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Abstract

Single molecule magnets are novel mesoscopic materials exhibiting both classical

and quantum properties. Revealing the decoherence and entanglement mechanisms

in these systems is crucial for the applications in quantum information technologies.

In this thesis, quantum tunneling of magnetization is studied in single molecule mag-

net dimer [Mn4]2. Motivated by the recent experiments demanding the modification

of the current theories, phonon mediated spin bath decoherence model is proposed.

In the first part of the thesis, the magnetization of the [Mn4]2 dimer under

external magnetic field is investigated. Alternative entangled spin states involved in

quantum tunnelings are identified by means of the exact solution of the Schrödinger

equation and the Landau-Zener-Stückelberg method.

Later, a decoherence model is introduced in which the interaction between the

single molecule magnet (central spin) and spin bath is mediated by phonons in a

coherent state or thermal distribution. It is observed that the decoherence factor

decays in a Gaussian fashion and it becomes independent of the phonon frequencies

at short times for coherent states and low temperature thermal distribution. In the

former case, if the phonon energies are much larger than spin-phonon coupling or

bath spins are fully polarized, decoherence time becomes independent of the initial

phonon state. For the thermal state case, phonons play more important role in

decoherence with increasing temperature. Possible effects of the temperature on

spin bath contribution to decoherence is discussed. Then, the effect of entangled

environment on decoherence is analyzed. Entanglement within environment is shown

to reduce the decoherence of central spin. Also, the entanglement dynamics of the
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central bipartite spin system is studied. Classification of the Bell states is examined

for common spin bath, and separate spin baths.

Last part of the thesis is the analysis of dephasing in entangled qutrits (three

level quantum systems) under the classical noise, and quantum decoherence. Density

matrix formalism is shown to give equivalent results for both cases. For common

and separate baths, robust and fragile Bell-like qutrit states were determined, and

Horodecki’s bound entangled state is shown to be more robust to decoherence in

the latter case.
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TEK MOLEKÜL MIKNATISLARDA EŞEVRESİZLİK VE DOLAŞIKLIK

Özgür Bozat

Malzeme Bilimi ve Mühendisliği, Doktora Tezi, 2008

Tez Danışmanı: Doç. Dr. Zafer Gedik

Anahtar Kelimeler: eşevresizlik, dolaşıklık, kuantum tünnellemesi, tek molekül

mıknatıs, spin banyosu, fonon.

Özet

Tek molekül mıknatıslar kuantum ve klasik özellikler gösteren yeni mezoskopik

malzemelerdir. Bu sistemlerdeki eşevresizlik ve dolaşıklık mekanizmalarını açıklaya-

bilmek kuantum bilgi teknolojilerindeki uygulamalar için çok önemlidir. Bu tezde

tek molekül dimeri [Mn4]2’deki mıknatıslanmanın kuantum tünellemesi çalışıldı.

Mevcut kuramların değiştirilmesini gerektiren son deneylerden hareketle fonon yar-

dımlı spin banyosu eşevresizlik modeli önerildi.

Tezin ilk kısmında [Mn4]2 dimerinin mıknatıslanması dış manyetik alan altında

incelendi. Schrödinger denkleminin tam çözümü ve Landau-Zener-Stückelberg ku-

ramı uygulanarak kuantum tünellemesinde bulunan alternatif dolaşık spin halleri

belirlendi.

Ardından tek molekül mıknatıs (merkezi spin) ve spin banyosunun fononlar

yardımıyla etkileştiği eşevresizlik modeli sunuldu. Fononlar eşevreli halde veya

ısıl dağılımda varsayıldı. Kısa zamanlarda, eşevreli haller ve düşük sıcaklık ısıl

dağılımları alındığında eşevresizlik çarpanının Gauss türünde ve fonon frekansların-

dan bağımsız azaldığı gözlendi. Eşevreli durumda, fonon enerjileri spin-fonon et-

kileşmesinden çok büyük olduğunda veya banyo spinleri tamamen kutuplaştığında,

eşevresizlik zamanının başlangıç fonon hallerinden bağımsız olduğu tespit edildi. Isıl

hallerde artan sıcaklıkla beraber fononların eşevresizlikteki etkisinin de daha önemli

olduğu görüldü. Spin banyosunun eşevresizliğe katkısının sıcaklıkla değişimi tartı-

şıldı. Sonrasında dolaşık çevrenin eşevresizliğe etkisi incelendi. Dolaşık çevrenin

merkezi spinin eşevresizliğini azalttığı gözlendi. Ayrıca iki parçalı merkezi spin

sisteminin eşevresizliği çalışıldı. Ortak ve ayrı spin banyolarında Bell hallerinin

sınıflandırılması incelendi.
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Tezin son kısmında dolaşık kutritlerde (üç seviyeli kuantum sistemleri) evre

kaybı klasik gürültü ve kuantum eşevresizliği altında analiz edildi. Yoğunluk matrisi

yönteminin iki durum için de denk sonuçlar verdiği gösterildi. Ortak ve ayrı spin

banyolarında kırılgan ve dayanıklı Bell benzeri kutrit halleri belirlendi. Horodecki’-

nin bağlı dolaşık durumlarının ortak banyoda eşevresizliğe daha dayanıklı olduğu

gösterildi.
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making everything beautiful, cheerful and hopeful.

Finally, my deepest gratitude goes to my family. I have been extremely fortunate

to be surrounded by these amazing people. Once again, it is my pleasure to dedicate

this work to them.

This work has been supported by the Scientific and Technological Research Coun-

cil of Turkey (TUBITAK) under grant 107T530.

ix



Contents

Abstract iv
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CHAPTER 1

Introduction

At the beginning of the 20th century most physicists believed that they well un-

derstood all the underlying fundamental rules of the nature. There were left just

small details to be researched. However, this all changed with the paradigm shift

from classical mechanics to quantum mechanics. Although this new theory was

completely counter-intuitive to our experiences in the macroscopic world, to date,

there is no single experiment contradicting the predictions of quantum mechanics.

One of the most bizarre properties of the quantum mechanics is the superposition

principle which is the main reason of its inherently probabilistic nature. Absence

of the superpositions in the macroscopic domain has been a long standing prob-

lem. Understanding the transition from quantum to classical (and the measurement

problem in this context) is still the fundamental issue concerning the foundations of

quantum mechanics. Copenhagen interpretation of the quantum mechanics, which

assumed a clear distinction between quantum and classical world, has never been

satisfactory [1]. However, the decoherence program, introduced by Zurek at 1981,

is considered to solve most of this puzzle [2, 3]. This new approach does not as-

sume any modification to standard quantum theory. Its main theme is simply that

“no quantum system can be considered to be isolated from environment”. Idealized

notion of isolated physical systems has always been the guiding principle since the

foundations of modern science. Indeed it was the reasonable approximation for the

early years of the quantum theory where the experiments are usually performed on

the microscopic systems. At these scales, physical systems do not interact much

with their environments, and this leads to the observation of quantum effects. How-

ever, with increasing size of the system, it is no more possible to consider them as
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isolated. This openness of the physical systems results in the lost of their coherence

between the superposed states, and their behaving like classical objects.

Quantum entanglement is another important phenomenon intrinsic to quantum

theory. Entanglement between two systems lead to a strong correlations among

them in such a way that it is no more possible to attribute any physical description

to the individual systems before the measurement, even when they are spatially well

separated and do not interact. This strange behavior has been long discussed since

the famous paper written by Einstein, Podolsky, and Rosen (EPR) in 1935 [4]. EPR

proposed a thought-experiment with two entangled particles to demonstrate the

lack of completeness of quantum mechanics. Although they considered the quantum

mechanics as a correct physical theory, they concluded that it is unsuccessful because

it is not complete. There were attempts to eliminate these seemingly non-local

correlations, which were referred by Einstein as “spooky action at a distance”, by the

introduction of the local hidden variables. However, in 1964, John Bell introduced

an inequality that must always be satisfied by local hidden variable theory while it

can be violated by quantum mechanics [5]. Later it has been shown experimentally

many times the violation of these inequalities thus disproving the existence of local

hidden variables [6, 7, 8, 9, 10].

Quantum mechanics has had a profound influence on the era of electronic revo-

lution and the photonics. Now it is warming up for the information age. Quantum

computing, quantum communication, and quantum cryptography are rapidly evolv-

ing areas connecting information science and quantum mechanics [11]. For example

in quantum computing, information is not manipulated discretely, as a series of

zeros and ones (bits), but as continuous superpositions of them (qubits) where the

number of possibilities is exceedingly greater. Various quantum algorithms has been

proposed so far. One of them is Shor’s algorithm in which the factorization of inte-

ger number can be performed exponentially faster than the best classical factoring

algorithms [12]. This can cause a serious threat to electronic privacy and security

since widely used public-key cryptography schemes are based on the difficulty of

factoring integers.

There are numerous candidates for the physical realization of quantum comput-

ers. Among them, especially solid state systems (quantum dots, SQUID’s, NMR’s
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etc.) have attracted a great interest due to their scalability which is an indispensable

criterion for realistic quantum information processing. However, the most important

drawback of these systems is their relatively strong couplings to the environment.

Manipulating the spin degree of freedom, instead of charge degree of freedom, in

solid state systems is a very convenient strategy due to long spin coherence times

[13]. Recently, new type of magnetic materials, called as single molecule magnets

(SMM’s), has been the subject of intense research [14]. Bottom-up approaches en-

able to synthesize SMM’s with well defined spin quantum states. Some of these

molecules have spin dephasing times orders of magnitudes longer than the opera-

tion time of quantum logic gates [15, 16]. Therefore, they are the promising future

elements of the quantum information processing. Microscopic spin quantum tun-

neling events lead to the observation of the macroscopic quantum tunneling of the

magnetization [17, 18]. Tunneling mechanisms provide the quantum superpositions

that are required for the realization of qubits. Recently, SMM dimers have been syn-

thesized with entangled states due to intermolecular exchange couplings [19, 20, 21].

Entangled states are very important sources that can greatly enhance the use of the

quantum information protocols over the classical ones. Their presence is essential

for the realization of logic gates in quantum computers.

At temperatures well below the intramolecular exchange interaction energies,

magnetic properties of the SMM is determined primarily by its spin ground state.

Depending on the dominant type of the intra-molecular exchange interactions, fer-

romagnetic or antiferromagnetic, molecule can have high or low spin ground state,

respectively. While the qubits can be realized in both types from the lowest lying

spin states, qudits, multi dimensional quantum information processing units, can

be constructed only from the high spin molecules. Qudits have many advantages

over qubits. It is known that local realism is violated more strongly with increasing

system dimensions [22, 23]. Entangled qudits are more robust to noise [23, 24], and

they enhance the security in quantum cryptography [25, 26, 27, 28, 29, 30, 31, 32].

Also, by increasing the efficiency of quantum gates, they are promising elements for

scalable quantum computers [33].

Objective of this thesis is three fold: Firstly, we aim to understand the details

of the quantum tunneling of magnetization in [Mn4]2 dimer. Superexchange cou-
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plings between Mn4 SMM’s link two molecules and lead to entangled spin states

of the dimer. Clear identification of the entangled spin states taking part in quan-

tum tunneling events is very important for the proper manipulation of them in

quantum information protocols. We observe the contributions of the tunneling spin

states that were omitted in previous studies. By examining the magnetization of the

dimer, we also show that the multi-level spin states of the dimer can be considered

as a network of two-level resonance points. Secondly, we investigate the decoherence

process in SMM’s. Understanding the mechanisms of interaction with environment

is crucial for the implementation of error correction techniques [34] and/or error

avoiding strategies [35]. Recent experiments showed that at very low temperatures

(∼ 20 mK), where only fluctuations are due to quantum tunnelings of SMM’s spins,

phonons have still critical effects on the decoherence of SMM’s spins. It is speculated

that relaxation of the electronic spins of SMM’s to environmental spins might be

possible through the lattice phonons. Accordingly, we propose a new decoherence

model where the interaction between SMM (modeled as two-level system) and envi-

ronmental spins is mediated by phonons. We analyze this model in detail for various

central system and environmental states, and also for different limits of parameters

in Hamiltonian. Final and the third objective of this thesis is to investigate the

dephasing in entangled qutrits. As explained in the previous paragraph, making use

of the excited levels of SMM has numerous advantages. Hence, we study the loss

of phase relations in entangled qutrits due to interaction with classical noise and

quantum environment. It is shown that, at the level of density matrix formalism,

both external effects have same results on the central system.

Outline of this thesis is as follows: From Chapter 2 to Chapter 5, we review the

preliminary concepts underlying the core study of the thesis. Chapter 2 covers the

basic formalism of the quantum states. After presenting the distinction between

the classical and the quantum states, we explain briefly the superposition princi-

ple. Then, we review the density matrix formalism and its relation to composite

systems. Chapter 3 discusses quantum entanglement. First we give the formal defi-

nition of entanglement. Then, we summarize the ways of detecting and quantifying

the entanglement for bipartite pure and mixed states. In Chapter 4, we explain

the decoherence program. We introduce the concept of decoherence in relation to
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quantum measurements. Also, a simple decoherence model is explained in order to

understand the details of the program. Chapter 5 surveys the magnetization tunnel-

ing in SMM’s. Decoherence and entanglement of magnetic molecules is discussed.

Special emphasis is given to [Mn4]2 dimer in which two SMM’s are in an entangled

state. In Chapter 6, we study the spin tunneling mechanism in [Mn4]2 both numeri-

cally and analytically. We resolve the spin states in which quantum tunnelings take

place. In Chapter 7, we propose a new decoherence model inspired by the recent

experiments on SMM’s where the decoherence due to environmental nuclear spins

are mediated by phonons. We also investigate this decoherence model separately

both for an entangled central system, and an entangled environment. In Chapter 8,

we study the dephasing of the entangled qutrits (three level system), under classical

noise and quantum decoherence. We classify the entangled states according to their

robustness under such external effects.
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CHAPTER 2

Quantum States

2.1 Quantum versus Classical States

In classical physics there is a one-to-one correspondence between the mathematical

description of the state of a physical system and its observable quantities. Any

system can be described completely by these measured quantities such as position,

momentum, etc. However, in quantum mechanics, a physical system is described

by an abstract state which is a vector in Hilbert space. Connection to the physical

world is obtained through introduction of observables represented as Hermitian op-

erators in Hilbert space. A measurement done on a system leads to the collapse of its

state into one of the eigenstates of the measured observable with probability given

by Born rule. These eigenstates have certain eigenvalues corresponding to measured

physical quantity. So, connection of the quantum state to objective physical real-

ity is obtained indirectly through introduction of measurement process. Still, this

connection is not complete since many observables are mutually incompatible with

each other. Mathematically, this is represented as non-commutativity of observable

operators. Therefore, a quantum state can be a simultaneous eigenstate of a few

observables. Unlike classical case, this prevents cataloging of an arbitrary number

of physical properties to the system.

The probabilistic nature of quantum states has been interpreted as incomplete-

ness of quantum mechanics in describing physical systems. One of the scientists

sharing this idea was Einstein who had a famous quote “God does not play dice

with the universe”. Randomness of the measurement results on identically prepared

systems tried to be explained by some hidden variable theories. They consider that
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although systems have same quantum states, each system have some hidden vari-

ables whose values determine the result of the experiment. So, complete description

of the physical system would consist of both quantum state and hidden variables.

This would solve the indeterministic nature of quantum mechanics. However, as

explained shortly with Bell’s inequalities in the previous chapter, according to our

current knowledge, quantum state provides a complete description of the physical

system.

2.2 Superposition Principle

The superposition principle is one of the most fundamental concepts in quantum

mechanics. It states that any two quantum states, |ψ1〉 and |ψ2〉, can be linearly

combined in the form c1|ψ1〉+ c2|ψ2〉, with complex coefficients c1 and c2, to form a

new quantum state. By induction, the principle can be applied to arbitrary number

of states such that if the states |ψn〉 represent a set of physical systems , then the

superposition |Ψ〉 =
∑

n cn|ψn〉 also become a possible physical state. This principle

emerges form the linearity of the Hilbert space which is formed by state vectors.

The superposition state represents the simultaneous presence of its components and

does not correspond to a classical ensemble of its components. If the latter was the

case, namely proper mixture, then the superposition state would be in only one of

its components with a certain probability. However, this is not the case. In order

to distinguish quantum superposition from classical statistical distribution of the

component states, the simultaneous presence of the components is referred to as a

coherent superposition. Stern-Gerlach experiment, carried out by O. Stern, and W.

Gerlach in 1922, is a very important and instructive demonstration verifying the

existence of quantum superpositions. Another significant example is the double slit

experiment performed by Akira Tonomura and co-workers at Hitachi in 1989 [36].

They observed interference patterns by sending the electrons through the double slit

one at a time.
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2.3 Density Matrix

In many situations quantum systems cannot be described by pure quantum states.

These cases arise when we have insufficient information about which pure state

describes the system. Then, we expect that the system is in one of the pure states

|ψn〉, with respective probabilities pn. Such a classical ensemble of pure states is

called mixed state and represented by density matrix, or density operator, given by

ρ =
∑
n

pn|ψn〉〈ψn|, (2.1)

which is positive semi-definite Hermitian matrix with trace one. Density matrix

representation is the most general description of the quantum system. Pure state

corresponds to the case where only one of the probabilities is equal to one while the

rest of them is equal to zero. Considering a pure state |Ψ〉 =
∑

n cn|ψn〉, its density

matrix ρ becomes

ρ = |Ψ〉〈Ψ| =
∑
m,n

cnc
∗
m|ψn〉〈ψm|. (2.2)

The off-diagonal terms with m 6= n are referred to as interference terms since they

represent the quantum coherence between the different components.

2.4 Composite Systems

Now we give the description of a composite quantum system made up of two or more

distinct physical systems. If we have N subsystems si, i = 1, . . . , N with correspond-

ing Hilbert spaces Hsi of dimensions dsi , the Hilbert space of composite system HS

is the tensor (or direct product) product of the Hilbert spaces of subsystems, i.e.,

HS = Hs1 ⊗ · · · ⊗ HsN , (2.3)

having dimensions of ds1× . . .×dsN . Denoting the basis states of each subsystem as

|ji〉si with ji = 1, . . . , dsi , new basis of the composite system becomes |j1〉si ⊗ . . .⊗

|jk〉sN . If each subsystem is prepared in the states ρsi the joint density matrix of

the total system ρS is given as

ρS = ρs1 ⊗ · · · ⊗ ρsN . (2.4)

This density matrix corresponds to a state where none of the subsystems is correlated

to another. In this simple case it is straightforward to retrieve the density matrix of
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any subsystem that is interested. However, when the subsystems are correlated with

each other, either classically or quantum mechanically, it is not trivial to retrieve

the density matrix of the desired subsystem. In this case the density matrix of the

subsystem is obtained via introducing the partial trace operation. This matrix is

called the reduced density matrix. For instance, reduced density matrix of the nth

subsystem is given by

ρsn = Trs1...sn−1,sn+1,...sN (ρS) , (2.5)

where Trs1...sn−1,sn+1,...sN is the partial trace operation over the whole subsystems

except sn, defined by

Trs1...sn−1,sn+1,...sN

(
|φ1〉 〈φ′1|s1 ⊗ . . .⊗ |φn〉 〈φ

′
n|sn ⊗ . . .⊗ |φN〉 〈φ

′
N |sN

)
= |φn〉 〈φ′n|sn

×Tr
(
|φ1〉 〈φ′1|s1 ⊗ . . .⊗ |φn−1〉

〈
φ′n−1

∣∣
sn−1
|φn+1〉

〈
φ′n+1

∣∣
sn+1
⊗ . . .⊗ |φN〉 〈φ′N |sN

)
,

(2.6)

where |φi〉 〈φ′i|si is any projector in the Hilbert space of subsystem si. Although the

reduced density matrix cannot be considered as a complete description of the subsys-

tem, this formalism gives the correct measurement statistics for the measurements

performed on subsystems. It allows to address the components of the composite

system, while this is not possible with the state vector representation.
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CHAPTER 3

Quantum Entanglement

Quantum entanglement is considered to be the most bizarre aspect of quantum

theory. In Schrodinger’s words “Entanglement is not one but rather the charac-

teristic trait of quantum mechanics”. Entanglement refers to the situation where

a composite system cannot be seen simply as the summation of its constituents.

Subsystems cannot be attributed to quantum states of their own. It is only possible

to talk about the state of the composite system. Subsystems are correlated such a

way that measurement performed locally on one subsystem leads to a state reduc-

tion (collapse) of the whole system even when there is no interaction between the

subsystems. Entanglement is also the central process underlying the decoherence

phenomenon. In order to understand the basics of entanglement, we consider the

simplest case of entanglement, namely the bipartite system which is composed of

two level systems.

Let us consider two spin-1
2

particles with basis |0〉si and |1〉si , i = 1, 2, corre-

sponding to spin pointing up and spin down, respectively. First, we consider the

pure states of the composite system. There are two distinct kinds of states for pure

states. First one is product state, or separable state, of the form

|Ψ〉 = |0〉s1 ⊗ |1〉s2 , (3.1)

which is written as tensor product of the subsystem states. For this state, we

have maximal knowledge about the state of each subsystem and the composite

system. The measurement results on different components are uncorrelated since a

measurement performed on a component does not affect the others. However, it is

not always possible to write the pure state of the total system as tensor product
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of the subsystem states. Theses states are called entangled states. For instance

consider the following states which are called as Bell states

|Ψ±〉 =
1√
2

(|0〉s1 ⊗ |0〉s2 ± |1〉s1 ⊗ |1〉s2) (3.2)

|Φ±〉 =
1√
2

(|0〉s1 ⊗ |1〉s2 ± |1〉s1 ⊗ |0〉s2). (3.3)

One of the most striking facts about these states is that it is not possible to attribute

any physical state to any subsystem. Although we have complete knowledge about

the composite system, we have insufficient information about the subsystems. Local

measurements performed on subsystems lead to a collapse in the total system state.

For mixed states of bipartite system, a separable state is defined as a convex

sum of the product states ρs1 ⊗ ρs2 such that

ρ =
∑
i

piρ
i
s1
⊗ ρis2 , (3.4)

where convexity implies
∑

i pi = 1 with pi > 0. Any state that cannot be written in

this convex decomposition form is defined to be an entangled state [37].

Extension of the entanglement definition to a multi-particle systems composed

of more than two subsystems is straightforward. For n particle pure states, any

state that cannot be written in a tensor product form |ψ〉s1|ϕ〉s2 . . . |φ〉sn , and for

mixed states any state that cannot be decomposed into a convex form of product

states
∑

i piρ
i
s1
ρis2 . . . ρ

i
sn is defined as an entangled state1. However, entanglement

of identical particles is a complicated problem. Correct characterization of the

entanglement must exclude the non-factorization due to (anti)symmetrization [38].

3.1 Separability Problem

Although the definition of entangled and separable state is clear, in general it is

difficult to determine whether a given state is entangled or separable.

Any bipartite pure state can be expressed as a sum of bi-orthogonal terms such

that

|Ψ〉 =
d∑
i

λi|ϕi〉s1|φi〉s2 , (3.5)

1In the rest of the thesis, except certain cases, we will not explicitly write the tensor product

symbol ⊗ for the purpose of shorter notation.
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where Schmidt coefficients λi are non-negative real numbers satisfying
∑

i λ
2
i = 1

[39]. Here the summation index runs up to the dimension of the smaller subsystem.

Schmidt coefficients can be easily computed from the reduced density matrices since

ρs1 =
∑

i λ
2
i |ϕi〉〈ϕi|s1 and ρs2 =

∑
i λ

2
i |φi〉〈φi|s2 . The number of nonzero values λi is

referred to as the Schmidt number (or Schmidt rank). The Schmidt number allows us

to distinguish separable states from entangled states. The state having the Schmidt

number greater than one is the entangled state. Also, the maximally entangled

state corresponds to one with all λi = 1/d. For the mixed states separability is still

an unsolved problem. However, there are several criteria based on positive maps

that can detect the large class of entangled states. One of them is positive partial

transpose (PPT) criterion where the presence of at least one negative eigenvalue of

the partial transposed density matrix implies entanglement [40, 41]. While PPT

criterion is necessary and sufficient condition for bipartite system with dimensions

2×2 and 2×3, for higher dimensions it is only necessary one, i.e., there are entangled

states having PPT which are called as bound entangled states [42]. Existence of

bound entangled states having negative partial transpose is still an open problem

[43, 44, 45]. Bound entangled states are not distillable, i.e., it is not possible to obtain

any Bell state from arbitrary large number of copies of a given bound entangled state

using local operations and classical communication (LOCC). However, it is possible

to use them in quantum teleportation, and quantum cryptography. [46, 47, 48].

There is another criterion called as realignment criterion [49, 50] which is able to

detect bound entangled states. It is defined as

R(ρ) = max{0, ‖ρR‖ − 1}, (3.6)

where ρR is defined as operation of realignment, i.e.; (ρR)ij,kl = ρik,jl, and double

braces represents the trace norm of the operator. For separable states ‖ρR‖ is always

smaller than one.

Previous criteria usually require the reconstruction of the whole density matrix

which is a difficult experimental problem. Instead, it is also possible to detect

some of the entangled states by measuring the few observables of the system. This

approach is called as entanglement witnesses [51]. An entanglement witness is a

Hermitian operator such that its expectation value is negative for some entangled

states while positive for every separable state.
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3.2 Quantification of Entanglement

Quantification of the entanglement is one of the problems in quantum information

with no general solution (for review see [52, 53]). Formally, entanglement measure

is a nonnegative real function of a state which does not increase under LOCC, and

is zero for separable states. There are two approaches to quantify the entanglement,

operational approaches, and abstract approaches: In the former case, the entan-

glement of the state is measured according to its performance on a task which is

impossible without the entanglement. Entanglement of formation [54], distillable

entanglement [55], entanglement cost [55], and entanglement of assistance [56] are

some of the examples for operational measures. Abstractly defined measures are

listed as Von Neumann entropy [57, 58], concurrence [59], negativity [60], logarithm

of the negativity [52], squashed entanglement [61], Rényi entropy [62], and relative

entropy of entanglement [63]. Generally, abstract measures are bounds for oper-

ational measures. For example logarithm of the negativity is an upper bound to

teleportation capacity [60], and an asymptotic entanglement cost under the set of

PPT operations [64]. Another example is relative entropy of entanglement which is

an upper bound for distillable entanglement [65].

For a bipartite system composed of two-level systems, concurrence is an easily

computable entanglement measure [59]. For pure states, this measure is given as

C(Ψ) = |〈Ψ|Ψ̃〉|, (3.7)

where |Ψ̃〉 = σy ⊗ σy|Ψ∗〉 is referred to as the spin-flipped state. Here, σy is the

second Pauli matrix, and |Ψ∗〉 is the complex conjugate of |Ψ〉. Generalization to

mixed state is obtained through convex roof construction: from the set of average

concurrences, where each elements is obtained from different decomposition of the

total density matrix ρ, minimum valued is chosen,

C(ρ) = inf
∑
i

piC(Ψi), (3.8)

where ρ =
∑

i |Ψi〉〈Ψi|. Then, the concurrence is simply given by

C(ρ) = max{0, λ1 − λ2 − λ3 − λ4}, (3.9)

where the λi are the square roots of the matrix ρρ̃, indexed in order of decreasing

size. Here, ρ̃ is spin-flipped density matrix given by σy ⊗ σyρ∗σy ⊗ σy, where ρ∗ is
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the complex conjugate of ρ. Also, the entanglement of the formation Ef can be

expressed in terms of the concurrence as Ef = h(C(ρ)), where h(x) = −x log2 x −

(1− x) log2 (1− x) has the form of binary entropy function.

Another commonly used entanglement measure is the negativity [60]

N(ρ) = max{0, ‖ρ
Tsi‖ − 1

2
}, (3.10)

where ‖ρTsi‖ represent the trace norm of the partial transposed density matrix with

respect to any subsystem. For the mixed states of two qubits, the negativity is

bounded by the concurrence N(ρ) ≤ C(ρ), where the equality holds for the pure

states [66].

14



CHAPTER 4

Quantum Decoherence

So far we introduced the preliminary concepts underlying the mechanism of decoher-

ence. Now we are ready to explore the details of decoherence phenomena which is the

key element of quantum to classical transition (for review see [67, 68]). We explore

this transition in scope of measurement processes which converts the quantum states

and quantum correlations into classical definite outcomes. Decoherence is nothing

but an irreversible process of a measurement like interactions between the system

and environment. So, in this chapter we first explain the quantum measurements,

and then we explain the emergence of classical properties through decoherence.

4.1 Dynamics of Quantum Measurements

The standard description of measurement was introduced by von Neumann in 1932

[57, 58]. In contrast to Copenhagen interpretation that had assumed the measure-

ment apparatus must be classical, von Neumann treated both the system and the

apparatus in entirely quantum mechanical terms.

Consider a system with Hilbert space Hs spanned by orthonormal states |si〉

which our detector with Hilbert space Hd spanned by orthonormal states |di〉 is

built to discriminate. Assuming that detector start form initial ready state |d0〉,

measurement interaction between the system and the detector will be of the form

|si〉|d0〉 → |si〉|di〉. (4.1)

As a result of the measurement there is one to one correspondence between the

state of the system and the state of the detector. While the interaction due to the
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measurement changes the state of the detector, the state of the system remains same.

This type of measurement is called ideal von Neumann quantum measurement. It is

also referred to as pre-measurement corresponding to the unitary part of the whole

measurement process. If the system starts from a superposition state, the linearity

of the Schrödinger equation implies the following scheme(∑
i

ci|si〉

)
|d0〉 →

∑
i

ci|si〉|di〉. (4.2)

Resulting state corresponds to an entangled state of the system and detector. It

still does not represent a certain measurement result. Rather it represents the

superposition of all possible measurement results. Such a superposition involving a

macroscopic measurement device (Schrödinger cat states) is not something observed

in nature. This nonobservance of the interference terms in macroscopic regime is

one of the problems of von Neumann’s measurement scheme. Other problem with

this treatment is the so called basis ambiguity or preferred basis problem. In general,

final state of the measurement scheme in Eq. (4.2) can be written in different bases

such that ∑
i

ci|si〉|di〉 =
∑
i

c′i|s′i〉|d′i〉. (4.3)

Each decomposition of the final state corresponds to different measured quantity.

So, paradoxically, it is not possible to talk about which particular observable of the

system is measured during the measurement process. Also, this freedom of choosing

basis implies that the detector can simultaneously measure the non-commuting ob-

servables of the system, in apparent contradiction with the Heisenberg uncertainty

relation.

Essential problem in von Neumann’s treatment of measurement was the igno-

rance of the openness of the macroscopic measurement device. This deficiency was

realized by Zurek via the introduction the decoherence theory [2, 3]. He extended

the von Neumann’s measurement scheme by introducing the environment as a third

element in addition to central system and detector. Therefore, for an environment

coupled to a detector, the new measurement scheme will be the following,(∑
i

ci|si〉|di〉

)
|E0〉 →

∑
i

ci|si〉|di〉|Ei〉. (4.4)
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Corresponding density matrix of the combined system-detector will be

ρs,d =
∑
n,m

c∗mcn|sn〉〈sm| ⊗ |dn〉〈dm|〈Em|En〉. (4.5)

In general, different macroscopic environmental states will be orthogonal to each

other in time, i.e., 〈Em|En〉 ≈ δmn, then off-diagonal terms giving rise to an inter-

ference disappear, and above density matrix takes the form

ρs,d =
∑
n

|cn|2|sn〉〈sn| ⊗ |dn〉〈dn|, (4.6)

which only preserves the classical correlations between system and the detector.

Final density matrix corresponds to an ensemble of measurement results |sn〉|dn〉. As

a result only the single states |dn〉 remain pure during time evolution. These states

emerge due to special form of the interaction Hamiltonian giving rise to evolution

in Eq. (4.4). They are called pointer basis or preferred basis. So, the decoherence

theory solves both issues related to measurement problem, namely, nonobservance

of the macroscopic interferences and basis ambiguity.

4.2 Simple Decoherence Model

Now we give simple example of decoherence model first introduced by Zurek in 1982

[3]. Although this model is simple and easily solved, it is important in capturing the

essentials of decoherence theory, and realistic enough to explain certain experiments

[69, 70]. It consists of a central two-level system S interacting with an environment

E composed of N other two-level systems. Such an environment is referred to as

“spin bath”. Numerous physical systems can be represented by quantum two-level

system, i.e., spin-1
2

particle, energy levels of atom, polarization of photon, position

of electron in double quantum dot, etc. For the current discussion, we consider the

most straightforward one, namely spin-1
2

particles, as our physical systems for both

central system and environment.

We identify the basis states of S by | ⇑〉 and | ⇓〉, while we denote the basis states

of environment with | ↑〉k and | ↓〉k, k = 1, . . . , N . Total system is described in 2N+1

dimensional Hilbert space H = Hc⊗HE1⊗· · ·⊗HEN , where Hc, and HEi represent

the Hilbert spaces of the central system and ith environmental spin, respectively. We

assume that evolution of the total system is dominated by an Ising-like interaction
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Hamiltonian Hint between the central system and bath spins. Therefore, we neglect

the intrinsic dynamics of them and consider that the self Hamiltonians of subsystems

disappear, Hc = 0, HEi = 0. Thus, the Hamiltonian of the total system has the

form

H = Hint = (| ⇑〉〈⇑ | − | ⇓〉〈⇓ |)⊗
N∑
k=1

gk(| ↑〉〈↑ | − | ↓〉〈↓ |)k

= cz ⊗
N∑
k=1

gkskz. (4.7)

Here cz, and skz are z-components of pauli operators in the form of1 0

0 −1

 (4.8)

for central system and kth bath spin, respectively. | ⇑〉 and | ⇓〉 (| ↑〉 and | ↓〉) are

the eigenstates of cz (skz). gk is the coupling strength between central spin and kth

spin which is a constant scalar.

According to our model Hamiltonian, environment monitors the cz observable

of the central system. Therefore, the eigenstates of the cz will be the dynamically

selected preferred basis. While they will be robust to decoherence, any superposition

of them will be affected by the environment. Also, note that cz commutes with the

total Hamiltonian. This means that there will not be any change in the population

of the central system, i.e., there will not be any exchange of energy between central

system and environment. This type of models are referred to as pure dephasing

model where decoherence takes place without any dissipation.

Assume that initial state of the total system is in the product form

|Ψ(0)〉 = (a⇑| ⇑〉+ a⇓| ⇓〉)
N⊗
k=1

(αk| ↑〉k + βk| ↓〉k), (4.9)

where the normalization of the wavefunction is satisfied by |a⇑|2 + |a⇓|2 = |αk|2 +

|βk|2 = 1. Time evolution of the state is given by applying the propagator e−iHt to

the initial state

|Ψ(t)〉 = e−iHt|Ψ(0)〉 = a⇑| ⇑〉|E⇑(t)〉+ a⇓| ⇓〉|E⇓(t)〉, (4.10)

where

|E⇑(t)〉 = |E⇓(−t)〉 =
N⊗
k=1

(αke
igkt| ↑〉k + βke

−igkt| ↓〉k). (4.11)
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In time, environmental wavefunctions, |E⇑(t)〉 and |E⇓(t)〉, become orthogonal to

each other. This leads to creation of entanglement between the central system and

the environment. Reduced density matrix of the central system is given by

ρc(t) = TrEρ(t) = TrE|Ψ(t)〉〈Ψ(t)|

= |a⇑|2| ⇑〉〈⇑ |+ a⇑a
∗
⇓r(t)| ⇑〉〈⇓ |+ a∗⇑a⇓r

∗(t)| ⇓〉〈⇑ |+ |a⇓|2| ⇓〉〈⇓ |. (4.12)

The coefficient r(t) determines the magnitude of the off-diagonal interference terms

an it is called as decoherence factor. It is value is given by the overlap of the

environmental states corresponding to pointer states

r(t) = 〈E⇑|E⇓〉

=
N∏
k=1

(|αk|2ei2gkt + |βk|2e−i2gkt). (4.13)

For sufficiently large N and random distribution of the couplings gk, r(t) follow an

Gaussian decay with time [71]

|r(t)| ≈ e−8t2
∑
|αk|2|βk|2g2

k . (4.14)

Thus, r(t) decays rapidly to zero, and leaves the ρc(t) diagonal in a mixture of

the pointer states. Note that the r(t) in Eq. (4.13) is a sum of periodic functions.

This means that the r(t) itself is also periodic in time, and it will eventually return

its initial value of one. This period is called as recurrence time τrec. This time takes

a small value if the initial state and the distribution of the coupling parameters

are highly ordered. However, this is not the case for realistic systems. Indeed,

τrec is generally extremely long time and of the Poincaré type with τrec ∝ N !.

For macroscopic system τrec can exceed the lifetime of the universe. Therefore,

decoherence is an irreversible process.

4.3 Modeling the Environment

Although decoherence processes including the interaction with environment are com-

plicated many body problems to study, it is generally possible to simplify them by

mapping onto a few canonical models. Environment can be modeled as a collection

of spin-1
2

particles when the localized modes (spatially confined wavefunctions), such
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as nuclear spin, paramagnetic spins, and defects are important [72, 73, 74]. In the

opposite situation where the delocalized modes (spatially spread out wavefunctions)

are dominant, such as electrons, phonons, and photons, it is possible represent envi-

ronment as a collection of harmonic oscillators [75, 76, 77]. While both environment

models affect the central system severely, their internal dynamics are significantly

modified only for the case of spin bath. Among delocalized models, spin-boson

model has been studied extensively, where the central two level system is linearly

coupled to the environment of non-interacting harmonic oscillators [78, 79]. At low

temperatures localized modes are typically a convenient environmental model [80].

In spite of numerous theoretical works, including both analytical approaches and

numerical simulations [81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91], spin bath decoher-

ence is still a hot subject. This is due to the rich dynamics of spin models with

different intra-bath couplings.
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CHAPTER 5

Single Molecule Magnets

Magnetism is one of the important playgrounds to study the transition from macro-

scopic classical properties to microscopic quantum properties. Single molecule mag-

nets (SMM’s) are mesoscopic materials showing both classical and quantum prop-

erties (for review see [14]). While they have classical well defined magnetization

direction, and exhibit hysteresis loops, they also show quantum tunneling of mag-

netization and quantum phase interference.

SMM is organic molecule with magnetic centers which are metal ions with un-

paired electrons. These ions are strongly coupled to each other mostly via oxygen

atoms that can give rise to net spin S. The molecule possess uniaxial magnetic

anisotropy due to crystal field effects [92] which leads to an energetically favor-

able easy-axis that the spin is preferentially aligned parallel to it. This structure is

coordinated by a shell of organic ligands protecting the magnetic core from environ-

ment. Therefore, at temperatures well below the intramolecular exchange interac-

tion energies, it can be considered as well isolated single domain magnetic particle.

These identical nanomagnets can be packed in three dimensional crystalline struc-

ture where all the molecular easy-axes are aligned almost in the same direction.

Hence it is possible to make an macroscopic observations while revealing the mi-

croscopic dynamics inside the nanomagnets. Below their blocking temperatures TB

(at the order of 1 K), they show very slow relaxation of the magnetization. First

observation of the hysteresis loop was at 1993 [93]. While the origin of the hysteresis

loops in traditional magnets are long range interactions, this observation was due

to only short range interactions at the molecular level. Hysteresis loops imply that

they can also be considered as an alternative to classical magnets for information
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storage. It is also possible to work on these nanomagnets in various geometries other

than 3D. Recently, it has been shown that they can be deposited on a surface to

form two dimensional arrays [94]. Also, single electron transistor based on a SMM

has been realized experimentally [95, 96].

Although SMM’s have similar features to classical magnets, they also have many

distinct characteristics peculiar to quantum mechanics. Spin tunneling is one of

them. It has been observed that there are regular steps at the hysteresis loops of

the magnetization [17, 18]. These steps are attributed to resonant spin tunnelings

which occurs when the energy levels of the spin states on the opposite sides of the

anisotropy barrier become degenerate. Another observed quantum effect is so called

Berry phase oscillations, alternating constructive and destructive interference of

different tunneling paths [97]. While these features make things more complicated

in terms of reliability of information storage, it also opens new paths to study

the transition from quantum to classical physics, and possible implementations as

quantum information units [98, 99, 100]. Indeed, SMM’s have been proposed as

potential candidates for implementation of the Grover’s search algorithm [100].

In this thesis we will focus on the high spin magnetic molecules where the ex-

change interaction between the core magnetic ions are predominantly ferromagnetic.

First we will review the basic properties of these magnetic molecules without con-

sidering the effect of environment. Our discussion will include special references

to molecules [Fe8O2(OH)12(tacn)6]Br8 (tacn:1,4,7-triazacyclononane) and [Mn12O12-

(CH3COO)16(H2O)4]·2CH3COOH·4H2O , in short Fe8, and Mn12, which are the

mostly studied SMM’s. Later we will discuss the effect of environmental interac-

tions on the dynamics of the SMM’s, and compare the theoretical studies with the

experimental results. We will see that current theoretical framework needs to be

extended to explain the recent observations on SMM’s.

At low temperatures, single magnetic molecules can be described by single spin

although they are composed of many spins. For instance Mn12 molecule is composed

of eight Mn3+ ions having spin 2, and four Mn4+ having spin 3/2. Corresponding di-

mension of the Hilbert space is equal to 108 which is a huge number even for today’s

fastest computers. But we know that at sufficiently low temperatures well below the

intramolecular superexchange energies, magnetic ions typically freeze along certain
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Figure 5.1: (a) Structure of Mn12 molecule. Small dark symbols are the bridging oxygen atoms

while the open symbols are acetate ligands. (modified from reference [101]) (b) Energy spectrum

of Mn12 molecule. Note that the tunneling splitting ∆E−10,10 ≈ 10−10 K between the states

|MS = −10〉 and |MS = 10〉 is not scaled in the figure for the purpose of visibility.

directions. Due to strong superexchange couplings between the ions, while eight

Mn3+ spins becomes parallel to each other, the other four Mn4+ become antipar-

allel to them. This leads to a ground state having total spin S which is equal to

8×(2)−4×(3/2)=10. So, it is possible to describe the molecule with effective single

spin Hamiltonian. Then, the lowest energy levels of the molecule can be described

approximately with the following Hamiltonian

H = −DS2
z − gµBBSz, (5.1)

where D is positive valued uniaxial anisotropy parameter, g is Landè g-factor, and

µB is the Bohr magneton. Uniaxial anisotropy parameter D is also called zero-field

splitting since it removes the degeneracy of the S multiplet. Approximate values of

D are 0.6 K and 0.3 K for Mn12 and Fe8, respectively. B is the external magnetic

field applied along the easy-axis. Since this Hamiltonian commutes with Sz operator,

they have the same eigenstates which are |MS = −S〉, |MS = −S + 1〉, . . . , |MS =

S − 1〉, |MS = S〉. Corresponding eigenvalues of the Hamiltonian are

EMS
= −DM2

S − gµBBMS. (5.2)

For B = 0, the resulting energy spectrum has S number of degenerate levels corre-

sponding to pairs having opposite signs of MS values. These degenerate levels are
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separated by an energy barrier due to uniaxial anisotropy barrier. Applying a mag-

netic field along the +z direction, while energy levels at the right side of the barrier

corresponding to positive MS values starts to decrease, energy levels at the left side

of the barrier corresponding to negative MS values starts to increase, leading to

population increase at the RHS of the barrier. If the temperature is much lower

than the energy barrier then the only populated energy level will be the state with

MS = S. In this way molecule will be totaly magnetized along the +z direction.

When the magnetic field is removed, the system relaxes to its thermal equilibrium

point. At high temperatures above TB, the relaxation rate τ−1 of the system is

given by Arrhenius law, τ−1 = τ−1
0 exp(−∆E/kBT ) where energy barrier ∆E has

maximum value of DS2 for integer S, and D(S2− 1/4) for half-integer S. So, these

molecules behave like classical superparamagnets.

What makes the SMM’s so interesting is that the relaxation of the magnetization

does not occur solely due to thermal processes. At low temperatures below TB,

these molecules were also relaxing due to purely quantum mechanical effect, namely

quantum tunneling mechanism. It has been realized that there were regular steps at

hysteresis loops in magnetization curves. These regular tunnelings were only possible

if the seemingly degenerate energy levels are coupled to each other. Indeed, there

are very small energy differences between these states, called “tunneling splitting”.

Lift of degeneracy is possible by introducing non-diagonal anisotropy terms to the

the naive Hamiltonian in Eq. (5.1). This non-diagonal term that does not commute

with Sz is

(S4
+ + S4

−) (5.3)

for Mn12 due to tetragonal symmetry of the lattice, where S± = Sx ± iSy, and

(S2
x − S2

y) (5.4)

for Fe8 due to a hard-axis anisotropy caused by a rhombic distortion. However,

terms imposed by the lattice symmetries are not sufficient to explain all the steps in

the hysteresis loops. Second and fourth order transverse terms cannot give rise to

the tunneling splittings between the spin states |MS〉 and |M ′
S = −MS + n〉, where

n is an odd number. Therefore, additional mechanisms must be incorporated to

explain these steps. Origin of these tunneling transitions is considered to be due to
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hyperfine interactions with magnetic nuclei, i.e. (1H, 2H, 13C, 55Mn), dynamic inter-

actions between the nuclei, and the dipolar couplings between different nanomagnets

at different lattice points. However, it is noted that tunneling splitting in nanomag-

nets are orders of magnitude smaller than the hyperfine and dipolar interactions.

For example, in Mn12, the tunneling splitting between |MS = −10〉 and |MS = 10〉

states is at the order of 10−10 K while the energy scale of the hyperfine and dipo-

lar interactions are at the order of 10−1 K. According to these huge mismatches

between energy scales, it is not expected to observe any tunneling. Nevertheless,

explanation to this problem came from the Prokof’ev and Stamp (PS) [72, 73, 74].

They attributed the observation of the tunneling to the fluctuating dynamics of the

nuclear spins. These nuclear dynamics continuously changes the energy levels at

the opposite sides of the barrier and create tunneling window at certain resonance

times. It results in the square-root law for the relaxation of the magnetization at

temperatures below TB. Assuming that the sample starts from fully magnetized

states, M(0) = Msat, short time relaxation is given as

M(t)/Msat = 1−
√
t/τ . (5.5)

The tunneling probabilities can be calculated by applying Landau-Zener-Stückelberg

(LZS) theory [102, 103, 104]. The original work by Zener concentrated on the

electronic states of a diatomic molecule, while Landau and Stückelberg considered

a scattering process of two atoms. However, their solution of the time-dependent

Schrödinger equation of a two-level system is applicable to many systems, and it

is an important tool for studying tunneling transitions. According to LZS theory

tunneling probability from state MS to M ′
S is given by

PMS→M ′S = 1− exp(−
π(∆EMS ,M

′
S
)2

2~|MS −M ′
S|dB/dt

), (5.6)

where ∆EMS ,M
′
S

is the tunneling splitting between two states and dB/dt is the

sweeping rate of the time dependent applied field. This model is shown to be very

useful for measuring the tunneling splittings [97].

5.1 Decoherence in SMM’s

The spin tunnelings discussed so far are generally incoherent due to very small values

of the tunneling splittings. In incoherent tunneling, when the spin tunnels across
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the energy barrier it stays there and does not tunnel back. So, it is crucial to obtain

higher tunneling splittings in order to observe coherent tunneling where magnetic

moment of the molecule oscillates between energy barrier. This can be achieved

by applying high transverse magnetic field to the nanomagnet. It has been argued

that it is possible to obtain a coherence window by applying transverse magnetic

field where both phonon and nuclear spin mediated decoherence is minimized [105].

Indeed, the oscillations of the tunnel probability as a function of the transverse

field has been demonstrated in Mn12 [106]. This observation is attributed to the

topological quantum phase interference of two tunnel paths of opposite windings.

Recent experiment has shown very promising results on the possibility to perform

hundreds of manipulations on SMM, before it becomes decoherent by environment.

It has been demonstrated that Cr7M heterometallic wheels, with M=Ni and Mn,

have very long dephasing time (T2) than previously predicted by theoretical calcu-

lations [15]. At low temperatures, realizing the dipolar couplings to 1H nuclei as the

main mechanism of the decoherence, deuterated samples have shown decoherence

time up to 3 µs. Another observation of the long decoherence time in SMM’s came

from Bertaina et al [16]. Their study on V15 molecule showed Rabi oscillations be-

tween two lowest spin levels. This is the first demonstration of Rabi oscillations in

magnetic molecules indicating the existence of high degree of coherence. By spacing

the vanadium molecules far apart in a solvent, they suppressed the dipolar interac-

tions between the vanadium molecules which is the main source of the decoherence.

Although bosonic and fermionic modes are considered to be effective at different

time scales, recent experiments on Mn4, Mn12, and Fe8 molecules show that these two

mechanisms cooperate together [107, 108, 109, 110]. Time dependent specific heat,

and NMR experiments show that electron spins, and nuclear spins are in thermal

equilibrium with lattice phonons down temperatures as low as 20 mK. However,

at these temperatures, the only fluctuations are due to temperature independent

quantum tunneling of the central spin. Hence, there should be a mechanism for

exchanging energy between the electronic spins, nuclear spins, and phonons through

the tunneling of the central spin. This observation is not consistent with PS theory.

According to PS model, central spin of the molecule relaxes to the spin bath directly.

They argue that relaxation to phonons is possible only at longer time scales. These
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observations suggest the proper extension of the PS theory in which nuclear-spin-

mediated quantum tunneling is combined with creation or annihilation of phonons.

In these insulating magnetic materials, direct relaxation of the nuclear spins to the

lattice phonons is extremely slow at such low temperatures. This might be possible

through the electron spin-lattice phonon channel. Also, it has been proposed that

the Waller mechanism, modulation of the dipolar fields by atomic vibrations, can

play an important role [111]. These findings motivated us to propose a new model

(in Chapter 7) for describing the decoherence of a SMM. In our decoherence model,

interaction between SMM and bath spin is mediated by vibrational phonons and

it is descried by three-body interaction Hamiltonian. Interaction strength between

SMM and bath spin is modulated by the displacement operators of phonons.

It is possible to give examples from different physical system in which the con-

tribution of the lattice phonons are crucial to the interactions between localized

modes. Phonon assisted hyperfine interaction in quantum dots is one of them [112].

Deviations of the nucleus positions due to lattice vibrations modify the hyperfine

coupling with electron spin. Another example can be given from optical lattices

where coupling strengths between spins trapped deep inside a confining potential

change with lattice oscillations [113].

For systems having discrete energy levels at low enough temperatures it is always

possible to consider them effectively acting as a two-level system. This truncation

of the high energy levels to produce effective spin-1
2

Hamiltonian is possible if the

temperature is much lower than the energy difference between second and third

excited states. For SMM’s, while the energy difference of the lowest lying two

levels from the nearest excited state is at the order of 1 K, the temperatures at the

experiments can go down to 10−3 K. Thus, SMM’s are ideal systems that can be

mapped onto a two level system. In turn, decoherence program in the SMM’s is

usually reduced to the study of open quantum dynamics of central spin-1
2

particle.

Accordingly, in our phonon mediated spin bath decoherence model, central SMM is

considered as spin-1
2

particle.
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5.2 Entanglement in SMM’s

Creation of controlled and switchable interaction between two qubits is one of the

fundamental necessities for quantum computing. Indeed single qubit operations

combined with controlled-not gates (which are two qubit operations) are enough

to implement an arbitrary unitary operation on n qubits. Consequently, they are

universal for quantum computation.

First controlled coupled single molecular magnets is dimerized [Mn4O3Cl4(O2-

CEt)3(py)3]2·2C6H14, ( EtCO−2 is propionate, py is pyridine), in short [Mn4]2,has

been synthesized in 2002 [19]. A Mn4 is a SMM containing three ferromagneti-

cally coupled Mn3+(S = 2) ions and one Mn4+(S = 3/2) ion antiferromagneti-

cally coupled to other three ions giving rise to well defined ground spin state of

S = 3 × (2) − 1 × (3/2) = 9/2 [114, 115, 116]. This compound crystallizes in a

hexagonal space group (R3) in which the Mn4 molecules are lying head-to-head on

a crystallographic S6 symmetry axis. The resulting [Mn4]2 dimer is held together

by six C−H· · ·Cl hydrogen bonds, leading to an antiferromagnetic superexchange

interaction between two Mn4 units. The Cl· · ·Cl approaches also contribute to this

coupling. Since each dimer is well separated form neighboring dimers, interaction

among them is negligible. Similar to all SMM’s, [Mn4]2 displays superparamag-

netic behavior at high temperatures, and steps in magnetic hysteresis loops below

a blocking temperature (∼ 1K). However, unlike isolated SMM’s, it shows qualita-

tively different tunneling behavior. There is an absence of quantum tunneling at

zero magnetic field, due to a static exchange bias field that each Mn4 experiences

because of its neighbor within the dimer. This bias shifts the positions of the steps,

so that quantum tunneling occurs before the external magnetic field was reversed.

It has been demonstrated via electron paramagnetic resonance and magnetization

measurements using an array of micro-SQUIDs that quantum tunneling occurs be-

tween entangled states of the dimer [117, 118]. This result is very important from

both the applications in quantum computing and fundamental points of view. In

order to perform multi qubit operations intra-dimer exchange coupling must be co-

herently controlled. Current studies concern the optical switchabilty of this coupling

[119]. Also, the response of the exchange coupling to the hydrostatic pressure has

been analyzed via inelastic neutron scattering experiment [120]. It has been ob-
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Figure 5.2: (a) Structure of the [Mn4]2 dimer. (b) Spin state energies of the dimer as a function of

longitudinal magnetic field. (c)Magnetization versus longitudinal magnetic field at three different

sweeping rates 0.140 T/s, 0.017 T/s, 0.004 T/s. (d) Derivatives of the magnetization curves for

each sweeping rates (figures taken from reference [19]).

served that the exchange coupling strongly increase with pressure, up to 42% at 17

kbar.

Recently, another entangled dimer of SMM has been realized [20]. This new

dimer is composed of two identical [Fe9O4(OH)4(O2CPh)13(heenH)2] molecules, and

called as [Fe9]2 in short. Interesting feature of this structure is that while 64% of

the dimers in the crystal are exchange coupled (ON state)other 36% are not coupled

(OFF state) to each other. The only difference between these ON and OFF states

is the formation of single H-bond which leads to an antiferromagnetic exchange

interaction. Finding a way to switch between these states is crucial problem to

overcome.

Final example of the entangled SMM is Mn12 wheel [21]. It is claimed that each
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half of the molecule behaves as a SMM and weak ferromagnetic exchange interaction

between two halves leads to a dimeric structure. This leads to a quantum interfer-

ence due to the quantum tunneling involving entangled states of the half-wheels.

However, this new structure is the subject of a hot debate about the applicability of

the dimer model in order to explain the certain observed resonance points [121, 122].
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CHAPTER 6

Quantum Tunneling of

Magnetization in [Mn4]2 Dimer

In this chapter we will study the spin quantum tunneling process in [Mn4]2 dimer

by means of the exact solution of the Schrodinger equation and LZS theory. We will

identify the spin states involved in tunneling process and reproduce the observed

steps in the magnetization curve. Effect of the sweeping rate of the longitudinal

external magnetic field on the heights and the positions of the steps will be discussed.

Single Mn4 molecules has a well isolated ground state S = 9/2 separated at

least 259 K from the lowest lying excited state S = 8/2. So, it can be mod-

eled as single particle spin with S = 9/2 at temperatures well below the 259

K [114, 115]. This approximation reduces the dimension of the Hilbert space

from (2 × (2) + 1)3 × (2 × (3/2) + 1) = 500 to (2 × (9/2) + 1) = 10. The

reduced Hilbert space of the Mn4 is chosen to be spanned by the basis vectors

|MS = −9/2〉, . . . , |MS = 0〉, . . . , |MS = 9/2〉 which are the eigenstates of the z-

component of the spin operator Sz. Corresponding Hamiltonian of the single Mn4

molecule under the time dependent longitudinal external magnetic field Bz(t) is

given by

Hi(t) = −DS2
z,i − gµBSz,iBz(t) +Htrans,i, (6.1)

where i = 1, 2 labels each Mn4 of the dimer, D = 0.72 K is the uniaxial anisotropy

constant, g = 2 is the Landè g-factor, µB = 0.67 K/T is the Bohr magneton. Second

term is the Zeeman term describing the interaction with Bz(t), and Htrans,i is the

transverse term that does not commute with Sz, thereby causing the tunneling. We
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assume the following form for this term

Htrans,i = E(S2
x,i − S2

y,i) + gµBSx,iBx. (6.2)

First term is the second order plane anisotropy term with strength E = 0.032 K.

Last transverse Zeeman term is introduced in order to account for the observed steps

in the experiment. The origin of this term is due to the dipolar and the hyperfine

interactions as we explained in the previous chapter. These environmental couplings

act as a transverse magnetic field with strength Bx = 0.035 T [116].

Antiferromagnetic superexchange interaction between two Mn4 molecule couples

them and gives rise to a [Mn4]2 dimer with total Hamiltonian

H(t) = H1(t) +H2(t) + J
−→
S1.
−→
S2. (6.3)

Superexchange coupling parameter J has the strength of 0.1 K which is relatively

weak compared to uniaxial anisotropy term. New basis of the total Hamiltonian

is written as the tensor product of two single Mn4 spin states,|MS1〉 ⊗ |MS2〉, or in

shorter notation |MS1 , MS2〉, which are also the zeroth order eigenstates. Then, the

spin wavefunction of the dimer at any time can be expanded as

|Ψ(t)〉 =

9/2∑
MS1=−9/2

9/2∑
MS2=−9/2

cMS1
,MS2

(t)|MS1 , MS2〉. (6.4)

6.1 Exact Time Evolution

In experiments, magnet external magnetic field is swept linearly in time. We treat

the linear time dependence of field assuming small stepwise behavior with time. At

each step constant magnetic field is applied for a very short time τ . Then, the field

is suddenly increased for a very small amount ∆Bz. This very fast non-adiabatic

change at the Hamiltonian cannot be responded by the system instantly. So, at

this point, wavefunction is assumed to be remain same. Then, for the duration of

τ , wavefunction evolves under the effect of time independent Hamiltonian. (Cor-

responding sweeping rate c is given as ∆Bz/τ .) Consequently, the unitary time

evolution of the system from t to t+ τ is calculated as1

|Ψ(t+ τ)〉 = U(t+ τ, t)|Ψ(t)〉, (6.5)

1We use the MATLAB program for all the numerical calculations.
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Figure 6.1: Low lying energies of the spin states as a function of the longitudinal magnetic field.

Resonance points are labeled from 1 to 9.

where U(t+ τ, t) is the unitary time evolution operator given as2

U(t+ τ, t) = e−iH(t)τ . (6.6)

So, the state at nth time step can be expressed in terms of the state at (n−1)th step

|Ψ(t)〉 = |Ψ(t0 + nτ)〉 = e−iH(t0+(n−1)τ)τ |Ψ(t0 + (n− 1)τ)〉. (6.7)

Also, applying the composition property of the unitary operators

U(t, t0) = U(t, t′)U(t′, t0), (6.8)

where t0 < t′ < t, we can deduce the state at nth step of the evolution in terms of

the initial state, such that

|Ψ(t)〉 = |Ψ(t0 + nτ)〉 =
n∏
k=1

U(t0 + kτ, t0 + (k − 1)τ)|Ψ(t0)〉

= U(t0 + nτ, t0)|Ψ(t0)〉. (6.9)

We first calculate the energy spectrum of the total Hamiltonian by exact diagonal-

ization (Fig. 6.1). Then, we determine the magnetic field points, hence the times,

2In the thesis, we are using units such that the Planck constant h and the Boltzmann constant

are unity.
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Figure 6.2: Magnetization curve as a function of longitudinal magnetic field at three different

sweeping rates obtained by solving the the time-dependent Schrödinger equation.

where the different energy levels becomes very close to each other. Consequently

when applying the time evolution operator, we take big magnetic field steps away

from resonance points where the energy separation between the spin states is very

large compared to the tunneling splitting ∆E. However, in the neighborhood of the

resonance points, we take very small steps such that the corresponding change in

the Zeeman energy is very small compared to the tunneling spitting ∆E.

We start the time evolution from Bz(t0) = −1 T, and take the initial wavefunc-

tion as the ground state of the dimer at this field value. Magnetization M of the

dimer is given by the expectation value of the z-component of the total spin operator

M(t) = 〈Ψ(t)|(Sz,1 + Sz,2)|Ψ(t)〉. (6.10)

We calculate the magnetization for three different sweeping rates 0.004 T/s,

0.035, and 0.14 T/s (Fig. 6.2). Steps in the magnetization curves occur only at

the resonance points labeled from 1 to 9 (Fig. 6.1). Change in sweeping rate value

c effects the relative contribution of each resonance point to overall magnetization,

i.e., for higher sweeping rates resonance points at the higher energy levels become

important. For c = 0.004 T, resonance points 3, 4, 7 and 8 have no contribution to

the magnetization. The effect of the sweeping rate on the magnetization tunneling is
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Figure 6.3: (a) Detailed view of the first jump in magnetization curve in Fig. 6.2 . Oscillations in

magnetization occurs due to the precession of the spins. (b) Detailed view of the first resonance

point. Htrans term couples the states (-9/2, -9/2), and (-9/2, 9/2)+. This causes an energy gap

(tunneling splitting) between the spin states.

clearly seen at the first step position where the step height decreases with increasing

sweeping rate (Fig. 6.3.a).

6.2 LZS Model

Suppression of the tunneling with increasing sweeping rate can be well understood

in the picture of LZS transitions which was introduced in the previous chapter.

We can consider each anti-crossing point separately as a two level problem. Time-

dependent magnetic field causes two widely separated levels which are connected by

a constant transverse term to become close, and then to separate. Then, according

to LZS formula

PMS→M ′S = 1− exp(−
π(∆EMS ,M

′
S
)2

2~|MS −M ′
S|dB/dt

), (6.11)

transition probability PMS→M ′S decreases exponentially with increasing magnetic

field sweeping rate. In order to check whether our results agree with LZS formalism

we apply the LZS formula at each resonance point. It is assumed that there will

be no change in the populations of the spin states between these points since the

energy levels are well separated. First we calculated the tunneling splitting ∆E

at each resonance points by exact diagonalization of the Hamiltonian and obtain

the corresponding LZS transition probabilities using Eq. (6.11) at three different
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Table 6.1: Positions of the resonance points with corresponding tunneling splittings ∆E, and

tunneling probabilities PLZS at three different sweeping rates.
] Bz(T) Resonant levels ∆E (10−5 K) PLZ

c=0.004 T/s c=0.035 T/s c=0.14 T/s

1 -0.34 | − 9/2,−9/2〉 → | − 9/2, 9/2〉+ 0.0479 0.6225 0.1054 0.0274

2 0.16 | − 9/2,−9/2〉 → | − 7/2, 9/2〉+ 0.1265 0.9978 0.5027 0.1603

3 0.20 | − 9/2,−9/2〉 → | − 9/2, 7/2〉+ 2.4869 1 1 1

4 0.30 | − 9/2, 7/2〉+ → |9/2, 7/2〉+ 0.2582 1 0.9607 0.5547

5 0.34 | − 9/2, 9/2〉+ → |9/2, 9/2〉 0.0479 0.6225 0.1054 0.0274

6 0.39 | − 7/2, 9/2〉+ 
 |9/2, 7/2〉+ 8.3580 1 1 1

7 0.62 | − 9/2, 7/2〉+ → |9/2, 5/2〉+ 1.7340 1 1 1

8 0.83 | − 7/2, 9/2〉+ 
 |9/2, 5/2〉+ 2.1614 1 1 1

9 0.91 | − 9/2, 9/2〉+ 
 |9/2, 7/2〉+ 1.7262 1 1 1

sweeping rates (see Table (6.1)).

Now we explain the tunneling transition more detailed for the case where the

sweeping rate c = 0.004 T/s. Dimer starts from the state | − 9/2,−9/2〉 where

M/Msat = 1. At first resonance point LZS transition probability PLZS is about 0.62

which means the probability of tunneling from the state | − 9/2,−9/2〉 to the state

| − 9/2, 9/2〉+ is 0.62 (|MS,M
′
S〉± = 1/

√
2(|MS,M

′
S〉 ± |M ′

S,MS〉)). Then, the cor-

responding change in the magnetization value is given as ∆M = PLZS
∑2

i=1(M ′
S,i −

MS,i) = 0.62×9 = 5.58. So, the initial dimer state follows the 1→ 2 path with 0.38

probability while with the 0.62 probability it follows the 1 → 5 path. The former

path continues the 2 → 6 → 9 path and ends up in | − 9/2, 9/2〉+ state without

any deflection since at these resonance points tunneling probability is equal to one.

The latter 1 → 5 path splits to two branches at point 5, one to the final state

|9/2, 9/2〉 with PLZS = 0.62 and the other to the the point 9 with PLZS = 0.38.

The state reaching the point 9 tunnels with certainty to |9/2, 7/2〉+. For higher

sweeping rates paths of the dimers become more complex due to inclusion of various

resonance points. Between resonance points 1 and 2, we also note that the energy

levels of the states | − 9/2,−9/2〉 and |9/2, 9/2〉 cross each other without any tun-

neling splitting. As seen in Fig. 6.4, there is a very good match between numerical

solution of the Schrödinger equation and the Landau-Zener picture. In the experi-

ment [19], five resonance points, labeling them as 1∗, 2∗, 3∗, 4∗, 5∗, are attributed

to the steps in the magnetization. Points 1∗, 2∗, 3∗, and 5∗ match to points 1, 3,
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Figure 6.4: Comparison of the magnetization curves obtained by exact time evolution, and LZS

method.

5, and 9 in our labeling, respectively. Transition point 4∗ which corresponds to the

| − 9/2,−9/2〉+ ↔ | − 9/2, 5/2〉+ anti-crossing is never reached within our results.

It can be only observed at very high sweeping rates. Meanwhile the reason of this

peak may be due to point 8 which is the | − 7/2, 9/2〉+ ↔ |5/2, 9/2〉+ transition.

In our results certain resonance points are very close to each other. With the effect

of environmental interactions these transitions may be smeared out to give a single

peak in the magnetization curve. So, it is possible that the points 2, and 3 give the

peak 2∗ while the points 4,5, and 6 give the peak 3∗.

We like to emphasize the two resonance points 2, and 7 (| − 9/2,−9/2〉 ↔

| − 7/2, 9/2〉+, and | − 9/2, 7/2〉+ ↔ |9/2, 5/2〉+ respectively) which are overlooked

by most experimental and theoretical works. These transitions involves both the

tunneling of one of the Mn4 across the barrier and the excitation (or the decay-

ing) of the other one 3. This type of transition is an example of spin-spin cross

relaxation (SSCR) where the one-body tunnel picture is not sufficient to explain the

observed transition [123]. According to our knowledge, only G.H. Kim took into

account these two points [124]. However, using perturbation calculations, he argued

3Note that which Mn4 monomer tunnels or becomes excited is a question we can’t answer since

they are in the entangled states and we cannot attribute any individuality to Mn4 monomers
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that transition at resonance point 2 is only possible in the presence of anisotropic

exchange interaction (directional dependence of J). But according to our numerical

calculations isotropic exchange coupling is sufficient to observe these SSCR type

transitions.

In our result we observe a decrease in the magnetization at resonance point 5

for the highest sweeping rate and the final resonance points which did not observed

in experiments. This is due to absence of the relaxation mechanisms in our model.

Indeed if we look at the first resonance point in Fig. 5.2.d, although this point

is well separated from all other resonant points still there is a difference between

peak positions at different sweeping rates, i.e. the peaks are shifted to the right

with increasing sweeping rate value. This observation also suggests the importance

of interplay between measurement time (which is related to sweeping rate) and

relaxation times due to system-environment interaction.
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CHAPTER 7

Phonon Mediated Spin Bath

Decoherence

Inspired by the observations explained in Section 5.1, we introduce a pure dephasing

model where the interaction of the central two-level system with environmental

spins is mediated by phonons [125]. Study of pure dephasing model is motivated by

two observations. Firstly, dissipative processes where the energy exchange occurs

between subsystems have typically longer time scales than pure dephasing processes

[126]. Secondly, exact solubility of the model gives a more clear understanding of

the decoherence process. We neglect the self-Hamiltonians of the central spin and

the spin bath. In particular, we don’t consider any interaction among the bath

spins. We assume that low energy physics of the system is governed by the effective

three-body Hamiltonian

H = cz

N∑
k=1

[
ω0k + ωk

(
p†k + pk

)]
skz +

N∑
k=1

Ωkp
†
kpk (7.1)

where cz and skz are z-components of the Pauli spin operators for central two-level

system and kth spin of the bath, respectively. N is the total number of environmental

spins. p†k and pk are the boson creation and annihilation operators with commutation

relation [pk, p
†
k′ ] = δk,k′ . Energy eigenvalues of the phonon bath are Ωk, and the

coupling strengths are ω0k and ωk. Our model is similar to the one proposed by Zurek

where the central two level system is directly coupled to spin bath [3]. In our model

this coupling occurs with the help of oscillatory modes. When ωk and Ωk vanish

our model reduces to Zurek’s. The model Hamiltonian describes a system where

the central two-level system and the bath spins are coupled linearly via harmonic
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oscillator displacement operators Xk ∝ (p†k+pk). Therefore, interaction among them

is distance dependent and this distance is modified by some vibrational modes.

First, we solve the case where the qubit is surrounded by spins almost localized at

different positions, for example at lattice points of a solid. The interaction strengths

between the system and a bath spins change with the distance between them. Con-

sidering the displacement of these atomic positions as macroscopic vibrations, we

model them by coherent states which are the most classical states of phonons. An

atom, confined in a harmonic potential, satisfies the minimum position-momentum

uncertainty when it is in a coherent state which is nothing but a Gaussian wave

function displaced from the origin. Furthermore, it oscillates while preserving its

shape, i.e. it remains as a coherent state. We assume that initially the system and

the environment are uncorrelated so that the initial wave function can be written

as a product state,

|Ψ(0)〉 = (c↑| ↑〉+ c↓| ↓〉)
N⊗
k=1

(αk| ↑k〉+ βk| ↓k〉) |λk〉 (7.2)

where | ↑〉(| ↑k〉) and | ↓〉(| ↓k〉) are normalized eigenstates of cz(skz) with eigenvalues

+1 and -1, respectively. Expansion coefficients satisfy |c↑|2 + |c↓|2 = |αk|2 + |βk|2 =

1 so that |Ψ(0)〉 is normalized. |λk〉 is the coherent state corresponding to the

annihilation operator pk with eigenvalue λk so that pk|λk〉 = λk|λk〉. With the

help of the harmonic displacement operators D(α) = eαp
†−α∗p, Hamiltonian can be

diagonalized easily (see Appendix A for details). Applying the propagator e−itH , we

can calculate the time evolution of the wave function which can be written as

|Ψ(t)〉 = c↑| ↑〉|B+(t)〉+ c↓| ↓〉|B−(t)〉 (7.3)

where

|B±(t)〉 =
N⊗
k=1

(
αkA

±
k | ↑k〉|u

±
k 〉+ βkA

∓
k | ↓k〉|u

∓
k 〉
)
. (7.4)

Here |u±k 〉 are the coherent states with eigenvalues

u±k = (λk ±
ωk
Ωk

)e−itΩk ∓ ωk
Ωk

, (7.5)

and

A±k = e
i
ω2
k

Ωk

(
t− sin(Ωkt)

Ωk

)
e∓itω0k

×e∓i
ωk
Ωk

(Re[λk] sin(Ωkt)+Im[λk](1−cos(Ωkt))). (7.6)

40



Total density matrix is given by ρ = |Ψ(t)〉〈Ψ(t)|. Reduced density matrix of the

central system ρc is obtained by tracing over all the environmental degrees of freedom

as ρc = Trbathρ. In cz-basis, the reduced density matrix is given by

ρc =

 |c↑|2 c↑c
∗
↓r

c∗↑c↓r
∗ |c↓|2

 (7.7)

Magnitude of the off-diagonal matrix element is determined by the decoherence

factor

r(t) =
N∏
k=1

(|αk|2A−
∗

k A+
k 〈u

−
k |u

+
k 〉+ |βk|2A+∗

k A−k 〈u
+
k |uk〉) (7.8)

which can be written more explicitly as

r(t) =
N∏
k=1

e
−4

ω2
k

Ω2
k

(1−cos(Ωkt))
(|αk|2e

−i2ω0kt−i4
ωk
Ωk

(Re[λk] sin(Ωkt)+Im[λk](1−cos(Ωkt)))

+|βk|2e
i2ω0kt+i4

ωk
Ωk

(Re[λk] sin(Ωkt)+Im[λk](1−cos(Ωkt)))). (7.9)

At t = 0, r = 1 and as t increases, in general, it decays to zero which means that

interference of the states | ↑〉 and | ↓〉 is totally suppressed. At short enough times

we can expand the trigonometric functions by treating Ωkt’s as small parameters to

obtain

r(t) ≈
N∏
k=1

e−2ω2
kt

2

(|αk|2e−it(4ωkRe[λk]+2ω0k)

+|βk|2eit(4ωkRe[λk]+2ω0k)). (7.10)

If either the coupling strengths ωk’s and ω0k’s or coherent state eigenvalues λk’s are

random enough, the second factor in the product leads to further suppression of the

coherence factor so that r decays in Gaussian form for large N [71],

|r(t)| ≈ e−t
2
∑
k(8|αk|2|βk|2(2ωkRe[λk]+ω0k)2+2ω2

k). (7.11)

Therefore, phonon energies do not play any role for short time decoherence of the

central system. The decoherence time is determined by the coupling constants and

the initial configurations of the phonons and spin bath states. It is interesting to

note that even if all the bath spins are polarized in one direction, i.e. |αk|2 = 1,

system still loses its coherence. This behavior is a result of presence of the phonons

in the environment. It is also interesting that phonon state eigenvalues (λk’s) do not
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affect the decoherence time in this case. It is obvious that in the limit of Ωk → 0

and ωk → 0, our Hamiltonian is reduced to Zurek’s model where decoherence is

due to direct spin-spin interactions only without phonon contribution. In this case

initial configuration of the spin bath becomes crucial.

Another interesting case is the Ωk/ωk →∞ limit where

r(t) =
N∏
k=1

(|αk|2e−i2ω0kt + |βk|2ei2ω0kt). (7.12)

Here, decoherence factor r(t) depends on the initial configuration of bath spins

only and it becomes independent of the initial phonon state eigenvalues. Since the

separation of energy levels of phonons becomes very high, phonon states do not

change in time and remain uncorrelated to system and bath spins.

Now, we analyze the case where phonons are in a thermal equilibrium rather

than a coherent state. Such a situation can physically be realized when the atoms

carrying bath spins are brought in contact with a heat bath to thermalize before

t = 0. For thermal states phonon density matrix is given by

ρp(0) =
N⊗
k

(1− e−
Ωk
T )

∞∑
nk=0

e−
Ωknk
T |nk〉〈nk|. (7.13)

We assume that the bath spins are in a separable state at t = 0 as before. Since in

the Hamiltonian there are no intra-bath terms for the spins, heat bath thermalizing

the phonons will simply randomize the initial spin directions. As we shall discuss

below, if bath spins have individual energy levels for up and down configurations,

heat bath will determine the initial occupation numbers for the two possible states

in accordance with the Gibbs factors. Time evolution of the total density matrix is

given by ρ(t) = e−iHtρ(0)eiHt. Using the over-completeness relation

1 =
1

π

∫
d2λ|λ〉〈λ|, (7.14)

and the number state representation of coherent states

〈n|λ〉 = e−|λ|
2/2 λ

n

√
n!
, (7.15)

it is possible to calculate the reduced density matrix of the central system (see

Appendix B for details). In this case decoherence factor becomes
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Figure 7.1: Decoherence factor at three different temperatures. Interaction parameters and phonon

frequencies are assumed to be in normal distribution with variance to average ratios σ
<> = 0.1.

Also, we take < ω0k >= 0.1 < Ωk > and < ωk >= 0.2 < Ωk >.

r(t) =
N∏
k=1

e
−4

ω2
k

Ω2
k

(1−cos(Ωkt)) coth(
Ωk
2T

)

×(|αk|2e−i2ω0kt + |βk|2ei2ω0kt). (7.16)

We first note that for Ωk/T → ∞, Eq. (7.16) and Eq. (7.9) become identical

provided that λk = 0. This is a consistency check for two phonon states, coherent

states and thermal states, that we have discussed because at low temperatures

thermal state approaches the ground state of the harmonic oscillators which are

nothing but the coherent states with vanishing eigenvalues.

According to Eq. (7.16), decoherence factor has two contributions, coming from

phonons and spins. The two mechanisms act simultaneously in decoherence of the

central spin. Depending upon the interaction strengths, one of them can become

the dominant mechanism. At very low temperatures T � Ωk, where the hyperbolic

cotangent term is approximately unity, the first term becomes independent of Ωk

values provided that t is small enough. For large temperatures T � Ωk, decoherence

factor becomes an exponentially decaying function of T . It is possible to generalize

the model Hamiltonian by adding a skz-dependent intra-bath term for individual

spins. In this case the heat bath will not only thermalize the phonons but also
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it will determine the |αk|2/|βk|2 ratio. For example, at very large temperatures

the ratio will tend to unity and hence the spin bath will have a more important

contribution to decoherence in comparison to lower temperatures.

7.1 Entangled Environment

Interactions within the environment can greatly influence the dynamics of the cen-

tral system. It is has been shown that intra-environmental couplings can increase

the coherence time of the qubit [84, 127]. This result can be interpreted in terms of

entanglement sharing between central system and environment. It has been proven

that a quantum system entangled with another one restricts its possible entangle-

ment with a third system, this has been referred to as entanglement monogamy

[128, 129, 130]. This effect is also generalized to n qubit system [131]. So, intra-

bath interactions leading to entanglement between them limits their entanglement to

central system. In result, decoherence effect of the bath reduces. For higher dimen-

sional discrete systems, qudits, applicability of this monogamy relation is an open

question [132]. However, for continuous variable systems with infinite dimensional

Hilbert spaces, it is shown that the monogamy property is satisfied for Gaussian

states [133]. Since coherent states are also the special case of Gaussian sates, they

also exhibit entanglement monogamy.

Accordingly, we investigate the effect of intra-bath entanglement on the decoher-

ence time of the central system. We compare the two cases where the initial bath

states are

|BE(0)〉 =
N⊗
k=1

(αk| ↑k〉|λk1〉+ βk| ↓k〉|λk2〉) (7.17)

for the entangled bath, and

|BS(0)〉 =
N⊗
k=1

(
(αk| ↑k〉+ βk| ↓k〉)

1√
Nk

(|λk1〉+ |λk2〉)
)

(7.18)

for the separated baths. Here Nk are the normalization constants of the phonon

states. Repeating the previous calculations for these two cases, we find the following

short time (Ωkt� 1) decoherence factors

|rS(t)| ≈ e−t
2
∑
k(2+λ2

k−)ω2
k+8|αk|2|βk|2(ω0k+ωkλk+)2

, (7.19)
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|rE(t)| ≈ e−t
2
∑
k 2ω2

k+8|αk|2|βk|2(ω0k+ωkλk+)2

, (7.20)

for separated bath and entangled bath, respectively. Here λk± = λk1±λk2. Defining

the variance of Gaussian as a decoherence time τ , we find that

1

τ 2
S

=
1

τ 2
E

+ 2
N∑
k=1

ω2
kλ

2
k−. (7.21)

We see that decoherence time for entangled bath, τE, is always longer than deco-

herence time for separated bath , τS. Note that amount of entanglement in |BE(0)〉

is proportional to magnitude of λk− since |λk1〉 and |λk2〉 become more orthogonal

to each other with increasing magnitude of λk−. According to Eq. (7.21), difference

between τE and τS also increases with λ2
k−. This means that as the bath spin and

the corresponding phonon become entangled, central system becomes less decoher-

ent. Thus, entanglement of environment to central system becomes restricted. This

result suggests that entanglement distributed over three parties composed of two

qubits and one coherent phonon mode also exhibits monogamy property. Conse-

quently, it might be be possible to extend the idea of entanglement monogamy that

exist separately within qubits and within Gaussian states to a compound systems

made of both types of states.

7.2 Decoherence of Entangled Central System

Now we apply our decoherence model to study the entanglement dynamics of central

bipartite two-level system. During the decoherence process, as the central system

becomes entangled with the environment, they lose their entanglement with each

other. Hence entanglement measure quantifying the quantum correlations within

the central system can be used to parameterize the decoherence. We examine the

behaviors of four Bell states, and we choose the concurrence as an entanglement

measure.

We compare two different environment models: common spin bath, and two

separate spin baths. Former model can be realized when two spins are not well

separated from each other. Thus, they interact collectively with common spin bath.
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However, when they are well isolated in space from each other, the latter model is

the reasonable one.

7.2.1 Common Spin Bath

First we consider the two spin interaction with common environment. Total Hamil-

tonian of the system is given by

H = (c1z + c2z)
N∑
k=1

[
ω0k + ωk

(
p†k + pk

)]
skz +

N∑
k=1

Ωkp
†
kpk. (7.22)

Starting from the initial state of separated central system and environment, time

evolution of the reduced density matrix of central spin pair is calculated as

ρ(t) =


ρ0,0 ρ0,1r ρ0,2r ρ0,3R

ρ1,0r
∗ ρ1,1 ρ1,2 ρ1,3r

ρ2,0r
∗ ρ2,1 ρ2,2 ρ2,3r

ρ3,0R
∗ ρ3,1r

∗ ρ3,2r
∗ ρ3,3

 , (7.23)

where r(t) is the same decoherence factor in Eq. (7.9) while R(t) is given by applying

the transformations ωk → 2ωk and ω0k → 2ω0k in Eq. (7.9). Then, following the

assumptions in deriving Eq. (7.11), we can express the approximate magnitude of

the decoherence factor R(t) as

|R(t)| ≈ e−t
2
∑
k(32|αk|2|βk|2(2ωkRe[λk]+ω0k)2+8ω2

k) ≈ |r(t)|4. (7.24)

We note that the terms ρ1,2 and ρ1,2 corresponding to interference of | ↑↓〉 and | ↓↑〉

states do not decay and remain constant in time. This is an example of decoherence

free subspace where symmetric coupling to the environment leads to a certain robust

states against decoherence [134, 135, 35].

Concurrence of the density matrix ρ can be calculated by following the discussion

in Section 3.2. Spin-flipped density matrix ρ̃ is given by

ρ̃(t) =


ρ3,3 −ρ2,3r −ρ1,3r ρ0,3R

−ρ3,2r
∗ ρ2,2 ρ1,2 −ρ0,2r

−ρ3,1r
∗ ρ2,1 ρ1,1 −ρ0,1r

ρ3,0R
∗ −ρ1,0r

∗ −ρ1,0r
∗ ρ0,0

 . (7.25)
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Accordingly, concurrences of the four Bell states are calculated as

CΨ+ = CΨ− = |Rc| ≈ |r|4

CΦ+ = CΦ− = 1. (7.26)

Thus, we obtain two by two grouping of the Bell states in terms of the concur-

rence. In the first group, entanglement of the system decays more faster than the

decoherence factor, while the second group, which constitutes the decoherence free

subspace, remain always entangled.

7.2.2 Separate Spin Baths

Now we consider the second case where each spin of the central pair interacts locally

only with its own spin bath. Corresponding Hamiltonian follows as

H = c1z

N∑
k=1

[
ω0k + ωk

(
p†1k + p1k

)]
s1kz +

N∑
k=1

Ωkp
†
1kp1k

+ c2z

N∑
k=1

[
ω0k + ωk

(
p†2k + p2k

)]
s2kz +

N∑
k=1

Ωkp
†
2kp2k. (7.27)

Again starting from initially separate states, time evolution of the reduced density

matrix turns out to be

ρ(t) =


ρ0,0 ρ0,1r ρ0,2r ρ0,3r

2

ρ1,0r
∗ ρ1,1 ρ1,2|r|2 ρ1,3r

ρ2,0r
∗ ρ2,1|r|2 ρ2,2 ρ2,3r

ρ3,0r
∗2 ρ3,1r

∗ ρ3,2r
∗γ ρ3,3

 , (7.28)

where the decoherence factor r(t) is again same with Eq. (7.9). In separate bath

case all the states are affected by decoherence. Spin-flipped density matrix ρ̃ is given

by

ρ̃(t) =


ρ3,3 −ρ2,3r −ρ1,3r ρ0,3r

2

−ρ3,2r
∗ ρ2,2 ρ1,2|r|2 −ρ0,2r

−ρ3,1r
∗ ρ2,1|r|2 ρ1,1 −ρ0,1r

ρ3,0r
∗2 −ρ1,0r

∗ −ρ1,0r
∗ ρ0,0

 . (7.29)

Corresponding concurrence have the same value for all Bell states

C = |r|2. (7.30)
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To sum up, we observe that presence of the decoherence free subspace in common

spin bath leads to a classification of the Bell states according to their entanglement

decay under decoherence. However, in separate bath case, there is no such classi-

fication of Bell states, and they all loose their entanglement in the same way. We

also note that fragile Bell states of the common bath loose their entanglement much

faster than the states in separate baths.
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CHAPTER 8

Dephasing in Entangled Qutrits

Recently, effect of dephasing on entangled qutrits have been studied in terms of

classical noise [136, 137]. In these models stochastic fluctuations have been added

to the Hamiltonian of the system. This result in unitary evolution of the system

and does not create any system-environment entanglement. Changes in state of the

system can be completely undone with local operations. The loss of coherence can

show itself only in ensemble, i.e.; in the form of ensemble average over a different

realizations of particular noise processes. At the level of reduced density matrix

formalism both cases, entanglement with environment and classical noise, are iden-

tical. However, the latter is called as fake decoherence and it does not correspond

to a decoherence process in usual sense which is identified as delocalization of phase

relations for individual systems [138]. Decoherence on entangled qutrits, using both

canonical models [139] and quantum channels [140], have been investigated recently.

In this chapter we analyze these two cases, classical noise, and decoherence,

including both local and collective interactions. Then, we study time evolution of

Horodecki’s bound entangled state and Bell like states [141].

8.1 Classical Stochastic Noise

We consider the following Hamiltonian

H = −1

2
µ [B(t)(czA + czB) + bA(t)czA + bB(t)czB] , (8.1)
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which is in the same form as Hamiltonian in [142] except here the spin operator ciz

corresponds the z component of the three level spin

cA,Bz =


0 0 0

0 1 0

0 0 2

 . (8.2)

Here, µ is the gyromagnetic ratio and B(t), bA(t), and bB are stochastic fields leading

to statistical independent Markov processes satisfying

〈B(t)〉 = 0, (8.3)

〈B(t)B(t′)〉 =
Γ

µ2
δ(t− t′), (8.4)

〈bi(t)〉 = 0, (8.5)

〈bi(t)bi(t′)〉 =
Γi
µ2
δ(t− t′), (8.6)

where 〈...〉 stands for ensemble average, and i = A,B. Γ and Γi are dephasing rates

due to B(t) and bi(t), respectively.

We use the standard two-qutrit bases such that |n〉AB = |mAmB(mod(3))〉AB =

|mA mB〉AB. Time evolution of the system’s density matrix can be evaluated as

ρ(t) = 〈U(t)ρ(0)U †(t)〉 (8.7)

where ensemble average is taken over three noise fields and U(t) is time evolution

operator U(t) = exp
[
−i
∫ t

0
dt′H(t′)

]
.

8.1.1 Collective Dephasing

In the absence of local noise bi = 0, qutrits interact only with a common stochastic

field. In this case elements of the reduced density matrix are given by

ρmAmB ,m′Am′B(t) = ρmAmB ,m′Am′B(0)〈ei
µ
2

(mA+mB−m′A−m
′
B)
∫ t
0 dt
′B(t′)〉, (8.8)

= ρmAmB ,m′Am′B(0)e−
µ2(mA+mB−m

′
A−m

′
B)2

8

∫ t
0

∫ t
0 dt
′dt′′〈B(t′)B(t′′)〉, (8.9)

= ρmAmB ,m′Am′B(0)e−
(mA+mB−m

′
A−m

′
B)2

8
tΓ. (8.10)
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Density matrix can be written more explicitly as

ρ(t) =



ρ0,0 ρ0,1γ ρ0,2γ4 ρ0,3γ ρ0,4γ4 ρ0,5γ9 ρ0,6γ4 ρ0,7γ9 ρ0,8γ16

ρ1,0γ ρ1,1 ρ1,2γ ρ1,3 ρ1,4γ ρ1,5γ4 ρ1,6γ ρ1,7γ4 ρ1,8γ9

ρ2,0γ4 ρ2,1γ ρ2,2 ρ2,3γ ρ2,4 ρ2,5γ ρ2,6 ρ2,7γ ρ2,8γ4

ρ3,0γ ρ3,1 ρ3,2γ ρ3,3 ρ3,4γ ρ3,5γ4 ρ3,6γ ρ3,7γ4 ρ3,8γ9

ρ4,0γ4 ρ4,1γ ρ4,2 ρ4,3γ ρ4,4 ρ4,5γ ρ4,6 ρ4,7γ ρ4,8γ4

ρ5,0γ9 ρ5,1γ4 ρ5,2γ ρ5,3γ4 ρ5,4γ ρ5,5 ρ5,6γ ρ5,7 ρ5,8γ

ρ6,0γ4 ρ6,1γ ρ6,2 ρ6,3γ ρ6,4 ρ6,5γ ρ6,6 ρ6,7γ ρ6,8γ4

ρ7,0γ9 ρ7,1γ4 ρ7,2γ ρ7,3γ4 ρ7,4γ ρ7,5 ρ7,6γ ρ7,7 ρ7,8γ

ρ8,0γ16 ρ8,1γ9 ρ8,2γ4 ρ8,3γ9 ρ8,4γ4 ρ8,5γ ρ8,6γ4 ρ8,7γ ρ8,8


, (8.11)

where γ = e−tΓ/8. We obtain four different dephasing factors: γ, γ4, γ9, and γ16.

Most fragile states correspond to ones with ρ0,8 and ρ8,0 terms. We also see that

some terms are not affected by the noise. These interference terms are robust to

phase damping due to their symmetric coupling to noise field. Components of the

robust superpositions are degenerate states. Therefore, their superposition is also

the eigenstate of the Hamiltonian and they stay unchanged in the course of time

evolution.

8.1.2 Multilocal Dephasing

Now we consider the case where the collective dephasing field is absent while both

local noises affect the qutrits. Then, time evolution of the density matrix is evaluated

as

ρmAmB ,m′Am′B(t) = ρmAmB ,m′Am′B(0)〈ei
µ
2

∫ t
0 [bA(t′)(mA−m′A)(t′)+bB(t′)(mB−m′B)]dt′〉 (8.12)

= ρmAmB ,m′Am′B(0)e−
(mA−m

′
A)2

8
tΓAe−

(mB−m
′
B)2

8
tΓB , (8.13)

ρ(t) =



ρ0,0 ρ0,1γB ρ0,2γ4
B ρ0,3γA ρ0,4γAγB ρ0,5γAγ

4
A ρ0,6γ4

A ρ0,7γ4
AγB ρ0,8γ4

Aγ
4
A

ρ1,0γB ρ1,1 ρ1,2γB ρ1,3γAγB ρ1,4γA ρ1,5γAγB ρ1,6γ4
AγB ρ1,7γ4

A ρ1,8γ4
AγB

ρ2,0γ4
B ρ2,1γB ρ2,2 ρ2,3γAγ

4
A ρ2,4γAγB ρ2,5γA ρ2,6γ4

Aγ
4
B ρ2,7γ4

AγB ρ2,8γ4
A

ρ3,0γA ρ3,1γAγB ρ3,2γAγ
4
B ρ3,3 ρ3,4γB ρ3,5γ4

B ρ3,6γA ρ3,7γAγB ρ3,8γAγ
4
B

ρ4,0γAγB ρ4,1γA ρ4,2γAγB ρ4,3γB ρ4,4 ρ4,5γB ρ4,6γAγB ρ4,7γA ρ4,8γAγB
ρ5,0γAγ

4
B ρ5,1γAγB ρ5,2γA ρ5,3γ4

B ρ5,4γB ρ5,5 ρ5,6γAγ
4
B ρ5,7γAγB ρ5,8γA

ρ6,0γ4
A ρ6,1γ4

AγB ρ6,2γ4
Aγ

4
B ρ6,3γA ρ6,4γAγB ρ6,5γAγ

4
B ρ6,6 ρ6,7γB ρ6,8γ4

B

ρ7,0γ4
AγB ρ7,1γ4

A ρ7,2γ4
AγB ρ7,3γAγB ρ7,4γA ρ7,5γAγB ρ7,6γB ρ7,7 ρ7,8γB

ρ8,0γ4
Aγ

4
B ρ8,1γ4

AγB ρ8,2γ4
A ρ8,3γAγB ρ8,4γAγB ρ8,5γA ρ8,6γ4

B ρ8,7γB ρ8,8


,

(8.14)

where γi = e−tΓi/8. All of the off-diagonal terms in density matrix decay in time.

So, we do not observe any robust states. Most fragile states are the ones containing

ρ0,8, ρ8,0,ρ2,6, and ρ6,2.
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8.2 Spin Bath Environment

8.2.1 Common Spin Bath

Now we consider pure dephasing model where a central two qutrit system is sur-

rounded by quantum environment represented by a collection of spin-1
2

particles.

Total Hamiltonian is given as

H = (czA + czB)
N∑
k=1

ωkskz, (8.15)

where skz are z-components of Pauli matrices for kth bath spin, N is the total number

of bath spins, and ωk are coupling parameters. Initial state of the environment is

considered as

|ψenv〉 =
N⊗
k=1

(αk |↑〉k + βk |↓〉k), (8.16)

where |↑〉k are |↓〉k eigenstates of skz with eigenvalues +1 and −1, respectively, and

|αk|2 + |βk|2 = 1. Assuming that initially central system and environment start from

product state, reduced density matrix of the central system evolves as following

ρmAmB ,m′Am′B(t) = ρmAmB ,m′Am′B(0)
N∏
k=1

(|αk|2 eitωk(mA+mB−m′A−m
′
B)

+ |βk|2 e−itωk(mA+mB−m′A−m
′
B)). (8.17)

For large N , if the coupling strengths ωk’s are random enough above expression

becomes

|ρmAmB ,m′Am′B(t)| = ρmAmB ,m′Am′B(0)e−2t2
∑N
k |αk|

2|βk|2ω2
k(mA+mB−m′A−m

′
B)2

. (8.18)

Introducing γc = e−2t2
∑N
k |αk|

2|βk|2ω2
k , we see that above equation is exactly in the same

form up to a phase constant as density matrix obtained from collective dephasing

due to a classical noise in Eq. (8.11). We will obtain same resemblance also for

multilocal dephasing case. So, most of the conclusions deduced from density matrix

formalism will be similar for quantum and classical noises. However, we should also

emphasize one major distinction between them. While the off-diagonal elements

decay in exponential form for the classical noise, Gaussian decay is observed for the

quantum decoherence. Therefore, initially, the classical noise leads to more rapid

dephasing with respect to quantum environment, while in time the latter becomes

more dominant.
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8.2.2 Separate Spin Baths

Now we consider a model where two qutrits interact with their own separate envi-

ronments

H = czA

NA∑
k=1

ωkAszkA + czB

NB∑
k=1

ωkBskzB, (8.19)

where skzi are z-components of Pauli matrices for kth spin of ith bath composed of

Ni number of spins, and ωki are corresponding coupling parameters. Initial bath

states are given by

|ψenv〉 =
2⊗
i=1

|ψs,i〉 , (8.20)

with

|ψs,i〉 =

Ni⊗
k=1

(αki |↑〉ki + βki |↓〉ki). (8.21)

Starting from unentangled pure product states of qutrits and bath spins we obtain

the following reduced density matrix

ρmAmB ,m′Am′B(t) = ρmAmB ,m′Am′B(0)

NA∏
k=1

(
|αkA|2 eitωkA(mA−m′A) + |βkA|2 e−itωkA(mA−m′A)

)
×

NB∏
k=1

(
|αkB|2 eitωkB(mB−m′B) + |βkB|2 e−itωkB(mB−m′B)

)
.

(8.22)

Approximation used to obtain Eq. (8.23) can be applied to get

|ρmAmB ,m′Am′B(t)| =ρmAmB ,m′Am′B(0)

×e−2t2
(∑NA

k |αkA|2|βkA|2ω2
kA(mA−m′A)2+

∑NB
k |αkB |2|βkB |2ω2

kB(mB−m′B)2
)

(8.23)

Now introducing γd,i = e−2t2
∑Ni
k |αki|

2|βki|2ω2
ki , we obtain the same density matrix as

Eq. (8.14).

We see that density matrix formalism gives us equivalent results for both de-

phasing processes which have fundamentally different physical origin. This result is

true for both collective and local interactions. So, in the rest of chapter we will focus

on only quantum decoherence case and compare various entangled qutrit states for

common and separate bath cases.
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8.3 Qutrit Bell-like States

There are nine Bell-like states for qutrits that can be grouped into three parts

∣∣ΨBell
1+n

〉
=

(
1

3
|00〉+ ei2πn/3 |11〉+ e−i2πn/3 |22〉

)
, (8.24)

∣∣ΨBell
4+n

〉
=

(
1

3
|01〉+ ei2πn/3 |12〉+ e−i2πn/3 |20〉

)
, (8.25)

∣∣ΨBell
7+n

〉
=

(
1

3
|02〉+ ei2πn/3 |10〉+ e−i2πn/3 |21〉

)
. (8.26)

where n = 0, 1, 2. All nine states lost their coherence completely under both collec-

tive and multi-local dephasing. However, first group of states,
∣∣ΨBell

1

〉
,
∣∣ΨBell

2

〉
, and∣∣ΨBell

3

〉
, are more fragile under dephasing since the interference terms of |00〉, and

|22〉 decay with γ16, and γ4
Aγ

4
B, for collective and multi-local dephasing, respectively.

This type of classification of Bell-like states is in accordance with the previous study

[137].

8.4 Horodecki’s Bound Entangled State

Horodecki showed that following density matrix is bound entangled for 3 < a ≤ 4,

ρ(0) =
2

7
P+ +

a

7
ρ+ +

5− a
7

ρ−, (8.27)

while it is separable for 2 ≤ a ≤ 3 and free entangled for 4 < a ≤ 5 [42].

P+ =
1

3
(|00〉+ |11〉+ |22〉) (〈00|+ 〈11|+ 〈22|) , (8.28)

ρ+ =
1

3
(|01〉 〈01|+ |12〉 〈12|) + |20〉 〈20| , (8.29)

ρ− =
1

3
(|10〉 〈10|+ |21〉 〈21|) + |02〉 〈02| . (8.30)

Time evolution of the density matrix becomes in the same form for both common

and separate bath cases, such that

|ρ(t)| ≈
[

2

21
(|00〉 〈00|+ |11〉 〈11|+ |22〉 〈22|)

+ (γ |00〉 〈11|+H.c.) + (γ |22〉 〈11|+H.c.) +
(
γ4 |00〉 〈22|+H.c.

)]
+
a

7
ρ+ +

5− a
7

ρ−. (8.31)
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Here γ corresponds to γc, and γd,Aγd,B for common and different baths, respectively.

Negativity of this density matrix can be evaluated as

N = max{0, ‖ρ
TA‖ − 1

2
}

=
1

42
max{

√
(2a− 5)2 + 16|γ|2 − 5}. (8.32)

Since 0 < γ ≤ 1, and 3 < a ≤ 4 for bound entangled state, negativity remains

always zero. So, we use realignment criterion which can detect bound entangled

states. Applying this criteria to our density matrix we get

R(ρ) =
2

21
max{0,

√
3a2 − 15a+ 19 + 2(2γ + γ4)− 7}. (8.33)

Critical value of the decoherence factor where bound entanglement complectly lost

at a = 4 is equal to 0.84. Below this value two qutrit states become separable.

In order to compare the effect of common and separate baths, lets consider

constant interaction strengths for both case, i.e. ω = ωk = ωki, then decoherence

factors become

γc = e
−8t2ω2

(∑N
k |αk|

2|βk|2
)

(8.34)

γd = e
−4t2ω2

(∑NA
k |αkA|2|βkA|2+

∑NB
k |αkB |2|βkB |2

)
. (8.35)

For large and random baths, terms in round parenthesis are approximately equal to

each other assuming N ≈ NA + NB. So, we see that first equation leads to more

rapid decay. Then, bound entanglement of two qutrits is more robust to decoherence

in multiple spin baths case than single spin bath case.
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CHAPTER 9

Conclusion

We have studied the quantum tunneling of magnetization in [Mn4]2 dimer. Mag-

netization as a function of external longitudinal magnetic field is calculated using

two approaches: exact time evolution solving the Schrodinger equation and the LZS

theory. We found that these methods are consistent with each other. Hence, it is

generally preferable to use LZS theory that requires much shorter computational

time. We showed that magnetic field sweeping affects the tunneling transition rates.

Also, we propose alternative spin states for the explanation of the observed steps in

the hysteresis loops.

In the second part of our work, we introduced a decoherence model where the

interaction between the central system and spin bath is mediated by phonons. We

took the initial phonon states as a coherent state or thermal distribution. In the

former case, decoherence factor decays in a Gaussian form and it becomes indepen-

dent of the phonon frequencies Ωk at short times Ωkt� 1. Also, the initial phonon

states do not affect the decoherence factor if the phonon energies are much larger

than spin-phonon coupling or bath spins are fully polarized. For the thermal distri-

bution case, at low temperatures T � Ωk, short time decay of the decoherence factor

is again in a Gaussian form and independent of the phonon frequencies. Phonons

play a more important role in decoherence with increasing temperature. At high

temperatures T � Ωk, decoherence factor becomes an exponentially decaying func-

tion of T . Later, we analyzed the effect of entangled environment on decoherence.

We observed that entanglement within the environment reduces the decoherence of

central spin. This result might be interpreted in terms of monogamous nature of

entanglement. Finally, entanglement dynamics of the central bipartite spin system
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is investigated. For common spin bath and separate spin bath cases, concurrences

of the reduced density matrix of the central system have been calculated in terms

of decoherence factors. In common spin bath, four Bell states are classified into a

two group due to the presence of decoherence free subspace, while they lose their

entanglement identically in the separate baths.

In the last part of the thesis, we examined the dephasing in entangled qutrits.

We compared effects of the classical noise and quantum decoherence on the central

pair of qutrits. We found equivalent results for both cases at the level of density

matrix formalism. For common and separate baths, we determine the robust and

fragile Bell-like qutrit states. Horodecki’s bound entangled state is shown to be

more robust to decoherence in the latter case.
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Appendix A

Time Evolution of Bath for

Coherent Phonon States

In this Appendix, we give the details of the calculations in derivation of the time-

dependent bath state |B±(t)〉 in Eq. (7.4). Note that Hamiltonian in Eq. (7.1) can

be written as

H =
N∑
k=1

Hk, (A.1)

where

Hk = cz

[
ω0k + ωk(p

†
k + pk)

]
skz + Ωkp

†
kpk. (A.2)

Noting that all the terms commute with each other [Hk, Hk′ ] = δk,k′ , time evolution

operator can be expressed in the following form

U(t) = e−itH = e−it
∑N
k Hk =

N∏
k=1

e−itHk . (A.3)

Since we take initial states in product form as in Eq. (7.2), time evolution of the

total system can be easily derived once we calculate the terms

e−itHk |mc〉|nk〉|λk〉, (A.4)

where the states are written in the order of central spin, bath spin, and phonon

mode. Here mc and nk take the values -1 and 1 corresponding to spin-up state

and spin-down state, respectively. Since Hk commutes with Pauli spin operators of

central system cz and bath spin skz, only effect of the above time evolution operator

is on the phonon state |λk〉. The states |mc〉 and |nk〉 remain unchanged during time
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evolution

e−itHk |mc〉|nk〉|λk〉 = |mc〉|nk〉e−itH
mc,nk
k |λk〉. (A.5)

Here Hmc,nk
k = mcnk[ω0k + ωk(p

†
k + pk)] + Ωkp

†
kpk. Thus, signs of the coupling

constants ω0k and ωk depend on the relative orientations of the central spin and

bath spin. Let us calculate the case where they are parallel to each other and label

the corresponding Hamiltonian as Hk+ = ω0k + ωk(p
†
k + pk) + Ωkp

†
kpk. After this

point we omit the label k for simpler notation.

We first note that it is possible to write H+ in diagonal form with respect to

phonon number operator p†p by applying the following transformation

H ′+ = D
(ω

Ω

)
H+D

†
(ω

Ω

)
= Ωp†p− ω2

Ω
+ ω0, (A.6)

where D(α) = eαp
†+α∗p is called as displacement operator. This operator is uni-

tary D†(α)D(α) = 1 and it displaces the annihilation and creation operators:

D†(α)pD(α) = p + α, D†(α)p†D(α) = p† + α∗. Also, it creates a coherent state

by acting on a vacuum state D(α)|0〉 = |α〉.

Now we are ready to evaluate the time evolution of the coherent phonon states

|λ〉 under Hamiltonian H+. Introducing ξ = ω
Ω

, we calculate the following

e−itH+|λ〉 = D†(ξ)D(ξ)e−itHD†(ξ)D(ξ)|λ〉

= D†(ξ)e−itH
′
+D(ξ)|λ〉

= D†(ξ)e−itH
′
+D(ξ)D(λ)|0〉

= D†(ξ)e−itH
′
+e

ξ
2

(λ∗−λ)|ξ + λ〉, (A.7)

where at the last step we use the following property of displacement operator:

D(α)D(β) = e(αβ∗−α∗β)/2D(α + β). Continuing the above calculation, we find

e−itH+|λ〉 = e
ξ
2

(λ∗−λ)D†(ξ)e−it[ω0+ω(p†+p)+Ωp†p]|ξ + λ〉

= e
ξ
2

(λ∗−λ)e−it(ω0−ξ2Ω)D†(ξ)|(ξ + λ)e−itΩ〉

= e
ξ
2

(λ∗−λ)e−it(ω0−ξ2Ω)e
ξ
2 [(ξ+λ)e−itΩ−(ξ+λ∗)eitΩ]|(ξ + λ)e−itΩ − ξ〉. (A.8)

Now if we reorganize the final result in terms of imaginary and real parts of the λ,

we find that it is equal to A+
k in Eq. (7.6) (reintroducing the labels k)

e−itH+|λk〉 = A+
k |λk〉 = e

i
ω2
k

Ωk

(
t− sin(Ωkt)

Ωk

)
e−itω0k

× e−i
ωk
Ωk

[Re[λk] sin(Ωkt)+Im[λk](1−cos(Ωkt))]|λk〉. (A.9)
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When the central spin and bath spin are anti-parallel to each other, time evolution

of the coherent state is governed by the Hamiltonian Hk− = −ω0k − ωk(p†k + pk) +

Ωkp
†
kpk. Only difference from the previous result will be the sign changes in coupling

parameters ω0k and ωk such that e−itH− |λk〉 = A−k |λk〉. Then, it is straight forward

to obtain the time dependent wavefunction of the bath |B±(t)〉 in Eq. (7.4).
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Appendix B

Decoherence Factor for Thermal

Distribution

Here we give the detailed calculation of the decoherence factor in Eq. (7.16) that

is obtained for thermal phonon states. Density matrix of the phonons in thermal

distribution is given by

ρp(0) =
N⊗
k

ρp,k(0)

=
N⊗
k

(1− e−
Ωk
T )

∞∑
nk=0

e−
Ωknk
T |nk〉〈nk|. (B.1)

We assume the same product form for the bath spins

ρs(0) = [
N⊗
k

(αk| ↑k〉+ βk| ↓k〉)][c. c.]. (B.2)

Time evolution of the total density matrix can be evaluated as

ρ(t) = e−itHρc(0)ρs(0)ρp(0)eitH . (B.3)

Upper off-diagonal element of the central system’s reduced density matrix ρq
c can be

calculated by taking the trace over bath spins and phonons such that

ρq
c(t) = c↑c

∗
↓| ↑〉〈↓ |r(t) = Trbath

[
e−itHc↑c

∗
↓| ↑〉〈↓ |ρs(0)ρp(0)eitH

]
, (B.4)

where r(t) is decoherence factor, and H± is introduced in previous Appendix. It can

be easily shown by the help of previous Appendix that ρq
c is given as the following

ρq
c(t) = c↑c

∗
↓| ↑〉〈↓ |

N∏
k

Trp

[
|αk|2e−itH

+
k ρp,k(0)eitH

−
k + |βk|2e−itH

−
k ρp,k(0)eitH

+
k

]
.

(B.5)
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Let us first calculate the term (e−itH
+
k ρp,k(0)eitH

−
k ) which we simply denote as ρ′p.

Again, we omit the labels k for clearer notation. We insert the over-completeness

relation of coherent states

1 =
1

π

∫
d2γ|γ〉〈γ| (B.6)

into the ρ′p expression such that

ρ′p = (1− e−
Ω
T )

1

π

∫
d2γ(e−itH

+|γ〉)
∑
n

e−
ωn
T (〈γ|n〉)〈n|eitH−

= (1− e−
Ω
T )

1

π

∫
d2γ(A+

γ |u+
γ 〉)
∑
n

e−
ωn
T (e−

|γ|2
2
γ∗

n

√
n!

)〈n|eitH− , (B.7)

where A±γ and u±γ are the same expression as previously introduced in Eq. (7.6)

and Eq. (7.5) , respectively, except λ is replaced by γ. Inserting another identity

operator inside the ρ′p expression, we find

ρ′p = (1− e−
Ω
T )

1

π2

∫∫
d2γd2ζ(A+

γ |u+
γ 〉)
∑
n

e−
ωn
T (e−

|γ|2
2
γ∗

n

√
n!

)(〈n|ζ〉)(〈ζ|eitH−)

= (1− e−
Ω
T )

1

π2

∫∫
d2γd2ζ(A+

γ |u+
γ 〉)
∑
n

e−
ωn
T (e−

|γ|2
2
γ∗

n

√
n!

)(e−
|ζ|2

2
ζn√
n!

)(〈u−ζ |A
−∗
ζ )

= (1− e−
Ω
T )

1

π2

∫∫
d2γd2ζA+

γ A
−∗
ζ |u

+
γ 〉〈u−ζ |e

− |γ|
2+|ζ|2

2 ee
− ω
T γ∗ζ . (B.8)

Now we take the trace of this expression over phonon coherent states such that

Trpρ
′
p =

1

π

∫
d2χ〈χ|ρ′p|χ〉

= (1− e−
Ω
T )

1

π3

∫∫∫
d2γd2ζd2χA+

γ A
−∗
ζ e−

|γ|2+|ζ|2
2 ee

− ω
T γ∗ζ〈χ|u+

γ 〉〈u−ζ |χ〉

= (1− e−
Ω
T )

1

π3

∫∫∫
d2γd2ζd2χA+

γ A
−∗
ζ e−

|γ|2+|ζ|2
2 ee

− ω
T γ∗ζ

× (e−
|χ|2

2 e−
|u+
γ |

2

2 eχ
∗u+
γ )(e−

|χ|2
2 e−

|u−
ζ
|2

2 eu
−∗
ζ χ)

= (1− e−
Ω
T )

1

π3

∫∫
d2γd2ζA+

γ A
−∗
ζ e−

|γ|2+|ζ|2+|u+
γ |

2+|u−
ζ
|2

2 ee
− ω
T γ∗ζ

∫
d2χF (χ),

(B.9)

where F (χ) = e−|χ|
2
eχ
∗u+
γ eu

−∗
ζ χ. The last integral

∫
d2χF (χ) is equal to πeu

−∗
ζ u+

γ .

Later two integrals will also have similar structure to this integral. More general

formula for this kind of integrals is
∫
d2ze−α|z|

2+αz′z∗f(z) = π
d
f(z′). Then, the above
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calculation follows as

Trpρ
′
p = (1− e−

Ω
T )

1

π2

∫
d2γA+

γ e
− |γ|

2+|u+
γ |

2

2

∫
d2ζA−

∗

ζ e−
|ζ|2+|u−

∗
ζ
|2

2 ee
− ω
T γ∗ζeu

−∗
ζ u+

γ

= (1− e−
Ω
T )

1

π2

∫
d2γA+

γ e
− |γ|

2+|u+
γ |

2

2

× πe−i
ω2

Ω
(t− sin(Ωt)

Ω
)−itω0e−

ω2

Ω2 (1−cos(Ωt))e
ω
Ω

(1−eitΩ)u+
γ eγ

∗e−
Ω
T [ω

Ω
(1−eitΩ)+eitΩu+

γ ]

= (1− e−
Ω
T )

1

π
e−2itω0e−4ω

2

Ω2 (1−cos(Ωt))

×
∫
d2γe−|γ|

2(1−e−
Ω
T )e−

2ω
Ω

(1−e−itΩ)γe
2ω
Ω
e−

Ω
T (1−eitΩ)γ∗

= (1− e−
Ω
T )

1

π
e−2itω0e−4ω

2

Ω2 (1−cos(Ωt))

 π

1− e−Ω
T

e
−8ω

2

Ω2 (1−cos(Ωt)) e
−Ω
T

1−e−
Ω
T


= e−2itω0e−4ω

2

Ω2 (1−cos(Ωt)) coth( Ω
2T

). (B.10)

Then, ρq
c is given as

ρq
c(t) = c↑c

∗
↓| ↑〉〈↓ |

N∏
k

e−4ω
2

Ω2 (1−cos(Ωt)) coth( Ω
2T

)(|α|2e−2itω0 + |β|2e2itω0). (B.11)
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[62] Rényi, A. (1970). Probability theory. Dover Publications, Amsterdam.

[63] Vedral, V., Plenio, M. B., Rippin, M. A., and Knight, P. L. (1997). Quantifying

entanglement. Physical Review Letters, 78(12), 2275.

[64] Audenaert, K., Plenio, M. B., and Eisert, J. (2003). Entanglement cost un-

der positive-partial-transpose-preserving operations. Physical Review Letters,

90(2), 27901.

[65] Rains, E. M. (1999). Bound on distillable entanglement. Physical Review A,

60(1), 179.

69



[66] Verstraete, F., Audenaert, K., Dehaene, J., and DeMoor, B. (2001). A com-

parison of the entanglement measures negativity and concurrence. Journal of

Physics A: Mathematical and General, 34(47), 10327.

[67] Zurek, W. H. (2003). Decoherence, einselection, and the quantum origins of

the classical. Reviews of Modern Physics, 75(3), 715.

[68] Schlosshauer, M. (2005). Decoherence, the measurement problem, and inter-

pretations of quantum mechanics. Reviews of Modern Physics, 76(4), 1267.

[69] Cucchietti, F. M., Pastawski, H. M., and Wisniacki, D. A. (2002). Decoherence

as decay of the Loschmidt echo in a Lorentz gas. Physical Review E, 65(4),

45206.

[70] Cucchietti, F. M., Dalvit, D. A. R., Paz, J. P., and Zurek, W. H. (2003).

Decoherence and the Loschmidt echo. Physical Review Letters, 91(21), 210403.

[71] Cucchietti, F. M., Paz, J. P., and Zurek, W. H. (2005). Decoherence from spin

environments. Physical Review A, 72(5), 52113.

[72] Prokof’ev, N. V., and Stamp, P. C. E. (1996). Quantum relaxation of mag-

netisation in magnetic particles. Journal of Low Temperature Physics, 104(3),

143.

[73] Prokof’ev, N. V., and Stamp, P. C. E. (1998). Low-temperature quantum

relaxation in a system of magnetic nanomolecules. Physical Review Letters,

80(26), 5794.

[74] Prokof’ev, N. V., and Stamp, P. C. E. (2000). Theory of the spin bath. Reports

on Progress in Physics, 63(4), 669.

[75] Feynman, R. P., and Vernon, F. L. (1963). The theory of a general quantum

system interacting with a linear dissipative system. Annals of Physics, 24, 118.

[76] Caldeira, A. O., and Leggett, A. J. (1981). Influence of dissipation on quantum

tunneling in macroscopic systems. Physical Review Letters, 46(4), 211.

[77] Caldeira, A. O., and Leggett, A. J. (1983). Dissipation and quantum tun-

nelling. Annals of Physics, 149(2), 374.

70



[78] Leggett, A. J., Chakravarty, S., Dorsey, A. T., Fisher, M. P. A., Garg, A., and

Zwerger, W. (1987). Dynamics of the dissipative two-state system. Reviews of

Modern Physics, 59(1), 1.

[79] Weiss, U. (1999). Quantum dissipative systems. Series in Modern Condensed

Matter Physics Vol. 10, World Scientific Pub Co Inc, Singapore.

[80] Lounasmaa, O. V. (1974). Experimental principles and methods below 1 K.

Academic Press, New York.

[81] Khaetskii, A. V., Loss, D., and Glazman, L. (2002). Electron spin decoher-

ence in quantum dots due to interaction with nuclei. Physical Review Letters,

88(18), 186802.

[82] Merkulov, I. A., Efros, A. L., and Rosen, M. (2002). Electron spin relaxation

by nuclei in semiconductor quantum dots. Physical Review B, 65(20), 205309.

[83] Schliemann, J., Khaetskii, A. V., and Loss, D. (2002). Spin decay and quantum

parallelism. Physical Review B, 66(24), 245303.

[84] Tessieri, L., and Wilkie, J. (2003). Decoherence in a spin spin-bath model

with environmental self-interaction. Journal of Physics A: Mathematical and

General, 36(49), 12305.

[85] Dobrovitski, V. V., and De Raedt, H. A. (2003). Efficient scheme for numerical

simulations of the spin-bath decoherence. Physical Review E, 67(5), 56702.

[86] Coish, W. A., and Loss, D. (2004). Hyperfine interaction in a quantum dot:

Non-Markovian electron spin dynamics. Physical Review B, 70(19), 195340.

[87] Deng, C., and Hu, X. (2006). Analytical solution of electron spin decoherence

through hyperfine interaction in a quantum dot. Physical Review B, 73(24),

241303.
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