimal Mechanism, and Discussion . . 46
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

x



4 Modeling and Control of a Lower-Arm Exoskeleton 50
4.1 Dynamical System Modeling Analysis . . . . . . . . . . . . . . . . . . 52

4.1.1 Formulating Kinematical and Dynamical Differential Equations 52
4.1.2 Handling the Constraint Equations . . . . . . . . . . . . . . . 54

4.2 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.1 Controller Architectures . . . . . . . . . . . . . . . . . . . . . 59

5 Conclusions and Future Work 65
5.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Appendix A 68

A Kinematic and Dynamic Analyses of the Five Bar Mechanism 68

Appendix B 71

B Implementation Details of the NBI method 71

Bibliography 72

xi



List of Figures

2.1 Five-bar mechanism in the elbow-out posture . . . . . . . . . . . . . 14

2.2 Change of singular values over the workspace for the optima of sin-

gle objective problems. Subfigures (a) and (c) pertain to the best

kinematic design, while (b) and (d) belong to the best dynamic design. 21

2.3 Comparison of NBI and aggregated performance index methods. Sym-

bol λ is the weighting factor. . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Computational effort of NBI method with respect to different toler-

ances and weighted sum method with respect to different discretizations. 23

2.5 Distribution NBI solutions with three different tolerances: 10−7, 10−8,

and 10−9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Parameter sets with best GII values for each discrete value of r. . . . 25

2.7 Parameter sets with best GDI values for each discrete value of r. . . 26

2.8 Comparison of sequential approach with the Pareto-front curve. . . . 27

2.9 Comparison of NBI and aggregated performance index methods. Sym-

bol λ is the weighting factor. . . . . . . . . . . . . . . . . . . . . . . . 28

2.10 Effects of additional constraints imposed on the problem and link

lengths and weights corresponding to “best” designs. . . . . . . . . . 29

3.1 3RPS-Rand 3UPS-S mechanisms in perspective views . . . . . . . . . 34

3.2 Sketch of 3RPS-RMechanism used in Kinematic and Dynamic Analyses 37

3.3 Minimum of minimum and maximum of maximum singular values of

J over the parameter space . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Change of GII and GDI for 3RPS-Rand 3UPS-S mechanisms over

parameter space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 Pareto-front curve for 3RPS-Rmechanism . . . . . . . . . . . . . . . . 47

3.6 Pareto-front curve for 3UPS-S mechanism . . . . . . . . . . . . . . . 48

xii



3.7 Comparison of Pareto-front curves for 3RPS-Rand 3UPS-S mecha-

nisms for GII vs GDI . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 CAD Model and Hardware Components of the Lower-arm Exoskele-

ton Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Hardware Setup for Real-time Control Implementation of the Lower-

arm Exoskeleton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 Block Diagram of Computed Torque Control . . . . . . . . . . . . . . 60

4.4 Reference trajectory of z and tracking performance of the system . . 60

4.5 Reference trajectory of ψ1 and tracking performance of the system . . 61

4.6 Block Diagram of Impedance Controller without Force Feedback . . . 61

4.7 Block Diagram of Open-loop Impedance Controller with Model Feed-

forward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.8 z Position of the End Effector Under a Constant Force Excitation . . 63

4.9 ψ1 Orientation of the End Effector Under a Constant Torque Excitation 64

A.1 Symmetric five-bar mechanism with the variables used in the kine-

matic and dynamic analyses. . . . . . . . . . . . . . . . . . . . . . . . 68

xiii



List of Tables

2.1 Design variables α and parameters β . . . . . . . . . . . . . . . . . . 15

2.2 Results of independent optimizations with respect to GII and GDI. . 20

3.1 Workspace and Torque Limits of Human Forearm and Wrist . . . . . 33

xiv



Chapter 1

Introduction

Wearable force feedback robotic devices, haptic exoskeletons, are becoming increas-

ingly common as they find widespread use in medical and virtual reality (VR) ap-

plications. Allowing users to mechanically interact with computationally mediated

environments, haptic exoskeletons provide users with better “immersion” to VR

environments.

Design of haptic exoskeletons is a challenging task, since in addition to being

ergonomic and light weight, such devices are also required to satisfy the demands

of any ideal force-feedback device: ability to withstand human applied forces with

very high stiffness and capacity to display a full range of impedances down to the

minimum value human can perceive.

If not properly designed, the dynamics of an exoskeleton device can significantly

deteriorate the transparency of displayed forces during haptic rendering of virtual

environments. Even though parasitic effects due to the device dynamics can be

actively compensated using feedback paradigms, such approaches require use of force

sensors. Active cancelation approaches suffer from the limited bandwidth of the force

sensors, undesired sensor dynamics, sensor actuator non-collocation, and high cost

of force sensors. Design optimization studies performed on haptic interfaces can

shape the device dynamics in a favorable manner; therefore, these studies can have

a significant impact on the overall performance of the haptic display independent of

the control algorithm employed.

Multiple performance requirements have to be considered simultaneously while

performing design optimization of haptic exoskeletons. Since the performance with

respect to many of these criteria cannot be improved without deteriorating others,
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design trade-offs are inevitable. Determination of an optimal design with respect

to many criteria is a difficult problem and should be handled with formal multi-

objective optimization methods that assign trade-offs systematically.

Besides the important task of determining the most appropriate dimensions of a

given parallel mechanism architecture that constitute the best compromise between

multiple performance criteria, another relevant concern during design optimization

studies is the selection of the most appropriate kinematic structure. Selection of the

most appropriate kinematic structure for a given task is non-trivial, since kinemat-

ics and dynamics of each mechanism may differ substantially from each other and

intuitive approaches may fail to capture the important trade-offs among multiple

mechanisms.

Finally, hardware implementation and real-time controls of parallel mechanism

based exoskeleton devices pose some important challenges. Selection of actuators

and transmission mechanism are critical for the kinematic, kinetic, and dynamic

performance of high-fidelity impedance display type devices. Efficient formulation

of the kinematics and dynamics models of parallel mechanisms is essential to ensure

high real-time control loop rates required by force feedback applications.

2



1.1 Objectives

The objectives of this thesis are to design an optimal lower-arm exoskeleton to

serve as a high-fidelity haptic interface, manufacture its prototype, and perform

kinematic and dynamic analyses of the exoskeleton for implement real-time position

and impedance controllers implementations.

The major goals of the thesis can be listed as follows:

- Identify relevant performance criteria for force-feedback exoskeleton devices,

- Build an efficient and general framework for multi-criteria design optimization

and comparison of parallel mechanisms based robotic devices,

- Employ the framework for multi-criteria design optimization of spherical par-

allel mechanisms and decide on the superior kinematic structure and optimal

dimensions of a lower-arm exoskeleton to serve as a high-fidelity haptic inter-

face,

- Decide on the hardware components and control architecture of the lower-arm

exoskeleton to satisfy safety and performance limitations,

- Perform kinematic and dynamic analyses of the device for simulation and real-

time controls implementation,

3



1.2 Overview of the Proposed Approaches and the Structure of the

Document

Chapter II presents a general framework for optimization of haptic interfaces, in

particular for haptic interfaces with closed kinematic chains, with respect to mul-

tiple design objectives, namely kinematic and dynamic criteria. Both performance

measures are discussed and optimization problems for a haptic interface with best

worst-case kinematic and dynamic performance are formulated. Non-convex single

objective optimization problems are solved with a branch-and-bound type (modi-

fied culling) algorithm. Pareto methods characterizing the trade-off between mul-

tiple design criteria are advocated for multi-criteria optimization over widely used

scalarization approaches and Normal Boundary Intersection method is applied to

efficiently obtain the Pareto-front hyper-surface. The framework is applied to a

sample parallel mechanism (five-bar mechanism) and the results are compared with

the results of previously published methods in the literature. Finally, dimensional

synthesis of a high performance haptic interface utilizing its Pareto-front curve is

demonstrated.

Chapter III presents multi-criteria design optimization of a parallel mechanism

based force-feedback exoskeleton for human forearm and wrist. Relevant design ob-

jectives for force-feedback exoskeleton devices are identified and categorized. Rig-

orous comparison of two spherical parallel mechanisms that satisfy the ergonomic

necessities of a human forearm and wrist is presented, by extending a Pareto front

based multi-criteria optimization framework developed for parallel mechanisms. The

kinematic structure that results in superior performance for force-feedback applica-

tions is selected. Subsequently, dimensional synthesis is performed for this spherical

parallel mechanism to ensure an optimal trade-off between global kinematic and

dynamic performance of the exoskeleton device.

Chapter IV presents design, dynamic modeling, instrumentation, and simula-

tions of position and impedance controllers of a four degree-of-freedom parallel fore-

arm and wrist exoskeleton device, designed to serve as a high-quality impedance

display. The kinematic structure and dimensions of the device are optimized with

respect to kinematic and dynamic performance criteria to ensure that the device is

isotropic, can achieve high position and force bandwidths, can accommodate most

4



of the natural workspace of human forearm and wrist in a singularity-free manner.

Direct drive actuation is preferred during implementation of the device to satisfy

high stiffness, low friction, and no backlash. Dynamic simulations of the device are

completed to allow selection of actuators that can withstand a reasonable percent-

age of human joint torques. To ensure high control loop rates, real-time solutions

of configuration and motion level forward and inverse kinematics of the device are

addressed and computationally efficient formulation of the dynamics model of the

parallel mechanism is implemented using Kane’s method. Model based task-space

position controllers as well as task-space impedance controllers are simulated and

results are presented.

Finally, Chapter V summarizes the contributions, discusses future work and

concludes the thesis.
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Chapter 2

A Multi-criteria Design Optimization Framework for

Parallel Robots

Robotic manipulators with parallel kinematic chains are becoming increasingly com-

mon due to the inherent advantages they offer with respect to their serial counter-

parts. Parallel mechanisms possess compact designs with high stiffness and have low

effective inertia since their actuators can be grounded in many cases. In terms of dy-

namic performance, high position and force bandwidths are achievable with parallel

mechanisms thanks to their light but stiff structure. Besides, parallel mechanisms

do not superimpose position errors at joints, hence can achieve high precision.

Since the performance of parallel mechanisms is highly sensitive to their dimen-

sions, design optimization studies are absolutely necessary for these types of mech-

anisms [46]. Design optimization studies of such mechanisms with closed kinematic

chains are significantly more challenging than serial ones. Parallel mechanisms have

smaller workspace with possible singularities within the workspace and their anal-

ysis is considerably harder than the analysis of mechanisms with serial kinematic

chains. Due to the additional complexities involved, the dimensional synthesis of

parallel mechanisms is still an active area of research.

Optimum design of parallel mechanisms even for a single objective function is

challenging due to the nonlinear, large scale nature of such mechanisms [38] and non-

convex properties of performance indices with respect to the design variables [49].

Many different optimization approaches applicable to nonlinear, non-convex opti-

mization problems such as genetic algorithms [38, 58, 71], simulated annealing [51],

Bayesian techniques [58, 59], Monte-Carlo simulations [58, 71], controlled random-

ized searches [43], performance charts [41], workspace atlases [42], and branch and

6



bound methods [57] have been applied to design optimization of parallel mechanisms.

In general, deterministic methods can get stuck at a local optimum, heuristic meth-

ods cannot guarantee optimality of the converged solution, while branch and bound

type methods are only as accurate as the discretization selected.

While performing dimensional synthesis of parallel mechanisms, various perfor-

mance criteria such as kinematic and dynamic isotropy, stiffness, sensitivity, and

transmission capability have to be considered simultaneously. The performance

with respect to many of these criteria cannot be improved without deteriorating

others; hence, design trade-offs are inevitable. Determination of optimal dimensions

with respect to many design criteria is a difficult problem and should be handled

with multi-objective optimization methods so that trade-offs can be assigned in a

systematic manner.

As emphasized earlier, an optimal design of a haptic interface can only be

achieved by considering many competing objectives. There exists several studies

in which multiple design criteria have been addressed for this purpose. Hayward

et al. define the relationship between multiple criteria and utilize sensitivities of

these criteria to conduct a hierarchical optimization study [20]. Multiple objectives

are considered sequentially in [1, 33, 51, 57] by searching for parameter sets resulting

in near optimal kinematic performance and then selecting the design exhibiting the

best dynamic performance from this reduced parameter space. Task-priority [7],

probabilistic weighting [45], composite index [36], and tabular methods [68] are

among the other approaches that consider multiple criteria.

Even though these studies can account for multiple design criteria, they can be

broadly classified under scalarization methods in which the multi-criteria optimiza-

tion problem is addressed in an indirect manner, by first transforming it into a (or

a series of) single objective (scalar) problem(s). These approaches either aggregate

multiple criteria into a single objective function through some form of weighting or

prioritize one objective and select others to serve as constraints to form a single

objective optimization model. Scalarization methods possess the inherent disadvan-

tage of their aggregate objective functions requiring preferences or weights to be

determined apriori, i.e. before the results of the optimization process are actually

known [12]. Since assigning proper weights or prioritizing different criteria is a prob-

7



lem dependent, non-trivial task, these techniques fall short of providing a general

framework to the design of parallel mechanisms.

Pareto methods, on the other hand, incorporate all optimization criteria within

the optimization process and address them simultaneously to find a set of efficient so-

lutions. Each design alternative in the solution set corresponds to a non-dominated

design in the objective space. In other words, these methods aim to construct the

Pareto-front hyper-surface representing the design trade-offs between multiple cri-

teria. Once such a hyper-surface resolving the design trade-offs is obtained, an

appropriate design on this hyper-surface can be selected taking into account other

design requirements of the particular application in consideration. Pareto methods

allow the designer to make an informed decision by studying a wide range of options,

since they contain solutions that are optimum from an overall standpoint; unlike

aggregate optimization techniques that may ignore this trade-off viewpoint. Thanks

to this feature, Pareto methods are better suited as a general solution framework for

design optimization of parallel mechanisms. Pareto methods provide a better un-

derstanding of the optimization problem allowing all the consequences of a decision

with respect to all the objectives be explored.

Due to its transparent interpretation even for non-expert users, the most com-

monly used technique for generating points on the Pareto-front hyper-surface is to

solve for optimal solutions of (convex) weighted sums of several objective functions

for various different settings of weights [29, 31]. This traditional approach is an

extension of the scalarization approaches and suffers from two major drawbacks:

Weighted sum approach does not guarantee a uniform spread of Pareto points for

an even spread of weights, and this approach cannot solve for points on the non-

convex portions of the Pareto-front hyper-surface [10]. Without prior knowledge

of the shape of the Pareto-front hyper-surface, it is not possible to estimate values

of weights that map out a uniform spread of points on the Pareto-front hyper-

surface, while increasing the number of weights does not result in points on the non-

convex portions of the Pareto set. Therefore, ill-behaved nature of the weighted

sum approach frequently results in under-represented regions of the Pareto-front

hyper-surface and cause selection of an inferior design solution by failing to map

important non-dominated ones.
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Other methods exists in literature that directly attacks the problem to solve for

the Pareto set. As regards to employing these Pareto methods for design of parallel

mechanisms, Krefft et al. recently applied a modified genetic algorithm (GA) to a

problem with multiple objective functions and solved for the Patero-front hyper-

surface [35, 34]. Similarly in [56], GA is applied to multi criteria optimization of

a 2-DoF parallel robot. Despite their inherent advantage of resulting in multiple

non-dominated design solutions within a single optimization search, GA approaches

suffer from several disadvantages. Specifically, the convergence performance of GA is

highly dependent on user-specified parameters such as sharing factor, and the results

are very sensitive to these user specified parameters. Moreover, GA methods demand

inferior computational cost with increasing number of objective functions, hence

cannot be easily adopted or scaled for use of more than two objective functions [8].

More importantly, GA might prematurely converge to sub-optimal solutions [22].

Finally, use of GAs to obtain Pareto front hyper-surface has the disadvantages of

large computational expense as well as a tendency for clumping of solutions in

objective space resulting in under-represented regions of the Pareto-front [12].

Finally, in [60] authors proposed a multi-objective design framework for op-

timization of parallel mechanisms based on Normal Boundary Intersection (NBI)

method [11]. In [62] the proposed framework is applied to design of a 3RPS-R type

robot for dual purpose application. The proposed framework is computational effi-

cient, applicable to any set of performance indices, and extendable to include any

number of design criteria that is required by the application.

In this Chapter, the framework first introduced by the authors in [60, 61] is

further studied and extended results are presented. Global kinematic and dynamic

performance of parallel mechanisms over a pre-defined singularity free workspace are

maximized simultaneously and the Pareto-front curve for these two criteria is ob-

tained. Firstly, the global solutions of non-convex min-max performance criteria are

solved independently from each other using a modified branch and bound algorithm,

called culling algorithm [57]. Once optimal solutions of each single criteria optimiza-

tion problem are obtained, Normal Boundary Intersection (NBI) method [11], which

performs a deterministic geometric search within the objective space, is utilized to

efficiently compute uniformly distributed design solutions on the Pareto-front curve.
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The proposed framework is applicable to other performance indices and easily ex-

tendable to include further design criteria that may be required by the application.

The results are compared against sequential optimization and weighted sum ap-

proaches. To facilitate the determination of the “best” solution of the Pareto set,

estimation of the relative weights of performance indices that are implicit in the

Pareto plot is demonstrated.

This Chapter is organized as follows: Section 2.1 discusses several kinematic and

dynamic performance measures, while Section 2.2 introduces the sample mechanism

used for the analysis, a 2-DoF parallel five-bar linkage. Section 2.3 formulates the

multi-criteria optimization problem. Section 2.4 explains the optimization methods

used to address the single and multi-criteria optimization problems and is followed

by results and their discussion in Section 2.5. Section 2.6 presents conclusions and

future work. Kinematic and dynamic analyses of a five-bar linkage are detailed in

the Appendix A.

2.1 Measuring Kinematic and Dynamic Perfor-

mance

Since design of a mechanism cannot be apart from its application field, as a sam-

ple task, both kinematic and dynamic performance of parallel mechanisms are to

be optimized to achieve force feedback devices with low parasitic effects. A haptic

interface is a computer-controlled motorized device that physically interacts with a

human operator to render presence of computationally mediated environments. An

ideal haptic device is desired to withstand human applied forces with very high stiff-

ness and be capable of displaying a full range of impedances down to the minimum

value human can perceive. The performance of a haptic interface under closed loop

control is measured by the transparency of the display, that is, by quantifying the

match between the desired and actually rendered impedance values. During haptic

rendering, the haptic interface is coupled to the control system and its existence

results in parasitic effects on the displayed impedances, deteriorating the perfect

transparency. Low effective inertia is crucial, especially while rendering impedance

values at the lower end of the spectrum. Even though inertia cancelation can be
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implemented in control, issues like sensor and quantization noise limit the appli-

cability of these approaches. A haptic interface with isotropic performance is also

of interest, since such a design will result in a more uniform “feel” of the device

throughout the workspace, while simultaneously making most efficient use of the

available actuators. Therefore, independent of the control algorithm used, both the

kinematic and dynamic performance of the haptic device have an impact on the

overall performance of the haptic display.

To quantify performance, several design matrices, including kinematic Jacobian

and mass matrices, are studied and to date, many scalar performance indices have

been proposed. These indices either represent a distance to a singular configuration

or quantify the directional independence (uniformity) of configuration dependent

design matrices. Since singular values of a matrix provide a versatile metric to

quantify its properties, most of the indices are derived as a function of these values.

To measure kinematic performance, properties of the kinematic Jacobian matrix

(J) are studied thoroughly. Condition number, proposed by Salisbury and Craig [53],

describing the worst-case behavior at a given configuration is one of the most com-

monly used kinematic performance measures. Given as the ratio of the minimum

and maximum singular values of the kinematic Jacobian matrix, this measure locally

characterizes directional isotropy for both force/motion transmission accuracy and

actuator utilization of a manipulator. Condition number is local measure of kine-

matic performance; therefore, is not constant over the entire workspace. Extensions

of this index have been proposed to characterize the performance of a manipulator

over the entire workspace. Gosselin and Angeles proposed global condition indices

based on integral of local kinematic performance measures over the workspace [17].

In this Chapter, a global performance index is chosen to quantify the kinematic

isotropy of the five-bar mechanism since the objective of the design problem is to

minimize the parasitic effects of the manipulator over the workspace. Even though

any global index can be utilized within the framework presented, to allow com-

parisons with earlier published results the global isotropy index (GII), introduced

in [57] by Stocco et al., is preferred. GII is a workspace inclusive worst-case kine-

matic performance measure that is intolerant of poor performance over the entire

workspace. GII is calculated as the ratio of the minimum of smallest singular
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value and maximum of largest singular value of the kinematic Jacobian matrix over

the workspace. As a global worst case performance measure, maximizing GII cor-

responds to designing a mechanism with best worst-case kinematic performance.

Moreover, an optimal GII results in a uniform kinematic Jacobian matrix for the

sake of precision, while also increasing the efficiency of utilization of the actuators.

GII can be mathematically expressed as

GII = minγ0,γ1∈W

σ(J(α,γ0))

σ(J(α,γ1))
(2.1)

where J represents the kinematic Jacobian of the manipulator, σ and σ are the

smallest and the largest singular values of the kinematic Jacobian matrix, γ0 and

γ1 are the configurations in the workspace that result in the extreme singular values,

α is the column matrix of design variables, and W represents the workspace.

Dynamic performance is measured in a similar manner to the kinematic perfor-

mance, but this time properties of the inertia matrix (M) capturing the relation

between actuator force/torque and end-effector acceleration, are studied. The goal

for improving dynamic performance is to minimize inertia effects that conflict with

high acceleration demands. To characterize local dynamic performance Asada de-

fined the effective inertia matrix expressing the homogeneity of the moment of inertia

of the non-redundant manipulators and introduced the concept of generalized iner-

tia ellipsoid [2]. Yoshikawa proposed a dynamic manipulability measure [69], which

is an extension of manipulability concept and measures the degree of arbitrari-

ness in changing end-effector accelerations. Similar to the case of local kinematic

performance indices, extensions to local dynamic indices have been proposed to

characterize the performance of a manipulator over the entire workspace.

In this study, to be consistent with the metric chosen for the kinematic per-

formance, the workspace inclusive best worst-case performance measure, global dy-

namic index (GDI) [57], is used to quantify dynamic performance. GDI measures

the largest effect of mass on the dynamic performance by calculating the maxi-

mum largest singular value over the workspace of the effective inertia matrix at

the end-effector and is computed as inverse of this maximum of largest singular

value. Hence, GDI quantifies the global worst-case performance of a manipulator.

Maximizing GDI results in reduced maximum largest singular value of the effec-

tive inertia matrix, decreasing the inertial interference by the system. GDI can be

12



mathematically expressed as

GDI = minγ∈W

1

1 + σ(M(α,β,γ))
(2.2)

where M represents effective inertia matrix of the manipulator as seen at the end

effector, σ is the largest singular value of the effective inertia matrix, γ is the

configuration in the workspace that results in the largest singular value, α is the

column matrix of design variables, and W represents the workspace.

As mentioned earlier, the framework introduced in this Chapter allows for study

of the mechanisms with respect to any performance index that is of interest to the

designer. In this study, GII and GDI are selected as the performance criteria so

that comparisons with earlier published results can be undertaken.

In general, since entries of kinematic Jacobian and inertia matrices may not

be homogenous in units, proper normalization is necessary such that the mea-

sures defined on these matrices are meaningful. Among several approaches pro-

posed in literature, normalization with a characteristic length [30, 33] or a nomi-

nal link length [36], and partitioning the matrices into translational and rotational

parts [33, 38] are the most popular choices. Normalization is not necessary for

the sample problem presented in this Chapter, as it possesses only a translational

workspace.

2.2 Five-Bar Linkage

The optimization framework presented in this Chapter is applied to a 2-DoF five-

bar parallel mechanism due its sufficient richness with relative simplicity allowing

better interpretation of the optimization problem at hand. Moreover, scalariza-

tion/aggregrate methods have been applied to the multi-criteria optimization of

this mechanism in the literature, rendering comparisons of different approaches pos-

sible. The methods discussed in this Chapter constitute a general framework for

design optimization of parallel mechanisms and is by no means limited to the sam-

ple mechanism studied.

A five-bar mechanism can be characterized by lengths l0, l1 , l2, l3 and l4 of its

five links and three variables r, γ and ν defining the position and orientation of its

workspace as shown in Figure 2.1. To quantify the orientation of each link, joint
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angles qi (i = 1..4) measured from the x-axis are introduced. A five-bar mechanism

with symmetric link lengths (l1 = l4, l2 = l3) and a symmetric workspace that is

located parallel to the x and y-axes of the global coordinate system (γ = π/2, ν =

π/2) is selected in this study. Moreover, out of four possible assembly configurations,

only the elbow-out posture, as depicted in Figure 2.1, is studied. Optimality of the

above listed decisions in terms of both kinematic and dynamic performance have

already been shown in the literature [57].

l0/2

l1

l2

l3

l4
r

w

q1

q2

q3

q4

ν

γ

Figure 2.1: Five-bar mechanism in the elbow-out posture

Assuming that the dimension of the symmetric workspace w is pre-determined,

the optimization problem can be formulated using four design variables: l0, l1, l2 and

r. Table 2.1 presents the design variables α and design parameters β (parameters

that do not change during the design process) for the symmetric five-bar mechanism.

Kinematic and dynamic models of the symmetric parallel five-bar mechanism

are detailed in the Appendix A, along with the Jacobian and inertia matrices to be

used during the design optimization.

2.3 Optimization Problem

Two objective functions characterizing the kinematic and dynamic performances of

the mechanism are considered in this Chapter. To quantify the kinematic/dynamic

performance of the parallel mechanism global isotropy index (GII) and global dy-
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Table 2.1: Design variables α and parameters β

Symbol Definition Unit

α1 l0 Distance between actuated joints mm

α2 l1, l4 Length of actuated links mm

α3 l2, l3 Length of free links mm

α4 r Workspace center position mm

β1 w = 100 Workspace side length mm

β2 γ = 90◦ Angle between r and x-axis ◦

β3 ν = 90◦ Angle between W and y-axis ◦

namic index (GDI) [57], are chosen. Both of these indices are conservative workspace

inclusive worst-case performance measures that are intolerant of poor performance

over the entire workspace. An optimal GII results in a uniform kinematic Jacobian

matrix, while optimizing GDI minimizes the effective inertia matrix of the system.

Since the stiffness of the system is dominated by the compliance of the transmission

and actuators, a Jacobian matrix with high isotropy not only results in the uniform

kinematic behavior but also maximizes the stiffness of the device.

The objective of optimization is to maximize the worst kinematic isotropy of

the mechanism (GII) while simultaneously minimizing the effective inertia (max

singular value of the effective inertia matrix or GDI). The negative null form of the

multi-objective optimization problem can be stated as

max F(α,β,γ)

G(α,β) ≤ 0

αl < α < αu

(2.3)

where F represents the column matrix of objective functions that depend on the

design variables α, parameters β, and workspace positions γ. Symbol G represents

the inequality constraint functions that also depend on design variables and param-

eters. Finally, αl and αu correspond to the lower and upper bounds of the design

variables, respectively.

For the symmetric five-bar mechanism in elbow out posture, the column matrices
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F and G can be explicitly derived as

F=





GII

GDI



,G=









(l0/2 + w/2)2 + (r + w/2)2 − (l1 + l2)
2

−q2

q2 − q1









In these expressions, the first element of the G matrix constrains the design space

to ensure a closed kinematic chain throughout the reachable workspace while last

two elements stand for the elbow-out posture. Note that the constraint equations

are smooth; hence, they are suitable for use with gradient based optimization ap-

proaches.

2.4 Methods

In the previous section, the formulation for the multi-criteria optimization problem

for best worst-case performance of a haptic interface is described. Before address-

ing the multi-criteria optimization problem, the nature of the problem with respect

to the selected performance criteria is to be studied. Inspecting the performance

criteria, one can conclude that both GII and GDI are non-convex with respect

to the design variables. Moreover, as workspace inclusive measures, their calcula-

tion requires searches over the workspace. As discussed in the introduction, several

methods have been proposed to solve for the single criteria optimization problem

of parallel manipulators. In general, descent methods suffer from getting trapped

at local optima while heuristic methods cannot guarantee optimality of their solu-

tion. Feasibility and efficiency of a branch-and-bound type method, called culling

algorithm, is advocated in the literature to address single objective min-max prob-

lems [57].

In this study, the culling algorithm is used to independently solve for the opti-

mum designs with respect to GII and GDI. The culling algorithm improves the

computational efficiency of a brute-force method by reducing (culling) the amount

of searches required through effective performance comparisons. The algorithm cap-

italizes on the fact that as a worst-case measure, once the global performance index

for certain reference parameters is calculated conducting a search over the entire

workspace, reduction of the feasible parameter set can be performed without per-
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forming any other searches over the workspace. Specifically, after a global index

value is calculated for the reference parameters, comparisons with local indices at

only a single configuration in the workspace can be overtaken. Hence, searches over

workspace is significantly reduced as they are conducted only when it is necessary to

calculate new reference global index values. Comparing all set of design variables to

find the best worst-case index, the algorithm will converge to an optimum solution

within the discretization accuracy. As the culling method substantially reduces the

amount of workspace searches required by a brute-force method, it is a fast and

efficient algorithm to address min-max type problems.

Since the performance of the culling algorithm is highly dependent on the initial

reference values assigned, a fast gradient-based optimization method, sequential

quadratic programming (SQP), is used to solve for a local extrema that will serve

as a good initialization value. This modification applied to the initialization of

the culling algorithm increases the computational efficiency by resulting in a higher

culling rate at the first iteration. Once a solution is obtained, another SQP is

invoked to converge to a guaranteed optima within the discretization region.

If the multi-criteria optimization problem is treated as multiple single objective

problems where objective functions are handled independently, optimal solution for

one criteria may result in an unacceptable design for the other. To achieve a “best”

solution with respect to multiple criteria, the trade-off between objectives needs to

be quantified. Scalarization approaches assumes apriori knowledge of this trade-

off and converts the multi-criteria problem into a single objective one by assigning

proper weights or priorities to each performance index. On the other hand, Pareto

methods do not require any apriori knowledge about the design trade-offs and solve

for the locus of all dominant solutions with respect to multiple objective functions,

constituting the so-called the Pareto-front hyper-surface. Hence, designers can make

a more realistic choice between multiple “best” solutions and avoid the challenge of

synthetically ranking their preferences.

There exists several methods to obtain the Pareto-front hyper-surface, among

which Normal Boundary Intersection (NBI) method is one of the most featured. As

the Pareto-front hyper-surface is a geometric entity in the objective space forming

the boundary of feasible region, NBI approach attacks the geometric problem di-
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rectly by solving for single-objective constrained subproblems to obtain uniformly

distributed points on the hyper-surface. NBI solves for subproblems which only

depend on the defined optimization model, that is, chosen objective functions and

design constraints since these equations map the feasible design space onto the

attainable objective space. Given independent optimal solutions for each objective

function (solutions of each single objective problem), called shadow points, NBI first

constructs an hyper-plane in the objective space by connecting these shadow points

with straight lines. Then, this hyper-plane is divided into grids that control the res-

olution of solutions on the Pareto-front hyper-surface. For each point on the grid,

a geometric subproblem is solved to find the furthest point on the line that extends

along the surface normal passing through the grid point and is in the feasible do-

main of the objective space. Hence, NBI obtains the Pareto-front with reducing the

problem to many single-objective constrained subproblems. Number of subproblems

can be adjusted by defining resolution of the grid that maps to the number of points

on the Pareto-front hyper-surface. As the number of points increases, the computa-

tional time increases linearly, but since the method assumes spatial coherence and

uses solution of a subproblem to initialize the next subproblem, convergence time

for each subproblem may decrease resulting in further computational efficiency.

For a Pareto-front generation method can be classified as a “good” one, the

following criteria are to be satisfied [72]: minimum distance of the Pareto-front

hyper-surface produced by the algorithm should be low with respect to the true

Pareto-front hyper-surface and the maximum spread of solutions as well as maximum

number of elements on the Pareto optimal set should be high.

NBI method results in exceptionally uniform distributed points on the Pareto-

front hyper-surface without requiring any tuning of the core algorithm. Moreover,

once shadow points are obtained, NBI solves for the geometric problem directly

utilizing a fast converging gradient-based method, evading the computationally de-

manding aggregate optimization problems required in for most of the scalarization

methods. Therefore, NBI method promises to be much faster and efficient than

other methods to obtain a well represented Pareto-front hyper-surface including ag-

gregate methods such as weighted sums and evolutionary optimization approaches

such as GAs.
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It should also be noted that the NBI method can solve for points on the non-

convex regions of Pareto-front hyper-surfaces, a feature that is missing from the

weighted sum methods. Compared to weighted sum techniques, NBI achieves higher

solution efficiency as it does not suffer from clumping of solution in the objective

space. NBI is also advantageous over other methods as it trivially extends to handle

any number of objective functions. Compared to Multi-Objective Genetic Algorithm

(MOGA) [14] that requires problem dependent fitness and search related tuning and

several steps to reach convergence, a standard NBI approach can map the Pareto-

front hyper-surface with higher accuracy and uniformity, while also inheriting the

efficiency of gradient-based methods.

Relying on gradient techniques, NBI assumes sufficient smoothness of the geo-

metric problem at hand, but it has also been demonstrated that the method per-

forms remarkably well even for non-smooth geometries [50]. In the presence of

non-continuous regions, multiple initializations of the NBI method may be required

for efficiently generating the Pareto-front hyper-surface. For the case of strongly

discontinuous geometries, hybridization with MOGA-II to supply feasible initializa-

tion points at each continuous sub-region can be employed, as proposed in [50]. It is

noted that since NBI relies on equality constraints, it is possible for NBI not to find

a solution on the true Pareto-front hyper-surface, converging to a local optima. In

such a case, post processing on the solutions of NBI subproblems can be employed

to filter out undesired dominated solutions.

2.5 Results and Discussion

Table 2.2 presents the results of the modified culling algorithm for the single objec-

tive problems, for best kinematic and dynamic isotropy, respectively. These results

are obtained by conducting a global search over the entire parameter space with

discretization step sizes of 2 mm and 1 mm for the parameter space and workspace,

respectively, and by further improving on these results through several local searches

with finer discretizations at the neighborhood of the results suggested by the global

searches.

Figure 2.2 presents the change of singular values over the workspace for the
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Table 2.2: Results of independent optimizations with respect to GII and GDI.

Best Design for Best Design for Unit

Kinematic Isotropy Dynamic Isotropy

GII 0.783 0.407 –

GDI 0.622 0.766 –

l0 0.4 0.1 mm

l1 299.7 89.9 mm

l2 300.0 115.2 mm

r 419.6 123.6 mm

optima of single objective problems. Subfigures 2.2(a) and 2.2(c) pertain to the

best kinematic design while Subfigures 2.2(b) and 2.2(d) belong to best dynamic

design. Results indicate that best design with respect to solely GII suffers from

poor dynamic performance, while best design with respect to only GDI possesses

poor kinematic performance.

To characterize the trade-off between the single objective solutions, Pareto-front

curve for the bi-objective optimization problem is constructed in Figure 2.3. Two dif-

ferent techniques are employed to form the Pareto-front curve, namely NBI method

and aggregated performance index method. For the NBI method, a grid size of ten

points are selected. In Figure 2.3 the distribution of these points on the Pareto-

front curve is marked by dots. For the second method, an aggregated performance

index (API) is defined as the weighted linear combination of GII and GDI. In

particular, API = λ GII + (1 − λ) GDI, where 0 ≤ λ ≤ 1 denotes the weighting

factor. Nine aggregated optimization problems are solved for ten equally spaced

weighting factors utilizing the modified culling algorithm with discretization step

sizes of 5mm for the parameter space and 1mm for the workspace. Circles in the

Figure 2.3 denote the distribution of aggregate solutions on the Pareto-front curve

and are labeled with their corresponding weighting factor.

As expected, NBI method generates a very uniform distribution of points on the

Pareto-front curve while the solutions of the aggregate problem are clumped at cer-

tain locations of the curve. To obtain a uniform distribution using the aggregated

index approach, proper weights should be assigned to ensure uniform distribution.
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Figure 2.2: Change of singular values over the workspace for the optima of single

objective problems. Subfigures (a) and (c) pertain to the best kinematic design,

while (b) and (d) belong to the best dynamic design.

However, the characteristics of the weight distribution is not known before the prob-

lem is solved. Moreover, since the aggregate performance index relies on the rela-

tively costly culling algorithm to solve for each point on the Pareto-front curve, its

accuracy is limited by the computationally feasible discretization step size. In the

Figure 2.3, aggregate problem results in identical solutions for different weighting

factors, particulary for weighting factors λ = 0.4 to λ = 0.5, λ = 0.6 to λ = 0.7,

and λ = 0.8 to λ = 0.9, respectively, since a course discretization step size is chosen

so that computations can be completed in a reasonable amount of time. As this

problem suggests, solving for each aggregate performance index at each weighting

is a computationally demanding task, limiting the density of feasible discretization.

NBI method possesses an inherent advantage in terms of computational cost, as it

attacks the direct geometric problem to obtain the Pareto-front curve and utilizes

continuous, computationally efficient gradient methods for the solution.

In addition to the efficiency offered via the uniform distribution of solutions on
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Figure 2.3: Comparison of NBI and aggregated performance index methods. Symbol

λ is the weighting factor.

the Pareto-front curve, NBI approach results in orders of magnitude improvement

in the computation time, especially for the design problem at hand, as depicted

in Figure 2.4. All of the simulations presented in Figure 2.4 are performed using

a 32 bit Windows XP workstation that is equipped with a 3.40GHz Intel Xeon

processor with 1MB L2 cache and 4GB DDR-2 400MHz SDRAM.

As can be observed from Figure 2.4, the aggregate problem scales exponentially

with the discretization step size, rendering an accurate solution of even nine points

on the Pareto-curve almost impossible for the simple sample problem at hand. On

the other hand, NBI method solves for points on the Pareto-front curve very effec-

tively, in about 1/14 time of the weighted-sum approach with course (5mm) step

size. The accuracy of solutions obtained by the NBI method is dependent on a

parameter that adjuts the constraint tolerance for the algorithm. Figure 2.5 illus-

trates that the convergence of NBI method is acceptable with all reasonable values

of such tolerance. Particularly, Figure 2.5 presents solutions obtained using the NBI

approach with three different tolerance values: 10−7, 10−8, and 10−9. Since NBI

employs a local search algorithm that is dependent on the initial conditions, con-
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Figure 2.4: Computational effort of NBI method with respect to different tolerances

and weighted sum method with respect to different discretizations.

vergence can be poor at certain trials as can be observed for two dominated points

in Figure 2.5. However, poor convergence of certain points is not an uncorrectable

drawback, as solution for those points can be repeated with closer initializations

and tighter tolerances. The computational time for NBI method scales linearly with

tolerance values as it does with number of points selected for the grid.

To allow for comparisons of the proposed approach with other scalarization meth-

ods in the literature, sequential optimizations are implemented for the sample prob-

lem. In the first sequential approach (SA1), parameter sets resulting in the best

GII values for each discrete value of the parameter r are calculated. The change

in GII values and the link lengths are plotted in Figure 2.6 with respect to the

independent parameter r. In this plot, one can observe that GII value increases

monotonically with increasing r until the link length l1 reaches its allowable upper

limit (300 mm) while link lengths l0 and l2 also increase with increasing r until

l2 reaches its allowable upper limit (300 mm). Once l2 reaches its upper limit,

monotonic decrease in l0 values can be observed until l1 reaches its upper limit.

Similarly for the second sequential approach (SA2), parameter sets resulting in

the best GDI values for each discrete value of the parameter r are calculated. The

change in GDI values and the link lengths are plotted in Figure 2.7 with respect

to the independent parameter r. In this plot, one can observe that GDI value

increases for a while as the link lengths increase and after attaining its maximum
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Figure 2.5: Distribution NBI solutions with three different tolerances: 10−7, 10−8,

and 10−9.

value GDI decreases monotonically. The increase in GDI with the increasing link

lengths take place due to the fact that GDI is a measure of effective inertia of the

system, over which the kinematic Jacobian of the mechanism has high influence. At

the low values of r, effects of kinematic Jacobian (hence the link lengths) dominate

over the effects of link inertias and GDI increases with the link lengths. At around

r = 80mm, the effects of link inertias become more dominant and the expected

trend of decrease of GDI with increasing link lengths is observed. The optimal

link lengths of the mechanism are highly affected by the upper limits. When link

length l2 reaches its allowable upper limit (300 mm), l1 starts a rapid increase until

it encounters its own upper limit (300 mm). Similarly, link lengths l0 which stays

very low up until l2 reach its limit, starts increasing until l1 reaches its upper limit,

at which point l0 experiences a sharp decrease.

Assigning r as the independent variable, the SA1 (SA2) uses the set of “optimal”

solutions with respect to GII (GDI) as the feasible search domain to conduct

another single criteria optimization, this time with respect to GDI (GII). In other

words, the parameter set resulting in the best GDI (GII) value is selected from the

Figure 2.6 (Figure 2.7). The results of the sequential optimization approaches are
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Figure 2.6: Parameter sets with best GII values for each discrete value of r.

plotted in Figure 2.8 with respect to a dense Pareto-curve obtained using the NBI

approach. Inspecting the plot, one can conclude that the “best” solutions obtained

using the sequential optimization approaches are both dominated – are points not

lying on the Pareto front, meaning there exists solutions for which one can improve

GII (GDI) while keeping GDI (GII) constant or vice versa. In fact, regrading to

the solution of SA1 improvements up to 20% in the GII value and up to 3% in the

GDI value are possible by choosing one of the designs that lies on the Pareto-front

boundary found by the intersection of the Pareto curve and vertical and horizontal

line, respectively, passing through that point. Similarly, improvements up to 20% in

the GII value and up to 16% in the GDI value are possible for solution calculated

by SA2.

As emphasized earlier, any point on the Pareto-front curve is a non-dominated

solution. Hence it is up to the designer to choose the “best” design for the appli-

cation at hand, considering the characteristic of the trade-off mapped out by the

Pareto-front boundary. This decision may be challenging since the relative weights

are not transplant, but implicit in the Pareto plot. For the convex portions of the

Pareto-front curve, it is always possible to estimate the relative weight λ of the ob-
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Figure 2.7: Parameter sets with best GDI values for each discrete value of r.

jective functions since there exists an explicit relationship between the slope of the

Pareto curve at a Pareto point and λ [10]. Reflecting the relative importance (pref-

erence) among the objective functions under consideration, weights help negotiating

the decision trade-offs within the Pareto set. Note that, in contrast to the weight-

ing sum approach, within the proposed framework the weights are obtained after

the points representing the Pareto set are solved for. With such an approach the

weights of points that are uniformly spread on the Pareto-front curve can trivially

be constructed, a task that is not feasible with weighted sum approaches.

To estimate the weights of points on the Pareto set, a polynomial of 5th order

is fitted with R2 = 0.9985 on the points obtained using NBI method as shown in

Figure 2.9. Given the slope (θ) of this curve at any point, relative weight λ of the

objective functions can be estimated as λ = 1/(1 − θ).

The Pareto methods not only allow additional constraints be considered for the

final decision but also let the designer adjust these constraints while simultaneously

monitoring their effect on the set of non-dominated solutions. For the sample prob-

lem analyzed, a design is selected by imposing two additional physical constraints

on the Pareto-front curve: a limit on the allowable workspace and a limit on the

actuator size. Assuming that motors with 40mm diameter will be used as the actu-
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ators, a new lower limit can be imposed on the link lengths as l0 > 40mm, rendering

the last 11 points on the Pareto-front curve as infeasible designs. As for the sec-

ond constraint, the footprint of the mechanism is to be restricted. The designer

can impose constraints of different footprint areas to observe their effect on the

non-dominated solution set. In Figure 2.10 infeasible solutions for footprint area of

400mm x 400mm are marked. Noticing that there are still many feasible solutions

on the current Pareto-front curve, one can calculate the weights of the limit points

of the feasible set using the curve fit. The limiting points have weights of λ ≈ 0.1

and λ ≈ 0.2, respectively. A final decision can be done considering the final use

of the device in question. In this Chapter, the device is aimed to be used as a

high fidelity haptic interface and more emphasis is given on the GDI value since

this metric highly affects the closed loop control performance of the final design.

Therefore, the point λ ≈ 0.1, labeled as a star in Figure 2.10, is selected as the final

design. The link lengths corresponding to this design choice are also represented in

Figure 2.10.
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2.6 Conclusions and Future Work

In this Chapter, a general framework suitable for the design optimization of parallel

mechanisms with respect to the multiple design criteria is presented. Optimiza-

tion problems for parallel mechanisms employed as force feedback device with best

worst-case kinematic and dynamic performance are formulated. Non-convex single

objective optimization problems are solved with the culling algorithm, while NBI

method is used to obtain the Pareto-front curve to present the designer with a wide

range of alternative solutions. Computational efficiency of NBI method is demon-

strated over aggregating approaches such as weighted sums. The optimality of the

design using Pareto methods is shown over prioritization approaches. To facilitate

the determination of the “best” solution of the Pareto set, estimation of the relative

weights of performance indices that are implicit in the Pareto plot is presented. Di-

mensional synthesis of a high performance parallel robot utilizing the Pareto-front

curve is demonstrated.

The method presented can be extensible to work with the other type of per-
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formance indices and to include more than two criteria that does not violate the

sufficient smoothness of the trade-off surface. Implementation details of NBI method

is presented in Appendix B. Application of the proposed framework to the design

of more complex parallel mechanisms incorporating increased number of design pa-

rameters and objectives will be addressed in the future.
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Chapter 3

Optimal Dimensional Synthesis of Force Feedback

Lower-Arm Exoskeletons

Force feedback exoskeletons are wearable computer-controlled motorized devices

that serve as a haptic interfaces to physically couple human operators with ren-

dered virtual environments. Ideal haptic devices are desired to withstand human

applied forces with very high stiffness and be capable of displaying a full range of

impedances down to the minimum value humans can perceive. The performance

of a haptic interface under closed loop control is measured by the transparency of

the display, that is, by quantifying the match between the desired and actually ren-

dered impedance values. During haptic rendering, the haptic interface is coupled

to the control system and its existence results in parasitic effects on the displayed

impedances, deteriorating the perfect transparency. Low effective inertia is crucial,

especially while rendering impedance values at the lower end of the spectrum. Even

though inertia cancelation can be implemented in control, issues like sensor and

quantization noise limit the applicability of these approaches. A haptic interface

with isotropic performance is also of interest, since such a design will result in a

more uniform “feel” of the device throughout the workspace, while simultaneously

making most efficient use of the available actuators. Therefore, independent of the

control algorithm used, both the kinematic and dynamic performance of a haptic

device have substantial impact on the overall performance of the haptic display.

Since, most of the requirements for haptic interfaces are satisfied by parallel

mechanisms thanks to their inherent characteristics like low inertia, compactness,

high stiffness, high position and force bandwidths, and high isotropy, parallel mech-

anism based lower-arm exoskeletons are discussed in this Chapter. However, di-
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mensions of the parallel mechanisms must be fine tuned to achieve the highest

performance from such devices as haptic interfaces. In addition, trade-off relations

between conflicting performance requirements must be systematically resolved since

intuition may fail due to complexity of the analysis of parallel mechanisms. Given a

kinematic structure determination of the optimal dimensions of a parallel mechanism

to satisfy multiple design criteria is highly challenging task.

Besides the important task of determining the most appropriate dimensions of a

given parallel mechanism architecture that constitute the best compromise between

multiple performance criteria, another relevant concern during design optimization

studies is the selection of the most appropriate kinematic structure [6]. Selection of

the most appropriate kinematic structure for a given task is non-trivial, since kine-

matics and dynamics of each mechanism may differ substantially from each other

and intuitive approaches may fail to capture the important trade-offs among multi-

ple mechanisms. Studies that address this design challenge are rare in the literature.

Recently, Chablat et al. [6] presented a interval analysis based comparison study for

three degrees of freedom parallel kinematic structures, in which two parallel mecha-

nisms are compared with respect to their workspace and kinetostatic performance.

Similarly, in [25] a comparative study of of parallel mechanisms is conducted with re-

spect to their workspace and stiffness. Finally, in [64] the singularity free workspace

and size of parallel mechanisms are compared. Even though these studies compare

multiple parallel mechanisms with respect to their performance for a given task,

they cease to capture the multi-objective nature of the problem, and do not provide

a complete view of the performance trade-offs while selecting one mechanism over

other. Based on pareto optimality concepts, this Chapter aims to provide a formal

approach for rigorous comparison of multiple mechanisms with respect to multiple

design criteria.

In this Chapter, kinematic and dimensional synthesis of lower arm exoskeletons

are conducted using the multi-criteria design optimization framework introduced

in [60, 61]. The optimized devices are aimed to be employed as a high fidelity haptic

interfaces for human forearm and wrist. Multiple design objectives for the devices

are discussed and classified for the application scenario at hand, and optimization

problems to study the trade-offs between these criteria are formulated. Dimensional
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syntheses are performed for optimal global kinematic and dynamic performance of

two spherical parallel mechanisms (SPMs) that satisfy the ergonomic necessities

of a human forearm and wrist. Then, two mechanisms are rigorously compared

with respect to the design criteria based on their pareto optimal solution sets and

advantages/disadvantages of each design are discussed. Finally, kinematic structure

and dimensions of an optimal exoskeleton are decided in the light of Pareto-front

curves generated.

The Chapter is organized as follows: Section 3.1 introduces the kinematic model

of human lower arm and discusses the selection two SPMs as the candidate kine-

matic structures. Section 3.2 summarizes the kinematic and singularity analysis of

the two SPMs. Several design objectives appropriate for exoskeleton devices the are

identified and categorized in Section 3.3. Section 3.4 formulates the multi-criteria

optimization problems, explains the optimization methods used to address them,

and presents, and discusses the results of multi-criteria optimization problems. Sec-

tion 3.5 presents the formal comparison of the two parallel mechanisms and justifies

selection of one over the other. Finally, Section 3.6 concludes the Chapter.

3.1 Kinematics of Human Lower-Arm and Spher-

ical Parallel Mechanisms

The movement of human wrist is quite complex since it is capable of lateral flex-

ion and extensions motions around the radiocarpal and midcarpal joints axes as

well as abduction and adduction motions about an axis that passes through the

capitate. Moreover the whole human wrist is capable of supination and pronation

movements about the axis of the forearm. Even though the rotation axes of these

motions are subject to small variations as the joints move, simplified kinematics

of the human elbow and wrist can be quite faithfully modeled as a three degrees

of freedom (DoF) kinematic chain that allows supination/pronation of the forearm

and flexion/extension and abduction/adduction of the wrist joint. In the simplified

kinematic model, the axes of rotation for these three motions coincide at a single

point on the wrist. Workspace and torque limits of human forearm and wrist are

listed in Table 3.1.
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Table 3.1: Workspace and Torque Limits of Human Forearm and Wrist

Joint
Human Isometric

Strength [48]

Human Joint

Workspace Limits

Forearm

Supination/Pronation
9.1 Nm

Supination: 86◦

Pronation: 71◦

Wrist

Palmar/Dorsal Flexion
19.8 Nm

Palmar Flexion: 73◦

Dorsiflexion: 71◦

Wrist

Abduction/Adduction
20.8 Nm

Adduction: 33◦

Abduction: 19◦

A kinematic chain that is suitable to serve as an exoskeleton should have rotation

axes of its joints coincident with the rotation axes of human wrist when the device

is worn by an operator. Moreover, the choice of closed kinematic chains (parallel

mechanisms) are preferable over their serial counterparts in satisfying requirements

of force feedback applications, since parallel mechanisms possess inherent advan-

tages. Specifically, parallel mechanisms offer compact designs with high stiffness

and have low effective inertia since their actuators can be grounded, or placed on

parts of the mechanism that experience low accelerations, in many cases. In terms of

dynamic performance, high position and force bandwidths are achievable with paral-

lel mechanisms thanks to their light but stiff structure. Besides, parallel mechanisms

do not superimpose position errors at joints, hence can achieve high precision.

In order to span an acceptable portion of the natural human wrist and forearm

workspace and to ensure alignment of the axes of rotation of human joints with the

controlled DoF of the device such that decoupled actuation and measurement of

human joint rotations are possible, two closed kinematic chain based mechanisms,

namely 3RPS-R1 and 3UPS-S mechanisms, are selected as the candidate kinematic

structures of the exoskeleton. Both mechanisms belong to the larger family of spher-

ical parallel mechanisms (SPMs). Even though there has been important recent

advances in the type synthesis of SPMs [32, 28, 13], design and analysis of many

of even the most basic types of these mechanisms are still open research topics [4].

3RPS and 3UPS-S mechanisms are among the few SPMs, whose kinematic and sin-

1Parallel mechanisms are commonly denoted by using symbols U, R, S, and P, which stand for

universal, revolute, spherical, and prismatic joint. Symbols corresponding to actuated joints are

underlined in this notation.
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gularity analyses are fully addressed in the literature. Moreover, being compact

and allowing for human arm motions without collisions with the device, these two

mechanisms are the most suitable SPMs to serve as wearable force feedback devices.
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Figure 3.1: 3RPS-R and 3UPS-S mechanisms in perspective views

3RPS-R and 3UPS-S mechanisms are depicted in Figure 3.1. The 3RPS-R mech-

anism is of hybrid kinematic structure and comprises of a 3RPS parallel wrist in

series with an actuated revolute (R) joint at the base platform of the wrist, while

the 3UPS-S mechanism is purely parallel and comprises of a 3UPS parallel wrist

coupled with the kinematics of the idealized human wrist that acts as a spherical

(S) joint at the moving platform of the mechanism.

The 3RPS platform, first introduced by Lee et al. [37], and further analyzed

in [40], consists of five bodies: a base platform F , three extensible links R, S, T ,

and a moving platform W . The end-effector held by the operator is rigidly attached

to the moving platform W . Extensible links are connected to the base platform via

revolute joints whose axes of rotation are oriented along the tangents of F , while the

moving platform is connected to the extensible links by means of spherical joints.

In this Chapter, the analysis is limited to a symmetric 3RPS mechanism where the

revolute joints and the spherical joints are spaced at 120◦ along the circumference

of the base platform of radius R and the moving platform of radius r, respectively.

The 3RPS-R mechanism has four DoF corresponding to the height z and Euler

angles ψ1, ψ2 and ψ3 of the moving platform W with respect to the Newtonian ref-

erence frame N . The rotation of the base platform and the lengths of the extensible

links are actuated to control these DoF. The platform possesses limited translational
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movement transverse to the vertical axis through the base and no singularities for

limited values of revolute joint angles qi ∈ (0, π/2) [37]. The 3RPS-R mechanism

is first utilized as an exoskeleton device by Gupta et al. [18] and adapted as a

rehabilitation device in [19].

The 3UPS-S mechanism, first analyzed in [21], also consists of five bodies: a base

platform N , three extensible links R, S, T , and a moving platform W . The end-

effector held by the operator is rigidly attached to the moving platformW . The wrist

of the operator is idealized as a spherical joint and the forearm of the operator is

fixed to the base platform N . Hence, for this mechanism, the human arm counts as a

part of the kinematic structure2. Extensible links are connected to the base platform

via spherical joints, while the rotating platform is connected to the extensible links

(and human forearm) by means of spherical joints (and wrist). In this Chapter, the

analysis is limited to a symmetric 3UPS-S mechanism where the universal joints and

the spherical joints are spaced at 120◦ along the circumference of the base platform

of radius R and the moving platform of radius r, respectively. Initial configuration of

the 3UPS-S mechanism selected as ψ1 = ψ2 = 0 and ψ3 = 90◦ so that the mechanism

possesses the best kinematic isotropy at the initial configuration.

The 3UPS-S mechanism has three DoF corresponding to Euler angles ψ1, ψ2

and ψ3 of the moving platform W with respect to the Newtonian reference frame N .

The lengths of the extensible links are actuated to control these DoF. The moving

platform is a distance z from the base platform and does not possess translational

movement transverse to the vertical axis through the base. No singularities exist

for this mechanism for limited values of revolute joint angles qi ∈ (0, π/2) [4]. The

3UPS-S mechanism is first utilized as an exoskeleton device by Yang et al. [66, 67].

Since the performance of parallel mechanisms is highly sensitive to their di-

mensions, optimization studies are absolutely necessary for design of these types of

mechanisms [46]. Moreover, comparison of two kinematic chains can only be per-

formed once they are both optimized for the same set of performance criteria. In

this Chapter, optimal dimensions for both of these mechanisms will be calculated

2Note that kinematics of human arm is not required to be considered in the analysis of 3RPS-R

mechanism since unlike the case for 3UPS-S, kinematics of human arm only imposes redundant

constraints to 3RPS-R mechanism.
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with respect to multiple design criteria to be detailed in the next sections, and then

a rigorous comparison will be conducted between the two mechanisms.

3.2 Kinematic, Dynamic, and Singularity Analy-

ses of 3RPS-R Mechanism

This section summarizes the kinematic, dynamic and singularity analyses performed

for the 3RPS-R mechanism, so that kinematic Jacobian J and apparent inertia M

matrices can be formulated to be used in the design optimization studies. Similar

analyses are also performed for the 3UPS-S mechanism, but these derivations are

omitted in text for the sake of briefness.

3.2.1 Kinematic and Singularity Analyses

The aim of this analysis is to summarize the necessary steps for derivation of the

configuration level kinematics and the kinematic Jacobian of 3RPS-R and 3UPS-

S mechanisms. The kinematic Jacobian matrices of the mechanisms are required

by the optimization routines such that their kinematic performance can be charac-

terized. To construct the kinematic Jacobian, the end-effector velocities are to be

expressed in terms of the velocities of the actuators through a forward kinematics

analysis.

To set the notation, let a symbol in standard typeface represent the length of the

corresponding vector marked by an arrow. Let each rigid link of the mechanism be

defined as a body and assign a vector basis to each body with the first basis vector

extending along the link length.

For 3RPS-R, define bodies F , W , R, S, and T along with their vector bases

are shown in Figure 3.2. The end-effector point is denoted by E while the symbol

N is used to signify the Newtonian reference frame. Point O represents a fixed

point in N , which is selected as the origin. Configuration variables ψ1, ψ2, and ψ3

denote the end-effector orientation with respect to space123 Euler angle set, while

x, y, and z denote the end-effector position in the Newtonian frame N . Points FR,

FS, FT , and WR, WS, WT locate the revolute joints and spherical joints on bodies
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Figure 3.2: Sketch of 3RPS-R Mechanism used in Kinematic and Dynamic Analyses

F and W , respectively. The varying link lengths of prismatic joints, that is, the

distances between the points FR and WR, FS and WS, FT and WT , are measured by

configuration variables s1, s2, s3. The configuration variable θ is defined to measure

the orientation of F with respect to the basis vector −→n1. Finally, the orientations

of the links R, S and T about their revolute joint axes with respect to the body

F are given by configuration variables q1, q2, and q3, respectively. The vector loop

equations enforcing the closed kinematic chain for the 3RPS-R mechanism can be

written as

−ρ1

−→
fa1

+ s1
−→r1 + ρ2

−→wa1
−

−−→
pOE =

−→
0 (3.1)

−ρ1

−→
fb1 + s2

−→s1 + ρ2
−→wb1 −

−−→
pOE =

−→
0 (3.2)

−ρ1

−→
fc1 + s3

−→
t1 + ρ2

−→wc1 −
−−→
pOE =

−→
0 (3.3)

where, ρ1 and ρ2 are the distance between the center of F and axes of the revolute

joints and the center of W and the axes of the spherical joints, respectively. The
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vector
−−→
pOE is the position vector from point O to E, and can be written as

−−→
pOE = x−→n3 + y −→n2 + z −→n3 (3.4)

These three vector equations are equivalent to nine nonlinear scalar equations

in 13 configuration variables. For the configuration level forward kinematics ψ1, ψ2,

ψ3, q1, q2, q3, x, y, z are the unknowns to be solved for, while for the configuration

level inverse kinematics s1, s2, s3, θ, q1, q2, q3, x, y are the unknowns. Since no

closed form analytical solution is possible for these set of equations, one can solve the

configuration level forward/inverse kinematics of the 3RPS-R mechanism utilizing

numerical methods, such as the Newton-Raphson method.

Spatial and temporal coherence exist during kinematic and dynamic simulation

of mechanisms; hence, once properly initialized local search methods, like Newton-

Raphson, continue to converge to the correct solution as long as the simulation

step size is selected to be sufficiently small. However, such a coherence need not

exist in optimization routines; hence, proper initialization of unknown configuration

variables constitutes an important concern during design optimization studies. In

this study, global performance indices, that require a full span of the workspace,

are utilized; hence, one can take advantage of spatial coherence during initialization

given sufficiently fine discretization of the workspace.

Good initial value estimates for s1, s2, s3, θ, q1, q2, q3, x, and y for solution

of configuration level inverse kinematics are estimated through a geometric inter-

pretation of vectors. Expressing the vectors connecting the revolute joints to the

spherical joints as the function of ψ1, ψ2, ψ3, θ, x, and y as

s1
−→r1 = −(−ρ1

−→
fa1

+ ρ2
−→wa1

−
−−→
pOE) (3.5)

s2
−→s1 = −(−ρ1

−→
fb1 + ρ2

−→wb1 −
−−→
pOE) (3.6)

s3
−→
t1 = −(−ρ1

−→
fc1 + ρ2

−→wc1 −
−−→
pOE) (3.7)

one can estimate the link lengths s1, s2, and s3 assuming that x = y = 0 and θ = 0

for the starting configuration, when ψ1 = ψ2 = ψ3 = 0. Initial values of q1, q2,

and q3 can be estimated by evaluating the angle between the prismatic joints and

F under the same assumptions.

Defining motion variables u1, u2, and u3 such that the angular velocity of W

with respect to N is represented as N−→ω F = u1
−→n1 + u2

−→n3 + u3
−→n3 and evaluating the
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time rate of change of vector loop equations (3.1)–(3.3) in the Newtonian reference

frame, one can formulate the motion level equations for the motion variables u1, u2,

u3 and the time derivatives of dependent configuration variables q̇1, q̇2, q̇3, ẋ, ẏ, ż in

terms of the linear speeds of the prismatic actuators ṡ1, ṡ2, ṡ3 and angular velocity

of the forearm actuator θ̇ as

A [u1 u2 u3 ż q̇1 q̇2 q̇3 ẋ ẏ]T = B
[

ṡ1 ṡ2 ṡ3 θ̇
]T

(3.8)

Then, the velocity level forward kinematics of the 3RPS-R mechanism, character-

izing the relationship between end-effector and actuator velocities, can then be ob-

tained by extracting the Jacobian matrix (J) as
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ż

















= J

















ṡ1
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(3.9)

Unlike mechanisms with serial kinematic chains, parallel mechanisms may pos-

sess kinematic singularities within their workspace. Such singularities are undesir-

able and their elimination is aimed during the design phase. In this study, singular-

ities of the 3RPS-R mechanism are checked exhaustively by imposing constraints on

the condition numbers of theA andB matrices such that they are not ill-conditioned.

Finally, physical and kinematic constraints ζi < 90◦ and qi < 90◦ (i = 1, 2, 3) are

imposed to the design optimization problem during calculation of the performance

indices. Here, ζi ’s represent the variations of the angles between prismatic link and

wrist plate, and constraint on ζi’s are imposed to ensure a design with workspace

limits that satisfies the range of motion limits of commercially available spherical

joints. The second kinematic constraint ensures the positive displacement pose of

the mechanism.

3.2.2 Formulating the Apparent Inertia Matrix

To formulate the apparent inertia matrix D of the system as seen at the end-effector,

dynamic analysis is performed employing Kane’s method. In Kane’s method, one

carries out dot products between partial velocity vectors and applied and inertia
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forces, and between partial angular velocity vectors and applied and inertia torques.

The partial velocity and partial angular velocity vectors are obtained by inspection

of the pertinent velocity and angular velocity expressions, identifying coefficients of

the corresponding generalized speeds [24, 15]. Then, a summation of terms over

all particles and bodies in the 3RPS-R mechanism produces expressions for the

generalized active force Fr (r = 1, . . . , 13) and the generalized inertia force F ∗

r (r =

1, . . . , 13). The dynamical differential equations are then contained in Fr + F ∗

r =

0 (r = 1, . . . , 13), which may be arranged as

M(ξ) ˙̃u = Υ(ξ, ũ, t). (3.10)

where M is the inertia matrix of the mechanism in terms of independent generalized

speeds ũ = [u1 u2 u3 ż]. The effective inertia matrix D of the system as seen at the

end-effector can then be calculated from M according to the formula

D = J−TMJ−1. (3.11)

3.3 Design Objectives

Following the terminology of Merlet [46], one can categorize the performance re-

quirements of a mechanism into four distinct groups: Imperative requirements that

must be satisfied for any design solution, optimal requirements for which a maxi-

mal value of the index is required, primary requirements which take place in the

specifications but can be modified to some extend to ensure a design solution, and

secondary requirements which do not appear in the specifications but can be utilized

to choose between multiple design solutions.

Ensuring the safety and complying with the ergonomic needs of the human oper-

ator are two imperative design requirements every exoskeleton device must satisfy.

Safety is typically assured by recruitment of back-drivable impedance type devices3

with force/torque limits implemented in software, while the ergonomy of the device

3Our discussion is limited to impedance type devices due to their widespread use as haptic

exoskeletons, even though admittance type devices might possibly be used with inclusion of ap-

propriate safety equipment.
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is considered at the kinematic synthesis level. Predetermined workspace volumes

are imposed for the application and being capable of spanning all of the desired

workspace and ensuring alignment of the axes of rotation of human joints with the

controlled DoF of the device, both 3RPS-R and 3UPS-S mechanisms satisfy the

ergonomic requirements of a lower arm exoskeleton. The absence of singularities

in the workspace is another imperative design requirement the both mechanisms

satisfy, that ensures the forward and inverse kinematics of the robots can be solved

uniquely at each point within the workspace.

The performance requirements to be optimized are highly dependent on the final

use of the device. For a high fidelity haptic interface, kinematic/dynamic isotropy

and stiffness of the device (including the actuator and transmission compliance)

should be maximized while effective moving mass should be minimized to achieve

high force bandwidths and a uniform “feel” for the device.

Optimal performance of mechanisms are quantified through study of several de-

sign matrices, including kinematic Jacobian (J) and inertia matrix (M). In this

Chapter global performance measures, characterizing the performance of a manip-

ulator over the entire workspace are considered.

To quantify the kinematic/dynamic performance of the haptic interface global

isotropy index (GII) and global dynamic index (GDI) are proposed in [57]. Both

of these indices are conservative workspace inclusive worst-case performance mea-

sures that are intolerant of poor performance over the entire workspace. An optimal

GII results in a uniform kinematic Jacobian matrix, while optimizing GDI min-

imizes the effective inertia matrix of the system. Other commonly used global

isotropy indices include average (AII) and standard deviation (SDII) of the local

isotropy index over the workspace. Since the stiffness of both system are dominated

by the compliance of the transmission and actuators, optimization for a Jacobian

matrix with high (AII) will result in maximization of the stiffness of the device.

Since entries of kinematic Jacobian and inertia matrices of the 3RPS-R mech-

anism are not homogenous in units, scaling factors need to be introduced for this

mechanism. Scaling factors eliminate the physical units and normalize the elements

of these matrices as fractions of their maximum values so that comparable relative

values are ensured [57].
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As mentioned in Section 3.1, the 3RPS-R mechanism is of hybrid kinematic

structure, that is, it is composed of both parallel and serial kinematic chains, while

the 3UPS-S is a purely parallel mechanism. To allow for a fair comparison between

the two mechanisms according to their kinematic and dynamic performances, scaling

for 3RPS-R is performed with placing special attention to its series characteristic.

Note that inputs from the actuator placed at the series revolute joint of 3RPS-

R mechanism map to the end effector rotations (ψ3) with unity gain, while the

actuated prismatic joints can map the remaining end effector rotations (ψ1 and

ψ2) with much less gain due to the parallel kinematic structure. Global kinematic

isotropy requires these mappings to stay uniform and close over the workspace.

Realizing that rotary actuators with different power output characteristics than the

actuators at the prismatic joints can be employed at this revolute joint, scaling

due to asymmetric power outputs of the actuators can be performed to ensure best

isotropy of the overall device.

A scaling constant, hence power output characteristic of the rotary actuator with

respect to linear drives, is selected such that the best-worst kinematic performance

(GII) of 3RPS-R is determined by the 3RPS parallel platform of part the device.

A proper scaling constant is selected from Figure 3.3 by plotting the minimum of

the minimum singular values and maximum of the maximum singular values in the

workspace of the two rows of the Jacobian matrix related to ψ1 and ψ2 over the

parameter space. In this Chapter, the scaling constant is selected as 0.02 such that

the singular value introduced due to the rotary actuator is never one of the extreme

values of the eigenvalues; hence, the serial kinematics of 3RPS-R has no effect on

calculation of GII .

The primary requirement for the wearable exoskeleton is selected as the workspace

volume index [46], the ratio between the workspace volume and the volume of the

robot. Even though predetermined workspace volume is imposed as an imperative

requirement, a large workspace volume index is desirable to reduce the collisions of

the device with the operator and the environment. The weight of the device is highly

dependent on the selection of the actuators, more so than the link lengths; hence,

there exists some flexibility on deciding the total mass of the kinematic structure.

Finally, the secondary requirements for both devices include low backlash, low-
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over the parameter space

friction, high back-drivability, and low manufacturing costs. Friction, backlash and

back-drivability are mainly influenced by the selection of the actuators and the

transmission, while choice of link lengths may have an influence on manufacturing

costs.

3.4 Optimization of Spherical Parallel Mechanisms

3.4.1 Multi-criteria Optimization Problem

For optimal dimensioning of the exoskeleton as a high fidelity haptic interface, two

objective functions characterizing the kinematic and dynamic performance of the

mechanism are considered. The objective of optimization is to maximize the worst

kinematic isotropy of the mechanism (GII) while simultaneously minimizing the

effective inertia (max singular value of the effective inertia matrix or GDI).

The negative null form of the multi-objective optimization problem can be stated
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as

max F(α,β,γ)

G(α,β) ≤ 0

H(α,β) = 0

αl < α < αu

(3.12)

where F represents the column matrix of objective functions that depend on the

design variables α, parameters β, and workspace positions γ. Symbol G and H

represents the inequality and equality constraint functions that also depend on de-

sign variables and parameters. Finally, αl and αu correspond to the lower and upper

bounds of the design variables, respectively.

The symmetric 3RPS-R and 3UPS-S mechanisms both have two parameters

β1 = r and β2 = W , where r is the radius of the moving platform and selected

according to statistical data on human joint sizes listed in [19] and W = ψ1×ψ2×ψ3

represents the predetermined workspace. The workspace is set asW = 30◦×30◦×60◦

for the design of the high fidelity haptic interface. The optimization problem has

two design variables: the ratio of the moving and base platform radii α1 = r/R and

the perpendicular distance of the moving platform α2 = z. Upper αu and lower αl

limits on the design parameters are imposed according to statistical data on human

arm [19].

The column matrix of objective functions for the haptic interface F is given as

F = [GII GDI ]T (3.13)

while inequality and equality constraints G and H are imposed during kinematic

analysis to ensure the closed kinematic chain for the 3RPS and 3UPS-S platforms

and the positive perpendicular travel pose of the mechanisms, respectively.

3.4.2 Solution Methods

The multi-criteria design optimizations of the 3RPS-R and 3UPS-S parallel mecha-

nisms are conducted using the framework introduced in [60, 61]. This optimization

framework for parallel mechanisms is based on NBI method [11] to efficiently ob-

tain the Pareto-front hyper-surfaces characterizing the design trade-offs. Based on

gradient techniques, the approach is more efficient than other methods to obtain
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a well represented Pareto-front hyper-surface including aggregate methods such as

weighted sums and evolutionary optimization approaches such as GAs.

3.4.3 Results
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Figure 3.4: Change of GII and GDI for 3RPS-R and 3UPS-S mechanisms over

parameter space

Figure 3.4(a) and (b) present the distribution of GII and GDI of 3RPS-R device

over the parameter space. Similarly, Figure 3.4(c) and (d) present the distribution

of GII and GDI of 3UPS-S device over the parameter space. From these plots one

can observe that both GII and GDI indices vary an important amount for different

parameter values of the 3RPS-R mechanism, while the variance is much less for the

3UPS-S mechanism.

In fact, dynamic isotropy (GDI) of the 3UPS-S device is almost uniform over

the parameter space, effects of parameter changes being minimal. The situation is

quite different for the 3RPS-R mechanism and such behavior is expected since the
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3RPS platform part of this device rotates around the fixed base, causing the change

in link lengths have an important effect on the effective inertia. In Figure 3.4(d) the

variation of GDI for the 3UPS-S device is negligible, while such variation is about

10 times higher for the 3RPS-R device in Figure 3.4(b).

Kinematic isotropy (GII) of the 3RPS-R mechanism also varies substantially

as the parameters are changed. Moreover, the 3RPS-R device can achieve much

larger GII values than the 3UPS-S device. The variation of kinematic isotropy

of the 3UPS-S mechanism under different parameter values is important and the

characteristic of this change is complex.

To characterize the trade-off between the single objective solution of each mech-

anism, Pareto-front curves for the bi-objective optimization problem is constructed

in Figures 3.5 and 3.6 employing the NBI method. Figure 3.5 presents uniformly

distributed points on the Pareto-front curve characterizing the trade-off between

GII and GDI for the 3RPS-R device, while Figure 3.6 depicts the same plot for

the 3UPS-S device. Since the GDI values changes only a negligible amount for the

3UPS-S, the Pareto-front curve for this device is effectively a straight line along

which only the parameter ρ changes from 0.36 to 0.47 almost monotonically while

the perpendicular platform distance z = 100mm. The Pareto-front of the 3RPS-R

device is convex curve along which values of optimal parameters varies from ρ = 0.56,

z = 100mm to ρ = 0.36, z = 200mm in a non-trivial manner.

Singularity analysis are performed for the Pareto optimal sets of each mechanism,

and largest singularity free portion of the human lower-arm workspace each design

can span are determined and labeled on the Figures.

3.5 Comparison, Selection of an Optimal Mecha-

nism, and Discussion

To allow for comparison of the multi-criteria performance of both mechanisms, their

Pareto-front curves are presented on the same plot in Figure 3.7. From this plot one

can conclude that 3UPS-S mechanism possesses a much better dynamic performance

than all mechanisms that are possible with the 3RPS-R kinematic structure. How-

ever, further analysis of the maximum singular values of M for both mechanisms
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reveals that effective inertia of the 3RPS-R mechanisms are not so much higher than

the effective inertia 3UPS-S devices, assuming identical links are used during their

construction. On the other hand, best worst case kinematic performance (GII) of

the 3RPS-R mechanisms are about two times better than kinematic performances

of all possible 3UPS-S devices. Moreover, all of the 3RPS-R mechanisms in the

Pareto-front set can span the entire workspace of human lower-arm in a singularity-

free manner, while 3UPS-S mechanisms in the Pareto-front set can do so for only a

portion of the human workspace.

Placing an higher emphasis on the kinematic performance and considering the

primary objective of workspace volume index the optimal kinematic structure is

selected as the 3RPS-R kinematic structure.

Since the performances of different non-dominated solution solutions on the

Pareto-front curve of 3RPS-R mechanism spans a considerable range, it is up to

the designer to choose the “best” design for the application at hand. This decision

is challenging since the relative weights of performance criteria are not transplant,

but implicit in the Pareto plot. Luckily, for the convex portions of the Pareto-front

curve, it is always possible to estimate the relative weight λ of the objective func-

tions since there exists an explicit relationship between the slope of the Pareto curve
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at a Pareto point and λ [10]. Reflecting the relative importance (preference) among

the objective functions under consideration, weights help negotiating the decision

trade-offs within the Pareto set.

To estimate the weights of points on the Pareto set, a polynomial of 5th order is

fitted with R2 = 0.99999974 on the points obtained using NBI method as shown in

Figure 3.7. Given the slope (θ) of this curve at any point, relative weight λ of the

objective functions can be estimated as λ = 1/(1−θ). To select a design, thresholds

of 0.5 are imposed on the Pareto-front curve of 3RPS-R mechanism, one for each

performance criteria, rendering only a limited number of points in the Pareto-front

set feasible. The limiting points on the feasible set are estimated to have weights of

λ ≈ 0.6 and λ ≈ 0.8, respectively. To choose a design that lies halfway in between

the limiting points, a final decision is done by selecting the non-dominated design

with λ ≈ 0.7, labeled as a star in Figure 3.7. The parameter values of the optimal

design are ρ = 0.47 and z = 191mm.

3.6 Conclusions

Multi-criteria design optimization of a parallel mechanism based force-feedback ex-

oskeleton for human forearm and wrist is presented. Relevant design objectives for
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force-feedback exoskeleton devices are identified and categorized. Rigorous compar-

ison of two spherical parallel mechanisms that satisfy the ergonomic necessities of

a human forearm and wrist is presented, by extending a Pareto front based multi-

criteria optimization framework developed for parallel mechanisms and the kine-

matic structure that results in superior performance for force-feedback applications

is selected. Optimal dimensional synthesis of a spherical parallel mechanism based

lower arm exoskeleton is conducted to ensure an optimal trade-off between global

kinematic and dynamic performance of the device.
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Chapter 4

Modeling and Control of a Lower-Arm Exoskeleton

From Hardiman to Sarcos’ exoskeleton, many design studies on exoskeleton devices

have been presented in the literature; however, this challenging topic is still open

for research due to the complex trade-offs among ergonomy, safety, and performance

requirements of these devices. In 1960’s and 1970’s initial studies on exoskeleton

systems were held for teleoperation applications to facilitate manipulation in haz-

ardous environments. The first man-amplifying exoskeleton system, “Hardiman”,

was comprised of a small master exoskeleton placed in a large slave exoskeleton,

which is actuated hydraulically. Hardiman was designed for lifting/carrying and

had 30 degrees of freedom. Instability due to hydraulic sensors, danger of leakage

from hydraulic circuit, and heavy weight were the main design bottlenecks of this

design [47]. Salisbury/JPL arm [3] was developed in early 1980’s and employed in

bilateral teleoperation tasks as a force reflecting master device. A thorough discus-

sion of early stages and recent studies of the exoskeleton systems can be found in [5]

and [18].

Early exoskeleton systems were task oriented and had drawbacks regarding to

performance and ergonomic constraints. The state of the art exoskeleton systems

like BLEEX, HAL, and SARCOS have already addressed many of these challenges,

thanks to the rapid progress in actuation, computation, and controls technologies.

For the arm exoskeleton systems, successful implementation of force feedback appli-

cations were first realized in [44], workspace constraints were studied in [52] and a

more ergonomic design was presented in [9]. These studies tackled the the perfor-

mance and ergonomic constraints by changing actuation system from pneumatic to

electrical in [70] or by using pneumatic muscle actuators in [48].
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Most of the existing arm exoskeleton devices are of serial kinematic structure.

On the other hand, it is well established that parallel mechanisms can satisfy high-

fidelity haptic interface requirements, due to their inherent advantages such as high

stiffness, high position/force bandwidths with respect to their serial counterparts.

However, modeling of parallel mechanisms is more challenging and more impor-

tantly these devices possess smaller workspace with possible singularities within this

workspace, rendering satisfaction of the ergonomic constraints a challenging task.

In the literature, parallel mechanism based arm exoskeleton systems are proposed

in [23, 66] and [18].

In [65], a 7 DoF (4-RPS-1R-3RPS) full arm exoskeleton is proposed. This device

can satisfy ergonomic constraints, while also approaching to the standards of a

high-fidelity haptic display. In this design, pneumatic actuators are preferred for the

actuation to provide smooth motion that is compatible with the human arm. Design

parameters of the mechanism are selected by assigning weights to the indices related

ergonomy and performance of the haptic display. In [66], Yang et al. developed a

lightweight and cost-effective 7 DoF parallel mechanism based exoskeleton system.

The mechanism consists of a 3 DoF spherical joint for the shoulder, 1 DoF revolute

joint for the elbow and a 3 DoF spherical joint for the wrist. Since there exists a

functional analogy between the human muscles and the cable based transmission,

in this design each joint are driven by cables arranged in parallel. As a result, the

system is lightweight, possesses high dexterity and large workspace [67]. Finally,

Gupta et al. , presented a hybrid (parallel + serial) mechanism based exoskeleton,

RiceExo, which has been exploited for rehabilitation and training [18]. The RiceExo

can cover 90% of the human forearm workspace and makes use of direct drive to

avoid compliance, nonlinearities, and backlash associated with transmissions.

Even though many conflicting design criteria need to be taken into account

during design of an exoskeleton, many of these studies only consider a single (or ag-

gregate) objective function to conduct optimization studies. A formal multi-criteria

design optimization study for exoskeleton devices has recently been conducted in [63]

and a rigorous comparison of devices introduced in [66] and [18] is undertaken. In

this study, the better kinematic structure is decided and the optimal dimensional

synthesis of this mechanisms is completed according to multiple design criteria suit-
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able for force feedback exoskeleton interfaces.

This Chapter is organized as follows: Section 4.1 presents the kinematic and

dynamic analyses of the lower arm exoskeleton. Design and hardware components

of the device are detailed in Section 4.2. Section 4.3 briefly summarizes the imple-

mentations of the model based task-space position and impedance controllers and

presents simulation results.

4.1 Dynamical System Modeling Analysis

Kinematic and dynamic analyses of the lower arm exoskeleton system to be uses for

the real-time implementation of the controllers are presented in this section. Before

going into details of analyses brief introduction of Kane’s method is presented.

There exist several methods to formulate equations of motion for constrained

multi-body systems. Even though the solutions of the resulting equations are the

same, form of the equations sets and the numerical solution methods required to

solve these equations depend on the formulation method.

In this study, Kane’s method is selected to formulate equation of motion of

the exoskeleton system due to two major features of this method that can lead to

efficient formulation of the system dynamics. In Kane’s method, non-working forces

can be neglected at the beginning of the analysis by eliminating them through use

of vector algebra. Since these forces have no contributions to the final solution, this

elimination results in equations that are in more compact form. Moreover, through

effective use of generalize coordinates and generalized speeds, the equations of motion

can be represented using a minimal set of variables. As a result, Kane’s equations

may lead to more compact and efficient representation of system kinematic and

dynamic models, that are suitable for real-time implementations.

4.1.1 Formulating Kinematical and Dynamical Differential

Equations

The configuration of the 3RPS-R mechanism is described by 13 generalized co-

ordinates ξr (r = 1, . . . , 13). To enable the formulation of compact and efficient

equations of motion [54], define 13 generalized speeds ur (r = 1, . . . , 13) as linear
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combinations of the generalized coordinate derivatives ξ̇r (r = 1, . . . , n) [26]. Ex-

press these definitions using

u = Kξ̇ + L, (4.1)

where u and ξ̇ are 13 × 1 matrices of ur and ξ̇r, and where the elements of the

13 × 13 matrix K and 13 × 1 matrix L are functions of ξr (r = 1, . . . , 13). The

matrices K and L are chosen such that the angular velocity of W with respect to

N is represented as N−→ω F = u1
−→n1 + u2

−→n2 + u3
−→n3, and um = ξ̇m (m = 4, . . . , 13),

where ξ = [ψ1 ψ2 ψ3 z q1 q2 q3 x y s1 s2 s3 θ]
T . Note that the reciprocal relations also

exist in which the generalized coordinate derivatives are expressed in terms of the

generalized speeds:

ξ̇ = V u + ε, (4.2)

where the elements of the 13 × 13 matrix V and 13 × 1 matrix ε are functions of

ξr (r = 1, . . . , 13). Equation (4.2) is the matrix representation of the kinematical

differential equations, and forms the first of two portions of the state equations or

equations of motion that govern the behavior of the mechanism.

The second portion, the dynamical differential equations, will be expressed in

explicit form as

u̇ = Υ(ξ,u, t) (4.3)

which is derived using Kane’s method. Such a representation is possible since no

configurations of the system exist for which the motion of one or more bodies is not

resisted by inertia. In Kane’s method, one carries out dot products between partial

velocity vectors and applied and inertia forces, and between partial angular velocity

vectors and applied and inertia torques. The partial velocity and partial angular

velocity vectors are obtained by inspection of the pertinent velocity and angular

velocity expressions, identifying coefficients of the corresponding generalized speeds.

Then, a summation of terms over all particles and bodies in the 3RPS-R mechanism

produces expressions for the generalized active force Fr (r = 1, . . . , 13) and the

generalized inertia force F ∗

r (r = 1, . . . , 13). The dynamical differential equations
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are then contained in Fr + F ∗

r = 0 (r = 1, . . . , 13), which may be arranged as in

Eqn. (4.3).

4.1.2 Handling the Constraint Equations

The 3RPS-R mechanism is subject to 9 configuration (holonomic) constraints given

as

Γ(ξ) = 0. (4.4)

In this study, the configuration constraints are imposed within the solver utilizing

Newton-Raphson iterations at each time step1. The configuration constraints are

also differentiated to produce constraint equations that are linear in the motion

coordinates, yielding

Bu + C = 0, (4.5)

where the elements of the 9× 13 matrix B and the 9× 1 matrix C are functions of

ξr (r = 1, . . . , 13). These constraints are then used to undertake a local coordinate

transformation to eliminate dependent motion variables from the equations [26].

This process projects the dynamical differential equations onto the 4-dimensional

constraint manifold, in which the solution of (4.3) is constrained to lie [39, 16]. In

this study, the projection is carried out using symbolic operations (realizing a dot

product) in contrast to numerical operations and is called embedding the constraints.

To embed the constraints in Kane’s method, express the 9 dependent generalized

speeds in terms of the remaining 4 independent generalized speeds by carrying out

linear operations on the constraint equations (4.5). Re-order and partition the

generalized speeds in (4.5) to produce:

1An alternative to imposing the configuration constraints within the solver, that is performing

Newton iterations on Eq. (4.4) at each time step, is to calculate the configuration by integrating

the motion constraints. However, in this approach numerical or initialization errors in the motion

constraints will lead to violations of the configuration constraints –violations that can accumulate

and slow down the integration over long simulations. Since the initialization and round-off errors

at the motion (velocity) level will remain relatively constant during integration [24], the violation

to the configuration constraints will only grow linearly with time. There exist simple stabilization

techniques to overcome this problem [54].
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where ur (r = 1, . . . , 4) are the independent generalized speeds and ur (r = 5, . . . , 13)

are the dependent generalized speeds. Now that the motion constraints have been

expressed in an explicit linear form, the derivation of the constrained dynamical

differential equations proceed by eliminating the dependent generalized speeds from

the analysis and applying Kane’s method as usual. The equations of motion in the

independent generalized speeds are then simply formed as:

F̃r + F̃ ∗

r = 0 (r = 1, . . . , 4) (4.7)

which are only 4 ordinary differential equations in the 4 unknowns, ur (r = 1, . . . , 4).

Finally, equations (4.7) may be used to produce explicit equations for u̇r in the form

˙̃u = Υ̃(ξ, ũ, t) (4.8)

where ũ is a 4 × 1 matrix of the independent generalized speeds.

The resulting dynamic differential equations are a set of ordinary differential

equations, and yield to solution with a standard ODE solver. Advantages associated

with embedding constraints include the reduction in the number of equations to

be integrated and robustness due to the disappearance of the instability problem

associated with the integration of differentiated constraints in DAE solvers.

The process outlined above for obtaining equations of motion is aided by the use

of symbolic manipulation software. One such symbolic package is Autolev [55] [27]

and another is SymSim, a toolbox for MATLABR© created in [15].

4.2 Hardware

CAD model of the 3RPS-R parallel mechanism based exoskeleton is presented in

Figure 4.1. For the hardware implementation of the prismatic joints, direct drive

linear electric actuators (Copley STA 1104) are preferred to avoid transmission com-

pliances and to satisfy high bandwidth, low friction, and no backlash requirements of
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the device. Since direct drive of forearm disc deteriorates the dynamic performance

of the device due to additional inertia associated with such an actuators with rea-

sonable torque output, a capstan mechanism driven by a brushed DC motor (Maxon

RE-65) is selected. Capstan drive is preferred since this transmission mechanism is

backlash and friction free. Dynamic simulations of the device are performed so that

actuators that can withstand a reasonable percentage of human joint torques can be

identified. Spherical rolling joint (Hephaist SRJ004C) is selected for implementation

of the spherical joints, since these components have high stiffness, low friction, high

precision, good repeatability, and large workspace range.

Figure 4.1: CAD Model and Hardware Components of the Lower-arm Exoskeleton

Prototype

The direct drive linear actuators have built-in position sensing capabilities, while

the DC motor is instrumented with an optical encoder. To drive the motors, linear

current amplifiers whose bandwidths are at least an order of magnitude higher than

the actuator bandwidth ( 10 kHz) are selected so that dynamics of the electronic

components do not have a significant effect on the system performance.

Figure 4.2 depicts the control hardware designed for the experiments. Since

the exoskeleton system is grounded, a workstation based controller architecture

is employed. The drivers and sensors are interfaced with the control workstation
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through use of an I/O card (Quanser Q8). Host-target architecture is employed for

the controller. A multi-core windows PC is utilized as the host as well as the target.

Ardence RTX, a hard real-time operation system, is run in the target processor.

One of the cores of the CPU is dedicated to the RTX processes all the time for real-

time control implementations. Thanks to this dedicated core real-time controllers

are realizable at kHz rates. Graphics and high-level controls run at the host side

under the Matlab/Simulink environment.

Figure 4.2: Hardware Setup for Real-time Control Implementation of the Lower-arm

Exoskeleton

4.3 Control

The main goal of the force feedback exoskeleton device is to a provide haptic in-

terface to physically couple a human operator to virtual environments. Haptic

devices are programmed to display the desired stiffness, viscosity, and mass prop-

erties of an environment by controlling their actuators. Quality of these interfaces

are measured by (i) the accuracy of the impedance displayed (transparency), which

is important for high force output applications, and (ii) the impedance resolution

(fidelity), which is important for dexterous procedures. Accuracy defines the match

between the displayed impedance and the desired impedance and this property is

mostly deteriorated by the dynamics of the haptic device. Resolution defines the

detection level of impedance discrimination of the haptic interface and dynamics of

the haptic devices also deteriorate this property. To cancel out the parasitic effects

due to the dynamics of the haptic device, model-based feed-forward compensation
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is commonly used.

There are three known criteria for the design of haptic interfaces:

- Free space must feel free; interference due to the device dynamics must be

minimum; therefore, the controlled device must have low mass and friction.

This requirement is about fidelity and can be achieved by passive design or

active control.

- Solid virtual objects must feel stiff; when contact with solid object occur, the

controlled haptic device must display an impedance that is as stiff as real solid

object. This requirement can be achieved by design of stiff mechanisms and

employment of high bandwidth controllers.

- Virtual constraints must not be easily saturated; capability of force production

of the haptic mechanism must be high enough to feel solid virtual object. This

requirement can be achieved by the fast computation of the control law or

selection of powerful actuators.

Force reflection is commonly implemented using one of the two control schemes:

- Impedance control: when the operator dictates the motion, system detects

this motion and controls the force applied by the haptic device.

- Admittance control: when the operator dictates the forces applied, the system

detects these forces and velocity or displacement is controlled by the system.

The type of the haptic controller to be employed is input of the human operator

(force/position).

In this section, implementation of computed torque and impedance controllers

are presented and the performance of these controllers are presented through simu-

lation results. Admittance control is not implemented since the exoskeleton is not

instrumented with force-sensors; however, computed torque control ensures robust

trajectory tracking of the device and can serve as the inner position control loop for

the admittance controller.

58



4.3.1 Controller Architectures

Computed Torque Controller

In this part, a brief description of the computed torque method and its implemen-

tation are presented.

By rearranging and collecting terms, the equations of motion for the 3RPS-R

manipulator in the independent generalized speeds can be expressed as:

M(ξ)u̇ + C(ξ,u) +G(ξ) = τ (4.9)

where M is the inertia matrix, C is the Coriolis matrix, and G contains the gravity

terms that affect the system. The symbol τ represents the control torque.

In computed torque control, dynamics of the system should follow the desired

values for ξd, ξ̇d, and ξ̈d taken from a trajectory generator.

The idea behind the computed torque control method is to supply a model based

feed-forward torque that cancels the nonlinear terms in the equations of motion,

and in addition to that, supply a feedback torque that will ensure robust tracking of

the desired trajectory. The control torque for implementation of computed torque

method can be calculated as

τ = M(ξ)Y (ξ)
[

ξ̇d −Kv(W (ξ)u− ξ̇d) −Kpe)
]

+M(ξ)Ẏ (ξ)W (ξ)u+C(ξ,u)+G(ξ)

(4.10)

where the tracking error e is defined as

e = ξ − ξd. (4.11)

After the application of this control torque, the dynamics of the tracking error

can be shown to be

M(ξ)Y (ξ)(ë +Kvė +Kpe) = 0. (4.12)

Since the inertia matrix M is always positive definite for rigid manipulators, and

the transformation matrix Y must be selected to be of full rank during dynamic
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modeling, the tracking error for the closed loop system will asymptotically converge

to zero if Kv and Kp matrices are selected to be positive definite.

Forward 
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Figure 4.3: Block Diagram of Computed Torque Control

Block diagram of the computed torque control approach is given in Figure 4.3.

Simulations of this control scheme are performed in MATLAB/Simulink and C S-

functions are written for its real-time implementation.

In Figure 4.4, a reference trajectory for the sinusoidal change in z position of the

end-effector with an amplitude of 10 mm at 5 rad/sec is tested, while in Figure 4.5

a reference trajectory for the sinusoidal change in ψ1 orientation of the end-effector

with an amplitude of 0.5 rad at 5 rad/sec is tested to demonstrate that the closed

loop system successful tracks these test trajectories.

Figure 4.4: Reference trajectory of z and tracking performance of the system

Task Space Impedance Controller without Force Feedback

The block diagram of task space impedance control without force feedback is pre-

sented in Figure 4.6 for the linearized device dynamics. Notice that this control

architecture is open-loop in the sense that the error in the displayed impedance is
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Figure 4.5: Reference trajectory of ψ1 and tracking performance of the system

not compensated for using sensor measurements since no force feedback is available

to measure this impedance.

In the block diagram, after the difference between desired position deflection

(∆xd = xd − xo) and actual position deflection (∆x = x − xo) is obtained, this

difference and its time derivatives are multiplied with the parameters characterizing

the desired impedance to obtain the force values to be reflected at the end effector.

The torque commands to the actuators are obtained using the Jacobian matrix.

Forces F are the physical inputs which are applied to the system by the human

operator.
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Figure 4.6: Block Diagram of Impedance Controller without Force Feedback

Impedance of the overall control system (ZC) can be expressed as −F/∆x where

F is the force applied by the human operator and ∆x is the actual position deflection;

∆x =
[

(∆xd − ∆x)ZdJ
T − JTF

]

Z−1
h J (4.13)
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Defining the linearized impedance of the haptic device dynamics as Zh and noting

that jZh = J−TjZhJ
−1, one can obtain

Zh∆x = Zd(∆xd − ∆x) − F. (4.14)

Setting ∆xd = 0, the impedance of the overall control system can be shown to be

equal to,

ZC = Zd + Zh (4.15)

where Zd represents the desired impedance. Therefore, the close-loop impedance of

the system is equal to the sum of the desired impedance and physical impedance

of the haptic device. It can be concluded that, dynamics of the mechanism is a

parasitic effect against obtaining the desired impedance in this control architecture.

Task Space Impedance Controller with Feed-forward Dynamics Cancela-

tion and without Force Feedback

Since the perfect transparency cannot be achieved using task space impedance con-

troller without force feedback (open-loop impedance controller) due to the dynamics

of the haptic device, model feed-forward can used to compensate for the detrimental

effects of device dynamics. If the model of the haptic device is perfectly known, close-

loop impedance can be made equal to the desired impedance. Therefore, the more

precise information about the model is added, the better control can be achieved. In

other words, the torque absorbed by the haptic device ∆τfwd should be added to the

system to provide the required torque for the display of desired impedance. Block

diagram of open-loop impedance controller with model feed-forward is presented in

Figure 4.7.

The torque absorbed by the haptic device, ∆τfwd can be written as

∆τfwd = jẐhJ
−1∆x (4.16)

where, jẐh represents the impedance of the estimated model, and Zh represents the

physical impedance of the haptic device. ∆x can be expressed as

∆x = J jẐ−1
h [∆τfwd + JTFd − JTF ] (4.17)
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Figure 4.7: Block Diagram of Open-loop Impedance Controller with Model Feed-

forward

where, Fd is the desired force, which is equal to Zd(∆xd − ∆x).

Now, after feedforward compensation impedance of the overall control system

can be shown to be equal to

ZC = Zd + Zh − Ẑh. (4.18)

While this method can improve the performance as long as the model is close

to actual values, its implementation increases the computational time. Thus, feed-

forward may deteriorate the haptic design stiffness criteria.

Simulations of this control scheme are performed in MATLAB/Simulink and CS-

functions are written for the real-time implementation. Simulation results are given

in Figures 4.8 and 4.9.
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Figure 4.8: z Position of the End Effector Under a Constant Force Excitation
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In Figure 4.8, a 10 N force in z direction is exerted on the system after 0.1 seconds.

The end-effector position is expected to increase by 10 mm according to impedance

gains: the spring coefficient is set to 1 N/mm while the damping coefficient is set

to 0.1 Ns/mm. Similarly, in Figure 4.9 a 0.5 Nrad torque is applied about the first

axis of end-effector after 0.1 seconds and the end-effector orientation is expected

to increase to 0.5 rad according to impedance gains: the spring constant is set to

1 N/rad and the damping coefficient is set to 0.1 Ns/rad. The system behaves as

expected for both simulations.
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Figure 4.9: ψ1 Orientation of the End Effector Under a Constant Torque Excitation
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Chapter 5

Conclusions and Future Work

In this thesis, we addressed the design, control, and prototyping of an lower-arm

exoskeleton to be employed as force feedback device. A general framework for the

design optimization of parallel mechanisms has been developed. The framework is

extended to allow rigorous comparison of multiple mechanisms. Design optimization

has been implemented for spherical parallel mechanisms using this framework and

superior kinematic structure and optimum dimensions of the selected kinematic

structure are determined to satisfy requirements of a high-fidelity impedance display

device. A prototype has been developed, kinematic and dynamic analyses of the

design have been conducted. Finally, CS-functions for real-time implementation of

position and impedance controllers are prepared and simulations of these controllers

are performed.

5.1 Contributions

This thesis comprises of three core chapters that constitute parts of the design

procedure of a parallel mechanism based lower-arm exoskeleton.

Chapter II introduces a general framework for design optimization of parallel

mechanisms with respect to multiple criteria. The contributions of Chapter II can

be listed as follows:

- Kinematic and dynamic performance criteria are reviewed and formulated for

sample mechanism,

- Non-convex single-objective optimization problems are solved with a branch-

and-bound type (culling) algorithm,
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- Normal Boundary Intersection (NBI) method is applied to efficiently obtain

the Pareto-front curve for the sample mechanism,

- For design optimization of parallel mechanisms, computational efficiency of

NBI method is demonstrated over aggregating approaches, such as the weighted

sum method,

- The optimality of the design obtained using Pareto methods is demonstrated

over the designs obtained through prioritization approaches,

- Generality (extensibility to work with any set of performance indices and to

include any number of criteria) of the proposed framework is discussed.

Chapter III extends the design optimization framework to allow rigorous com-

parison of multiple mechanisms and presents design optimization of a lower-arm

exoskeleton. The contributions of Chapter III can be listed as follows:

- Design objectives for developing force feedback exoskeleton devices are iden-

tified and classified,

- Kinematic and dynamic analyses of two spherical parallel mechanism based

lower-arm exoskeletons are performed,

- Multi-criteria design optimizations for both mechanism are undertaken with

respect to optimal requirements,

- A rigorous comparison of two parallel kinematic structures is presented and

optimal dimensional synthesis of a lower-arm exoskeleton is achieved by proper

mechanism selection from the Pareto optimal set.

Chapter IV presents the design, dynamic modeling, prototyping, simulation re-

sults of position and impedance controllers of a four degree-of-freedom forearm and

wrist exoskeleton robot. The contributions of Chapter IV are as follows:

- Prototype of a parallel mechanism based lower-arm exoskeleton is presented,

- Dynamic simulations of the design are conducted to guide motor selection,
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- Hardware selection and instrumentation to ensure safety and performance are

presented,

- Configuration and motion level (forward and inverse) kinematics of the device

are prepared for real-time implementation,

- Computationally efficient solution of (inverse and forward) dynamics of the

device is derived using Kane’s method,

- Model based task-space position controllers as well as task-space impedance

controllers are implemented in simulations.

5.2 Future Directions

Future directions include further study of the design proposed in Chapter IV. Two

stage distributed actuation can be implemented to allow for higher bandwidths,

while also achieving higher force outputs. Extension can be implemented to accom-

modate elbow and shoulder motions, such that a full-arm exoskeleton is realized.

After the safety of the device is tested, human subject experiments can be carried

out to model human arm impedances. Finally, the mechanism can be employed in

bimanual and bilateral force feedback applications, such as robot assisted rehabili-

tation and manual skill training.
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Appendix A

Kinematic and Dynamic Analyses of the Five Bar Mechanism

The aim of this appendix is to present the necessary steps for derivation of the

kinematic Jacobian and mass matrices of a symmetric five-bar mechanism. To

set the notation, let a symbol in standard typeface represent the length of the

corresponding vector marked by an arrow.

The kinematic Jacobian matrix of the mechanism is required to determine its

kinematics performance. To construct the kinematic Jacobian, the end-effector ve-

locities are to be expressed in terms of the angular velocities of the actuators through

a forward kinematics analysis. Let each rigid link of the mechanism be defined as

a body and assign a vector basis to each body with the first basis vector extending

along the link length. Bodies A, B, C, and D along with their vector bases are

shown in Figure A.1. The end-effector point is denoted by E while symbol N is

used to signify the Newtonian reference frame. Point O represents a fixed point in

N , which is selected as the origin.

A

B

N

C
E

O

D

~n1

~n1

~a1~a2

~b 1
~b 2

~c1
~c2

~d1
~d2 q1

q2

q3

q4

Figure A.1: Symmetric five-bar mechanism with the variables used in the kinematic
and dynamic analyses.

Symbols x and y denote the end-effector coordinates in the Newtonian frame

N , while the distance between actuators and the link lengths are called l0 and li

(i = 1..4), respectively. Finally, the orientation of the links are measured with
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respect to the basis vector ~n1 and are called qi (i = 1..4). Note that the mechanism

is assumed to be symmetric; hence, the equalities l2 = l3, l1 = l4 are in effect.
The vector loop equation enforcing the closed kinematic chain for the symmetric

five bar mechanism can be formulated as

l1~a1 + l2~b1 − l2~c1 − l1 ~d1 − l0~n1 = ~0. (A.0.1)

Taking time derivative of Eqn. (A.0.1) in the Newtonian frame, one can solve
for the time derivatives of dependent variables q2 and q3, in terms of the angular
speeds of the actuators q̇1 and q̇4 as

[

q̇2

q̇3

]

= A

[

q̇1

q̇4

]

(A.0.2)

where A =

[

−l1 sin(q1−q3)
l2 sin(q2−q3)

−l1 sin(q3−q4)
l2 sin(q2−q3)

−l1 sin(q1−q2)
l2 sin(q2−q3)

−l1 sin(q2−q4)
l2 sin(q2−q3)

]

·

The position of the end-effector E with respect to the fixed point O can be
expressed as

~p OE = l1~a1 + l2~a2 (A.0.3)

while the same position vector can also be expressed in the Newtonian frame as

~p OE = x~n1 + y~n2. (A.0.4)

Equating Eqn. (A.0.3) to Eqn. (A.0.4), taking their time derivative in the
Newtonian frame, and substituting in Eqn. (A.0.2), one can solve for the velocity
level forward kinematics of the five-bar mechanism as

[

ẋ
ẏ

]

= J

[

q̇1

q̇4

]

(A.0.5)

where the Jacobian matrix

J =

[

−l1 sin(q1)−sin(q2) sin(q1−q3)
sin(q2−q3)

l1 sin(q2) sin(q3−q4)
sin(q2−q3)

l1 cos(q1)−cos(q2) sin(q1−q3)
sin(q2−q3)

−l1 cos(q2) sin(q3−q4)
sin(q2−q3)

]

·

To solve for the effective mass matrix of the system as seen at the end-effector,
dynamic analysis is performed employing Lagrange’s method. The kinetic co-energy
T ∗ of the five-bar linkage is calculated as

T ∗ = 1
24m1(k

2 + 4l21)q̇
2
1 + 1

24(3m1l
2
1 + m4(k

2 + l21))q̇
2
4

+ 1
24m2(k

2q̇2
2 + 4l22 q̇

2
2 + 12l21 q̇

2
1 + 12l1l2 cos(q1 − q2)q̇1q̇2)

+ 1
24m3(k

2q̇2
3 + 4l22 q̇

2
3 + 12l21 q̇

2
4 + 12l1l2 cos(q3 − q4)q̇3q̇4).

(A.0.6)

Since the gravity acts out of the plane of the mechanism, the kinetic co-energy of
the system is equal to the Lagrangian L of the system. Eliminating the dependent
generalized velocities and invoking Lagrange’s equation, the elements of the mass
matrix D can be derived as

D11 = 1
12m1(k

2 + 4l21) + 1
12m3l

2
1 sin(q1 − q2)

2(4/ sin(q2 − q3)
2 + k2/l22/ sin(q2 − q3)

2) +
1
12m2l

2
1(12+k2 sin(q1−q3)

2/l22/ sin(q2−q3)
2+4 sin(q1−q3)(sin(q1−q3)−3 sin(q2−q3) cos(q1−

q2))/ sin(q2 − q3)
2)
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D12 = 1
12 l21(m2 sin(q3 − q4)(k

2 sin(q1 − q3)/l
2
2/ sin(q2 − q3)

2 + (4 sin(q1 − q3) − 6 sin(q2 −

q3) cos(q1−q2))/ sin(q2−q3)
2)+m3 sin(q1−q2)(k

2 sin(q2−q4)/l
2
2/ sin(q2−q3)

2+(4 sin(q2−

q4) − 6 sin(q2 − q3) cos(q3 − q4))/ sin(q2 − q3)
2))

D22 = 1
4m1l

2
1 + 1

12m4(k
2 + l21) + 1

12m2l
2
1 sin(q3 − q4)

2(4/ sin(q2 − q3)
2 + k2/l22/ sin(q2 −

q3)
2)+ 1

12m3l
2
1(12+k2 sin(q2− q4)

2/l22/ sin(q2− q3)
2 +4 sin(q2− q4)(sin(q2− q4)−3 sin(q2−

q3) cos(q3 − q4))/ sin(q2 − q3)
2).

Finally, the effective mass matrix of the system as seen at the end-effector can then
be calculated using the formula

M = J−T D J−1. (A.0.7)
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Appendix B

Implementation Details of the NBI method

Since the NBI method inherits the convergence properties of gradient-based tech-
niques, some amount of tuning is required to achieve solutions in an effective manner.
The following list presents the parameters that can be tuned and nominal values of
these parameters that are used in this thesis.

1 Discretization of the Workspace: Since the objective functions require
global search to be conducted for determining the extreme singular values over
the entire workspace, discretization of the workspace has crucial effect on the
accuracy of the global optima obtained. In other words, one can easily miss the
exact global optimum due to course discretization of the workspace. On the
other hand, very fine discretization leads to high computational load. In this
study, π/180 rad is selected as the discretization step size for the workspace.

2 Tolerance of the Constraint Functions: Since the NBI method relies on
an equality constraint for finding the furthest point on a line within the feasible
objective space, tolerances of constraint functions directly affect the conver-
gence of the method. Decreasing these tolerances may avoid converging to
local optima at a cost of increasing the computational time. In this study, the
tolerances on the design variables (TolX) are set to 10−6, while the tolerances
on objective functions (TolF) are set to 10−6. Finally, the tolerance on the
constraint functions (TolCon) is assigned as 10−8 for both the five bar and
exoskeleton mechanisms.

3 Number of Solutions in the Pareto-front Set: Since the NBI method
attacks the geometric problem directly by solving for single-objective con-
strained subproblems with a gradient based search algorithm, initialization of
each subproblem has drastic effect on Pareto-front set obtained. Since initial-
izations are directly related to the number of solutions determined by the user,
the number of solutions also influence the convergence of solutions on Pareto-
front hyper surface. In this study, the number of solutions in the Pareto-front
set is set as 10 and 30.

4 Order of Shadow Points: The NBI method starts for searching the optimum
solutions from one of the shadow points: hence, the order of the shadow points
input to the algorithm has an effect on the initialization. It has been observed
that changing the order of the shadow points can lead to better convergence
behavior of the NBI method, while a “bad” initialization may not converge at
all. In this study, the Pareto-front curve of the five bar mechanism is solved
with the order of GDI→ GII, while the exoskeleton mechanisms used GII→

GDIas the ordering of the shadow points.
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