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ABSTRACT 

 

 

Metallothioneins (MTs) are small, cysteine-rich proteins with high binding 

capacity for metals including Zn, Cu and Cd. MTs exist in a wide range of organisms 

and are classified in one super-family according to the distribution of cysteine motifs in 

their sequences. Plant Type 1 MTs are low molecular weight (7-8 kDa) aromatic residue 

lacking metal-binding proteins. They have two metal-binding domains separated by a 

conserved specifically long spacer region of about 30-45 amino acids. Recent studies 

indicate that all members of this family do not have a single unifying function; while 

some MTs participate in metal homeostasis others play a role in detoxification of heavy 

metals. Despite the large literature on MT sequences and functional roles, lack of direct 

biochemical and biophysical data on purified proteins hinders a comprehensive 

understanding of sequence, structure, metal-binding and function relationships in MTs 

from different sources.  

 

Due to their aggregation propensity, sensitivity to oxidation, proteolytic cleavage 

especially in the spacer region and difficulties in quantification, standard methods could 

not be directly used for purification of plant MTs. A Type 1 MT from Triticum durum, 

dMT, was expressed in E. coli cells as a fusion protein with GST (Bilecen et al., 2005). 

In the present study structure-function relationship of dMT is investigated using the 

fusion protein GSTdMT as a model system. The procedure developed for GSTdMT 

purification required strict anaerobic conditions and critical parameters including 

concentration of Cd and specific reducing agents, as well as choice of buffers was 

optimized. 

 

The purified GSTdMT was characterized by size exclusion chromatography, 

SDS- and native-PAGE, UV-vis absorption spectrophotometry, inductively coupled 

plasma optical emission spectroscopy (ICP-OES), dynamic light scattering (DLS), 

circular dichroism (CD), Extended X-ray Absorption Fine Structure (EXAFS) and 

small-angle solution X-ray scattering (SAXS).  
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 Size exclusion chromatography revealed a stable dimeric form of GSTdMT in 

solution. Purified GSTdMT solutions were monodisperse and homogeneous and thus 

suitable for structural and functional studies. The Cd binding ability of GSTdMT was 

initially characterized by UV-vis absorption spectroscopy and through the ICP-OES 

measurements the Cd2+ binding ratio was found to 3.5 Cd2+/protein. This finding was 

further confirmed by EXAFS measurement which strongly indicated Cd-S coordination 

with four sulphurs.  

 

SAXS measurements revealed that GSTdMT has an elongated shape with a 

radius of gyration of 3.57 nm. ab initio  models resulted in a structure in which two 

GST molecules form an electron dense region at one end of the dimer and  the two dMT 

molecules extend from this region. dMT structure appears to be independent of GST in 

the GSTdMT fusion. The combination of SAXS results with biochemical data lead to 

the proposal of a hairpin like model for dMT structure.  

   

Results show that the metal content and structure of dMT in the fusion protein 

are preserved, thus biologically relevant structural parameters can be determined using 

the GSTdMT construct.  

 

In a previous study (Bilecen et al., 2005) the predicted structure for the spacer 

region had shown similarity with that of a family that includes DNA binding proteins. 

In this thesis DNA binding possibility of dMT protein was examined through the whole 

genome PCR-based screening method. It was found that application of this method 

resulted in several artifacts and in our hands the method could not be used for 

investigation of DNA binding possibility of any protein. 

 

In part of this work response of Triticum durum cv. Balcalı-85 to environmental 

Cd was investigated. Balcalı-85 was subjected to increasing Cd concentrations (e.g., 0, 

2, 5, 10, and 20 µM Cd). As a result, reduction in dry weight matter was observed both 

in roots and shoot. Also, it was found that Balcalı-85 has high capacity to retain Cd in 

roots. These studies were carried out as a part of an investigation which will focus on 

the correlation between mt-d gene expression and Cd response.  
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In addition, southern blot analysis revealed that the mt-d gene, having 2 exons 

and a non-coding intron region, has a single copy in T. durum genome. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 vii

 

ÖZET 

 

 

Metallotioninler (MT'ler), sistin bakımından zengin, düşük molekül ağırlıklı Zn, 

Cu ve Cd gibi metallere yüksek bağlanma kapasitesi olan proteinlerdir. MT'ler hemen 

hemen tüm organizmalarda bulunurlar ve gen sekanslarındaki sistin motiflerinin 

dağılımına göre bir familya içerisinde sınıflandırılırlar.  Bitki Tip 1 MT'leri, düşük 

molekül ağırlıklı (7-8 kDa), aromatik grupları olmayan metal bağlayan proteinlerdir. 

Yaklaşık 30-45 amino asitten oluşan oldukça uzun evrimsel korunmuş bir köprü bölgesi 

ile birleştirilmiş iki metal bağlama bölgesine sahiptiler. Son zamanlardaki çalışmalar 

göstermiştir ki bu familyanın tüm üyeleri bir tip işlevde rol oynamaz. Aksine bazı 

MT'ler metal dengesini korumada işlev görürken diğerleri ağır metallerin 

detoksifikasyonunda rol oynarlar. MT sekansları ve fonksiyonel rolleri hakkında çok 

geniş literatür olmasına rağmen, saflaştırılmış proteinler üzerine doğrudan biyokimyasal 

ve biyofiziksel verilerin olamaması farklı kaynaklardan gelen MT’lerin sekans, yapı, 

metal bağlama ve fonksiyon ilişkilerinin kapsamlı bir şekilde ortaya çıkarılmasını 

engellemektedir.  

 

 Oligomer oluşturma eğilimleri, oksitlenme hassasiyetleri, özellikle köprü 

bölgesinden kırılmaları ve derişim belirlemedeki zorluklar nedeniyle bitki MT’lerinin 

saflaştırılmasında standart yöntemler doğrudan uygulanamazlar. Triticum durum’dan bir 

Tip 1 MT’ni, dMT, E. coli bakterisinde GST ile füzyon proteini şeklinde 

sentezlettirilmiştir (Bilecen 2005). Bu doktora tezi çalışmasında GSTdMT füzyon 

proteini bir model sistem olarak kullanılarak dMT’nin yapı ve fonksiyon ilişkisi 

araştırılmıştır. GSTdMT saflaştırılması için anaerobik ortamda Cd konsantrasyonu, özel 

indirgeyici ajanlar ve tampon seçimi gibi kiritik parametreler optimize edilerek yeni bir 

süreç geliştirilmiştir. 

 

 Saflaştırılan GSTdMT büyüklük ayırmalı kromofotografi (SEC), SDS ve nativ 

PAGE, UV-vis absorpsiyon spektrofotometresi, ICP-OES emisyon spektrofotometresi, 

dinamik ışık saçılması (DLS), sirküler dikroizm (CD), EXAFS ve X-ışınları küçük açı 

saçılma (SAXS)  yöntemleri kullanılarak karakterize edilmiştir. 
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SEC ile dengeli dimer formunda GSTdMT proteini ayrıştırılmıştır. Saflaştırılan 

GSTdMT solüsyonları tek tip yapı içermeleri ve homojen olmaları açısından yapısal ve 

fonksiyonel calışmalar için uygundurlar. GSTdMT’nin Cd bağlayabilme özelliği UV-vis 

absorpsiyon spektrofotometresi ile belirlenmiş ve ICP-OES ölçümleri yoluyla Cd2+ 

bağlanma oranı 3.5 Cd2+/protein olarak bulunmuştur. Bu bulgu aynı zamanda Cd-S 

koordinasyonunun dört süllfür ile gerçekleştiğini gösteren EXAFS ölçümü ile 

doğrulanmıştır.  

 

SAXS ölçümleri GSTdMT nin eylemsizlik yarıçapı 3.57 nm olan uzun ve 

asimetrik bir şekle sahip olduğunu göstermistir. ab initio  modelleri bir uçta iki dimer 

GST molekülünün oluşturduğu bir elektron yoğun bölge ve bu bölgeden uzanan iki 

dMT molekülünden oluşan bir yapı ile sonuçlanmıştır. dMT yapısının GSTdMT 

füzyonundaki GST den bağımsız olduğu ortaya çıkmıştır. SAXS sonuçlarının 

biyokimyasal verilerle birleşimi dMT yapısı için saç firketesi benzeri bir modelin 

varlığını ortaya çıkarmıştır. 

 

Sonuçlar füzyon protein içerisinde dMT metal içeriğinin ve yapısının 

korunduğunu göstermiştir. Bundan dolayı GSTdMT biyolojik olarak anlamlı yapısal 

parametrelerin belirlenmesinde kullanılabilinir. 

 

Bir önceki çalışmada (Bilecen 2005) köprü bölgesi için tahmin edilen yapının 

DNA’ya bağlanan proteinleri içeren bir familya ile benzerlik gösterdiği bulundu. Bu 

tezde dMT’nin DNA bağlanma ihtimali “Whole genome PCR” yöntemi ile 

araştırılmıştır. Bu yöntemin uygulamasında birçok sorunun oluşabileceği bulunmuştur 

ve her hangi bir proteinin DNA bağlanma ihtimalinin araştırılmasında 

kullanılamayacağı bulunmuştur. 

 

Bu çalışmanın diğer kısmında of Triticum durum cvs. Balcalı-85 bitkisinin 

çevresel Cd’a olan tepkisi araştırılmıştır. Balcalı-85 artan Cd konsantrasyonlarına tabii 

tutulmuştur (0, 2, 5, 10, and 20 µM Cd).  Sonuç olarak kök ve yeşil aksanda kuru 

ağırlığın azalması gözlemlenilmiştir. Ayrıca Balcalı-85’in köklerinde çok fazla Cd 

tutma kapasitesinde olduğu bulunmuştur. Bu çalışma mt-d geni ve Cd tepkisi arasındaki 

bağlantıyı bulma araştırmasının bir parçası olarak yapılmıştır. 
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Ayrıca, southern blot analizi ile 2 ekson ve 1 kodlamayan introndan oluşan mt-d 

geninin T. durum genomunda sadece bir kopya olarak bulunduğu gösterilmiştir. 
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Chapter 1 
 
 

I�TRODUCTIO� 

 

 

Metallothioneins (MTs) are a group of low molecular weight (6-8 kDa) cystein 

(Cys) rich polypeptides that can bind metal ions including copper (Cu), cadmium (Cd), 

zinc (Zn), silver (Ag), mercury (Hg) through the thiol groups of their Cys residues that 

are localized in the N- and C-termini of the protein in specific motifs. Aromatic amino 

acids are usually absent. All Cys residues occur in the reduced form and are coordinated 

to the metal ions through mercaptide bonds, giving rise to spectroscopic features 

characteristic of metal-thiolate clusters. MTs have been widely found in diverse 

organisms including mammals, plants, and fungi as well as some prokaryotes (Vasak 

and Hasler, 2000).  

 

Classification of the members of the MT family has been based on the 

phylogenetic relationships and the distribution patterns of Cys residues along the MT 

sequences; 15 subfamilies have been identified (Binz and Kagi, 1999). Plant MT 

proteins have been historically divided into four major types on the basis of the 

arrangement of Cys residues and Cys free spacer regions (Cobbet and Goldsbrough, 

2002). Plant Type 1 MTs have two Cys rich metal binding domains which are separated 

by a spacer region containing 30-45 amino acids whereas, this region has only 2-10 

amino acids in mammalian MTs. Plant MTs are different from mammalian MTs also in 

terms amino acid sequences, charge and total Cys content.  

 

Several functional roles including heavy metal detoxification, homeostasis of 

essential metals, free radical scavenging, regulation of metalloenzyme and transcription 

factors and more recently metabolic regulation by Zn donation have been reported for 

mammalian MTs (Vasak, 2005). The function of plant MT proteins is still not 

completely understood. Metal binding propensity of purified plant recombinant MTs 
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(Kille et al., 1991; Evans et al., 1992; Murphy et al., 1997; Mir et al., 2004; Bilecen et 

al., 2005) and up-regulation of the mt genes upon exposure of plants to heavy metals 

(Guo et al., 2003) have lead to the conclusion that plant MTs play a role in maintaining 

metal ion homeostasis and detoxification of heavy metals. Involvement of plant MTs in 

metal chaperoning, scavenging of reactive oxygen species (Akashi et al., 2004, Wong et 

al., 2004), stress response such as wounding (Choi et al., 1996), pathogen infection 

(Butt et al., 1998), senescence (Buchanan-Wollaston, 1994; Yu et al., 1998; Guo et al., 

2003) and fruit ripening (Cobbett and Goldsbrough, 2002) have also been reported.  

  

 The 3D structure of MTs originating from mammalian and fungal sources has 

been extensively investigated using Nuclear magnetic resonance (NMR) and X-ray 

crystallography (Vasak and Hasler, 2000). Both techniques revealed a monomeric 

dumbbell shape in accordance with clustering of the Cys motifs. In this structure, a total 

of seven metal ions are located in two separate metal-thiolate clusters with (Metal3Cys9) 

and (Metal4Cys11) domains providing the Metal7Cys20 stoichiometry. The two metal 

binding domains are connected with a flexible spacer region (Klaasen and Chodhuri, 

1999). The protein appears to be lacking a well defined secondary structure and it is 

considered to be an oxidatively unstable random coil which folds through metal binding 

(Rigby and Stillman, 2004; Duncan et al., 2006). 

 

In contrast to their mammalian counterparts there is no direct structural work on 

plant MTs. Two different models have been proposed for plant holo-MT structure; the 

hairpin (Kille et al., 1991; Domenech et al., 2006; Freisinger, 2007; Peroza and 

Freisinger, 2007) and the dumbbell model (Zhu et al., 2000; Bilecen et al., 2005).  

 

In the previous study by Bilecen et al., (2005) a novel gene, from Triticum 

durum, encoding  a Type 1 MT protein, dMT, was isolated and expressed in E. coli cells 

as a fusion protein with glutathione S-transferase (GST). The work presented in this 

thesis mainly aims to investigate the possible structure and related functional roles of 

dMT. 
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Specific goals of this work can be summarized as; 

 

 (1) Determining optimum conditions for producing homogeneous and 

monodisperse recombinant GSTdMT solutions at high protein concentration for 

structural studies. These studies were expected to guide the way for establishing a 

purification procedure for dMT and lead to information about the structure of dMT. 

 

 (2) Studies at genomic level to determine the copy number of the mt gene in 

durum wheat for comparison with known plant mt gene families for assignment of 

functional roles.  

 

(3) Investigating physiological responses to Cd in T. durum cv. Balcalı-85 in 

order to be able correlate these with mt-d gene expression if time permitted. 

 

(4) Investigating the possibility for an interaction between durum DNA and 

GSTdMT.  

 

The structure of this thesis is organized such that this introductory section is 

followed by an overview of the current status of research on MTs. Chapter 3 explains 

materials and methods utilized in this study in a detailed fashion. Results are presented 

in Chapter 4 and are discussed in Chapter 5 in the light of current literature. Chapter 6 

involves a brief synopsis and conclusions of this study along with future perspectives. 
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Chapter 2 
 
 

OVERVIEW 
 
 
 

2.1 Metallothioneins (MTs) 
 
 

Metallothioneins (MTs) constitute a superfamily of low molecular weight 

cysteine (Cys) rich proteins. Cys residues have the capacity to bind to a variety of metal 

ions, most commonly Zn+2, Cu+2 and Cd+2, by mercaptide bonds and the biochemical, 

biophysical and functional properties of MTs are largely dependent on the bound metal 

ion. MT was first isolated from horse (equine) renal cortex in 1957 by Margoshes and 

Valle (Vasak and Kagi, 1994) when they purified a Cd/binding protein, and since then 

MTs represent the major group of naturally-Cd-containing biomolecules. More than 200 

metallothioneins have been identified in a wide range of organisms including plants, 

animals, and fungi, and even in some prokaryotes (Rauser, 1999; Cobbett and 

Goldsbrough, 2002; Zhou et al., 2005). 

 

2.1.1 Classification  

 

According to the first established classification by Fowler et al., in 1987, MT 

superfamily was divided into three classes. Class I MTs include proteins which show a 

Cys distribution similar to mammalian MTs and are widespread in vertebrates. Class II 

MTs are those that do not show the typical Cys distribution and are present in plants, 

fungi and nonvertebrates. Class III MTs include enzymatically synthesized Cys-rich 

polypeptides; cadystins and phytochelatins. The latter are enzymatically synthesized 

peptides with a poly (γ-Glu-Cys)n-glycine structure. 

 

This subdivision has become insufficient as the number of new MT sequences 

increased. Thus the second classification was performed by Binz and Kagi in 1999 (also 
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in http://www.expasy.ch/cgi-bin/lists?metallo.txt) according to the phylogenetic 

relationships and the distribution patterns of Cys residues along the MT sequences. This 

system subdivides the MT superfamily into families, subfamilies, subgroups and 

isolated isoforms and alleles.  As a result, MTs have currently been grouped into 15 

families (Binz and Kagi, 1999). Family 15 contains the plant MTs and has been further 

classified by Cobbet and Goldsbrough into 4 Types (1, 2, 3 and 4) depending on the 

distribution of their Cys residues and a Cys-devoid regions (called spacers) 

characteristic of plant MTs (Cobbet and Goldsbrough, 2002) (Table 2.1). 

 

2.1.2 Mammalian MTs 

 

Mammalian MTs contain 61 to 68 amino acids, in which 20 are Cys and no 

aromatic amino acids are observed. The number and position of Cys residues are highly 

conserved and Cys-X-Cys, Cys-X-Y-Cys (X and Y represent non-cysteine amino 

acids), and Cys-Cys sequences are the most common motifs. All Cys residues appear to 

be associated with 7 equivalents of divalent metal ions or 12 monovalent metal ions by 

mercaptide bonds; metals are coordinated reversibly without forming covalent bonds. 

MTs have molecular weights of about 6000 to 7000 Da. The mammalian MT amino 

acid sequence displays two cysteine-rich domains; α-domain or C-terminal is the more 

stable, contains eleven Cys residues associated with four divalent metals and β-domain 

or N- terminal is the more reactive, with nine Cys incorporating three divalent metals. 

Mammalian MTs predominantly bind Zn, but in the case of high levels of Cu or Cd, Zn 

can be readily displaced (Coyle et al., 2002; Zimeri et al., 2005; Vasak and Kagi, 1994; 

Kang, 2006). 

 

There are four major isoforms of mammalian MTs which differ in amino acid 

residues other than Cys and also in their charge properties. MT1 and MT2 are expressed 

in all mammalian cells, but the highest expression is in liver, while expression of MT3 

and MT4 is more limited. MT3 is expressed mainly in the brain and very low levels in 

pancreas and intestine. MT4 is only expressed in epithelial cells in skin and it is not 

very known (Vasak and Kagi, 1994; Haq et al., 2003). 
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Table 2.1: Metallothionein families and subfamilies (Modified from Binz and Kagi, 1999 and Cobbett and Goldsbrough, 2002) 

 
Family Sequence pattern Example 

 
1.Vertebrate K-x(1,2)-C-C-x-C-C-P-x(2)-C M.musculus MT1 

MDPNCSCTTGGSCACAGSCKCKECKCTSCKKCCSCCPVGCAKCAQGCVCKGSSEKCRCCA 
2.Molluscan C-x-C-x(3)-C-T-G-x(3)-C-x-C-

x(3)-C-x-C-K 
M.edulis 10MTIV 
MPAPCNCIETNVCICDTGCSGEGCRCGDACKCSGADCKCSGCKVVCKCSGSCACEGGCTGPS
TCKCAPGCSCK 

3.Crustacean P-[GD]-P-C-C-x(3,4)-C-x-C H.americanus MTH 
MPGPCCKDKCECAEGGCKTGCKCTSCRCAPCEKCTSGCKCPSKDECAKTCSKPCKCCP 

4.Echinoderms P-D-x-K-C-V-C-C-x(5)-C-x-C-
x(4)- C-C-x(4)-C-C-x(4,6)-C-C 

S.purpuratus SpMTA 
MPDVKCVCCKEGKECACFGQDCCKTGECCKDGTCCGICTNAACKCANGCKCGSGCSCTEG
NCAC 

5.Diptera C-G-x(2)-C-x-C-x(2)-Q-x(5)-C-
x-C-x(2)D-C-x-C 

D.melanogaster MT�B 
MVCKGCGTNCQCSAQKCGDNCACNKDCQCVCKNGPKDQCCSNK 

6.�ematoda K-C-C-x(3)-C-C C.elegans MT1 
MACKCDCKNKQCKCGDKCECSGDKCCEKYCCEEASEKKCCPAGCKGDCKCANCHCAEQK
QCGDKTHQHQGTAAAH 

7.Ciliate --- T.termophila MTT1 
MDKVNSCCCGVNAKPCCTDPNSGCCCVSKTDNCCKSDTKECCTGTGEGCKCVNCKCCKPQ
ANCCCGVNAKPCCFDPNSGCCCVSKTNNCCKSDTKECCTGTGEGCKCTSCQCCKPVQQGCC
CGDKAKACCTDPNSGCCCSNKANKCCDATSKQECQTCQCCK 

8.Fungal 1 C-G-C-S-x(4)-C-x-C-x(3,4)-C-
x-C-S-x-C 

�.crassa MT 
MGDCGCSGASSCNCGSGCSCSNCGSK 

9.Fungal 2 --- C.glabrata MT2 
MANDCKCPNGCSCPNCANGGCQCGDKCECKKQSCHGCGEQCKCGSHGSSCHGSCGCGDKC
ECK 

10.Fungal 3 --- C.glabrata MT2 
MPEQVNCQYDCHCSNCACENTCNCCAKPACACTNSASNECSCQTCKCQTCKC 

11.Fungal 4 C-X-K-C-x-C-x(2)-C-K-C Y.lipolitica MT3 
MEFTTAMLGASLISTTSTQSKHNLVNNCCCSSSTSESSMPASCACTKCGCKTCKC 

12.Fungal 5 --- S.cerevisiae CUP1 
MFSELINFQNEGHECQCQCGSCKNNEQCQKSCSCPTGCNSDDKCPCGNKSEETKKSCCSGK 
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13.Fungal 6 --- S.cerevisiae CRS5 
TVKICDCEGECCKDSCHCGSTCLPSCSGGEKCKCDHSTGSPQCKSCGEKCKCETTCTCEKSKC
NCEKC 

14.Procaryota K-C-A-C-x(2)-C-L-C Synechococcus sp SmtA 
MTTVTQMKCACPHCLCIVSLNDAIMVDGKPYCSEVCANGTCKENSGCGHAGCGCGSA 
 

15.Plant   
 

15.1.Plant MTs 
Type 1 

C-X-C(3)-C-X-C(3)-C-X-C-
spacer-C-X-C(3)-C-X-C(3)- C-
X-C 

Pisum sativum MT 
MSGCGCGSSCNCGDSCKCNKRSSGLSYSEMETTETVILGVGPAKIQFEGAEMSAASEDGGCK
CGDNCTCDPCNCK 

15.2.Plant MTs 
Type 2 

C-C(3)-C-X-C(3)-C-X-C(3)-C-
X-X-C-spacer-C-X-C(3)-C-X-
C(3)-C-X-C 

L.esculetum MT 
MSCCGGNCGCGSSCKCGNGCGGCKMYPDMSYTESSTTTETLVLGVGPEKTSFGAMEMGESP
VAENGCKCGSDCKCNPCTCSK 

15.3.Plant MTs 
Type 3 

C(2)-C-X-C-spacer-C-X-C(3)-
C-X-C(2)-C-X-C 

A.thaliana MT3 
MSSNCGSCDCADKTQCVKKGTSYTFDIVETQESYKEAMIMDVGAEENNANCKCKCGSSCSC
VNCTCCPN 

15.4.Plant MTs 
Type 4 or Ec 

C-x(3)-C-X-C(3)-C-x(5)-C-X-
C(17)-C-X-C(3)-C-X-C(3)-C-X-
C(15)-C-X-C(3)-C-X-C(2)-C-
X(3,5) 

T.aestium MT 
MGCNDKCGCAVPCPGGTGCRCTS…ARSGAAAGEHTTCGCGEHCGCNPCACGREGTPSGRA
NRRANCSCGAACNCASCGSATA 
 

99. Phytochelatins 
and nonprotein 
MTs 
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2.1.2.1 Structure of Mammalian MTs 

 

Three-dimensional structures of several mammalian MTs were investigated by 

NMR and X-ray crystallography. Both techniques revealed a monomeric dumbbell 

shape in accordance with clustering of the Cys motifs. Seven metal ions are located in 

two separate metal-thiolate clusters. A three-metal cluster (Metal3Cys9) with three 

bridges is located in β-domain and a four-metal cluster (Metal4Cys11) with five bridges 

is in the α-domain providing the Metal7Cys20 stoichiometry (Figure 2.1) (Klaasen and 

Chodhuri, 1999). In both clusters, metals ions are tetrahedrally coordinated by bridging 

and terminal thiolate ligands. The two metal binding domains are connected with a 

flexible hinge region composed of a conserved Lys-Lys segment. The order of metal 

binding begins with the α-domain and after saturation continues with the β-domain. In 

the case of metal releasing the β-domain comes first, indicating that the three-metal 

cluster is more labile, i.e. metallation and demetallation taking place rapidly, whereas 

the metal is bound more tightly to the four-metal cluster (Fischer and Davie, 1998; 

Vasak and Hasler, 2000; Romero-Isart and Vasak, 2002).  

 
Figure 2.1: Schematic representation of Cd-thiolate clusters in mammalian MT 

based on NMR and X-ray spectroscopy data. Three bridging and six terminal Cys 

ligands are placed in the β-domain (Cd3 cluster) and four bridging and six terminal 

ligands in the α-domain (Cd4 cluster) (Klaassen and Choudhuri, 1999).  

  

According to far-UV CD spectra the metal-free form (apoMT) was estimated to 

contain 55% disordered structure, 6% α-helix, 18% β-sheet and 26% β-turn, which 

indicated a predominantly disordered structure and it was interpreted as an oxidatively 

unstable random coil. But, when metal ions bind to apoMT, the polypeptide chain 
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rapidly folds resulting in the formation of two metal-thiolate clusters (Vasak and Kagi, 

1994; Duncan et al., 2006). 

  

The first three-dimensional (3D) MT structure was that of MT-2 from rat liver 

determined by NMR and X-ray crystallography (Figure 2.2) (Robbins et al., 1991). The 

crystal structure of rat Cd5, Zn2-MT-2 and the solution NMR structures of Cd7-MT-2 

from rabbit, rat and human sources demonstrated similar metal-thiolate cluster 

structures (Vasak 2005; Peterson et al., 1996; Bertini et al., 2000).  

 

The invertebrate, sea urchin MT isoform A (MTA) is an evolutionary-distant 

MT, it has 64 amino acids and contains same number of Cys motifs and metal ions as 

the mammalian MTs, but there is no sequence homology relationship. The structure of 

Cd bound MTA was determined by NMR and two metal-thiolate clusters in each of the 

globular domains; Cd4Cys11 cluster in α-domain and Cd3Cys9 cluster in β-domain was 

observed (Figure 2.2). Although this structure looks like the known mammalian MT 

structure, it is considerably dissimilar in terms of the Cys-metal coordination bonds 

connectivity pattern and the polypeptide backbone local folding. It is suggested that the 

existence of similar metal-thiolate clusters even in evolutionary-distant MT shows the 

functional role (Riek et al., 1999; Vasak and Kagi, 1994).    

 

The only reported 3D structure of Cu+ containing MT is yeast MT with 53 amino 

acids. The yeast MT differs in the number of Cys residues (12) and metal content from 

the structurally well characterized mammalian MTs. The NMR solution structure for 

yeast MT was determined for the native Cu-containing form and for the Ag+ derivative 

and both showed that Cu+ or Ag+ ions are bound in a single cluster of Cu7-Cys8. 

However, due to the possibility of Ag+ and Cu+ having different coordination properties, 

a new NMR study of Cu7-MT from the same species was performed and as a result a 

highly improved structure was obtained with the seven Cu+ ions. Lately the crystal 

structure was determined for Cu-MT from yeast and found that eight rather than seven 

Cu atoms were coordinated to all 10 Cys and arranged in a Cu8-thiolate cluster. This 

Cu8-MT X-ray structure was different from that of Ag7-MT NMR structure and similar, 

but not identical, to that of Cu7-MT NMR structure (Figure 2.3). Besides the different 

structure of the metal cluster, the main differences were the cysteine topology and the 

conformation of some portions of the backbone (Calderone et al., 2005).  
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Figure 2.2: Crystal structure of Cd5, Zn2-MT-2 from rat liver and NMR 

structure of sea urchin of Cd7-MTA (Robbins et al., 1991 and Riek et al., 1999).  

 

 

 
 

Figure 2.3: Comparison of Cu8-MT crystal structure (cyan tube) with Ag7-MT 

NMR model (green tube) (A) and Cu7-MT NMR model (red tube) (B). The Cu8-MT 

copper atoms are represented as cyan spheres and the Ag7-MT and Cu7-MT NMR 

models are represented as green and red spheres, respectively. The cysteine side chains 

are also displayed (Calderone et al., 2005). 
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2.1.2.2 Function of Mammalian MTs 

 

Mammalian MTs have been extensively studied; they are expressed 

differentially in various tissues, in several developmental stages and in response to 

metals, steroids and stress. However, it has not been possible to assign an essential or 

critical biological function for mammalian MTs. Many studies have implicated three 

major biological functions these are: (1) detoxification of heavy metals such as Cd, Hg 

and As (2) homeostasis of essential metals including Zn and Cu and (3) protection 

against oxidative stress (Klaassen and Choudhuri, 1999). More recently metabolic 

regulation by Zn donation, sequestration and redox control have also been suggested 

(Vasak, 2005).  

 

It is known that mammalian MTs can provide protection against Cd toxicity. 

This role has been investigated using mice and various cell lines, and it was found that 

cells expressing excess amount of MT are resistant to Cd toxicity, while cells that 

cannot synthesize any MT are sensitive to Cd. In addition, studies using transgenic and 

knockout mouse also showed the protection role of MT towards Cd toxicity. Studies 

with MT-null mice demonstrated that MT was needed for the protection of kidney and 

liver from Cd toxicity. However, it has been thought that protection from Cd toxicity is 

a property of MTs rather than having an evolutionary conserved function (Palmiter, 

1998; Klaassen and Choudhuri, 1999; Kang, 2006).    

 

A widely considered but still discussed functional role includes zinc donation to 

specific storage sites or to proteins. MT has high affinity to Zn due to the large number 

of free sulfhydryl (SH) groups. Although Zn-binding occurs with high affinity, these 

highly reactive sulfhydryl groups can undergo exchange reactions permitting transfer of 

Zn to other proteins. A recent and significant development in MT research is the finding 

of the redox regulation of Zn/ S (sulfur) interaction. Zn in biology is redox inert in 

contrast to Cu and iron (Fe). It is suggested that, MT/thionein act as a control device for 

the concentration of available Zn. MT binds Zn more tightly than other zinc proteins. 

Accordingly, Zn cannot move freely from this tight binding site in MT. When the 

environment becomes oxidized, the bound Zn is released through oxidation of the 

thiolate cluster, which has low redox potential and this leads to the formation of MT-

disulfide or thionin (if all metals are released). When environment becomes reduced in 



 12 

the case of increase in GSH/GSSG (reduced/oxidized glutathione) ratio, MT-disulfide 

or thionin is reduced to MT-thiol or thionein and this is enhanced by selenium catalyst 

or other unidentified catalytic agents. In the presence of Zn, MT is quickly 

reconstituted. This process represents MT redox cycle as shown in Figure 2.4 (Vasak 

and Hasler, 2000; Palmiter 1998; Klaassen and Choudhuri, 1999; Maret, 2000; Kang, 

2006).   

 

Several in vitro studies showed that, Zn7-MTs and apoMT affect the activity of 

zinc dependent proteins and zinc finger transcription factors by transferring or removing 

Zn. For example, it was shown that, there is a fast Zn exchange between MT and the Zn 

cluster in the Gal4 transcription factor (Maret et al 1997). These studies indicate that, 

even though metal-thiolate clusters have thermodynamic stability, such metal exchange 

reactions do occur. Furthermore, recent studies showed that a cellular oxidant reduced 

and oxidized glutathione facilitate intermolecular metal transfer by oxidizing Cys 

residues of metal clusters. Therefore, recently it has been suggested that MTs might 

function as a zinc chaperon for synthesis of metalloproteins and metal dependent 

transcription factors. The binding stability of Zn makes MT serve as a reservoir for Zn. 

This recent consideration of the redox regulation of MT provides a mechanism for 

function of MT, including homeostasis of essential metals, detoxification of toxic 

metals, and protection from oxidative stress (Vasak and Hasler, 2000; Palmiter 1998; 

Klaassen and Choudhuri, 1999; Maret, 2000; Kang, 2006).   

 

 
 

Figure 2.4: Schematic representation of MT redox cycle (Kang, 2006) 
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Another proposed function is that MTs can protect against oxidative damage. As 

mentioned above, the multiple Cys residues in metal-thiolate clusters are readily 

oxidized in vitro during oxidative stress, therefore they can serve as scavengers of 

harmful radicals. It was shown that MT containing zinc and/or cadmium can scavenge 

hydroxyl and superoxide radicals (Thornalley et al., 1985). In a recent study the role of 

MT as a free radical scavenger has been demonstrated using a cell-free system (Cai et 

al., 2000). In another study it was demonstrated that, yeast cells that cannot synthesize 

MT and are also lacking superoxide dismutase were more sensitive to oxidative stress 

(Tamai et al., 1993). Moreover, oxidative stress agents’ chloroform, turpentine, diethyl 

methane, and H2O2 can also induce expression of MT1 and MT2 isoforms in vivo. 

Further studies have shown that MT is about 800 times more potent than GSH in 

preventing hydroxyl radical (Palmiter, 1998; Klaassen and Choudhuri, 1999).   

 

2.1.3 Plant MTs 

 

The first identified plant MT was the wheat EcMT protein in 1987 by Lane et al, 

and since then more than 140 putative MT genes have been recorded in various species, 

which accounts for about half of all recorded MTs (Zhou et al., 2006). The plant MTs 

generally contain two cysteine-rich domains as in the case of Class I MTs. In most plant 

MTs these two domains are separated by spacer region containing 30-45 amino acids 

whereas in mammalian MTs this region has only 2-10 amino acids. Plant MTs are 

different from their mammalian counterparts also in terms amino acid sequences, charge 

and total Cys content.  

  

2.1.3.1 Classification of Plant MTs 
 
 

Plant MTs belong to Class II according to the early classifications (Fowler et al., 

1987) and constitute Family 15 according to Binz and Kagi (1999). These have been 

further classified into 4 Types depending on the distribution of their Cys residues and 

Cys-devoid regions (called spacers) characteristic of plant MTs (Table 2.2). Type 1 

MTs contain a total of six Cys-X-Cys motifs (X represents a noncysteine amino acid) 

equally distributed among two domains which are separated by about 40 amino acids. 

Type 2 MTs contain total fourteen Cys residues and a spacer region of about 40 amino 

acid residues. One Cys-Cys, two Cys-X-Cys and one Cys-X-X-Cys motifs are present 
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in the N-terminal domain, and three Cys-X-Cys motifs are present in the C-terminal 

domain. Type 3 MTs contain only four Cys residues in the N-terminal domain and three 

Cys-X-Cys motifs in the C-terminal domain. As Type 1 and Type 2, the two domains 

are separated by about 40 amino acids. Finally, Type 4 MTs are different from others by 

having three Cys-rich domains containing 5 or 6 conserved Cys residues and are 

separated by 10 to 15 residues. They also contain additional 8 to 10 amino acids in N-

terminal domain (Rauser, 1999; Cobbet and Goldsbrough, 2002).   

 

Several plant species have genes encoding all these four types of MTs indicating 

their evolution precedes the division of monocotyledonous and dicotyledonous, and this 

bring the possibility that flowering plants also contain all of four types of MTs (Cobbet 

and Goldsbrough, 2002). 

  

2.1.3.2  Localization of Plant MTs 
 
 

The exact cellular localization of plant MTs is not known and information from 

expression studies indicates that many MT genes are expressed at very high levels in 

different plant tissues. Transcripts of plant MTs are detected in roots, stems, leaves, 

flowers, fruits and seeds under different conditions (Rauser, 1999). According to RNA 

expression studies in various plant species, Type 1 MT genes are expressed more richly 

in roots, whereas Type 2 MT genes are in leaves. In Type 3 MT, expression is detected 

in leaves or in fruits as they ripen. Expression of Type 4 MT is restricted to developing 

seeds and regulated by absisic acid (Cobbet and Goldsbrough, 2002).  

 

Recently, the organ specificity has been reported for MT genes in many plant 

species. For instance, the rice OsMT-II-1a genes were highly expressed in developing 

seeds (Zhou et al., 2005) while another rice ricMT gene was highly expressed in stem 

nodes (Yu et al., 1998). Also, in Arabidopsis and Vicia faba expression of MT is 

predominant in trichomes (Garcia-Hernandez et al., 1998; Foley and Singh, 1994). 
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Table 2.2: Four types of plant MT according to the Cys motifs in their N- and C- terminal domains. Conserved Cys residues are marked with star. The 

protein sequences are predicted from gene sequences in Arabidopsis (At), Brassica napus (Bn), rice (Os), pea (Ps), alfalfa (Ms), Brassica oleracea (Bo), 

petunia (Ph), Silene vulgaris (Sv), banana (Ma), kiwifruit (Ad), cotton (Gh), Picea glauca (Pg), maize (Zm), and wheat (Ta) (Cobbet and Goldsbrough, 2002).

Type1      * *  * *   * *       * *   *  *   * * 

AtMT1a MADSNCGCGS SCKCGDSCSC EKNY...... .......... .......... ......NKEC DNCSCGSNCS CGSNCNC 

AtMT1C MAGSNCGCGS SCKCGDSCSC EKNY...... .......... .......... ......NKEC DNCSCGSNCS CGSSCNC 

BnMT1 MAGSNCGCGS GCKCGDSCSC EKNY...... .......... .......... ......NTEC DNCSCGSNCS CGDSCSC 

OsMT1a MS...CSCGS SCSCGSNCSC GKKYPDLEEK SSSTKATVVL GVAPEKKOOF EAAAESGETA HGCSCGSSCR CNP.CNC 

PsMT1 MSG..CGCGS SCNCGDSCKC NKRSSGLSYS EMETTETVIL GVGPAKIOFE GAEMSAASED GGCKCGDNCT CDP.CNCK 

MsMT1 MSG..CNCGS SCNCGDSCKC NKRSSGLSYS EMETTETVIL GVGPAKIHFE GAEMGVAAKD GGCKCGDSCT CDP.CNCK 

Type 2   **   * *    * *   *   *          * *   * *  * *  

AtMT2a MSCCGGNCGC GSGCKCGNGC GGCKMYPDLG FSGETTTTET FVLGVAPAMK NOYEASGESN NAENDACKCG SDCKCDPCTC K 

BoMT2 MSCCGGNCGC GSGCKCGNGC GGCKMYPDLG FSGETTTTET FVLGVAPTMK NOHEASGEGV .AENDACKCG SDCKCDPCTC E 

AtMT2b MSCCGGSCGC GSACKCGNGC GGCKRYPDL. ...ENTATET LVLGVAPAMN SOYEASGETF VAENDACKCG SDCKCNPCTC K 

PhMT2 MSCCGGNCGC GSGCKCGNGC GGCKMYPDLS YT.ESTTTET LILGVGPEKT SFGSMEMGES PAEN.GCKCG SDCKCDPCTC SK 

SvMT2 MSCCNGNCGC GSACKCGSGC GGCKMFPDFA E..GSSGSAS LVLGVAP.MA SYFDAEMEMG VATENGCKCG DNCQCDPCTC K 

OsMT2 MSCCGGNCGC GSSCQCGNGC GGCK.YSEVE PTTTTTFLAD ATNKGSGAAS GGSEMGAENG SCGCNTCKCG TSCGCSCCNC N 

Type 3     *  * *      *      * *   * *  * * 

AtMT3 MSSNCGSCDC ADKTQCVKKG TSYTFDIVET QESYKEAMIM DVGAEENNAN CKCKCGSSCS CVNCTCCPN 

MaMT3 MS.TCGNCDC VDKSQCVKKG NSYGIDIVET EKSYVDEVIV AAEAAEHDG. .KCKCGAACA CTDCKCGN 

AdMT3 MSDKCGNCDC ADSSQCVKKG NS..IDIVET DKSYIEDVVM GVPAAESGG. .KCKCGTSCP CVNCTCD 

OsMT3 MSDKCGNCDC ADKSQCVKKG TSYGVVIVEA EKSHFEEV.. .AAGEENGG. ..CKCGTSCS CTDCKCGK 

GhMT3 MSDRCGNCDC ADRSQCTK.G NSNTM.IIET EKSYINTAVM DAPAENDG.. .KCKCGTGCS CTDCTCGH 

PgMT3 MSSDCGNCDC ADKSQCTKKG FQID.GIVET SYEMGHGGD. ..VSLEND.. ..CKCGPNCQ CGTCTCHT 

Type 4    *   * *    *     * *         *  *   * *  * *        * *    * *  *  

AtMT4a MADTGKGSSV AGCNDSCGCP SPCPGGNSCR CRM..R.EAS AGDQGHMVCP CGEHCGCNPC NCPKTQTQTS AKG....CTC GEGCTCASCA T 

AtMT4b MADTGKGSAS ASCNDRCGCP SPCPGGESCR CKM..MSEAS GGDQEHNTCP CCEHCGCNPC NCPKTQTQTS AKG....CTC GEGCTCATCA A 

PhMT4 MADL.RGSS. AICDERCGCP SFCFGGVACR CASGGAATAG GGDMEHKKCP CGEHCGCNPC TCPKSEGTTA GSGK.AHCKC GFGCTCVQCA S 

ZmMT4 MG........ ...DDKCGCA VPCPGGKDCR CTS...G..S GGQREHTTCG CGEHCECSPC TCGRATMPSG RENRRANCSC GASCNCASCA SA 

TaMT4 MG........ ..CDDKCGCA VPCPGGTGCR CTS...ARSG AAAGEHTTCG CGEHCGCNPC ACGREGTPSG RANRRANCSC GAACNCASCG SATA 

QaMT4 MG........ ..CDDKCGCA VPCPGGTGCR CAS...S.AR SGGGDHTTCS CGDHCGCNPC RCGRESQPTG RENRRAGCSC GDSCTCASCG STTTTAPAAT T 
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2.1.3.3 Isolation and Metal binding Characteristics of Plant MTs 
 
 

Although MT genes have been investigated in many plants, purification of the 

MT proteins from plant tissues has proven to be very difficult due to instability of the 

proteins in the presence of oxygen and their susceptibility to proteolysis especially 

within the long spacer region (Kille et al., 1991).  

 

Several plant MTs have been expressed as recombinant proteins in E. coli and A. 

thaliana to examine metal binding properties of these proteins. Ec protein is the first 

characterized plant MT and is found to associate with Zn at approximately 5mol/mol 

protein (Lane et al., 1987).  An MT gene from pea, PsMTA was overexpressed in E. coli 

via a heat inducible expression vector and the recombinant protein was found to bind 

Cd (Kille et al., 1991). Another Type 1 PsMTA coupled to GST fusion protein was 

expressed in E. coli bound Cu, Cd and Zn with the highest affinity for Cu (Tommey et 

al., 1991). Moreover, expressing PsMTA as GST fusion in E. coli resulted in 

accumulation of Cu (Evans et al., 1992) and a similar experiment using fava bean Type 

1 and Type 2 MTs resulted in binding of Cu and Cd, and weakly Zn (Foley et al., 1997). 

Arabidopsis MT1 and MT2 genes were expressed in MT-deficient strains of yeast and 

Synechococcos and they complemented these mutations restoring tolerance to Cu and 

Zn (Zhou and Goldsbrough, 1994; Robinson et al., 1996). A new procedure was used to 

purify Arabidopsis MT1, MT2 and MT3 proteins from plant extracts based on the size, 

SH content and affinity for Cu with copper- and thiol-affinity chromatography in which 

proteins were first stripped of Cu. Incubation of purified proteins with Cu revealed 

Cu/protein ratios of 8.4, 7.3, and 5.5 for MT1, MT2 and MT3, respectively (Murphy et 

al., 1997). A Type 2 MT, QsMT from Quercus suber was expressed in E. coli in the 

presence of Zn, Cd and Cu and was found to have high binding capacity for Cd ions 

(Mir et al., 2004).  

 
 
2.1.3.4 Structure of Plant MTs 
 

In contrast to comprehensive information on the structure of mammalian MTs, 

there is hardly any data on plant MT structure. Similarly, the role/structure of the spacer 

region in holo-MT is unknown. The general speculation about the existence of long 
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spacer region is that it may be essential for the conformational organization of Cys rich 

domains upon metal binding (Robinson et al., 1993).  

 

Two different models have been proposed for plant holo-MT structure; hairpin 

and dumbbell model. In hairpin model two Cys-rich domains interact with each other to 

form a single cluster and the spacer region does not participate in metal binding. This 

model was proposed for pea MT (Kille et al., 1991) and recently for QsMT from Q. 

suber (Domenech et al., 2006). In the dumbbell model there are two metal clusters for 

each two Cys-rich domains and it was proposed for a kiwi Type 3 MT (Zhu et al., 2000) 

and for durum wheat Type 1 MT (Bilecen et al., 2005). 

 

In 1991 for the first time, an MT from pea, PsMTA was overexpressed in E. coli 

in the presence of Cd. The Cd/PsMTA ratio was found to be between 5.6 to 6.1. In this 

study it was shown, for the first time, that binding of Cd was able to protect the spacer 

region of protein from proteolytic degradation. In the proposed hairpin model it was 

suggested that residues 2-21 and 56-75 and two Cys rich metal binding domains of 

holo-PsMTA were folded together by binding of Cd which is called hairpin model 

(Figure 2.5) (Kille et al., 1991).    

 

 
 

Figure 2.5: An assumed hairpin structure model of metallothionein protein 

associated with metal ions (Kille et al., 1991).    

 

Several Type 3 MTs have been characterized in more detail in terms of metal 

binding. The purified GST-MT3-A fusion protein from oil palm, Elaeis guineensis was 

found to have similar metal binding properties to Type 1 and 2 products. The type 1 

gene from pea (PsMTA) and type 2 gene from Arabidopsis (MT2) expressed as GST 
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fusion proteins in E. coli each bind Zn with strong affinities and it was found that the 

half of dissociation pH value of Zn from GST/MT3-A was found as 5.1 which was 

close to values obtained from PsMTA and MT2 indicating that GST-MT3-A bound Zn 

with strong affinity. It was suggested that the identical arrangement of Cys residues in 

the C-terminal domains could be the explanation for this similarity (Abdullah et al., 

2002). 

 

 Several studies have shown that the metal content of plant MTs is lower than 

that of mammalian MTs. A Type 2 QsMT  from Q. suber having 14 Cys residues bound 

Zn with a major Zn4-QsMT and two minor Zn3-QsMT and Zn5-QsMT similar to pea 

Type 1 PsMTA (Tommey et al., 1991) and these values were lower as compared to 

mammalian Zn7-MT1 having18 Cys residues (Mir et al., 2004).  

 

In a recent study a Type 3 MT, MT3, and its two mutant forms have been 

characterized from Musa acuminata (banana) for metal binding properties. The 

existence of a weaker metal ion coordination site and lower metal content compared to 

mammalian MTs were shown. To find the involvement of a histidine residue in metal 

binding two mutants in which the histidine (His) residue at position 46 was changed to a 

Cys, MT3_H46C, and to Ala, MT3_H46A, were constructed. In the presence of Zn, 

wild type MT3 and two mutants MT3_H46A and MT3_H46C yielded different species 

of Zn3.0MT3, Zn2.9MT3_H46A and Zn4.0MT3_H46C and incubation with Cd2+ resulted 

in Cd4.3MT3, Cd4.1MT3_H46A and Cd4.3MT3_H46C. Thus, Zn binding was enhanced 

by the addition of Cys residue, but, for Cd binding no difference between wild type and 

MT3_H46C mutant form was observed. It was also found that all 10 Cys residues in 

MT3 and 11 Cys residues in MT3_H46C were involved in metal binding. The half-

dissociation pH values of Zn2+ and Cd2+ ions were found similar to the previously found 

values of 5.6 Zn2+MT1 and 4.0 Cd2+MT1  from pea MT1GST fusion protein (Tommey 

et al., 1991). The half-dissociation pH values indicate overall pH stability of metal 

binding and this stability in MT3 was lower than mammalian MTs and Type 4 MTs. In 

this study different metal-thiolate cluster structures were proposed as shown in Figure 

2.6. Column (A) shows the involvement of 11th residue in the formation of metal-

thiolate cluster structures whereas column (B) shows structures without 11th residue. 

(A.1) shows the structure of metal binding with the involvement of His residue and 

might be seen in Zn3MT3. Also Zn3MT3 with Zn3MT3_H46A might have a structure as 
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in (B.1). Confirmations as in (A.2) might be considered in Zn4MT3, Zn4MT3_H46C, 

Cd4MT3 and Cd4MT3_H46C and for (B.2) Zn4MT3, Cd4MT3 and Cd4MT3_H46A. By 

releasing some of steric strains from (A.2), an alternative arrangement was obtained in 

(A.3) and showed a metal-thiolate cluster similar to M4Cys11 cluster of mammalian MTs 

or to M4Cys9His2 of bacterial MT. It is also suggested that Cd2+ ion was better 

occupying the bridging position between the two clusters due to its ionic radius 

(Freisinger, 2007).  

 

 
 

 

Figure 2.6: The proposed hypothetical structures of metal-thiolate clusters in 

MT3. Column (A) represents the participation of 11th residue in of metal-thiolate cluster 

whereas column (B) shows structures without 11th residue; the involvement of His 

residue (A.1), the involvement of Cys residue (A.2), and an alternative arrangement 

(A.3) (Freisinger, 2007).  

    

A recent study was directed towards understanding the role of spacer region in 

folding of QsMT and structural differences between Zn- and Cd-QsMT proteins using 

Raman and infrared spectroscopy. QsMT has one spacer region separated by two Cys-

rich domains with 8 and 6 Cys residues respectively and has an additional His residue. 
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The average metal ion content of QsMT were found to be higher in Cd-QsMT than Zn-

QsMT which was Cd6QsMT and Zn4QsMT, therefore it was suggested that QsMT has 

distinct Zn2+ and Cd2+ binding potential and resulted in different metal cluster 

structures; a more compact structure and a reduced protein volume for Zn4-QsMT 

compared to Cd6-QsMT. As a result the observation was that Zn-QsMT folded with 

four Zn2+ ions without participation of His residue in metal binding, whereas the main 

structure in Cd-QsMT was composed of six Cd2+ ions and His residue in the spacer 

region. For the secondary structure it was found that Zn- and Cd-QsMT were composed 

of mainly β-sheets, probably in spacer region and β-turns in Cys-rich domains. This 

high percentage of β-sheets in the secondary structure is fairly rare among MTs 

(Domenech et al., 2007).  

 

 Recently, it was shown that wheat Ec was able to bind six Zn2+ ions in two 

metal-thiolate clusters (Peroza and Ferisinger, 2007; Leszczyszyn et al., 2007). Also it 

was observed that two conserved His residues participated in metal binding either 

directly or by preservation of hydrogen bonding within the cluster (Leszczyszyn et al., 

2007). 

 

2.1.3.5  Function of Plant MTs 
 
 

Plant MTs display variation in terms of sequence, especially in metal binding 

Cys residues, and this indicates that functions of various plant MTs are also diverse 

(Cobbet and Goldsbrough, 2002).  

 

Identification MT proteins in plants is difficult due to the instability of these 

proteins in the presence of oxygen. The function of plant MT proteins is still not 

completely understood, and most of the information comes from mRNA expression 

studies. The suggested roles for plant MTs, similar to their mammalian counterparts, are 

maintaining metal ion homeostasis, detoxification of toxic metals, and protection 

against oxidative stress (Cobbet and Goldsbrough, 2002; Wong et al., 2004; Akashi et 

al., 2004).  

 

Plant MT proteins have the capacity of binding metal ions and some plant MT 

genes are induced by metals. These results suggest that MTs play an important role in 
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metal tolerance and homeostasis in plants. Studies have shown that MT was induced by 

various metal ions, mostly Cu and to a lesser extent Cd and Zn. However, MT 

expression in response to metal ions shows variation in different plant species and 

tissues and in terms of types of MT. In general the literature suggests that MTs are 

involved in Cu tolerance and homeostasis. For example, in Arabidopsis Cu treatment 

resulted in induction of MT gene expression and limited induction with Cd and Zn were 

observed (Zhou and Goldsbrough, 1994). Furthermore, in Triticum aestivum it was 

shown that five different MT genes; wali1 to wali5 were induced by aluminum stress 

and their expression was reduced when the Al was removed (Snowden and Gardner, 

1993). In contrast, in Vicia faba MT transcript level was not induced by Cu treatment as 

well as Cd, Fe and Zn (Foley et al., 1997). Moreover, Mimulus guttatus MT was 

repressed by Cu treatment (De Miranda et al., 1990).  

 

 According to the transcript levels plant MTs are suggested to play different roles 

at different stages of plant development. For example in rice a serial analysis of gene 

expression (SAGE) study has shown that MT genes represent 3% of all transcripts  in 

two-week-old seedlings (Matsumura et al., 1999).  

 

 A number of studies show that expression of MT genes is induced during 

senescence (Cobbet and Goldsbrough, 2002). Senescence involves relocation of 

released nutrients including metal ions to other organs from senescing cells and this 

process is also related to oxidative stress. Because senescence involves degradation of 

protein, lipid and nucleic acids these processes result in significant metabolic changes. 

These degradative processes, particularly for lipids, often result in increased production 

of reactive oxygen species (ROS). An MT gene in Brassica napus was induced at high 

level during leaf senescence (Buchanan-Wollaston, 1994). In rice, high transcript level 

of Type 2 ricMT was found in senescing stems (Yu et al., 1998). In a study associated 

with the senescence related genes in Arabidopsis it was shown that MT1 accumulated 

during natural leaf senescence (Miller et al., 1999). Another study in Arabidopsis 

revealed that expression of MT genes was highly induced by Cu especially in trichomes 

and increased during senescence (Guo et al., 2003).  In Arabidopsis a LSC54 MT gene 

shown previously to increase during leaf senescence was also induced in response to 

increase in ROS (Navabpour et al., 2003). It has been proposed that MT proteins may 

serve as metal chelators for transferring released metal ions from senescing cells to 
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developing cells or seeds for protection from toxic effects of metal ions or they may be 

involved in scavenging the ROS generated during senescence (Cobbet and 

Goldsbrough, 2002; Mir et al., 2004).  

 

Recently increasing evidence suggests an alternative role for plant MTs as ROS 

scavengers as observed in animals (Akashi et al., 2004; Wong et al., 2004). Induction of 

MTs are strongly induced by oxidative stress (Tate et al., 2002; Mir et al., 2004), this 

may be due to MTs role in scavenging reactive oxygen species (ROS). The expression 

of a watermelon Type 2 CLMT2 gene was induced by drought/high light stress in the 

leaves and the recombinant CLMT2 protein showed a high activity for scavenging 

hydroxyl radicals (Akashi et al., 2004). In rice MT OsMT2b was also shown to be a 

ROS scavenger and down regulation of its expression was involved in defense signaling 

in response to resistance (Wong et al., 2004). MT expression was induced in T. tubifex 

when it was exposed to the pesticide chitosan which causes chemical stress in relation 

with oxidative stress (Mosleh et al., 2007). A recent study shows a Type 1 Ch1MT1 

expression was induced by several abiotic stresses, salts, a ROS inducer and metal ions 

(Zn and Cu) and improved the ability of MT to scavenge ROS (Nishiuchi et al., 2007). 

  

Plant MT gene expression is regulated also by other stress factors such as 

wounding (Choi et al., 1996) and pathogen infection (Butt et al., 1998). Generally plants 

undergo oxidative stress associated with generation of ROS when exposed to wounding 

or pathogen infection. These conditions induce expression of some MTs suggesting that 

these may be a part of the general stress response (Cobbet and Goldsbrough, 2002).  

 

Recently several studies revealed that plant MTs may have a role during 

developmental processes. It was shown that in rice the OsMT-II-1a gene expression was 

highly abundant in developing seeds and 2-day glumes after pollination. This result 

suggested that seed development and pollination might be mediated partly by OsMT-II-

1a gene expression (Zhou et al., 2005). In Zea mays a Type 2 MT MZm3-4 gene was 

expressed only in male reproductive organs during microsporogenesis (Charbonnel-

Campaa et al., 2000).  
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Chapter 3 

 

MATERIALS and METHODS 

 

 

3.1 MATERIALS 

 

3.1.1 Chemicals 

 

All chemicals were supplied by Aldrich (Germany), GE-Biosciences (Sweden), 

Amresco (USA), Applichem (Germany), BioRad (USA), Fermentas (Germany), Fluka 

(Switzerland), Invitrogen (Germany), Merck (Germany), Riedel de Häen (Germany) 

Roche (Germany), Promega (USA), Qiagen (Germany) and Sigma (USA). All 

chemicals are listed in Appendix A. 

  

3.1.2 Primers 

 

Primers were designed according to Kinzler and Vogelstein (1989), Watson et 

al., (2000) and synthesized by Iontek (Turkey) and SeqLab (Germany).  

 

3.1.3 Enzymes 

 

Restriction enzymes EcoRI, Hind III, BamHI and TagI were purchased from 

Promega and Fermentas. T4 DNA Ligase was supplied by Fermentas and Taq 

Polymerase was supplied by Fermentas. Omniscript Reverse Transcriptase (QIAGEN) 

was used in production of cDNA. Shrimp Alkaline Phosphatase and Klenow fragment 

were supplied by Fermentas.  
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3.1.4 Cells 

 

E.coli strains BL21 (DE3). 

 

3.1.5 Buffers and Solutions 

 

All buffers and solutions used in recombinant DNA manipulations, except those 

provided with commercial kits, were prepared according to Sambrook et al., (2001). 

Buffers and their compositions are presented in Appendix B. 

 

3.1.6 Culture Media 

 

3.1.6.1 Liquid Medium 

 

LB (Luria-Bertani) Broth from SIGMA was used to prepare liquid culture media 

for bacterial growth. The standard components of LB broth are 10 g/L Tryptone 

(pancreatic digest of casein), 5 g/L Yeast extract and 5 g/L NaCl. For preparing 1 liter 

LB broth 20 g powder is suspended in 1 L of distilled water. 

 

3.1.6.2 Solid Medium 

 

LB (Luria-Bertani) Agar from SIGMA was used for the preparation of solid 

culture media for bacterial growth. The standard components of LB agar are 10 g/L 

Tryptone (pancreatic digest of casein), 5 g/L Yeast extract, 5 g/L NaCl and 15 g/L Agar. 

For preparing 1 liter LB agar 40 g powder is suspended in 1 L of distilled water. 

 

3.1.7 Plant Material 

 

Expression studies were carried using Triticum durum Balcalı-85 cultivar. 

 

3.1.8 Equipments 

 

List of all the equipments used during this study are presented in Appendix C. 
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3.2 METHODS 

 

 

3.2.1 �ucleic acid Methods 

 

3.2.1.1 Genomic D�A Isolation from Plant 

 

Genomic DNA was isolated from plants using a modified CTAB procedure. 2 

gram plant material was mixed with 8.3 ml solution consisting of 8.08 ml prewarmed 

CTAB (cetyltrimethylammonium bromide) extraction buffer, 0.17 ml 2-

mercaptoethanol to give a final concentration of 2% and 100 µg/ml proteinase K and 

incubated at 55oC for 60 minutes. 6.7 ml phenol:chloroform:isoamylalcohol (PCI) 

(25:24:1) was added and vortexed briefly. After centrifugation at 13000g for 10 minutes 

at room temperature, the supernatant was transferred to a new tube, mixed with 6.7 ml 

PCI and centrifuged again. This extraction was repeated 3 times. DNA was precipitated 

by the addition of the 2/3 volume of isopropanol and incubating for at least 30 minutes 

at -20oC. DNA was collected by centrifugation at 13000g for 20 minutes at 4°C. The 

pellet was resuspended in 1.3 ml TE buffer. 13.3 µl of RNaseA (from 10 mg/ml stock) 

was added and incubated at 37°C for 30 minutes. To extract DNA 1.3 ml CI was added 

and centrifuged at 13000g for 10 minutes at room temperature. The supernatant was 

transferred to a new tube and precipitated with ½ volume of NH4Ac and 2 volumes of 

100% ethanol and incubated for at least 30 minutes at -20oC. Genomic DNA was 

collected by centrifugation at 13000g for 20 minutes at 4°C. The pellet was washed 

twice with 70% ethanol and air-dried. The genomic DNA was dissolved in 330 µl ml of 

TE buffer and incubated at 65°C for 1 hour and then centrifuged at 16000g for 10 

minutes at 4°C. The supernatant was transferred to a clean tube and stored at 4°C.  

 

3.2.1.2 Total R�A Isolation from Plants 

 

200 mg leaf or root tissue was ground with 1.5 ml Trizol reagent inside a mortar 

until it became liquid. 1 ml of the liquid was taken into an eppendorf tube, which was 
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kept on ice while processing the other samples. After processing all the samples, they 

were incubated at room temperature for 10 minutes. After addition of 0.4 ml chloroform 

from a regular stock bottle, tubes were shaken and incubated at room temperature for a 

further 5 minutes. After centrifugation at 13400g for 15 minutes at 4oC, the upper layer 

containing the total RNA was transferred to a fresh tube. To precipitate RNA 0.5 ml 

isopropanol was added and samples were incubated at room temperature for 10 minutes. 

Total RNA pellet was collected by centrifugation at 13400g for 10 minutes at 4oC and 

washed with 1ml 75% ethanol. Then mixed by vortexing and centrifuged at 5400g for 5 

minutes at 4oC. After drying at room temperature for about 10 minutes, total RNA was 

resuspended in 20-50 µl formamide. In order to enhance dissolving, the sample was 

incubated at 55oC for up to an hour. RNA samples were stored at -80°C. 

 

3.2.1.3 Separation of D�A by Agarose gel 

 

For the separation of high molecular weight DNA, 1% agarose gels containing 

0.1 µg/ml ethidium bromide in 1xTAE was used. The samples were prepared by mixing 

with 6x loading buffer. Gels were run at 100 mV constant current for 30 minutes. Size 

of DNA fragments were estimated using MassRuler DNA Ladder Mix. 

 

3.2.1.4 Separation of D�A by Polyacrylamide gel 

 

For the separation of low molecular weight DNA fragments 7% nondenaturing 

polyacrylamide gel was used. Gel was prepared by mixing 6.8 ml distilled water, 2.4 ml 

5xTBE, 2.8 ml acrylamide-bisacrylamide (29:1), 200 µl 10% ammonium 

peroxodisulfate and 10 µl TEMED. Gels were run at 25 mA constant current for about 1 

hour and were stained in 1xTBE buffer containing 0.1 µg/ml ethidium bromide for 15 

min at room temperature with shaking.  

 

3.2.1.5 Determination of �ucleic acid Concentrations 

 

RNA concentration was determined by measuring the absorption (A) of the 

samples at 260 nm and calculating the concentration (C) according to the formula: C(µg 

/µl) = A260 x 40 x Dilution Factor.  
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DNA concentration was determined by measuring the absorption (A) of the 

samples at 260 nm and calculating the concentration (C) according to the formula: C(µg 

/µl) = A260 x 50 x Dilution Factor.  

 

3.2.1.6 cD�A Synthesis 

 

Reverse transcription of 2 µg of total RNA was performed according to the 

manufacturer’s instructions of Omniscript Reverse Transcriptase kit (QIAGEN). The 

cDNA was stored at -20°C.  

 

3.2.1.7 Preparation of the Radioactively labeled cD�A Probe 

 

The dMT cDNA was used as probe for both Southern blotting and labeled with 
32P-dATP by 5’end labeling. For labeling reaction 2 µg cDNA and 6000Ci/mmol 32P γ-

ATP isotope, 10x T4 polynucleotide kinase buffer, T4 polynucleotide kinase enzyme 

and dH2O were used and incubated at 37oC for 1 hour.  

 

3.2.1.8 Southern Blotting 

 

15 µg aliquots of genomic DNA were digested overnight with EcoRI or BamHI 

at 37oC. Digested DNA samples were denatured at 95oC for 5 min and separated by 

electrophoresis on a 1% agarose gel in 1x TAE buffer containing 0.2 µg final 

concentration of EtBr at 50 volt for about 4 hours at 4oC. After visualization on UV, the 

gel was cut and rinsed with dH2O to remove EtBr. Before blotting the gel was washed 

for 10 minutes in depurination solution (250 mM HCl), which depurinates the DNA 

fragments thus allowing more efficient transfer from the gel to membrane, then the 

DNA gel was washed in denaturation solution (1.5 M NaCl, 0.5 M NaOH) for 25 

minutes and finally neutralized with 1.5 M NaCl, 0.5 M Tris-HCl pH 7.5 for 30 

minutes. Finally the gel was placed into the transfer buffer of 10x sodium 

chloride/sodium citrate solution (SSC). 
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3.2.1.9 Blotting, Hybridization and Detection 

 

The DNA was transferred by downward capillary blotting on to a Whatman 

Nytran SPC (super positive charge) nylon membrane. A 4-6 stack of paper towel and 4 

pieces of whatman 3MM paper, the same size as the nylon membrane, was placed on a 

tray at the bottom of the 10x SSC soaked nylon membrane. The gel was placed on top 

of the nylon membrane under 2 more pieces of wet whatman 3MM paper. 2 larger 

pieces of whatman 3MM paper as a wick were soaked in 10x SSC transfer buffer and 

stacked on the top under a weight as the entire sandwich and left overnight to transfer. 

The membrane was first baked at 80oC for 30 min and exposed to ultraviolet radiation 

for 5 minutes to covalently crosslink the DNA to the membrane. The blot was then 

soaked in rotating at 60ºC in pre-hybridization buffer for 30 minutes.  

 

3.2.1.10 Autoradiography 

 

After hybridization, blots were washed twice in low stringency buffer; 2x SSC, 

0.1% SDS (2-5ml/cm2) for 15 minutes at 60ºC for Southern blotting and at 65ºC for 

Northern blotting followed by high stringency washes with  1x SSC, 0.1%SDS for 15 

minutes each at again 60ºC or 65ºC. Finally, the blot was exposed to Kodak BioMax 

MS film for 16 hours to 2 days at -80ºC with Cronex intensifying screens. 

 

3.2.1.11 Whole Genome PCR 

 

3.2.1.11.1 Preparation of D�A for Whole Genome PCR 

 

Total 4 µg T. durum cv. Balcalı 85 genomic DNA was digested with Taq I 

enzyme and sonicated 25 minutes to get average sizes of 300 bp. Sonicated DNA was 

subjected to Klenow reaction to fill in the sticky ends created by Taq I. DNA fragments 

in 100 µl reaction mixture containing 10x Klenow buffer and 10 mM dNTP mix were 

incubated for 1 hour at 37oC.  In order to prevent self ligation of blunt ends DNA was 

dephosphorylated by SAP (Shrimp Alkaline Phosphatase) and incubated at 37oC for 30 

minutes. DNA was then extracted with phenol:chloroform:isoamylalcohol (25:24:1) and 

precipitated with ethanol. DNA was ligated to 15 µg each of linkers using T4 DNA 

ligase in 100 µl ligase buffer containing 10x T4 ligase buffer, 50% PEG-4000 and 
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incubated at 16oC for overnight. To prevent self ligation of linkers the ligation mixture 

was digested with TaqI enzyme at 37oC for 2 hours. After restriction digestion linker-

ligated DNA was precipitated with ethanol and resuspended in 10 µl dH2O. 

 

3.2.1.11.2 Protein-D�A Interaction 

 

Protein was bound to Glutathione Sepharose 4 Fast Flow (GE-Biosciences) 

following the manufacturer’s instructions. 1 ml of slurry of Glutathione Sepharose 

beads were  centrifuged at 500g for 5 minutes to get rid of EtOH and were washed with 

5 volumes of dH2O and protein binding buffer. The GSTdMT protein was added to 

Glutathione Sepharose beads and incubated for 30 minutes by shaking. In order to 

remove unbound proteins the protein-bound beads were washed with protein binding 

buffer. 

 

For DNA-protein interaction linker-ligated genomic DNA was mixed with 

GSTdMT bound glutathione beads and with 200 µl of DNA binding buffer pH 7.5; 50 

mM Hepes, 120 mM NaCl, 5 mM MgCl2, 50% glycerol and 1 mM DTT. The mixture 

was rotated at room temperature for 1 hour before centrifugation at 16000g for 10 

minutes. Bound DNA was then eluted by the addition of 200 µl elution buffer pH 8.0; 

20 mM HEPES and 1mM NaCl. The mixture was rotated for 30 minutes at room 

temperature before centrifugation at 16000g for 10 minutes. The eluate was precipitated 

with ethanol and resuspended with 10 µl dH2O before being used as a PCR template. 

 

3.2.1.11.3 PCR Amplification of Linker-ligated D�A 

 

For amplification of recovered DNA fragments, a 50 µl of PCR reaction was 

prepared using 2 µl of template, 1 µl of dNTPs (10 mM each), 5 µl of each primer (1 

µM), 5 µl 10 x PCR buffer, 4 µl of MgCl2
 
(25 mM), 1 µl of Taq polymerase and the 

volume was completed with  dH2O. The amplification was carried out in an Eppendorf 

cycler with the following conditions: 95°C x 5 min, 30 x {95°C x 1 min, Tm x 1.5 min, 

72°C x 1 min}, 72°C x 7 min. The annealing temperature and time was adjusted 

according to primer pairs used.  
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3.2.2 Protein Analysis 

  

3.2.2.1 Bacterial Cell Growth 

 

Cells were grown overnight in LB Broth (Luria Bertani) medium prior to any 

application. LB Agar (Miller’s LB agar) solid medium was used as selective and 

unselective solid medium for the growth of bacteria. 

 

3.2.2.2 Expression of GSTdMT 

 

E.coli BL21 (DE3) cells transformed with recombinant pGEX-dmt were grown 

overnight by using LB broth medium with 100 µg/ml ampicillin at 37oC. The next day 

1.5 Liter LB containing 0.1mM CdCl2 and 100 µg/ml ampicillin were inoculated with 

fresh overnight culture at 1:50 ratio and grown at 37oC. When optical density at 600 nm 

reached to 1, expression of GSTdMT protein was induced by adding IPTG (isopropyl-

B-D-thiogalactoside) at a final concentration of 0.7 mM. After growing for further 6 

hours, cells were pelleted at 8275g for 25 minutes using a Sorvall centrifuge with SLA-

3000 rotor. Pellets were washed with HEPES binding buffer containing 20 mM HEPES, 

100 mM NaCl, 2.5 mM MgCl2 and 0.1 mM CdCl2 in a glove bag filled with argon and 

stored at –80oC.  

 

3.2.2.3 Purification of GSTdMT Recombinant Protein 

 

All buffers were degassed and purged with argon (Ar) prior to using and all 

procedures were carried out in Ar environment. The cell pellet was resuspended in 76 

ml HEPES binding buffer pH 8.0 containing 0.1mM CdCl2, 1 mM DTT, 0.5 mM PMSF 

and 2 tablets of EDTA-free protease inhibitor cocktail under argon filled glove box and 

the cells were lysed by sonication (Fisher Bioblock Scientific) at 8 sn pulse and 9 sn 

stop for 10 minutes at 4oC under Ar flow. 20% Triton X-100 was added to a final 

concentration of 1% and the suspension was mixed gently for 45 minutes at 4oC to 

facilitate solubilization of proteins. After clearing by centrifugation at 4oC at 20000g for 

1 hour, the supernatant from the cell lysate was loaded onto a 5 mL GSTrap(R) FF 

prepacked affinity column (GE-Biosciences) which was previously equilibrated with 

HEPES binding buffer using a peristaltic pump with a constant flow rate of 1 
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mL/minute. The bound fusion protein was eluted with elution buffer pH 8.0 containing 

50 mM Tris- HCl, 100 mM NaCl, 20 mM reduced Glutathione, 1 mM DTT, 0.5 mM 

PMSF and the EDTA-free protease inhibitor cocktail. Fractions from the affinity 

column were pooled and dialyzed against HEPES binding buffer with 1 mM DTT and 

0.5 mM PMSF at 4oC. After dialysis the fusion protein was applied to a HiLoad (R) 

26/60 Superdex 75 column previously equilibrated with HEPES binding buffer 

containing 1 mM DTT and protein was eluted at a flow rate of 1.5 mL/min with HEPES 

binding buffer containing 1 mM DTT. Chromatography was carried out using the 

AKTA FPLC System (GE-Biosciences) and the absorbance of the eluate was monitored 

at 280 nm. Fractions of 500 µl were collected and they were analyzed by SDS-PAGE. 

  

3.2.2.4 Purification of dMT Protein 

 

The purification procedure of dMT protein was based on Capdevilla et al with 

some modifications but largely was same as GSTdMT protein purification until binding 

of lysate to the GSTrap FF affinity column. Instead the supernatant was used to purify 

the GSTdMT fusion proteins by batch affinity chromatography with Gluthatione-

Sepharose-4B at a volume ratio of 1:10 matrix:sample. The mixture was incubated with 

gentle agitation for 30 minutes at 4oC and then centrifuged at 4oC at 500 g for 5 

minutes. After three washes with Binding buffer; 50 mM Tris-HCl pH 7.5,  2.5 mM 

MgCl2, 100 mM NaCl containing 1mM DTT; mixing 10 minutes then centrifugation at 

500g for 5 minutes, 10 U/mg thrombin was poured into 10 ml beads and protein mixture 

and digestion carried out overnight at 4oC. After centrifugation at 500g for 5 minutes 

the GST portion remained bound to beads but dMT part was eluted together with 

thrombin. Total 10 ml eluate was then five-fold concentrated using Concentrator with a 

cutoff of 10kD at 15000g for 33 minutes and then fractionated using HiLoad® 16/60 

Superdex-75 size exclusion column with Binding buffer and 1mM DTT, 1 ml/min.  

 

3.2.2.5 SDS Polyacrylamide Gel Electrophoresis (PAGE) 

 

SDS-PAGE was used to separate protein samples. Protein samples (50 ng) were 

heated at 100oC for 10 minutes in 2x SDS-PAGE sample buffer, and loaded onto 12% 

SDS polyacrylamide gels with a 5% stacking gel. Gels were run at 80 V constant 
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voltage in 1x SDS running buffer until the bands passed to resolving gel and 

electrophoresis was completed at 120 V. 

 

3.2.2.6 �ative-PAGE 

 

The protein samples were analyzed on 10% native-polyacrylamide gels which 

were prepared without a stacking layer. Buffers used were the same as those used in 

denaturing gels except that SDS was omitted from all. Sample buffer did not contain 

SDS and samples were not boiled to avoid denaturing. Gels were run at 80 V constant 

voltage in 1x Native-PAGE running buffer until the bands passed to resolving gel and 

electrophoresis was completed at 120V. 

 

3.2.2.7 Coomassie Blue Staining 

 

For visualization, SDS- and Native-PAGE gels were stained with Coomassie 

blue staining solution and then destained in destaining solution.  

 

3.2.2.8 Silver Staining 

 

For visualization, SDS- and Native-PAGE gels were stained with silver staining 

plus kit (BioRad). 

 

3.2.2.9 Western Blotting 

 

SDS-PAGE was used to separate protein samples. Protein samples (50 ng) were 

heated at 100oC for 10 minutes in 2x SDS-PAGE sample buffer and loaded onto 12% 

SDS polyacrylamide gels with a 5% stacking gel. After electrophoresis for 

approximately 1 hour at 25 Amps, proteins were transferred to PVDF membrane in 

transfer buffer using Novex western transfer apparatus at 25V overnight at 4oC. The 

transfer sandwich consisted of three pre-soaked blotting pads, then a piece of 3MM 

Whatman paper, the gel, the PVDF membrane, another piece of 3MM Whatman paper, 

and the other three pre-soaked blotting pads. After overnight transfer, PVDF membrane 

was incubated in blocking solution for 1 hour at room temperature with shaking. Then 

membrane was washed with PBS-T for 15 minutes at room temperature with shaking. 
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Followed by incubation with anti-GST HRP conjugate at a dilution of 1/10.000 in 10 ml 

fresh blocking solution for 1 hour at room temperature on an orbital shaker. Membrane 

was then washed three times with PBS-T for 15 minutes at room temperature and 

proteins were visualized using ECL advance western blotting detection systems (GE-

Biosciences).  

 

3.2.2.10 Determination of Protein Concentration 

 

In order to calculate the protein concentration, absorption at 280 nm was 

measured and calculation was done according to the calculated GSTdMT coefficient of 

1.232. 

 

3.2.2.11 Dynamic Light Scattering 

 

Dynamic Light Scattering (also known as PCS - Photon Correlation 

Spectroscopy) measures Brownian motion and provides information about the size of 

the particles in a solution. Particles are illuminated with a laser and the intensity 

fluctuations in the scattered light are analyzed. In practice, particles suspended in a 

liquid are never stationary; they move due to Brownian motion. Brownian motion is the 

movement of particles due to the random collision with the molecules of the liquid that 

surrounds the particle. An important feature of Brownian motion for DLS is that small 

particles move quickly and large particles move more slowly.  

 

The fundamental size distribution generated by DLS is an intensity distribution; 

this can be converted, using Mie theory, to a volume distribution. This volume 

distribution can also be further converted to a number distribution. However, number 

distributions are of limited use as small errors in gathering data for the correlation 

function. A very simple way of describing the difference between the intensity, volume 

and number distributions is to consider a sample that contains only two sizes of particles 

(5nm and 50nm) but with equal numbers of each size particle. The first graph in Figure 

3.1 shows the result as a number distribution. As expected the two peaks are of the same 

size (1:1) as there are equal numbers of particles. The second graph shows the result of 

the volume distribution. The area of the peak for the 50nm particles is 1000 times larger 

the peak for the 5nm (1:1000 ratio). This is because the volume of a 50nm particle is 
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1000 times larger that the 5nm particle. The third graph shows the result of an intensity 

distribution. The area of the peak for the 50nm particles is now 1,000,000 times larger 

the peak for the 5nm (1:1000000 ratio). This is because large particles scatter much 

more light than small particles (the intensity of scattering of a particle is proportional to 

the sixth power of its diameter). In conclusion, the basic distribution obtained from a 

DLS measurement is intensity all other distributions are generated from this and the 

intensity distribution provides a sensitive measure for the polydispersity and size of 

particles in a solution. 

 

 
 

Figure 3.1: Difference between the intensity, volume and number size 

distribution differences of two sizes of particles; 5nm and 50nm. 

 

 Fractions of recombinant GST and GSTdMT proteins were analyzed for the 

presence of different oligomers by DLS using a Zeta-sizer Nano ZS (Malvern 

Instruments). 

 

3.2.2.12 Small angle X-ray Scattering (SAXS) 

 

Small angle X-ray scattering (SAXS) is an analytical X-ray application 

technique for the structural characterization of macromolecules. In SAXS 

experiments, the sample is irradiated by a well-defined, monochromatic X-ray beam. 

When a non-homogeneous medium, for example proteins in water, is irradiated, 

structural information of the scattering particles can be derived from the intensity 

distribution of the scattered beam at very low scattering angles.  
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The SAXS data were collected on the X33 camera of the European Molecular 

Biology Laboratory (EMBL) on the storage ring DORIS III of the Deutsches Elektronen 

Synchrotron (DESY) in Hamburg, using a mar345 Image Plate detector. Scattering 

patterns were recorded in the range of momentum transfer 0.15 < s < 3.5 nm-1 where s = 

4π sin(θ)/λ , 2θ is the scattering angle and λ = 0.15 nm is the X-ray wavelength.  

 

Solutions of GSTdMT fusion protein and GST protein in HEPES buffer were 

measured at several concentrations between 1 and 41 mg/ml. Because of aggregation at 

higher concentrations, only the scattering curves measured at concentrations about 3 

mg/ml were used in analyses. Bovine serum albumin (BSA) was measured as a 

molecular mass standard at 5 mg/ml in a buffer with 50 mM Hepes, pH 8.0 and 150 mM 

NaCl. Data reduction, background subtraction and correction for detector response 

followed standard procedures using the program PRIMUS (Konarev et al., 2003). 

 

The forward scattering I(0) and the radius of gyration Rg were evaluated using 

the Guinier approximation assuming that at very small angles (s < 1.3/Rg) the intensity 

is represented as I(s) = I(0) exp(-(sRg)
2
/3). These parameters were also computed from 

the entire scattering pattern using the indirect transform package GNOM (Svergun, 

1992), which also provides the distance distribution function p(r) of the particle. 

GNOM is an indirect transform program for small-angle scattering data processing. It 

reads one-dimensional scattering curves and evaluates a distance distribution function 

P(r) for monodisperse systems. The molecular mass (MM) of the solute was evaluated 

by comparison of the forward scattering with that from a reference solution of bovine 

serum albumin (66 kDa).  

 

Low resolution models of the GSTdMT fusion protein were generated ab initio 

by the programs DAMMIN and GASBOR. 

 

3.2.2.13 Extended X-ray Absorption Fine Structure (EXAFS) 

 

Extended x-ray absorption fine structure (EXAFS) is a short-range technique 

that can provide structural information for a wide variety of materials and states of 

matter. For metalloproteins where transition metal atoms are in structurally or 

functionally important sites, EXAFS and x-ray absorption spectroscopy (XAS) can 
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provide detailed information on metal-ligand bond distances and geometry, 

respectively. This technique can be used independently or to supplement structural 

information derived from other techniques including X-ray crystallography or nuclear 

magnetic resonance spectroscopy.  

 

The X-ray absorption spectra consist of two regions; the edge X-ray absorption 

near edge structure (XANES) and the EXAFS. The edge region spectrum reflects metal 

ion oxidation state, covalency, geometry, chemical shifts, etc. The role of metal site 

structure in enzymatic catalysis can be determined by comparing the XAS spectra of the 

active site with or without substrates or inhibitors. The EXAFS region provides direct 

structural information about the atomic neighbors of the metal atom such as number and 

identity of ligand atoms, and their precise bond distances. 

 

EXAFS gives us information about the distances between central and 

neighboring atoms, the number and nature of neighboring atoms and changes in central-

atom coordination with changes in experimental conditions. The main advantage of 

EXAFS analysis over X-ray Crystallography is that structures can be studied in non-

crystalline forms (including liquid and frozen solutions).  Among other applications, 

EXAFS has proven helpful in studying the behavior of non-crystalline materials, 

environmental samples, and metalloproteins in their naturally occurring states.  

 

The EXAFS data were collected on recorded at beamline D2 of the European 

Molecular Biology Laboratory (EMBL) Outstation Hamburg at Deutsches Elektronen 

Synchrotron (DESY), Germany. The D2 DORIS storage ring operated at 4.5 GeV with 

Si (111) or Si (220) double-crystal monochromator.  

 

3.2.2.14 Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES)  

ICP-OES is used for qualitative and quantitative determination of metals and 

certain non-metals in solution. The liquid sample is nebulised into plasma where the 

temperature is sufficiently high to break chemical bonds, release elements present and 

transform them into a gaseous atomic state. A number of the atoms pass into the excited 

state and emit radiation. The frequency of this radiation is characteristic of the element 

that emitted it and as such can be used for identification purposes. 
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The ICP uses very hot argon plasma to excite atoms into high energy states. As 

these atoms relax they emit light at characteristic wavelengths, or lines. The ICP can 

measure about 70 elements in aqueous solutions, including most metals. It cannot 

measure H, He, C, N, O, F, Ne, Cl, and some other elements. All sample solutions must 

be absolutely free of particulates, sediments, precipitates, suspended gels, or lipids. ICP 

was used for determination of Cd concentration in protein samples and for 

quantification of Cd from plant tissues.  

  

3.2.3 Plant Methods 

 

3.2.3.1 Plant Material  

T. durum cv. Balcalı-85 cultivar is a Cd-tolerant genotype and was used in the 

experiments carried out under growth chamber conditions. 

 

3.2.3.2 Plant Growth Conditions and Cadmium Treatments 

Balcalı-85 seeds were surface sterilized with 1% (w/v) calcium hypochlorite for 

10 minutes and then rinsed with distilled dH2O. Seeds were germinated in perlite 

moistened with saturated CaSO4 solution and germinated in the dark for 5 days at room 

temperature. Afterwards, seedlings were transferred to 2.5 L plastic pots containing 

continually aerated nutrient solutions composed of the following macro and 

micronutrients; 0.88 mM K2SO4, 2 mM Ca(NO3)2, 0.2 mM KH2PO4, 1.0 mM MgSO4, 

0.1 mM KCl, 100 µM Fe-EDTA, 1.0 µM H3BO3, 1.0 µM ZnSO4, 1.0 µM MnSO4, 0.2 

µM CuSO4, and 0.02 µM (NH4)6Mo7O24. 

 

Plants were grown for 7 days in a growth chamber under controlled conditions 

of light/dark regime 16/8 h, temperature 24/22oC, relative humidity 60/70%, and photon 

flux density of 600-700 µmol m-2 s-1. Nutrient solutions were renewed every 3 days. 

 

After following 7 days, plants were treated with varying levels of Cd (0, 2, 5, 10 

and 20 µM) in the form of CdSO4. Nutrient solutions and Cd levels were renewed every 

3 days. After 7 days following Cd application plants were harvested during which roots 



 38 

and shoots were separated. Roots were rinsed with 2 mM CaCl2 for about 15 minutes to 

remove surface absorbed Cd and then rinsed with distilled dH2O. Then, roots and shoots 

used for determination of dry matter production and Cd concentration were dried at 

70°C. Also 0.2 g roots and shoots were collected from each pot and immediately frozen 

in liquid nitrogen and stored at -80oC. 

 

3.2.3.3 Cadmium Concentration and Content 

Dried root and shoot samples were ground and approximately 0.3 g ground 

sample was ashed at 500°C for 12 h followed by dissolving in 3.3 % HNO3 (v/v) for 

determination of Cd concentration. The concentration of Cd was measured by 

inductively coupled argon plasma optical emission spectroscopy (ICP-OES, Varian, 

Australia) at 214.439 nm emission wavelength. The Cd content was calculated by 

multiplying the dry weight values of roots or shoots with their Cd concentration values.  
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Chapter 4 

 

RESULTS 

 

4.1 Purification of Homogeneous GSTdMT Protein 

 

4.1.1 Calibration of the Column  

 

HiLoad® 26/60 Superdex 75 size exclusion column (GE-Biosciences) was 

calibrated with low molecular weight calibration kit from GE-Biosciences and Vitamin 

B12 (Sigma) (Table 4.1). 20 mg of each low the molecular weight calibration proteins 

and 30 mg of Vitamin B12 were dissolved in 2 ml of 1x PBS buffer, pH 7.3 and eluted 

from column with the flow rate of 1.5 ml/min using the same buffer (Figure 4.1). The 

calibration curve was obtained from the elution profile and calculated according to the 

formula of Kav= (Ve-Vo)/(Vc-Vo) where Vc is the column volume, Vo is the column 

void volume and Ve is the elution volume. This curve was used for estimation of 

molecular weight of GST and GSTdMT (Figure 4.2) according to their elution volume 

from the size exclusion column.  

 

Table 4.1: Protein samples used for column calibration and their molecular 

weights and elution volumes. 

Protein loaded (mg) MW (Da) Ve (ml) 

Albumin 20 67000 147.44 

Ovalbumin 20 49100 163.17 

Chymotrypsinogen A 20 20400 187.97 

Ribonuclease A 20 15200 213.56 

Vitamin B12 30 1350 285.55 
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Figure 4.1: Elution profile of calibration proteins from the size exclusion 

column HiLoad® 26/60 Superdex 75. 
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Figure 4.2: Calibration curve of HiLoad® 26/60 Superdex 75 size exclusion 

column.  
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4.1.2 Optimization of GSTdMT Purification 

 

GSTdMT purification procedure was optimized with respect to the parameters 

listed below. During these studies protein was verified by western blotting, protein 

concentration was monitored by absorbance measurements at 280 nm, its integrity and 

homogeneity was monitored by SDS- and native-PAGE analysis, polydispersity of 

solutions were controlled by DLS, its metal content was determined by ICP-OES. 

During the optimization procedure the effect of new conditions were also monitored on 

GST samples to understand if the effects were due to GST or due to presence of dMT in 

the fusion protein. 

 

In the beginning of this study phosphate-buffered saline (PBS) buffer system 

with 0.2 mM CdCl2 was used in the purification procedure. PBS is a solution containing 

sodium chloride and sodium phosphate and potassium phosphate are used for 

maintaining a constant pH. 

 

 In the general scheme of the purification procedure (Figure 4.3), the GSTdMT 

was first fractionated by affinity chromatography. The elution profile from GSTrap FF 

column displayed two main peaks AI and AII (Figure 4.4). Fractions from AI and AII 

were pooled and were applied to HiLoad® 26/60 Superdex 75 column separately for 

further separation of GSTdMT from contaminants. As a result, for both pools, one main 

peak (GI) eluted at about 115 ml corresponding to molecular weight of 188 kDa which 

was about 5 times higher than expected for GSTdMT (Figure 4.5 and Figure 4.6).  

 

 

 

 

 

 

 

 

 

 

 



 42 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3:  Experimental strategy of the purification of GSTdMT 
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Figure 4.4: Elution profile of the GSTdMT from GST affinity chromatography 

using the PBS buffer system with 0.2 mM CdCl2. 
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Figure 4.5: Size exclusion chromatography elution profile of AI using the PBS 

buffer system with 0.2 mM CdCl2. 
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Figure 4.6: Size exclusion chromatography elution profile of AII using the PBS 

buffer system with 0.2 mM CdCl2. 

 

 

Figure 4.7: SDS-PAGE analysis of GSTdMT purification using the PBS buffer 

system with 0.2 mM CdCl2. Lane 1, protein molecular weight marker; 2, eluate from 

GST affinity column before dialysis of peak AI; 3, eluate from GST affinity column 

after dialysis of peak AI; 4-9, eluted proteins of peak AI from size exclusion. Lane 6 is 

the top peak fraction. 

 

Analysis of pools from affinity purification and fractions from the size exclusion 

column by 12% SDS-PAGE showed the expected major band at 34 kDa corresponding 

to GSTdMT (Figure 4.7). When the same material was analyzed by 10% Native-PAGE, 

however, more than one band was observed indicating the presence of aggregated 
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species (Figure 4.8). Presence of large molecular weight species was also demonstrated 

by DLS measurements where the intensity distribution of scattered light gives a major 

peak around 1000 nm indicating the dominance of aggregated species (Figure 4.9).  

 

 

 
Figure 4.8: Native-PAGE analysis of fractions from GSTdMT purification 

using the PBS buffer system with 0.2 mM CdCl2. Lane 1, eluate from GST affinity 

column before dialysis of peak AI; 2, eluate from GST affinity column after dialysis of 

peak AI; 3-8, eluted proteins of peak AI from size exclusion. Lane 5 is the top peak 

fraction. 
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Figure 4.9: Intensity distribution of scattered light from top peak fraction of 

GSTdMT fusion protein purified using the PBS buffer system. 

 

The effect of PBS buffer on the aggregation of the protein during purification 

was investigated first on the fusion partner GST alone. Elution profile from the GST 

affinity column displayed the same two peaks AI and AII (Figure 4.10) and native-
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PAGE analysis showed again the aggregated species. However, it was also observed 

that AI and AII had different type of aggregates when analyzed by native-PAGE (Figure 

4.11).  
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Figure 4.10: Elution profile of the GST from GST affinity column with the PBS 

buffer system. 

 

 

Figure 4.11: Native-PAGE analysis of GST purified from GST affinity column 

using the PBS buffer system. Lane 1, AI before dialysis; 2, AII before dialysis; 3, AI 

after dialysis; 4, AII after dialysis. 

 

CdCl2 was included in lysis buffer for preventing preteolytic degradation of 

GSTdMT, but it was also observed that CdCl2 readily precipitated with PBS. In an 

attempt to solve this problem 0.1 mM CdCl2 was tried for purification of GSTdMT. 

This again resulted in an elution profile with two peaks from the GST affinity column. 
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When AI and AII were further analyzed on the size exclusion column similar to 

previous results the main peak (GI) came at about 115 ml (Figure 4.12 and Figure 4.13). 

However, an additional, small peak (GII) was observed at about 137 ml corresponding 

to 79 kDa in the elution profile of AII (Figure 4.13). When the eluted proteins from GI 

and GII were analyzed by native-PAGE, contrary to main peak fractions no aggregated 

species was observed in the small peak fractions (Figure 4.15). SDS-PAGE analysis 

gave the same result as before (Figure 4.14). 
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Figure 4.12: Size exclusion chromatography elution profile AI using the PBS 

buffer system with 0.1 mM CdCl2.  
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Figure 4.13: Size exclusion chromatography elution profile of AII using the 

PBS buffer system with 0.1 mM CdCl2.  
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Figure 4.14: SDS-PAGE analysis of purified GSTdMT using the PBS buffer 

system with 0.1 mM CdCl2. Lane 1, protein molecular weight marker; 2, AII before 

dialysis; 3, AII after dialysis; 4-8, fractions from GI; 9, fraction from GII.  

 

 

 

Figure 4.15: Native-PAGE analysis of purified GSTdMT using the PBS buffer 

system with 0.1 mM CdCl2. Lane 1, Pool AII before dialysis; 2, Pool AII after dialysis; 

3-4, fractions from pool GI size exclusion of AII; 5, fraction from GII.  

 

The affect of using DTT (C4H10O2S2) as a reducing agent in GSTdMT 

purification buffers was investigated. 1 mM DTT was included in PBS buffer with 0.1 

mM CdCl2. Although the GST elution profile remained the same an increase in the 

amount of protein eluting in GII, corresponding to nonaggregated species, was observed 

(Figure 4.16, Figure 4.17). 
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Figure 4.16: Size exclusion chromatography elution profile of AII using PBS as 

buffer system with 0.1 mM CdCl2 and 1mM DTT.  

 

 

Figure 4.17: Native-PAGE analysis of purified GSTdMT using the PBS buffer 

system with 0.1 mM CdCl2 and 1mM DTT. Lane 1-4, fractions from peak GI of AII; 5-

9, fractions from GII. 

 

Inclusion of 1 mM DTT as reducing agent improved the amount of GSTdMT 

dimer form but it did not solve fully the problem of aggregation. During purification 

procedures CdCl2 could readily precipitate with PBS buffer as CdS2. To avoid 

precipitation the buffer system was changed to Tris [(HOCH2)3CNH2] and 50 mM Tris-

HCl, 2.5 mM MgCl2 and 100 mM NaCl (Buffer A) was used during the purification 

procedure instead of the PBS buffer system. 
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The combined effect of changing the buffer to Tris and having DTT on protein 

aggregation was first examined during purification of GST. Only one peak was obtained 

in the elution profile of GST from GST affinity column under these conditions (Figure 

4.18). Peak fractions were pooled and were applied to Hiload® 26/60 Superdex 75 size 

exclusion column for further separation. The elution profile displayed one main peak at 

about 157 ml (Figure 4.19). This elution volume corresponded to a molecular weight of 

50 kDa and represented the dimeric GST species.  

 

Elution volume (ml)

0 2 4 6 8 10 12 14 16

A
bs
or
ba

nc
e,
 2
80

nm
 (m

A
U
)

-200

0

200

400

600

800

 

Figure 4.18: Elution profile of the GST from GST affinity column using Buffer 

A with 1mM DTT 

 

Analysis of fractions from GST affinity column by SDS-PAGE showed a major 

band at about 25 kDa as expected (Figure 4.20). Native-PAGE analysis showed GST 

protein could be purified without aggregation (Figure 4.21). 
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Figure 4.19: Size exclusion chromatography elution profile of GST affinity 

column using Buffer A with 1mM DTT. 

 

 

Figure 4.20: SDS-PAGE analysis of GST purified using Buffer A with 1mM 

DTT. Lane 1, protein molecular weight marker; 2, pool AI before dialysis; 3, pool AI 

after dialysis; 4-8, Pool GII fractions. 

 

 

 

Figure 4.21: Native-PAGE analysis of GST purified using Buffer A with 1mM 

DTT. Lane 1-5, fractions from pool GII. 
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In order to eliminate the effect of excess Cd on protein aggregation GSTdMT 

purification was carried out without CdCl2 using the Buffer A with 1mM DTT. As a 

result the same GST affinity elution profile with only one main peak was observed 

(Figure 4.22). The elution profile from size exclusion column, on the other hand, 

displayed changes; the main peak was eluted at 138 ml corresponding to about 79 kDa 

which is the expected size of the dimer of GSTdMT (Figure 4.23). 
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Figure 4.22: Elution profile of the GSTdMT from GST affinity column using 

Buffer A with 1mM DTT without CdCl2.  
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Figure 4.23: Size exclusion chromatography elution profile of pool AI from 

GST affinity column when using Buffer A with 1mM DTT without CdCl2.  
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However, the effect of lack of Cd was observed in SDS-PAGE analysis of 

GSTdMT and proteolytic degradation was observed in fractions eluted from size 

exclusion column (Figure 4.24). 

 

 

 

Figure 4.24: SDS-PAGE analysis of purified GSTdMT using Buffer A with 

1mM DTT without CdCl2. Lane 1, protein molecular weight marker; 2-5, fractions from 

GII. Lane 3 is the top peak fraction. 

 

The usage DTT of as a reducing agent for the purification of GSTdMT had 

showed that DTT could prevent aggregate formation. However, the possibility of CdS2 

precipitation could not be avoided. A reducing agent lacking S groups called TCEP 

(Tris (2-carboxyethyl) phosphine hydrochloride, C9H15O6P.HCl) was also tried.  

 

 Purification of GSTdMT using Buffer A with 0.1 mM CdCl2 and 0.1 mM TCEP 

was performed with the same conditions. As a result, again, only one peak was observed 

from the GST elution and the pooled fractions were applied to size exclusion column 

for further separation. As can be seen from the elution profile one main peak was 

observed at 115 ml (Figure 4.25). Native-PAGE analysis showed slightly aggregated 

fractions (Figure 4.26). 
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Figure 4.25: Size exclusion chromatography elution profile of GST affinity 

column using Buffer A with 0.1mM CdCl2 and 0.1mM TCEP.  

 

 

 

Figure 4.26: Native-PAGE analysis of purified GSTdMT using Buffer A with 

0.1mM CdCl2 and 0.1mM TCEP. Lane 1, Pool AI before dialysis; 2, Pool AI after 

dialysis; 3-5, fractions of GI. Lane 4 is the top fraction. 

 

Results showed that TCEP partly prevented aggregation of purified GSTdMT, 

and the dimer form was not observed in the elution profile of the size exclusion column. 

In conclusion, either TCEP was not a good reducing agent for preventing aggregate 

formation or the concentration used was not sufficient. 

 

The possibility of CdS2 precipitation in the presence of DTT could be eliminated 

with the limited usage of CdCl2. Therefore, the GSTdMT purification was performed 
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with Buffer A containing 1 mM DTT and 1 mM CdCl2 which was added to the buffer 

only during lysis. This resulted in the same elution profiles for affinity and size 

exclusion chromatography as before (Figure 4.27). This limited usage was sufficient to 

protect against proteolytic cleavage of GSTdMT as observed by SDS-PAGE analysis 

(Figure 4.28). Native-PAGE analysis showed that the purified GSTdMT fractions from 

GII at about 140 ml were obtained without aggregated species whereas GI contained 

aggregated species (Figure 4.29). 
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Figure 4.27: Size exclusion chromatography elution profile of Pool AI using 

Buffer A with 1 mM DTT and 0.1mM CdCl2 only in lysis.  

 

 

 

Figure 4.28: SDS-PAGE analysis of purified GSTdMT using Buffer A with 1 

mM DTT and 0.1mM CdCl2 only in lysis. Lane 1, protein molecular weight marker; 2, 

cell lysate; 3, flowthrough; 4, wash; 5, AI before dialysis; 6, AI after dialysis; 7-11, 

fractions from GII. Lane 10 is the top fraction. 
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Figure 4.29: Native-PAGE analysis of purified GSTdMT using Buffer A with 1 

mM DTT and 0.1mM CdCl2 only in lysis. Lane 1-7 fractions from GII; 8-10, fractions 

from GI. Lane 4 is the top fraction of peak GII. 

 

To further confirm that the isolated product was GSTdMT western blot analysis 

was carried out. Presence of GST was confirmed by using a GST-HRP conjugate. After 

electrophoresis of 0.2 mg/ml GSTdMT fusion protein on 12% SDS gel, the protein 

samples were incubated with 1:10000 diluted anti-GST HRP conjugate. The western 

blot result showed that there was no proteolytic cleavage and that the isolated GSTdMT 

was intact (Figure 4.30). 

 

  
Figure 4.30: Western blot analysis of GSTdMT using Buffer A with 1 mM DTT 

and 0.1mM CdCl2 only in lysis. Lane1-4, fractions of GII. 

 

Having solved the precipitation problem with Buffer A and reduced 

concentration of CdCl2, conditions for protein storage were investigated. It was 

observed that protein precipitation occurred due to the change in pH of Tris buffer at 

low temperatures. DLS measurement of fractions from peak GII stored at -80oC showed 

that the intensity distribution of scattered light had a maximum around 1000 nm 

indicating the dominance of aggregated species (Figure 4.31). For comparison, a 

fraction from GI stored at -80oC was also measured by DLS and showed more 

aggregated species (Figure 4.32). 
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Figure 4.31:  Intensity distribution of scattered light from a fraction of GSTdMT 

from peak GII after freezing and thawing. Buffer A system with 1 mM DTT and 0.1mM 

CdCl2 only in lysis buffer. 
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Figure 4.32: Intensity distribution of scattered light measurement from a 

fraction of GSTdMT from peak GI after freezing and thawing. Buffer A with 1 mM 

DTT and 0.1mM CdCl2 only in lysis buffer. 

 
The purification procedure was further improved using HEPES 4-(2-

hydroxyethyl)-1-piperazineethanesulfonicacid (C8H18N2O4S) as the buffer. The final 

purification buffer at pH 8.0 included 20mM HEPES, 100mM NaCl and 2.5 mM MgCl2 

(Buffer B) to obtain pure intact GSTdMT.  

 

Buffer B was first tried with the purification of GST and resulted in the same 

observations as that for the Buffer A. Only one main peak (AI) was eluted from GST 

affinity column (Figure 4.33) and a single peak at about 157 ml corresponding to the 

dimer form of GST protein was obtained from the size exclusion column (Figure 4.34). 
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SDS-PAGE analysis showed a major band at about 25 kDa (Figure 4.35) and no 

aggregation products were observed by native-PAGE analysis (Figure 4.36). 
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Figure 4.33: Elution profile of the GST from GST affinity chromatography 

using the Buffer B with 1 mM DTT.  
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Figure 4.34: Size exclusion chromatography elution profile of GST from pool 

AI using Buffer B with 1 mM DTT.  
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Figure 4.35: SDS-PAGE analysis of GST purification using Buffer B with 1 

mM DTT.  Lane 1, protein molecular weight marker; 2, cell lysate; 3, flowthrough; 4, 

wash; 5, Peak AI before dialysis; 6, Peak AI after dialysis; 7-11, fractions from peak 

GII. Lane 10 is the top fraction. 

 

 

 

Figure 4.36: Native-PAGE analysis of GST purified using Buffer B with 1 mM 

DTT. Lane 1, Pool AI before dialysis; 2, Pool AI after dialysis; 3-7, fractions from peak 

GII. Lane 6 is the top fraction. 

 

Purification of GSTdMT fusion protein with Buffer B also gave the same results 

obtained with Buffer B. Again only one peak was obtained in the elution profile from 

GST affinity column (Figure 4.37). Two peaks were obtained from the size exclusion 

column appearing at 116 and 140 ml. The main GII peak at 140 ml gave the dimer form 

of purified GSTdMT (Figure 4.38) whereas peak GI contained highly aggregated forms. 

 

The SDS-PAGE analysis of the fractions showed the 34 kDa GSTdMT as the 

major component (Figure 4.39). In the analysis of native-PAGE only one band was 

observed. This indicated that there were no aggregated species (Figure 4.40). 
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DLS measurement on a fresh fraction from GII showed a single peak in the 

intensity distribution centered around on 10 nm indicating the dominance of the dimer 

form of GSTdMT (Figure 4.41). 
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Figure 4.37: Elution profile of the GSTdMT from GST affinity chromatography 

using Buffer B with 1 mM DTT and 0.1 mM CdCl2 only in lysis buffer.  
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Figure 4.38: Size exclusion column elution profile of Pool AI using Buffer B 

with 1 mM DTT and 0.1mM CdCl2 only in lysis buffer.  
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Figure 4.39: SDS-PAGE analysis of fractions from GSTdMT purification using 

Buffer B with 1 mM DTT and 0.1mM CdCl2 only in lysis buffer. Lane 1, protein 

molecular weight marker; 2, cell lysate; 3, flowthrough; 4, wash; 5-12, fractions from 

pool GII. Lane 11 is the top fraction. 

 

 

Figure 4.40: Native-PAGE analysis of purified GSTdMT using Buffer B with 1 

mM DTT and 0.1mM CdCl2 only in lysis buffer. Lane 1-7, fractions from pool GII. 

Lane 6 is the top fraction. 
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Figure 4.41: Intensity distribution of scattered light from GSTdMT purified 

using Buffer B with 1 mM DTT and 0.1mM CdCl2 only in lysis buffer. 
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After the establishment of the purification procedure the yield of a GSTdMT 

prep was compared with that of GST. Yield of a typical GSTdMT purification from a 

0.75 liter E. coli culture under optimized conditions was given together with that of 

GST prep (Table 4.2). Concentrations were calculated using A280
1% = 1.232 for 

GSTdMT (Gill and von Hipple 1989). It was found that although the GSTdMT yield 

was less than that of GST the difference was not very significant. 

 

Table 4.2: Comparison of yields of GSTdMT and GST purifications. SE; size 

exclusion column. Total protein content was estimated by taking into account the 

volume of fractions. *Concentration of the top fractions ** Estimated total protein from 

the sum of the protein content of individual fractions. 

 GSTdMT GST 

 C (mg/ml) Total Protein (mg) C (mg/ml) Total Protein (mg) 

Lysate 50 2000 50 2000 

Pool A 10 75 12 72 

Load SE 5 35 7.7 50 

Pool GI 0.5** 4*** ---- ---- 

Pool G2 2.5** 25*** **3 ***30 

 

 

4.1.2.1 Determination of the Storage Conditions for GSTdMT 

 

The effect of using Buffer B was first tested with GST. In order to find the best 

storage temperature, fractions from pool GII were grouped into three sets; group I: 

fractions to be stored at 4oC, group II: fractions to be stored at -20oC and group III:  

fractions flash frozen in liquid N2 and stored at -80oC. These fractions were analyzed by 

SDS- and native-PAGE and monitored by DLS three and six days after the purification. 

The SDS- and native-PAGE analysis gave the same results for the three and six days 

stored fractions (Figure 4.42 and Figure 4.43). Particularly the Native-PAGE analysis 

did not show any aggregated species for the three different conditions.  

 
However, according to the DLS measurements the intensity distribution of 

scattered light from fractions stored at different temperatures gave different results. 

Although some aggregated species could be detected, a single peak centered around 10 
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nm indicated that mainly dimeric form was present in the fractions stored for three days 

at -20oC and 4oC  (Figure 4.44 and Figure 4.45). For the six days storage in addition to 

the dimer larger oligomers were observed especially for the fraction stored at -20oC 

(Figure 4.46 and Figure 4.47). For the fraction stored for three and six days at -80oC one 

main peak centered around 1000 nm indicated the formation of aggregated species 

(Figure 4.48 and Figure 4.49). These results indicated clearly that the best storage 

temperature for the GST was 4oC. 

 
 

                                                     
                       (L)      (R) 
 

Figure 4.42: Electrophoretic analysis of GST fractions purified in Buffer B and 

stored for three days at different temperatures. SDS (L) - and Native (R) -PAGE 

analysis. Lane 1, protein molecular weight marker; 2, fraction stored at -80oC; 3; 

fraction stored at -20oC, 4; fraction stored at 4oC. 

 

                                                  
(L) (R) 

 
Figure 4.43: Electrophoretic analysis of GST fractions purified in Buffer B and 

stored for six days at different temperatures. SDS (L) - and Native (R) -PAGE analysis. 

Lane 1, protein molecular weight marker; 2, fraction stored at -80oC; 3; fraction stored 

at -20oC, 4; fraction stored at 4oC. 
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Figure 4.44: Dynamic light scattering measurement of the GST (lane 2 in 

Native-PAGE analysis) stored for three days at -20oC. 
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Figure 4.45: Dynamic light scattering measurement of the GST (lane 3 in 

Native-PAGE analysis) stored for three days at 4oC. 
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Figure 4.46: Dynamic light scattering measurement of the GST (lane 2 in 

Native-PAGE analysis) stored for six days at-20oC. 
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Figure 4.47: Dynamic light scattering measurement of the GST (lane 3 in 

Native-PAGE analysis) stored for six days at 4oC. 
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Figure 4.48: Dynamic light scattering measurement of the GST (lane 1 in 

Native-PAGE analysis) stored for three days at -80oC. 
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Figure 4.49: Dynamic light scattering measurement of the GST (lane 1 in 

Native-PAGE analysis) stored for six days at-80oC. 
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Moving on from GST to GSTdMT the storage effect of Buffer B was also tested 

under the same experimental conditions and again the fractions were grouped into three 

sets; I stored at 4oC, II stored at -20oC and III flash freezen and stored at -80oC. 

 

 Similar results were obtained; native-PAGE analysis showed one band (Figure 

4.50) for all groups. Aggregated forms were detected by DLS measurements in the 

fraction stored for six days at -80oC (Figure 4.51). For the fraction stored for six days at 

4oC mainly dimeric form, centered around 10 nm, was observed (Figure 4.53). 

Aggregated forms were detected together with the dimeric species in the fraction stored 

for six days at -20oC (Figure 4.52).  

 

These results showed that, similar to GST, the best storage temperature for the 

GSTdMT was 4oC. 

 
 

Figure 4.50: Native-PAGE analysis of purified GSTdMT fractions stored for six 

days in different conditions using Buffer B with 1 mM DTT and 0.1mM CdCl2 only in 

lysis. Lane 1, fraction stored at -80oC; 2; fraction stored at -20oC, 3; fraction stored at 

4oC. 
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Figure 4.51: Dynamic light scattering measurement of the GSTdMT (lane 1 in 

Native-PAGE analysis) stored for six days at -80oC. 

 1        2       3         
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Figure 4.52: Dynamic light scattering measurement of the GSTdMT (lane 2 in 

Native-PAGE analysis) stored for six days at -20oC. 
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Figure 4.53: Dynamic light scattering measurement of the GSTdMT (lane 3 in 

Native-PAGE analysis) stored for six days at 4oC. 

 

 

4.1.2.2 Reversibility of Oligomerization of GSTdMT  

 
 

Nature of GSTdMT oligomers were investigated by DLS measurements on 

pooled and concentrated GSTdMT. Table 4.3 shows the UV absorption measurements 

on concentrated fractions. Surprisingly DLS measurements on samples with a 

concentration of 13 mg/ml did not reveal aggregated species whereas when analyzed by 

native-PAGE the same samples appeared highly aggregated (Figure 4.54 and Figure 

4.55). After six days the concentrated sample was measured by DLS again and the 

aggregation was detected (Figure 4.56). In order to see if the aggregation was reversible 
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the concentrated sample was 1/2 and ¼  diluted and analyzed by DLS. Results show that 

oligomerization was mostly abolished (Figure 4.57 and Figure 4.58). These results 

indicated that aggregate formation at high concentration was reversible. 

 

Table 4.3: Absorption values for pooled, concentrated and diluted GSTdMT.  

 A280 mg/ml 

Pooled GSTdMT 2.4 1.96 

Concentrated GSTdMT 16 13 

½ diluted GSTdMT 7.3 5.92 

¼ diluted GSTdMT 3.5 2.84 
 
 

 

 

Figure 4.54: Native-PAGE analysis of concentrated GSTdMT fractions. Lane 1, 

pooled GSTdMT; 2-4, concentrated GSTdMT.  
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 Figure 4.55: Dynamic light scattering measurement of concentrated GSTdMT. 
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 Figure 4.56: Dynamic light scattering measurement of concentrated GSTdMT 

stored for 6 days at 4oC. 
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Figure 4.57: Dynamic light scattering measurement of ½ diluted GSTdMT. 
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Figure 4.58: Dynamic light scattering measurement of ¼ diluted GSTdMT. 
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4.1.3 Determination of Cd Binding Ratio for GSTdMT 

  

Binding ratio of Cd to dMT was investigated initially using the GSTdMT. Here 

it was assumed that since GST did not bind metals, any metal detected would be bound 

by dMT in the fusion protein. For this purpose, concentration of GSTdMT was 

calculated from absorbance at 280 nm and Cd was measured using ICP-OES. According 

to results of determinations from different preps the average Cd/protein ratio was found 

to be 3.4 ± 0.5 (Table 4.4). 

 

Table 4.4: Cd/GSTdMT binding ratio for GSTdMT peak fractions from pool GII.  

 Cd (µM) GSTdMT (µM) Cd/protein 

Sample # 1 12.44 1.36 3.40 

Sample # 2 15.4 1.9 3.05 

Sample # 3 14.82 1.6 3.40 

Sample # 4 22.2 2.8 2.97 

Sample # 5 22.39 1.96 4.30 

Average ± Stdev   3.4 ± 0.5 

 
 

4.1.4 UV-Vis Spectrophotometric Characterization of GSTdMT 

 

Unique features can be observed in the UV-Vis spectra of MTs due to the 

characteristic absorption bands originating from the bound metals. The position and 

intensity of these metal charge transfer bands are indicative for the bound metal ions. 

UV-vis spectroscopy was used for the initial characterization of GSTdMT.  

 

The absorption spectrum of GSTdMT between 220 and 290 nm showed a 

shoulder at 280 nm due the aromatic residues in GST and the characteristic metal 

charge transfer band between 240 and 260 nm due to Cd-thiol interactions. The ratio of 

A250 to A280 can be used as an indicator of bound Cd (Figure 4.59). For fully metallated 

GSTdMT this ratio remained between 1.3 and 1.5 at different protein concentrations 

whereas for GST the ration was dependent on protein concentration (Table 4.5 and 

Figure 4.60). 
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Figure 4.59: Absorbance spectrum of GSTdMT compared with that of GST at 

similar protein concentration. 
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Figure 4.60: Concentration dependence of 250 nm band of GSTdMT at the 

concentrations of 4.62 mg/ml and 2.35 mg/ml. 

 

Table 4.5: UV-vis absorbance values, concentrations and Cd2+/GSTdMT 

determined by ICP-OES. 

 
 

mg/ml A250 A280 A250/280 Cd+2/GSTdMT Average±Stdev 

2.43 4.65 3.00 1.55 4.30 
2.21 4.13 2.73 1.51 4.30 
1.81 3.00 2.23 1.34 3.40 
1.62 2.90 2.00 1.45 3.05 
1.40 2.60 1.73 1.50 2.97 

 
 
GSTdMT 

1.16 2.17 1.43 1.52 2.97 

 
 
 
 
 

3.5 ± 0.6 
2.40 3.31 3.56 0.93 - 
2.19 1.78 3.25 0.55 - 
1.82 1.14 2.70 0.42 - 
1.62 1.05 2.40 0.44 - 
1.39 1.15 2.06 0.27 - 

 
 
GST 

1.10 1.02 1.63 0.63 - 
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Since the apo-dMT is expected to have negligible absorbance at 250 nm the 

difference of A250 values for GSTdMT and GST can be used to estimate the extinction 

coefficient (ε) at 250nm per Cd2+. According to Beer-Lambert law 

 

    ε250/Cd2+ =   A250 (GSTdMT) - A250 (GST) 
          C x d x number of Cd2+ 

  
Where C is the protein concentration and the d is the path length for incident 

light. Using the values for A250 and concentrations given in Table 4.4 ε250/Cd2+ was 

estimated to be 9000 M-1cm-1
. 

 

4.1.5 Secondary Structure Analysis of GSTdMT 

 

CD spectroscopy is a form of light absorption spectroscopy that measures the 

difference in absorbance of right- and left-circularly polarized light by a substance. It 

has been shown that CD spectra between 260 and approximately 180 nm can be 

analyzed for the different secondary structural types: alpha helix, parallel and 

antiparallel beta sheet, turn, and other. 

 

Structural features of GSTdMT were investigated by recording its CD spectra in 

the range 200 to 290 nm and comparing with that from GST. The GST spectrum is 

typical of an α/β protein with a dominating α signal. Both spectra show the strong 

negative bands around 208 and 222 nm and the ratio of ellipticities at these wavelengths 

confirm the dominating α-helical secondary structure (Table 4.6). The GSTdMT 

spectrum has the 208 nm band is shifted to slightly lower wavelength and this band is 

sharper. The spectrum above 210 nm is less negative for GSTdMT and the 222 nm band 

is less pronounced. Both changes point towards a decrease in the α-helical content in the 

overall structure which could be achieved by incorporating more β structures or by 

having a less ordered structure superimposed on the main GST structure (Figure 4.61).  
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Figure 4.61: Comparison of GST and GSTdMT CD spectra. GST (blue solid 

line) GSTdMT (pink solid line). 

 

 

Table 4.6: Comparison of the ellipticity values of GST and GSTdMT. θ 
represents the ellipticity. 

 θ222 θ208 θ222/208 

GST -24.69 -24.18 1.02 

GSTdMT -30.19 -35.07 0.86 

  

 

 

4.2 Purification of dMT  

 

4.2.1 Calibration of Column    

   

HiLoad® 16/60 Superdex 75 column (GE-Biosciences) was calibrated using 20 

mg of Albumin, β-Lactoglobulin and Vitamin B12 in Buffer A with the flow rate of 

1ml/min (Table 4.7). The calibration curve was obtained from the elution profile and 

calculated again according to the formula of Kav=(Ve-Vo)/(Vc-Vo) and used for 

molecular weight determination of dMT (Figure 4.62 and Figure 4.63).  
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Table 4.7: Protein samples used for column calibration and their molecular 

weights and elution volumes. 

Protein loaded (mg) MW (Da) Ve (ml) 

Albumin 20 67000 54.86 ml 

β-Lactoglobulin 20 36000 (trimer) 61.45 ml 

Vitamin B12 20 1350 107.42 ml   
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Figure 4.62: Size exclusion chromatography elution profile of calibration 

proteins. 
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Figure 4.63: Calibration curve for HiLoad® 16/60 Superdex 75 size exclusion 

column, the calculated equation was used for molecular weight determination of dMT. 
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4.2.2 Size Exclusion Chromatography of dMT 

 

The purification procedure of dMT was basically the same as that for GSTdMT 

up to the affinity purification step. This step was carried out in batch mode in the dMT 

procedure. Lysate was incubated with Gluthatione-Sepharose-4B beads for 4 hours. 

After washing the unbound protein cleavage was carried out overnight at 4oC. The 

eluate from glutathione beads was concentrated and applied to HiLoad® 16/60 

Superdex 75 column equilibrated and run with Buffer A for further separation of dMT 

from thrombin and residual GST in the cleavage solution. As can be seen from the 

elution profile proteins were separated in three peaks, two small ones coming at 42 and 

60 ml and a major peak at 74 ml (Figure 4.64). The elution position of this last peak 

corresponded to a molecular weight of about 17 kDa which could represent dMT in 

dimeric or trimeric form.  
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Figure 4.64: Size exclusion chromatography elution profile of dMT. 

 

SDS-PAGE analysis of the fractions (Figure 4.65) showed that the first peak 

consisted mainly of GST, the second peak had oligomeric forms of dMT and the major 

peak displayed three bands. The band at about 25 kDa is GST that was carried over in 

trace amount in the dMT fractions and the lowest band represented the smallest 

oligomer of dMT that could be purified. The band in between the 25 kDa and the lowest 



 76 

band were likely to be an insufficiently reduced form of dMT (see Chapter 5 for 

discussion). The fractions were also analyzed by Native-PAGE and after silver staining 

homogeneous dMT species were observed in all fractions (Figure 4.66).  

 

 

 

Figure 4.65: Silver stained 16% Tris-tricine analysis of purified dMT. Lane 1, 

eluate from the glutathione beads before concentration; 2, eluate after concentration; 3, 

Protein Ladder; 4, eluate from first peak from size exclusion column; 5-11, dMT 

fractions of the main peak from size exclusion column; 12, GSTdMT loaded as marker. 

 

 

 

Figure 4.66: Silver stained 10% Native-PAGE analysis of purified dMT. Lane 

1, eluate from the glutathione beads before concentration; 2, eluate after concentration; 

3, eluate from first peak from size exclusion column; 4-10, dMT fractions of the main 

peak from size exclusion column. 

 

Analysis of dMT fraction stored at 4oC by DLS showed that although major 

portion of protein in solution was in the smallest oligomeric form. The presence of 

aggregated species could be detected in plots of the intensity distribution of scattered 

light (Figure 4.67). 

  1       2             3      4      5      6       7      8      9      10      11   12  

  1         2                   3       4        5        6       7       8       9     10   
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Figure 4.67: Dynamic light scattering measurements of dMT stored at 4oC. 

 

 

DLS measurement of dMT fraction stored at -80oC showed the strong tendency 

of the protein to form aggregates when frozen (Figure 4.68) and confirmed that 

observations made on GSTdMT could be extrapolated to dMT. It appears that the best 

storage temperature for both proteins is 4oC. 
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Figure 4.68: Dynamic light scattering measurement of dMT stored at 80oC. 

 

Further characterization of purified dMT was carried out by measurement of 

UV-vis absorption spectra and CD spectra. The characteristic metal charge transfer 

band between 240 and 260 nm due to Cd-thiol interactions verified the presence of the 

bound Cd to dMT (Figure 4.69). The CD spectra (Figure 4.70) lacked any of the α-

helical feature observed with GSTdMT (Figure 4.61) and the ratio of ellipticity at 

222/208 was found to be 0.62 (Table 4.8). The fact that this value was <<1 indicated the 

lack of a major secondary structure. 
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 Figure 4.69: Absorption spectrum of purified dMT.  
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Figure 4.70: CD spectrum of purified dMT. 

 

 

 Table 4.8: Ellipticity values of purified dMT at 222 and 208 nm. θ represents 
the ellipticity. 

 θ222 θ208 θ222/208 

dMT -7.97 -12.87 0.62 
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4.3 Structural Studies 

 

4.3.1 Structural Analysis of GSTdMT Using SAXS 

 

One of the major goals in the characterization of unstudied proteins is always the 

determination of the three-dimensional structure. For small proteins, this can be 

achieved in principle using single crystal X-ray crystallography and/or NMR 

spectroscopy. dMT and GSTdMT are proteins that do not readily crystallize and SAXS 

was used for establishing the shape models of GSTdMT. 

 

SAXS data were collected from GSTdMT and GST solutions, and bovine serum 

albumin (BSA) was measured as a molecular mass standard. Scattering curves, after 

basic data reduction using PRIMUS software, for GSTdMT in Figure 4.71 and for BSA 

and GST in Figure 4.72. Differences in the shapes of the three proteins can be readily 

seen from the differences in the shapes of the curves. BSA and GST have more globular 

shapes and gave rise to scattering patterns with higher curvature whereas GSTdMT 

gave rise to an almost linear scattering curve indicating its asymmetric shape.  

 

 

 

Figure 4.71: SAXS curve for GSTdMT. log(I) is the natural log of scattered 

intensity and s = 4π sin(θ)/λ is the momentum transfer. GSTdMT was measured in 

Buffer B at 2.34 mg/ml. 

s (nm-1) 

log(I) 
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Figure 4.72: SAXS curves for BSA (A) and GST (B). BSA was measured at 

4.17 mg/ml in HEPES; GST was measured in Buffer B at 2.15 mg/ml. 

 

GSTdMT was measured at different concentrations to study the effect of 

aggregation on the scattering pattern and examples at 2.4 mg/ml and 4.6 mg/ml are 

shown in Figure 4.73. The shape of curve (2) is indicative of severe protein aggregation 

at this high protein concentration. 
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Figure 4.73: SAXS curves for GSTdMT samples at two different 

concentrations; (1) at 2.4 mg/ml, (2) at 4.6 mg/ml in Buffer B. 

 

Provided that protein solutions are monodisperse, homogeneous and dilute the 

radii of gyration (Rg) of proteins can be calculated from the Guinier approximation 

(Guinier and Fournet, 1955) and the molecular mass can be estimated from I(0) relative 

to a standard protein with known molecular mass. Guinier curves for GSTdMT at 2.4 

mg/ml and that for GST at 2.15 mg/ml in Buffer B, in the momentum transfer range 

0.3<sRg<1.6, are shown in Figure 4.74 (A) and (B) respectively. The Rg and the 

molecular masses for GSTdMT, GST and BSA were calculated from analysis of several 

measurements and the average values are given in Table 4.9. 

 

Table 4.9: Calculated molecular mass (MM) for GST and GSTdMT. MMexp is 

the molecular mass experimentally determined by taking BSA as reference and MMth is 

the molecular mass calculated from the primary sequence. 

 

 Rg (nm) I(0) MMexp(kDa) MMth(kDa) 

GSTdMT 3.64 ± 0.14    199.67±10.0 50.8 34,04 

GST 2.50 ± 0.07                155.92 ± 3.45 39.7 26.67 

BSA 3.0 ± 0,02 259.22 ± 8.99 66.0 66.46 

 

2.4 mg/ml 
4.6 mg/ml 
 

s (nm-1) 

log(I) 
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Figure 4.74: Guinier plots for GSTdMT (at 2.4 mg/ml) (A) and that for GST (at 

2.15 mg/ml) (B) in Buffer B. 

 

Any effect of aggregation on the scattering curves for GSTdMT was ruled out by 

checking the correlation between Rg and protein concentration as shown in Figure 4.75. 

Rg was found to be 3.64 ± 0.14 nm and was independent of concentration. As expected 

the value of Rg does not change with protein concentration. The Rg value for GST was 
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2.50 ± 0.07 which was smaller than that for GSTdMT again pointing to a significant 

difference in the shape of the two molecules. The average molecular mass was found to 

be 50.8 kDa for GSTdMT and 39.7 kDa for GST indicating the dimeric state of these 

proteins in solution. Experimental values for the molecular mass of GSTdMT and for 

GST were lower than those calculated. The difference in the observed and calculated 

values for the molecular masses will be discussed in Chapter 5.   
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Figure 4.75: Correlation between Rg and GSTdMT concentration. Rg was 

determined using AutoRg software (▲) in the range of 0.3 < sRg< 1.6. 

 

 

 Preliminary shape information from the SAXS curves was obtained using the 

indirect transform algorithm GNOM. The software calculates the distribution function 

(electron density, distance..) that would give rise to a particular scattering pattern using 

indirect transforms. The scattering pattern is recalculated from the distribution function 

and this back and forth process is repeated until the best fit to the experimental data is 

found (Svergun, 1992). Results of this analysis for the scattering patterns from GST and 

GSTdMT are shown in Figures 4.76 and 4.77 respectively. 
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Figure 4.76: Analysis of SAXS data for GST using GNOM algorithm. (A) The 

fit to the experimental data (B) the pair distribution function. In this calculation Dmax, 

maximum macromolecular dimension, was taken as 6.5 nm. 

 

 

 

 
A 

B 

P(r), 
relative 

R 

logJ 

s 



 86 

   

   
 

Figure 4.77: Analysis of SAXS data for GSTdMT using GNOM algorithm. (A) 

The fit to the experimental data (B) the pair distribution function. In this calculation 

Dmax was taken as 13.5 nm. 

 

The results shown in Figure 4.76 and 4.77 emphasize the shape difference 

between GST and GSTdMT. Dmax for GSTdMT was found to be 13.5 nm as compared 

to 6.5nm for GST. The deviation of the p(R) function from a Gaussian was indicative of 

the asymmetric, elongated shape of GSTdMT. 
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Modeling of the GSTdMT shape was carried out using DAMMIN and GASBOR 

algorithms. Both are ab initio shape modeling programs and both utilized output files 

that are produced by GNOM analysis. In DAMMIN the particle that has been 

investigated is represented by a collection of a large number of densly packaged beads 

inside a search volume (Svergun, 1999). In GASBOR, on the other hand, simulated 

annealing is used to find a chain-compatible spatial distribution of dummy residues 

which fits the experimental scattering pattern (Svergun et al., 2001). No symmetry 

conditions were imposed on the structure although it was known that the proteins are in 

dimeric form in solution.  

 

GASBOR calculations converged to the model shown in Figure 4.78 and an 

example of those calculated by DAMMIN is shown in Figure 4.79. In both models, as 

expected, the structure of the dimer was found to be highly asymmetric. There was an 

electron dense region at one end where the GST molecules were likely to be located and 

the two dMT molecules extended from this region.  

 

 

  
Figure 4.78: Shape model for GSTdMT developed using GASBOR (A). Its 

rotation by 900 (B). 
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Figure 4.79: Shape model for GSTdMT developed using DAMMIN (A). Its 

rotation by 900 (B). 

 

 

4.3.2 EXAFS Analysis on GSTdMT 

 

EXAFS is the oscillating part of the X-ray Absorption Spectrum (XAS) that 

extends to about 1000 eV above an absorption edge of a particular element of a sample. 

EXAFS spectra are extremely specific to the nature of the metal coordination site. The 

periodicity of each spectrum provides information about the distance between the 

scattering atom and its neighbors, and the edge profiles of each spectrum can be used to 

determine coordination numbers. X-ray absorption spectroscopy (XAS) allows for 

element specific characterization of metal sites in biological systems and yields 

information about the types and distances of coordinating ligands as well as the 

oxidation state of metal centers. For multi-nuclear, metal containing proteins, the metal-

metal distance can also be determined (Penner-Hahn 1999). 

  
The geometry of the metal binding site and the metal coordinating ligands in 

GSTdMT were investigated by X-ray absorption fine structure (XAFS) measurements. 

The energy range for measurements included both the X-ray Absorption Near Edge 

Structure (XANES) and the Extended X-ray Absorption Fine Structure (EXAFS) 

A B 
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regions. Features in the XANES region are sensitive to the geometric and electronic 

structure of the metal site and serve as indicators for coordination number and/or ligand 

sphere homogeneity. The fine structure, on the other hand, is sensitive to the type of 

ligand and their distances. Since metals in the GSTdMT fusion protein are coordinated 

only by the thiolate groups of the Cys residues in dMT it is expected that these results 

obtained on GSTdMT would be relevant for dMT.  

 

The smooth increase of intensity in the pre-edge region indicates homogeneity of 

the metal environment in GSTdMT (Figure 4.80). This is further supported by the 

Fourier transform of k3-weighted EXAFS spectrum (Figure 4.81). Results indicated that 

that there are 4 sulfurs in the first coordination shell of Cd2+ ions and the Cd-S distances 

were of 2.535 A. 
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Figure 4.80: The normalized K-edge X-ray absorption spectrum of Cd4-

GSTdMT. 
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Figure 4.81: Fourier transform spectra of GSTdMT. χ; EXAFS signal, k; 

photoelectron wavenumber, R; interatomic distance, FT; Fourier transform. 

 

4.4 Functional Studies 

 

4.4.1 cD�A Synthesis 

 

cDNA of mt-d gene was synthesized from isolated total RNA from Balcalı-85 

plant by Omniscript reverse transcription kit with primers Oligo 1 and Oligo 2 (Table 

4.10) with annealing temperature of 53.5oC. Agarose gel analysis of RT-PCR products 

of cDNA of mt-d showed bands as expected at a position between 200 and 300 bp 

(Figure 4.82). 

 

 

Figure 4.82: Agarose gel analysis of RT-PCR showing cDNA for d-mt. Lane 1, 

100bp DNA Ladder; 2-4; d-mt cDNA bands. 

500bp 

300bp 
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Table 4.10: Primers designed for mt gene identification on T. durum genomic DNA. 

Oligo 1 5’-ATGTCTTGCAACTGTGGA-3’ forward primer 

Oligo 2 5’-TTAACAGTTGCAGGGGTT-3’ reverse primer with stop codon 
 

 

4.4.2 Southern Blotting of mt-d gene 

 

To investigate the copy number of mt-d, genomic DNA of T. durum cv. Balcalı-

85 was digested with EcoRI, BamHI and a double digestion with EcoRI and BamHI, 

which do not cut the mt-d cDNA was also carried out. The digested genomic DNA 

samples were then hybridized with radioactively labeled mt-d cDNA. T. durum has a 

tetraploid genome (2n=28, AABB), and in order to find the localization of mt-d gene on 

T. durum genome different Triticum species; A. tauchii (DD), T. monococcum (AA), 

Bezostoya (AABBDD), T. dicoccoides (AABB) were digested with same restriction 

enzymes and hybridized with radioactively labeled mt-d cDNA. Digested samples were 

analyzed by 1% Agarose gel electrophoresis and a smear bands were observed (Figure 

4.83). Southern blot analysis resulted in a single band detected with both restriction 

enzymes for all Triticum species (Figure 4.84).  

 

 

 

Figure 4.83: Agarose gel analysis of Triticum species digested with EcoRI, 

BamHI and double digestion with EcoRI and BamHI, respectively. Lane 1-3, Balcalı-

85; 4-6, A. tauchii; 7-9, T. monococcum; 10-12, Bezostoya; 13-15, T. dicoccoides. 
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Figure 4.84: Southern blot analysis of Triticum species digested with EcoRI, 

BamHI and double digestion with EcoRI and BamHI, respectively. Lane 1-3, Balcalı-

85; 4-6, A. tauchii; 7-9, T. monococcum; 10-12, Bezostoya; 13-15, T. dicoccoides. 

 

The above restriction digestion experiment was repeated omitting the double 

digestion with EcoRI and BamHI. Agarose gel analysis of digested genomic DNA 

samples resulted in same smear bands (Figure 4.85) and Southern blot analysis again 

resulted in a single band for both restriction enzymes for all Triticum species (Figure 

4.86). These results suggest that mt-d gene exists at a single locus in the genome of all 

Triticum species.  

 

 

Figure 4.85: Agarose gel analysis of the Triticum species digested with EcoRI, 

BamHI, respectively. Lane 1-3, T. durum cv. Balcalı-85; 4-6, A. tauchii; 7-9, T. 

monococcum; 10-12, Bezostoya; 13-15, T. dicoccoides. 

 

 

Figure 4.86: Southern blot analysis of the Triticum species digested with EcoRI, 

BamHI, respectively. Lane 1-3, T. durum cv. Balcalı-85; 4-6, A. tauchii; 7-9, T. 

monococcum; 10-12, Bezostoya; 13-15, T. dicoccoides. 
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However these results did not give information about the localization of mt-d 

gene on the T. durum genome. 

 

4.4.3 Plant Growth and Cadmium Treatments of Balcalı-85 

 

1 week old seedlings of Balcalı-85 were exposed to 2, 5, 10 and 20 µM of Cd and 

the level of response depended on the degree of Cd application. A significant decrease 

was observed in both shoot and root growth (Figure 4.87). In addition continuous 

decrease was found in the dry weights of shoots and roots by increasing Cd application 

(Figure 4.88). With increasing Cd supply from 0 to 20 µM the shoot dry weight of 

Balcalı-85 was decreased by 28 % whereas the decrease in root dry weight was 60 %. 

 

 

 
 
Figure 4.87: Shoot and root growth of the durum wheat cultivar Balcalı-85 with 

increasing Cd application. After 7 days of growth without Cd application in nutrient 

solution, plants were treated for 7 days by increasing Cd concentrations. 

 

Increasing Cd concentration in the growth media resulted in higher amount of 

Cd uptake both in shoots and roots. The difference in Cd concentration between roots 

and shoots showed that Cd was accumulated in the roots in much higher amounts than 

in the shoots in Balcalı-85 plants (Figure 4.89 and Figure 4.90). 

           Control       2µM Cd       5µM Cd   10µM Cd     20µM Cd 
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Figure 4.88: Effect of increasing Cd application on shoot and root dry weight.  
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Figure 4.89: Effect of increasing Cd application on root Cd uptake. 
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Figure 4.90: Effect of increasing Cd application on shoot Cd uptake. 
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4.4.4 Investigation of D�A Binding of GSTdMT 

 

In order to investigate possible DNA binding activity of dMT, a whole genome 

PCR (WGPCR)-based screening method, based on Kinzler and Vogelstein (1989), was 

used with some modifications. In this method, recombinant GSTdMT is incubated with 

the pool of linker-ligated DNA fragments to allow binding. The small amount of bound 

DNA fragments can be amplified using PCR, and selection followed by amplification 

can be repeated to achieve the desired purity and quantity of bound DNA fragments 

which could be sequenced subsequently.  

 

 In the WGPCR method, the strategy involves converting total genomic DNA to 

a form which can be amplified by PCR. A diagram of the modified WGPCR strategy 

we have utilized is shown in Figure 4.91 and is described in detail in the Methods 

section. In the first step, total Balcalı-85 genomic DNA is digested with a 4-cutter TaqI 

enzyme (T^CGA) and sonicated for 25 minutes to obtain a pool of DNA fragments that 

has an average size of 300 bp (Figure 4.92). The TaqI digested DNA fragments are then 

ligated to linkers which contain half of recognition site of the same enzyme at their 

termini and serve as an efficient template for the PCR.  

 

Each linker was designed such that it had one half of TaqI restriction 

endonuclease recognition site at its termini. This was needed for preventing self ligation 

of linkers. Single stranded forms of linkers were used as primers for PCR amplification 

(Table 4.11). 

 

The ligation mixture was digested with TaqI enzyme to eliminate self ligated 

linkers. As controls, digested and sonicated DNA and linker samples were also self-

ligated and digested with TaqI enzyme. Bands were obtained only from undigested 

samples of self-ligated DNA, linker-ligated DNA and self-ligated linkers when analyzed 

by 1.5 % agarose gel electrophoresis (Figure 4.93).  
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Figure 4.91: Experimental strategy of Whole Genome PCR. 
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Table 4.11: Linkers and primers designed for Whole Genome PCR. The red 

arrows represent sites of primers and bold shaded nucleotides shows the half of TaqI 

recognition sites.  

Linker F1 (20 bp) 

 

Primer f1                                                         

5’-GATCCAGAATTCTTATAGTC-3’ 

3’-CTAGGTCTTAAGAATATCAG-5’ 

Primer f2                                                         

Linker F2 (20 bp) 

 

Primer f2                                                         

5’-GACTATAAGAATTCTGGATC-3’ 

3’-CTGATATTCTTAAGACCTAG-5’ 

Primer f1                                                   

Primer f1 (20 bp)                                               5’-GATCCAGAATTCTTATAGTC-3’ 

Primer f2 (20 bp)                                                5’-GACTATAAGAATTCTGGATC-3’ 

 

 

             Figure 4.92: 1.5% Agarose gel analysis of digested and sonicated Balcalı-85 

genomic DNA. Lane 1, 1kb DNA Ladder; 2, TaqI digested Balcalı-85; 3, 25 min 

sonicated Balcalı-85. 

 

 

Figure 4.93: 1.5% Agarose gel analysis of ligation and TaqI digestion products 

from Balcalı-85 genomic DNA. Lane 1, Low range DNA ladder; 2, TaqI digested DNA; 

3, 25 min sonicated DNA; 4, self-ligated DNA; 5, digested ligated DNA; 6, linker-

ligated DNA; 7, digested linker-ligated DNA; 8, self-ligated linkers; 9, digested self-

ligated linkers. 

1        2       3        

2000bp 

500bp 

 1        2        3        4       5        6       7         8         9 

500bp 



 98 

Ligation products were amplified with PCR using linkers as primers with the 

annealing temperature of 50oC in order to check efficiency of ligation. As can be seen in 

Figure 4.94, only linker-ligated DNA samples were amplified, which indicated that 

ligation process had been accomplished.  

 

 

 

 

 

 

 

             Figure 4.94: 1.5% Agarose gel analysis of PCR products in control 

experiments for WGPCR. Lane 1, Low range DNA ladder; 2, self-ligated DNA; 3, 

digested ligated DNA; 4, linker-ligated DNA; 5, digested linker-ligated DNA; 6, self-

ligated linkers; 7, digested self-ligated linkers. 

 

To test DNA binding initially 89 µg GSTdMT and as negative control 145 µg 

GST were incubated with 200 ng linker-ligated DNA. DNA samples from GSTdMT 

and GST reactions were amplified with PCR, and varying amounts (1 µl, 2.5 µl and 5 

µl) were tested as template. As a result, only primer dimers were obtained from the 1st 

round PCR and both eluates from GSTdMT and GST gave smear bands for the 2nd 

round PCR (Figure 4.95). It was unexpected to have results with GST since it was used 

as negative control. This result is likely to be due to nonspecific binding of protein to 

DNA. 

 

In order to overcome nonspecific binding of protein to DNA, poly-dIdC was 

used as competitor. The above binding conditions were tried with 2 µg poly-dIdC. 1 µl 

and 2.5 µl eluted DNA samples from GSTdMT and GST reactions were used as 

templates for the 1st round of PCR. Similar results were detected despite the presence of 

nonspecific competitor poly-dIdC (Figure 4.96). Agarose gel electrophoresis of samples 

from wash steps of protein DNA binding experiments for GSTdMT and GST showed 

that these samples also contained eluted DNA (Figure 4.97). 
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Figure 4.95: 1.5% Agarose gel analysis of PCR products of the 1st round (on the 

left) and 2nd round (on the right) of WGPCR experiments. Left: Lane 1, Low range 

DNA ladder; 2-4, 1st round PCR amplification of 1, 2.5 and 5 µl eluates from GSTdMT 

reaction; 5-7; 1st round PCR amplification of 1, 2.5 and 5 µl eluates from GST reaction. 

Right: 1-3, 2nd round PCR amplification of templates from the 1st round PCR of 

GSTdMT reaction; 4-6; 2nd round PCR amplification of templates from the 1st round 

PCR of GST reaction; 7, Low range DNA ladder.  

 

  
Figure 4.96: 1.5% Agarose gel analysis of PCR products of the 1st round (on the 

left) and 2nd round (on the right) amplifications of WGPCR experiments in the presence 

of poly-dIdC. Left: Lane 1, Low range DNA ladder; 2-3, 1st round PCR amplification of 

1 and 2.5 µl eluates from GSTdMT reaction; 4-5; 1st round PCR amplification of 1 and 

2.5 µl elutes from GST. Right: 1, Low range DNA ladder; 2-3, 2nd round PCR 

amplification of templates from the 1st round PCR of GSTdMT; 4-5; 2nd round PCR 

amplification of templates from the 1st round PCR of GST. 

 

 

 
Figure 4.97: 1% Agarose gel analysis of samples from washing steps of 

WGPCR experiments. Lane 1-3, wash samples of GSTdMT reaction; 4-6, wash samples 

of GST reaction; 7, Low range DNA ladder. 
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To investigate the effect of the amplification of poly-dIdC and primer dimers, 

poly-dIdC and usage of primers were tested with 1st and 2nd round PCR and amplified 

and non amplified forms of poly-dIdC and the primers were loaded on agarose gel and 

also on 7% nondenaturing polyacrylamide (PAGE) gels to detect the exact molecular 

weight. Also, linker-ligated DNA was amplified with both primers and only primer f1 to 

test the usage of primers.  

 

  
Figure 4.98: 7% Nondenaturing PAGE (on the left) and 1% Agarose gel 

analysis (on the right) of PCR products of the 1st round. Lane 1, 100 bp Ladder plus 

marker; 2, 0.8 µg poly-dIdC with primers f1+f2; 3, 0.8 µg poly-dIdC without primers; 4, 

linker-ligated DNA with primers f1+f2; 5, linker-ligated DNA with primer f1; 6, linker-

ligated DNA without primers; 7, only primers f1+f2; 8, only primer f1; 9, nonamplified 

only primer f1; 10, nonamplified 0.8 µg poly-dIdC. 

 

 Results obtained from nondenaturing PAGE and agarose gel also showed that 

poly-dIdC could be amplified by PCR with and without primers (Figure 4.98). This 

amplification was also observed from spectroscopic measurements at 260 nm, amplified 

poly-dIdC with and without primers had much higher A260 value than non amplified 

form (Table 4.12). These results showed more clearly that poly-dIdC was amplified 

with PCR and the usage of poly-dIdC as nonspecific competitor was not suitable. 

 

Table 4.12: Absorption values for amplified and nonamplified forms of poly-dIdC.  
 A260 ng/µl 

Amplified Poly-dIdC with primers 10.6 530.6 

Amplified Poly-dIdC without primers 9.6 480.2 

Poly-dIdC with primers 1.1 52.4 
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The usage of primers was also tested. Linker-ligated DNA amplification with 

primers f1+f2 and only with primer f1 gave the same results for the 1st round. However 

amplification with primers f1+f2 was increased for the 2nd round in addition to 

amplification of primers f1+f2 whereas amplification of only primer f1 for the 1st round 

and then amplification of primer f2 for the 2nd round resulted in a weak smear band 

(Figure 4.99). These results showed that the exact amplification of linker-ligated DNA 

could be obtained only with the usage of primers separately. 

 
 

  
 

Figure 4.99: 7% Nondenaturing PAGE (on the left) and 1% Agarose gel 

analysis (on the right) of PCR products of the 2nd round amplification. Lane 1, 100 bp 

Ladder plus marker; 2, 0.8 µg poly-dIdC with primers f1+f2; 3, 0.8 µg poly-dIdC 

without primers; 4, linker-ligated DNA with primers f1+f2; 5, linker-ligated DNA with 

primer f2; 6, linker-ligated DNA without primers; 7, only primers f1+f2; 8, only primer 

f2. 

 

 

In order to prevent primer dimer formation three different annealing 

temperatures 55oC, 60oC and 65oC were tested. Linker-ligated DNA was amplified with 

only one of the primers in each round and amplification of primers alone or together 

was also tested. Linker-ligated DNA amplification with primer f1 for the 1st round and 

with primer f2 for the 2nd round was observed at 55oC and 60oC. But using primers 

separately and together also gave smear bands at same temperatures for the 2nd round 

and this amplification was much more observed when primers used together (Figure 

4.100). 
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Figure 4.100: 7% Nondenaturing PAGE analysis of PCR products of the 1st and 

2nd round PCR. Lane 1, 100 bp DNA Ladder; 2-10, 1st round PCR with 55oC, 60oC and 

65oC respectively: 2,5,8, linker-ligated DNA with primer f1; 3,6,9, only primer f1; 

4,7,10, primer f1+f2; 11, DNA Ladder mix; 12-20, 2nd rounds round PCR with 55oC, 

60oC and 65oC respectively: 12,15,18, linker-ligated DNA with primer f2; 13,16,19, 

only primer f1; 14,17,20, primer f1+f2. 

 

 Primers f1 and f2 designed for whole genome PCR based on the linker 

sequences was reverse complementary for each other and it was thought that this 

reverse complementation led to amplification of primers f1 and f2 especially when used 

together.  

 

In order to overcome this problem new linkers and primers were designed 

according to Watson et al., (2000) (Table 4.13). This allowed DNA precipitation and 

PCR to be repeated three times with Primer I and the selected fragments are subjected to 

a final round of amplification using Primer II. 

 

To find the best annealing temperature for the new primers three different 

temperatures were tested; 55oC, 60oC, 65oC for the 1st and 2nd round PCR. Also, linker-

ligated DNA amplification with primer fd1 for the 1st round and with primer fd1 and fd2 

for the 2nd round were tested. Analysis with nondenaturing PAGE showed that linker-

ligated DNA was amplified with fd1 for the 1st round also 2nd round but as negative 

controls primers were also amplified when used separately and together. For the 2nd 

round amplification with primer fd2 was tried and gave the same results (Figure 4.101).  
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Table 4.13: Linkers and primers designed for Whole Genome PCR. The red 

arrows represent sites of primers and bold shaded nucleotides show the half of TaqI 

recognition sites.  

 

LinkerI 

(45bp) 

 

                    Primer I                                                         Primer II 

5’-GAGGAGCTGAGACGCGAGTCCCATGGACGCTACACGTGACCGGTC-3’ 

3’- CTCCTCGACTCTGCGCTCAGGGTACCTGCGATGTGCACTGGCCAG-5’ 

 

LinkerII 

(45bp) 

 

 

5’-GACCGGTCACGTGTAGCGTCCATGGGACTCGCGTCTCAGCTCCTC-3’ 

3’-CTGGCCAGTGCACATCGCAGGTACCCTGAGCGCAGAGTCGAGGAG-5’ 

                       Primer II                                                             Primer I 

Primer fd1 
(20 bp) 

5’-GAGGAGCTGAGACGCGAGTC-3’ 

Primer fd2 
(20 bp) 

5’-GACGCTACACGTGACCGGTC-3’ 

 

 

 

Figure 4.101: 7% Nondenaturing PAGE analysis of PCR products of the 1st, 2nd 

and 3rd rounds. Lane 1-3, 1st round PCR of linker-ligated DNA with primer fd1 at  55oC, 

60oC and 65oC respectively, 4, Low range DNA ladder; 5-13, 2nd round PCR with 

primer fd1; 14-22, 3rd round PCR with primer fd2; 5-7, 14-16, linker-ligated DNA at 

55oC, 60oC and 65oC; 8-10, 17-19, only linker at 55oC, 60oC and 65oC;  11, only primer 

fd1 at 55oC; 12, only primer fd2 at 55oC; 13, primer fd1+fd2 at 55oC; 20, only primer 

fd1 at 65oC; 21, only primer fd2 at 65oC; 22, primer fd1+fd2 at 65oC; 23, Low range 

DNA ladder. 

 

The effect of primer concentration was investigated by decreasing the primer 

concentration from 1 µM to 0.5 µM. Again linker-ligated DNA with primer fd1 and as a 

negative control primer fd1 was amplified by PCR with the annealing temperatures of 

55 and 60oC. This resulted in only amplification of linker-ligated DNA at both 

temperatures (Figure 4.102). 
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Figure 4.102: 7% Nondenaturing PAGE analysis of PCR products of the 1st and 

2nd rounds with primer fd1 at 55oC and 60oC. Lane 1, Low range DNA ladder; 2-5, 1st 

round PCR, 6-9, 2nd round PCR: 2-3, 6-7, linker-ligated DNA; 4-5, 8-9, only primer fd1. 

 

After solving primer amplification problem, DNA-protein binding was examined 

with 1:1 protein/DNA ratio. 100 ng of eluted DNA fragments from GST and GSTdMT 

reactions were amplified with 0.5 µM primer fd1 for the 1st and 2nd round PCR with the 

annealing temperature of 55oC. However, the same problem was encountered; primer 

fd1 used as a negative control was also amplified (Figure 4.103). 

 

 

Figure 4.103: 7% Nondenaturing PAGE analysis of PCR products of the 1st and 

2nd rounds with 0.5 µM primer fd1 at 55oC. Lane 1, Low range DNA ladder; 2-4, 1st 

round PCR, 5-7, 2nd round PCR: 2, 5, eluted DNA from GSTdMT; 3, 6, eluted DNA 

from GST; 4, 7 only primer fd1. 
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With the purpose of eliminating the problem of amplification of primers 

especially formed in the 2nd round, amplification of linker-ligated DNA without primers 

were examined. For the 1st round linker-ligated DNA was amplified with 1 µM primer 

fd1 at 55oC and for the 2nd and 3rd rounds amplified with and without primer. However 

as observed in nondenaturing PAGE analysis in Figure 4.104, amplification of linker-

ligated DNA was detected in both cases in addition to amplification of primer fd1 used 

as negative control for the 2nd round PCR. The amplification linker-ligated DNA and 

primer fd1 on its own had decreased but was still observable for the 3rd round. This was 

more pronounced the primer was included. Therefore, for the 3rd and 4th rounds 

amplification of linker-ligated DNA and negative control primers with primer fd2 and 

without primers were tried (Figure 4.105). But, same results were detected. 

Consequently, amplification without primers did not solve the problem of amplification 

of primers themselves. 

 

 

 

Figure 4.104: 7% Nondenaturing PAGE analysis of PCR products of the 1st, 2nd 

and 3rd rounds. Lane 1-2, 1st round PCR, 4-7, 2nd round PCR, 9-12, 3rd round PCR; 

1,4,9, linker-ligated DNA with 1 µM primer fd1; 2,6,11, only primer fd1; 5,10, linker-

ligated DNA without primer; 7,12, only primer fd1 (for the 1st round) without primer;  

3, 8, Low range DNA ladder. 
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Figure 4.105: 7% Nondenaturing PAGE analysis of PCR products of the 1st, 2nd, 

3rd and 4th rounds. Lane 1-2, 1st round PCR, 4-7, 2nd round PCR, 9-12, 3rd round PCR; 

1,4,9,13, linker-ligated DNA with 1 µM primer fd1; 2,6,11,15 only primer fd1; 5,10, 14, 

linker-ligated DNA without primer; 7,12,16, only primer fd1 (for the 1st round) without 

primer;  3, 8, Low range DNA ladder. 

 

 Another strategy for testing DNA-protein binding was selection and 

amplification of linker-ligated DNA fragments separately for each round of PCR. For 

this purpose 1:1 protein/DNA ratio was examined. Eluted DNA fragments of the first 

protein-DNA interaction from GST and GSTdMT reactions were amplified with 1 µM 

primer fd1 for the 1st round PCR and used for second protein-DNA interaction and this 

process was repeated for three times. According to nondenaturing PAGE analysis the 

negative control primer fd1 was also amplified and gave the same banding position with 

eluted DNA samples from GST and GSTdMT reactions (Figure 4.106).  

 

In addition, nondenaturing PAGE analysis of samples from wash steps of 

protein-DNA interaction experiments showed that linker-ligated DNA fragments were 

mostly eluted from these washing steps for both GSTdMT and GST (Figure 4.107). 
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Figure 4.106: 7% Nondenaturing PAGE analysis of PCR products of the 1st, 2nd 

and 3rd rounds of amplifications with products of WGPCR experiments using 1 µM 

primer fd1. Lane 1-3, 1st round PCR, 5-7, 2nd round PCR, 7-8, 3rd round PCR, 4, Low 

range DNA ladder; 1,5,7, eluted DNA from GSTdMT reaction; 2,6,8, eluted DNA from 

GST reaction; 3, only primer fd1. 

 

 

  
Figure 4.107: 7% Nondenaturing PAGE analysis samples from wash steps. 

Lane 1, Low range DNA ladder; 2-4, washing samples of GSTdMT; 5-7, washing 

samples of GST. 

 

The same protein-DNA interaction strategy and same conditions were repeated 

with 0.5 µM primer fd1. However identical amplification results were detected (Figure 

4.108). Additionally similar results were obtained from wash steps (Figure 4.109).  
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Figure 4.108: 7% Nondenaturing PAGE analysis of PCR products of the 1st, 2nd 

and 3rd rounds. Lane 1-3, 1st round PCR, 5-7, 2nd round PCR, 7-8, 3rd round PCR, 4, 

Low range DNA ladder; 1,5,7, eluted DNA from GSTdMT; 2,6,8, eluted DNA from 

GST; 3, only primer fd1. 

 

 

   
Figure 4.109: 7% Nondenaturing PAGE analysis samples from washing steps. 

Lane 1-3, washing samples of GSTdMT; 4, Low range DNA ladder; 5-7, washing 

samples of GST. 

 

 

These results showed clearly that, the WGPCR method was not suitable for 

investigation of DNA binding of GSTdMT protein.  
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Chapter 5 

 

DISCUSSIO� 

 

 

5.1 Purification of Homogeneous GSTdMT and dMT  

 

As can be seen from the amino acid sequence of  dMT given in Figure 5.1 dMT 

contains 12 Cys residues, has a molecular weight of about 7 kDa and it contains only 

two aromatic amino acids phenylalanine (F51) and tyrosine (Y21). Unlike most 

mammalian MTs, dMT contains a long hinge region which separates the Cys-motif 

containing terminal regions. These features combined with instability of the holo-

protein in the presence of oxygen and its susceptibility to proteolytic degradation 

especially within the long hinge region contribute to difficulties in obtaining pure, 

monodisperse and biophysically well characterized protein solutions. One more factor 

which hinders direct studies on purified protein is its propensity for aggregation. It 

appears that two main reasons contribute to nonspecific aggregation one is the fact that 

intra- and inter-molecular disulphide bonds are formed when metal ions are lost. The 

second reason is not well understood but appears to be related to the presence of excess 

metals.  

 

Some of these difficulties can be circumvented if the protein is expressed with a 

larger fusion partner such as GST in a recombinant expression system. The fusion 

partner would facilitate purification and quantification of the protein and with an 

efficient system high levels of expression can yield large quantities of recombinant 

protein. It was also shown that in fusion proteins GST structure appeared to be 

unchanged compared to native protein and that it did not interfere with the structure of 

the fusion partner (Zhan et al., 2001). 
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Plant MTs have often been purified in fusion with GST for biochemical and 

biophysical characterization and some examples include work by Foley et al., 1997 on 

fava bean Type 1 and Type 2 MTs, by Murphy et al., 1997 on Arabidopsis MT1, MT2 

and MT3 proteins, by Abdullah et al., 2002 on Type 3 MT3-A from the oil palm, by Mir 

et al. 2004 and Domenech et al., 2005 on Type 2 MT, QsMT from Quercus suber. In all 

these studies a protease deficient E. coli strain such as BL21 (DE3) was selected as the 

host for expression to minimize protein degradation. In addition since stabilization of 

the protein structure and protection of the spacer region from proteolytic degradation 

through metal-binding had been established (Kille et al., 1991) MTs were expressed in 

the presence of divalent metals usually Zn 2+ or Cd 2+. 

 

In the study reported in this thesis basically dMT was expressed in fusion with 

GST using the pGEX-4T2 expression system (GE-Biosciences) in BL21 (DE3) cells 

and purified in the presence of CdCl2 using affinity and size exclusion chromatography. 

All purification procedures were performed at 4oC either in an argon-filled 

environmental bag or under continuous argon flow for protection against oxidation.  

 

Two main features distinguished this work from previous studies mentioned 

above. (1) It was the first report of systematic analyses for optimization of the 

purification procedure for recombinant plant MTs. (2) It was the first report where 

question of oligomerization state of the purified protein was directly addressed. 

Analyses were carried out on the fusion protein for the sake of ease and speed of 

purification, quantification and monitoring the oligomeric state but of course at the 

expense of working with a construct rather than the native protein. On the other hand 

the extent of applicability of the results to the native protein is also discussed and 

possibility of using GSTdMT as an accessible model system has been explored.  

 

Optimization of the purification procedure was achieved through examining the 

effect of buffer system, reducing agent and CdCl2 concentration on the quality of the 

purified protein. Protein quality, on the other hand, was monitored by checking yield, 

purity, monodispersity, oligomerization state and Cd content. Since determination of 

MT concentration is problematic due to lack of aromatic amino acids yield was 

measured in terms of GST concentration. Purity was monitored by SDS-PAGE where 

due to the GST component protein can bind SDS and migrate as expected on the gel and 
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can be readily visualized by Coomassie blue staining. Monodispersity and 

oligomerization state were analyzed by native-PAGE and DLS measurements. Cd 

content was determined by ICP-OES measurements on the purified samples. 

 

Results presented in 4.1.2 show that a Tris based buffer with pH 7.5 was the 

most suitable for GSTdMT purification. These results also showed that when the protein 

needs to be stored over a period of time of about six days it is better preserved in a 

HEPES based buffer at pH 8.0. The best condition for storage appeared to be at 4oC 

rather than freezing at -20 oC or at -80 oC. Results given in Figure 4.50 and Figure 4.53 

showed that after six days the protein was still in intact form. It was not possible to 

compare these results with those given in the literature directly. In general MTs are 

reported to be stored in lyophilized form, however no analyses have been provided for 

the quality and oligomeric state of the resuspended proteins (Peroza and Freisinger, 

2007, Domenech et al., 2005). 

 

Effect of presence of Cd2+ ions at different concentrations in the growth medium 

and in purification buffers was also investigated. As mentioned above formation of 

metal-thiol clusters prevents proteolytic attack especially within the long spacer region 

(Kille et al., 1991). This is probably due to the Cys-rich domains that are folded 

together to participate in binding of metal (Rauser, 1999). Therefore, CdCl2 was 

included for maintaining the stability of and proper folding of GSTdMT. Cd2+ 

concentration was varied between 0 and 0.2 mM and as results given in section 4.1.2 

show that beyond 0.1 mM CdCl2 caused aggregate formation. The optimum CdCl2 for 

obtaining intact protein without formation of higher order oligomers was found to be 

about 0.1 mM. In addition, it was observed that including CdCl2 during bacterial growth 

and only in the lysis buffer was sufficient to maintain stability of GSTdMT. In recent 

studies Domenech et al. (2005) had also included 0.5 mM CuSO4 or 0.3 mM ZnCl2 in 

the growth media to obtain holo Quercus suber MT and Akashi et al. (2004) have used 

0.5 mM ZnSO4 in the growth media of bacteria expressing watermelon Type 2 

metallothionein. These studies support the earlier observation that metals are required to 

achieve proper folding and protection of recombinantly synthesized MTs. 

 

Similar to other cystein containing proteins the, sulfhydryl groups in dMT are 

susceptible to both oxidation and disulfide formation in solution. Reducing agents were 
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included in MT buffers to prevent disulfide formation and oxidation (Kagi, 1991). As 

results given in section 4.1.2 showed 1mM DTT was found to be sufficient for 

overcoming of the aggregation problem of GSTdMT due to the disulfide bond (i.e. Cys-

S-S-Cys) formation. 

 

Under the optimized conditions size exclusion chromatography of GSTdMT 

resulted in two peaks with elution volumes of 116 and 140 ml as shown in Figure 4.38. 

According to the column calibration the main peak (GII) at 140 ml corresponded to a 

molecular weight of about 77 kDa and contained the dimeric form of purified GSTdMT 

whereas the other peak (GI) at about 115 ml corresponded to a molecular weight of 188 

kDa and contained highly aggregated forms of GSTdMT. These results were verified by 

native- and SDS-PAGE analysis of the purified fractions. A single band at about 35 kDa 

was visualized by SDS-PAGE analysis (Figure 4.39) and similarly native-PAGE 

analysis (Figure 4.40) yielded a single band corresponding to homogeneous species of 

GSTdMT in these fractions.   

 

 The monodispersity of the GII fractions were further monitored by DLS which 

provides information about the size distribution of particles in a solution. In particular 

distribution according to the intensity of scattered light is sensitive the large aggregates 

in solution.  Measurements of fractions from the peak GII (Figure 4.41) resulted in one 

single peak centered around 10 nm in intensity distribution indicating that the GSTdMT 

solutions were monodisperse and the major species in solution was in dimeric form. 

 

As expected GSTdMT yields were slightly lower than that for GST however one 

purification was sufficient for providing enough material for several biophysical 

characterizations. 

 

One of the requirements for SAXS measurements for structural studies is high 

protein concentration (Svergun and Koch 2003). When GSTdMT was concentrated after 

size exclusion chromatography beyond 4 mg/ml higher order oligomers were observed. 

However re-dilution of concentrated solutions showed that the oligomerization of 

GSTdMT was a question of equilibrium and that it was reversible (Figure 4.57). This 

result is in agreement with those of Zhan et al., (2001) who observed that the stable 

form recombinant GST fusion protein is dimeric. 



 113 

Results given in section 4.2 showed that the purification procedure, once 

optimized and established for GSTdMT, was readily applicable to dMT. Minor 

modifications, mainly due to the fact that yields were much lower, could be introduced 

without serious complications. As can be seen in Figure 4.64 dMT was eluted from the 

final size exclusion chromatography step at 74 ml corresponding to a molecular mass of 

about 17 kDa. It appeared that similar to GSTdMT, dMT was also eluted as a dimer.  

The expected molecular mass dMT dimer would be about 14 kDa. This apparent shift in 

the elution volume was observed for proteins with anisotropic shape (Garcia De La 

Torre et al., 2000). Analysis of purified dMT fractions by SDS-PAGE given in Figure 

4.65 showed the anomalous electrophoretic mobility of this protein; more than one band 

was visualized by silver staining and the highest mobility band corresponded to a 

molecular mass of about 10 kDa which is higher than the 7 kDa expected from dMT. 

This behavior, reported by also by others including Sayers et al., (1999), Fresinger 

(2007), and Murphy et al., (1997) is due mainly to insufficient reduction of the protein 

during preparation for gels. In the presence of excess amount of DTT only a single band 

is detected (results not shown). 

 

5.2 Biophysical Characterization of GSTdMT 

 

 UV-vis spectroscopy is a method commonly used for characterization MTs 

because absorption bands due to bound metals can be readily detected (Kagi and Vasak, 

1984, Freisinger 2007, Peroza and Freisinger, 2007). As exemplified by Figure 4. 60 the 

absorption spectrum of GSTdMT has two prominent features, the shoulder at 280 nm 

arising from aromatic residues of GST and the charge transfer band at 250 nm. The 

charge transfer band is due to Cd-thiol interactions (Willner et al., 1987) and have been 

observed in other MTs such fruit-specific metallothionein MT3 (Freisinger, 2007), 

wheat seed MT  (Peroza and Freisinger, 2007). 

 

The binding ratio of Cd to GSTdMT was estimated using Cd concentration as 

measured by ICP-OES and protein concentration was directly calculated from A280 

measurements. As shown in Table 4.5 the average Cd2+ to protein molar ratio was found 

to be 3.5 ± 0.6. Kille et al., (1991) found that recombinant Type 1 PsMTA, containing 

12 Cys, bound about 6 g atoms of Cd per molecule. In a recent report Domenech et al., 

(2007) showed that Type 2 QsMT, with 14 Cys, bound 5.6 Cd per molecule. For Type 3 



 114 

MTs, having 11 Cys, Freisinger (2007) reported 4 Cd2+ ions. Considering the number of 

Cys residues in GSTdMT the result given above is in agreement with the reports in the 

literature.  Extinction coefficient at 250 nm/Cd2+ was found to be ~9000 M-1 cm-1, 

which agrees well with  ~11600 M-1 cm-1 given by Freisinger (2007) and ~12600 M-1 

cm-1 (Willner et al., 1987). Metal coordination in GSTdMT was further probed by 

EXAFS and the spectra (Figure 4.81) are consistent with a tetrahedral structure for the 

metal center (see below).  

 

5.3 Structural Analysis of GSTdMT and dMT 

 

Circular dichroism (CD) is a technique sensitive to the secondary structure of 

polypeptides and proteins. The secondary structural features of GSTdMT were 

investigated by recording its CD spectra and comparing with that from GST. It was 

observed that, similar to the reports in the literature (Masino et al., 2002), CD spectrum 

of GST is dominated by the α-helical secondary structure of this protein (Figure 4.61). 

The GSTdMT spectrum, on the other hand, indicates a decrease in the α-helical content 

in the overall structure which could be achieved by incorporating more β structures or 

by having a less ordered structure superimposed on the main GST structure.  

 

SAXS was used for determining shape of the GSTdMT fusion protein. Solutions 

of GSTdMT were measured at concentrations between 1.5 and 2.5 mg/ml and due to 

protein aggregation problem higher concentrations were avoided. SAXS measurements 

confirmed that GSTdMT protein solutions were homogeneous. The Rg values of 

GSTdMT and GST, 3.6 nm and 2.5 nm respectively, reflect the difference in the shapes 

of the two proteins. It was observed that presence of dMT introduces a significant 

anisotropy to the shape of the molecule. The calculated average molecular mass of 

GSTdMT and GST according to I (0) values indicated the dimeric state of these proteins 

in solution. But the experimental values for the molecular mass of GSTdMT and for 

GST were lower than those calculated. The main source for this difference is likely to 

be the inaccuracies in concentration measurements both for samples and reference 

protein. During data reduction the scattering curve is normalized according to the 

protein concentration which shifts the value of I (0). 
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GNOM analysis of the SAXS data indicated that the distance distribution 

function P(r) for GST and GSTdMT were different from each other and Dmax; maximum 

macromolecular dimension was found to be 6.5 nm for GST and 13 nm for GSTdMT. 

These results further confirmed that GSTdMT is elongated. 

 

 The shape models developed for GSTdMT emphasized the asymmetric structure 

of the molecule and indicated that the fusion protein consisted of three sections; a dense 

globular region which is highly likely to correspond to GST, a still dense but elongated 

central section and a less dense tail. 

 

 The correspondence between GSTdMT domains and the models can be 

attempted by considering the complementary information obtained by different 

techniques in this study. The combination of EXAFS and ICP-OES results indicated 

that 3.5 ±0.5 Cd2+ ions were bound per molecule of protein and that the Cd-S distances 

were consistent with a tetrahedral arrangement with first coordination shell of about 2.5 

Ǻ. Furthermore the UV-vis spectrum of holo-GSTdMT showed a charge transfer band 

around 250 nm which indicates a tetrahedral arrangement of S ligands around Cd. 

Possible binding schemes that would lead to such arrangement are shown in Figure 5.1 

(A) and (B).  

 

In (A) dMT is depicted as a dumbbell, as proposed previously by Bilecen et al., 

(2005), Domenech et al., (2006) and Zhu et al., (2000), with two metal binding domains 

with Me2S6. Although the two clusters have the same metal binding stoichiometry the 

Cys-X-Cys motif distributions are not the same. The β domain has (Cys-X-Cys)-X3-

(Cys-X-Cys)-X3-(Cys-X-Cys) whereas the α domain has (Cys-X-Cys)-X3-(Cys-X-

Cys)-X2-(Cys-X-Cys). In one possible coordination pattern of for Cd ions C5 and C15 

in the β domain would be bridging and C73 and C64 in the α domain would be bridging. 

This arrangement may result in different Cd binding affinities with β domain showing 

slightly lower affinity. In the scheme shown in (B) dMT is shown with a hairpin shape 

as was proposed by Kille et al., (1991) and Domenech et al., (2006). Here the protein 

consists of a single metal center with the stoichiometry of Me4S12. In this scheme a 

possible arrangement for binding four Cd ions would result in C5, C9, C70 and C73 to 

become bridging cysteins.  
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 Models obtained from SAXS measurements can be interpreted in the light of the 

above discussion. The hairpin model appears to provide a better fit to the shape model 

in Figure 4.78. Accordingly the second electron dense region would correspond to the 

metal center and the tail region would represent the spacer domain. 

 

 
 

 

 
Figure 5.1: Possible Cd binding schemes of dMT. (A) dMT as a dumbbell. (B) 

dMT as a hairpin. The blue circles represent Cd2+ ions. 
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5.4 Functional Studies 

 

Southern blot analysis resulted in a single band showing that d-mt gene exists as 

a single copy in the genome of T. durum. Similar result was obtained in rice MT; ricMT 

(Yu et al., 1998). But this differs from the other plant species; mt genes exist as a 

multigene family in pea (Evans et al., 1990), maize (de Framond, 1991), Arabidopsis 

(Zhou and Goldsbrough, 1995) and cotton (Hudspeth et al., 1996). However no 

information about the localization of d-mt gene could be obtained with southern blot 

analysis in T. durum genome. 

 

The response of T. durum cv. Balcalı-85 cultivar to Cd stress was examined by 

treating Balcalı-85 plants with five different increasing Cd concentrations. This resulted 

in a significant decrease in growth and dry weights of both shoot and root tissue. 

Similar results were observed in the study of Köktürk (2006). Cadmium toxicity causes 

reduction in the concentrations of photosynthetic pigment and carotenoids, and as a 

result restricts activity of photosynthesis (Rai et. al., 2005). In general Cd affects root 

growth more severely than shoot growth. In addition, durum wheat cultivars generally 

accumulate more Cd than bread wheat cultivars (Greger and Löfstedt, 2004). In the 

present study, increasing Cd concentration showed that Cd was accumulated in the roots 

in much higher amounts than in the shoots in Balcalı-85 plants. Roots are the first site 

contacting with Cd therefore they have the greater capacity to accumulate Cd than 

shoots. As a result, generally it is observed that roots are more sensitive to Cd toxicity 

than shoots (Grant et. al. 1998).  

 

The predicted structure for the hinge region shows similarity with a family that 

includes DNA binding proteins (Bilecen et al., 2005). DNA binding possibility of 

GSTdMT protein was tested with the whole genome PCR-based screening method. 

GST protein was also used in DNA-protein interaction studies as negative control.  

 

During optimization of this method several difficulties were faced. The first one 

was the nonspecific binding of DNA to the protein and this was tried to overcome by 

the usage of nonspecific competitor poly-dIdC. However, it was shown clearly that 

poly-dIdC can be amplified with PCR with and without primers. This amplification was 

also observed by spectroscopic measurements at 260 nm and nondenaturing-PAGE. 
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These results showed more clearly that and the usage of poly-dIdC as nonspecific 

competitor was not suitable. 

 

The second and most significant problem was amplification of primers 

themselves. Two different sets of linkers and primers were tried to avoid this problem. 

The first set of primers (f1 and f2) was designed according to the linker sequences 

which were reverse complementary to each other (Kinzler and Vogelstein 1989). It was 

thought that this reverse complementation led to amplification of f1 and f2 and to 

overcome this problem the second set of linkers and primers were designed according to 

Watson et al., (2000). In another strategy the selection and amplification of linker-

ligated DNA fragments separately for each round of PCR was tried. According to 

results the primer amplification was still observed but also DNA samples from GST and 

GSTdMT were mostly eluted in wash steps. In the view of these observations it can be 

concluded that the WGPCR method was not suitable for the investigation of DNA 

binding possibility of GSTdMT.  
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Chapter 6 

 

CO�CLUSIO�S 

 

 

 

The general aim of the work presented in this thesis was to investigate the 

structure and related functional roles of dMT using GSTdMT as a model system.  

 

A procedure was established to purify GSTdMT in highly homogeneous 

monodisperse solutions at high protein concentration. This is the first study in the 

literature where problems of protein quality and oligomerization state have been 

systematically addressed for plant MTs. GSTdMT could be purified in dimeric form 

with a yield of about 50 mg/1.5 L E .coli culture. As  preliminary experiments showed 

this procedure is readily applicable to purification of dMT. Future work will focus on 

purification of dMT at high protein concentration and of defined oligomeric state. 

 

Purified GSTdMT protein was shown to contain 3.5 ± 0.5 Cd2+/protein with a 

tetrahedral arrangement of thiol groups in the first coordination shell of the metal. 

SAXS measurements revealed that GSTdMT has an elongated shape with a radius of 

gyration of 3.57 nm. ab initio models based on SAXS measurements resulted in a shape 

for the dimer in which the two GST molecules form an electron dense region at one end 

and the two dMT molecules extend from this region. dMT structure appears to be 

independent of GST in the GSTdMT fusion. Based on this model and possible schemes 

for the structure of the metal center(s) it can be proposed that dMT has a hairpin like 

structure in the GSTdMT. This model proposed for dMT structure needs to be 

experimentally verified.  
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DNA binding possibility of GSTdMT was also investigated. It was however not 

possible to reach a conclusion due to the artifacts involved in the Whole Genome PCR-

based screening method. It appears that a better way to investigate the DNA binding 

possibility of dMT can be through development of antibodies against dMT and 

checking directly presence of dMT on DNA. 

  

In part of this work response of Triticum durum cv. Balcalı-85 to environmental 

Cd was investigated. It was observed that reduction in dry weight matter occurred both 

in roots and shoots under increasing environmental Cd concentration. Balcalı-85 

demonstrated high capacity to retain Cd in roots. These studies were carried out as a 

part of an investigation which will focus on the correlation between mt-d gene 

expression and Cd response.  

 

Southern blot analysis revealed that the mt-d gene exists as a single copy in the 

T. durum genome. 
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APPE�DIX A 

 

CHEMICALS 

 

 

(in alphabetical order) 

 

Acetic acid (glacial)     Riedel-de Häen, Germany   27225 

30% Acrylamide-0.8% Biacrylamide Sigma, Germany   A3699 

Albumin (bovine serum)    Sigma, Germany    A7906 

Ammonium persulphate    Carlo-Erba, Italy             420627 

Bam HI     Fermentas                         ER0051 

Boric acid (99%)     Sigma, Germany    B6768 

Bromophenol blue     Applichem, Germany   A3640 

1-Butanol      Merck, Germany                         100988 

Cadmium (II) sulphate    Fluka, Switzerland    20920 

Chloroform      Amresco                     3566B066 

Coomassie Brilliant Blue R-250  Fluka, Switzerland    27816 

Complete Protease Inhibitor    Roche                                   11 836 145 001 

Cocktail Tablets 

DNaseI       Fermentas                                        EN0521 

dNTP mix      Fermentas     R0241 

1,4-Dithiothreitol     Fluka, Switzerland    43815 

DryEase mini cellophane    Invitrogen, Germany                       NC2380 

EcoRI       Fermentas                                         ER0271 

Ethanol      Riedel-de Häen, Germany   32221 

Ethylenediaminetetraaceticacid  Riedel-de Häen, Germany   27248 

Glycerol (87%)     Riedel-de Häen, Germany   15523 

Glycine      Amresco, USA      0167 

Hind III      Fermentas                        ER0501 

HEPES      Fluka      54461   
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Hybond-P PVDF membranes  GE-Biosciences,                          RPN2020F 

  Sweden     

Hydrochloric acid (37%)    Merck, Germany                              100314 

Hydrogen peroxide (30%)    Merck, Germany                              107209 

IPTG       Fermentas     R0392 

Klenow fragment    Fermentas                                         EP0051 

MassRuler DNA Ladder Mix   Fermentas             SM0403   

MassRuler DNA Ladder Low Range  Fermentas             SM0383  

2-Mercaptoethanol     Aldrich, Germany             M370-1 

Methanol      Riedel-de Häen, Germany  24229 

Nytran SPC nylon membrane   Whatman, USA         10416085 

Omniscript RT kit     Qiagen               205111 

PageRuler protein ladder    Fermentas, Germany            SM0661 

Phenol: Chloroform:Isoamylalcohol   Amresco                               3255B47 

Phenylmethylsulphonylfluoride  Amresco, USA    0754 

PolydI-dC     GE-Biosciences, Sweden           27-7880 

Prestained protein MW marker  Fermentas, Germany            SM0441 

1-Propanol      Merck, Germany              100996 

Protein Prestained Ladder    Fermentas            SM0671  

Protein Molecular Weight Marker   Fermentas           SM0431 

Reduced Glutathione     Merck              K33271590522 

Shrimp Alkaline Phosphatase     Fermentas               EF0511 

Silver staining plus kit   BioRad           161-0449 

Sodium chloride     Riedel-de Häen, Germany   13423 

Sodium dodecyl sulphate    Sigma, Germany              L-4390 

T4 DNA ligase     Fermentas              EL0016 

TaqI      Fermentas              ER0671 

Taq polymerase    Fermentas              EP0401 

Tetramethylethylenediamine    Sigma, Germany              T-7029 

Thrombin     GE-Biosciences, Sweden     27-0846-01 

Tris       Fluka, Switzerland    93349 

Triton X-100      Applichem, Germany   A1388 
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APPE�DIX B 

 

BUFFERS A�D SOLUTIO�S 

 

 

Tris Borate EDTA Buffer (TBE) (5X): 54g Tris base, 27.5g Boric Acid, 20ml 0.5 M 

EDTA pH 8.0, completed to 500ml. 

 

Tris Acetate EDTA Buffer (TAE) (50X): 121.1g Tris base, 28.55ml Glacial Acetic 

acid, 7.3g EDTA, completed to 500ml. 

 

CTAB Extraction Buffer (2%): 10g CTAB, 75mM Tris HCl pH 8.0, 100mM EDTA 

pH 8.0, 5M NaCl, completed to 500ml. 

 

20xSSC: 0.3 M Na3citrate, 3 M NaCl, pH adjusted to 7.0, completed to 1L. 

 

10 X Tris EDTA (TE) Buffer: 0.1M Tris-HCl, 10mM EDTA, pH adjusted to 7.5. 

 

2x SDS Sample Buffer: 4% (w/v) SDS, 20% (v/v) Glycerol, 0.004% (w/v) 

Bromophenol blue, 10% (v/v) 2-mercaptoethanol, 0.125M Tris-HCl, pH 6.8 in ddH2O. 

 

2x �ative Sample Buffer: 200mM Tris-HCl pH 7.5, 20% (v/v) Glycerol, 0.05% (w/v) 

Bromophenol blue in ddH2O. 

 

SDS-PAGE Running Buffer: 25mM Tris, 192mM Glycine, 0.1% (w/v) SDS in 

ddH2O. 

 

�ative-PAGE Running Buffer: 25mM Tris, 192mM Glycine in ddH2O. 

 

Coomassie Staining Solution: 0.1% (w/v) Coomassie Brilliant Blue R-250, 40% (v/v) 

Methanol, 10% (v/v) Acetic acid in ddH2O. 
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Destaining Solution: 4 % (v/v) Methanol, 7.5 % (v/v) Acetic acid completed to 1L. 

 

Transfer Buffer: 96 mM Glycine, 12 mM Tris-base, and 20% Methanol in ddH2O. 

 

Blocking Solution: 5% Non-fat dry milk, in PBS-T (80 mM Na2HPO4, 20 mM 

NaH2PO4, 100 mM NaCl, 0.2% Tween-20, pH 7.4). 
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APPE�DIX C 

 

EQUIPME�TS 

 

AKTA FPLC:   GE-Biosciences, SWEDEN 

Autoclave:    Hirayama, Hiclave HV-110, JAPAN 

Certoclav, Table Top Autoclave CV-EL-12L, AUSTRIA 

Balance:    Sartorius, BP211D, GERMANY 

Sartorius, BP221S, GERMANY 

Sartorius, BP610, GERMANY 

Schimadzu, Libror EB-3200 HU, JAPAN 

Centrifuge:    Eppendorf, 5415C, GERMANY 

Eppendorf, 5415D, GERMANY 

Eppendorf, 5415R, GERMANY 

Kendro Lab. Prod., Heraeus Multifuge 3L, GERMANY 

Hitachi, Sorvall RC5C Plus, USA 

Hitachi, Sorvall Discovery 100 SE, USA 

Circular Dichroism:  Jasco, J-810, USA 

Dynamic Light Scattering:  Malvern, Zetasizer Nano-ZS, UK 

Deepfreeze:    -80oC, Kendro Lab. Prod., Heraeus Hfu486, GERMANY 

-20oC, Bosch, TURKEY 

Distilled Water:   Millipore, Elix-S, FRANCE 

Millipore, MilliQ Academic, FRANCE 
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Electrophoresis:   Biogen Inc., USA 

Biorad Inc., USA 

Gel Documentation:   UVITEC, UVIdoc Gel Documentation System, UK 

Biorad, UV-Transilluminator 2000, USA 

Ice Machine:    Scotsman Inc., AF20, USA 

ICP-OES:   Varian, Vista-Pro CCD, AUSTRALIA 

Incubator:    Memmert, Modell 300, GERMANY 

Memmert, Modell 600, GERMANY 

Laminar Flow:  Kendro Lab. Prod., Heraeus, HeraSafe HS12, GERMANY 

Magnetic Stirrer:   VELP Scientifica, ARE Heating Magnetic Stirrer, ITALY 

VELP Scientifica, Microstirrer, ITALY 

Microliter Pipette:   Gilson, Pipetman, FRANCE 

Mettler Toledo, Volumate, USA 

Microwave Oven:   Bosch, TURKEY 

pH meter:    WTW, pH540 GLP MultiCal®, GERMANY 

Power Supply:   Biorad, PowerPac 300, USA 

Wealtec, Elite 300, USA 

Refrigerator:    +4oC, Bosch, TURKEY 

Shaker:    Forma Scientific, Orbital Shaker 4520, USA 

GFL, Shaker 3011, USA 

New Brunswick Sci., Innova™ 4330, USA 

Sonicator:   BioBlock Scientific, Vibracell 7504, FRANCE 

Spectrophotometer:   Schimadzu, UV-1208, JAPAN 

Schimadzu, UV-3150, JAPAN 

Secoman, Anthelie Advanced, ITALY 

Nanodrop, ND-1000, USA. 
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Speed Vacuum:   Savant, Speed Vac® Plus Sc100A, USA 

Savant, Refrigerated Vapor Trap RVT 400, USA 

Thermocycler:   Eppendorf, Mastercycler Gradient, GERMANY 

Vacuum:    Heto, MasterJet Sue 300Q, DENMARK 

Water bath:    Huber, Polystat cc1, GERMANY 

 

 

 


