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Abstract

The Vehicle Routing Problem (VRP) determines a set of vehicle routes originating and
terminating at a single depot such that all customers are visited exactly once and the
total demand of the customers assigned to each route does not violate the capacity of the
vehicle. The objective is to minimize the total distance traveled by all vehicles. An
implicit primary objective is to use the least number of vehicles The Vehicle Routing
Problem with Time Windows (VRPTW) is a variant of VRP in which lower and upper
limits are imposed to the delivery time of each customer. The arrival at a customer
outside the specified delivery times is either penalized (soft time windows) or strictly
forbidden (hard time windows). In the time-dependent VRP, the travel times between
the customers vary due to different traffic conditions in time intervals throughout the
scheduling horizon beside different road types. In this thesis, both the time-independent
and -dependent VRP with hard time windows are addressed. We tackle these problems
using an Ant Colony Optimization approach. The performance of the proposed

algorithm is tested on the well-known benchmark instances from the literature.
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ZAMAN-BAGIMSIZ VE ZAMAN-BAGIMLI ZAMAN KISITLI ARAC
ROTALAMA PROBLEMINE BiR KARINCA KOLONISI YAKLASIMI

U. Mahir Yildirim
Endiistri Miithendisligi, Yiiksek Lisans Tezi, 2008

Tez Danigsmani: Dog¢. Dr. Biilent Catay

Anahtar Kelimeler: ara¢ rotalama, zaman kisithi ara¢ rotalama problemi, karinca
kolonisi algoritmasi, ileri sezgisel yontem

Ozet

Ara¢ Rotalama Problemi (ARP), tiim miisteriler yalnizca bir kez ziyaret edilecek ve tek
bir rotaya atanan miisterilerin toplam talepleri ara¢ kapasitesini asmayacak sekilde
depodan baglayan ve depoda sonlanan rotalarin belirlenmesi problemidir. Amag,
toplamda katedilen mesafenin enkiigiiklenmesidir. Bir diger Ortiilii amag¢ ise en az
sayida aracin kullanilmasidir. ARP’nin bir uzantisi olan Zaman Kisitli ARP (ZKARP),
her bir miisteriye gidilebilecek zaman i¢in en erken ve en ge¢ sinirlarin tanitildigi
problemdir. Bu simirlar disindaki varis zamanlar1 ya cezalandirilmakta (gevsek zaman
kisit1) ya da tamamiyla yasaklanmaktadir (sik1 zaman kisit1). Zaman-Bagimli ARP’nde
ise yolculuk zamanlari, farkli yol tipleri yaninda zaman araliklarindaki farkli trafik
kosullarina bagl olarak degiskenlik gostermektedir. Bu tezde, hem zaman-bagimli hem
de zaman-bagimsiz siki zaman kisithh ARP ele alinmaktadir. Coziim yontemi olarak
karmca kolonisi algoritmasi kullanilmaktadir. Onerilen yaklasimin performansi

literatiirdeki problemler iizerinde test edilmektedir.

vii



Table of Contents

Abstract vi
Ozet vii
1 INTRODUCTION 1
2 ANT COLONY OPTIMIZATION 3
2.1, ADNESYSTEIM c.eiiiiiiiieee et 5
2.2. The EXtensions Of AS ..ottt 6

3 VEHICLE ROUTING PROBLEM WITH TIME WINDOWS 9
3.1. Description of the VRPTW .....ccciiiiiiiiiiiiee et 9
3.2. Description of the TDVRPTW .....ccoiiiiiiiiiiieiieeeeeeeeee e 10
3.3, Literature REVIEW ......cceeiiiiiiiiieieiiesieeie et 13
3.3.1.  Stochastic travel tIMES ........oceeeiieriieiiieieeie e 13

3.3.2.  DeterminiStic travel tImMeS........ccueeruieriiierieniieiie et 14

4 AN ANT ALGORITHM FOR THE VRPTW 16
4.1. Heuristic INfOrmMation ..............oooiiiiiiiiiiiie et 16
4.2, ROULE CONSIIUCTION ....eouviiieiiieeeiiieeetiee et e et e et e et e e et e e eaeeeeveeeeaseeesaseeeeaneeens 17
4.3, LoCal SCAICh ... et 17
4.3.1. MOVE ProCeAUIC......ccvvviiieiiiiee e e 18

4.3.2.  Exchange Procedure ...........ccocceeviiriiiiieiiieiiee e 18

4.3.3.  Push Forward Approach .........ccceeeeienieninienieeeesceeeeeeeeee e 19

4.4. Update of Pheromone TrailS.........ccccuieiiiiiiieniieiiieiieeie et 21
4.5. Extensions to the Time-dependent VRPTW ..o 22
4.5.1. Time Dependency / Travel Speeds ........cccceeveeriiiiieniieiieiieeiee 22

4.5.2. Local SEAICh .....oouiiiiiiiiieiieeee s 23

4.5.3.  Pheromone Update..........cccuveriiiiiiieiiieeiiecieeceeeeee e 24

5 COMPUTATIONAL STUDY 25
5.1. Preliminary eXPeriments .........ccceerueerirerieenieenieenieenseenereesseesseeseessseenseessseenne 26
5.1.1.  ACO and Local Search compariSon............cceeceerieenieeneeesieenieeieeeee. 26

viii



5.1.2. Re-initialization of Pheromones .........ooovveeeeeeeeeeeeeeieieeeeeeeeeeeeeeeeeeeeenenns 29

5.2. Experimental Study 1 — One-dimensional network — multi-dimensional
NEtWOTK COMPATISON ....uvvieiiiieeiiieeeiiie et e et e et e e tve e et e e saeeesreeesebeeesaseeessseeens 30
5.3. Experimental Study 2 — Extension of Experimental Study 1 with
PAramMEter ANALYSIS .oovieieiieiieiiieiieeiie ettt et enes 32
5.4. Experimental Study 3 — Time-dependent Vehicle Routing Problem........... 34
5.5. Summary of RESUILS ....coiiiiiiiiiiiiii e 36
6 CONCLUSION AND FUTURE RESEARCH 38
Bibliography 39
Appendix A Flow chart of the algorithm 43
Appendix B Detailed results of the experimental study 1 45
Appendix C Detailed results of the experimental study 2 49
Appendix D Detailed results of the experimental study 3 53
Appendix E Pheromone Re-Initialization Illustration 59
Appendix F The general interface of the software used 60
Appendix G Road Types Used in Experimental Study 3 61

iX



List of Figures

2.1. Illustration of pheromone deposit ........cccceeruierieiiiienieeieee e 3
3.1. Tllustration of time WiNdOW CONCEPL........ccureriieriiiriieriieiieete e eiee e eaee e enne 10
3.2. [Illustration of unrealistic waiting time in constant travel speed case.................... 11
3.3. An example of travel speed and travel time functions .............ccceceevierieeneennnne 12
3.4. Changing arrival times in time-dependent Case ..........cecceeveieiieriienienieeee e 12
3.5. Tllustration of an infeasible customer that becomes feasible...........c.ccccceeverience. 13
4.1, INEra-TOULE MOVE ..couuiiiiiiiiiiiieeiteeie ettt ettt sttt st e e beesaeeereens 18
4.2, INEET-TOULE TNOVE ...eeiuiiiiiiieiiiieeeiiee ettt ettt ettt e st e e st e e st e e sibe e e sabeeesabeeeaeees 18
4.3, INtra-route XChanGE..........cccueiiiiiiiieiie ettt sttt e s eeee 19
4.4, INer-route EXCHANZE ......cccvieiieieiieiieciie ettt ettt et e e et e seaeeseeeebeeseessseenseens 19
4.5. PF calculation for the exchanged/moved CuStOmMErs ...........ccceevveerveeciieneeeieennnens 20
4.6. PF calculation for the remaining CUSTOMETS .......c.ceeuierieriieeniieeieeiee e eiee e 20
4.7 Illustration of push forward calculations...........c.ceeveeevieeecieeecieecee e, 21
4.8 Pseudo-code of the pheromone re-initialization.............ccceevieeieenieeiieeneeeieeeeens 22
4.9. Pseudo-code of the calculateTravelTime procedure .............ccoeeveevveecveeneeeveennnnns 23
4.10. Tllustration of an exchange where no gain in terms of tour time is obtained ........ 23
5.1. Computational Time of Local Search in iterations 1, 25, 50, 75 and 100............. 28

5.2. Pheromone levels of each network in a solution of problem R101 with 25

customers with distance 497.55 and 8 vehicles.......c..cocevvrieiiiiiiininnincnens 30
5.3 The first, the second and the third time-period settings ............ccccceeveerveereennnne 35
A.1.1. Flow chart of the algorithim...........ccociiiiiiiiiiii e 43
A.1.2. Flow chart of the algorithm..........ccccoeeviiiiiiiiiiriieicccce e 44
E.1. Illustration of pheromone re-initialization procedure on instance R201. ............. 59
F.1. The general interface of the generated software ............cocceeviiiiiiiiiniiineiicee, 60



3.1.

5.1.
5.2.

5.3.
5.4.
5.5.
5.6.
5.7.
5.8.
5.9.
5.10.
5.11.
5.12.

B.1.

B.2.

B.3.

B.4.

C.1.

C.2.

List of Tables

A travel speed matrix €XamPle........ccoveieeiieeiiieeiiee e e 11

Stand-alone solutions of ACO and local search procedures ...........c.ccccvevvrennennnee. 27

The performance of the local search procedures on the nearest neighbor

SOTUEION 1.ttt et ettt e ettt e et e e bt e st e e beesnteenneesnnes 28
Effects of pheromone re-initialization procedure............ccccvueeveieeecieencrieeciee e, 29
The summary of the results of experimental study 1 .......c.ccccoevviierienciieniennnne. 31
New best values found in experimental study 1...........ccoeeveviieiiieniieeiienieeieeene 32
Results of the parametric analysis.........ccoeveerieeiiiniieiierie e 33
The summary of the results of experimental study 2 .......cccccoevieiiieiiniiiiiiene 33
New best values found in experimental study 2.........cccoeieeiiiniiiniieniiieienieeee 34
The travel SPEed MALIIX ....cc.eeviieiiiieieeiie ettt e e e e seeeenne 34
Summary of the results of experimental study 3..........cccoeeieviiieiieniiiieeieeeeee, 35
Comparison of experimental studies 1 and 2 ..........cccceeviiriiiiieniieneceee 36
Standard deviations of Experimental Study 3 ..........cccceiiriiiniiiiniiniiiceee 37

The average results of experimental study 1 for type 1 problems with 1
NEtWOrk and 3 NETWOTKS .....ooeeriiiiiiieiieeeeee e 45
The average results of experimental study 1 for type 2 problems with 1
NEtwork and 3 NEtWOTKS. ......ooiuiiiiiiiieie e 46
Best total distance (TD) published heuristic results and ACO-TI results for

EYPE L PLODICINS. .ooeiieiiieiiieiie ettt ettt ettt e e be e et e e b e e ssaeenbeessseensaens 47
Best total distance (TD) published heuristic results and ACO-TI results for

EYPE 2 PLODICIMNS. .ottt ettt ettt ettt et e st eebeesneeeneen 48

The average results of experimental study 2 for type 1 problems with 1
Nnetwork and 3 NEtWOTKS .....cc.couiviiininiiiiccc e 49
The average results of experimental study 2 for type 2 problems with 1

NEITWOTK AN 3 NEIWOTKS. et e e e e e e e e e e eeaaeeeeeeeaneans 50

xi



C.3.

C4.

D.1.
D.2.
D.3.
DA4.
D.s.
D.6.

G.1.

G.2.

G.3.

G4.

Best total distance (TD) published heuristic results and ACO-TI results for

EYPE L PLODICIMNS. .ooeiieiiieiiieiieeit ettt ettt e e e st eebaessaeesbeessseenseens 51
Best total distance (TD) published heuristic results and ACO-TI results for

EYPE 2 PTODICINS. .ttt ettt ettt e st e e bt e s neeeeeens 52
Average results of experimental study 3 for setting 1.........cccceeeveerieriiieniencieennnn. 53
Best results of experimental study 3 for setting 1 .........cccceeevieeiiieiieniiienieeieeiens 54
Average results of experimental study 3 for setting 2..........cccoeveeevieiiiienieniieenienne 55
Best results of experimental study 3 for Setting 2 .........cooceeeiieeniiiinienieeieeieeene 56
Average results of experimental study 3 for setting 3.........ccceeevievieriiienieniieennnns 57
Best results of experimental study 3 for Setting 3 .........ccoceeeeieeciieiieniiieieeieeens 58

One-way road types for traveling from the customers 0-50 to the

CUSLOMETS 0-50. ...eiiiiiiiiitiite ettt 61
One-way road types for traveling from the customers 51-100 to the

CUSTOMETS 0-50.. 1.eiiiiiiiiiiiee ettt e 62
One-way road types for traveling from the customers 0-50 to the

CUSLOMETS ST-100. couiiiiiiiiiiiii ittt 63
One-way road types for traveling from the customers 51-100 to the

CUSTOIMIETS ST100. oeeeiiieiiieieeee ettt e e e e e e et eeeeeeeeeeeaaraeeeeeeeenenns 64

xii



CHAPTER 1

INTRODUCTION

Optimizing a distribution network has been and remains an important topic both in the
literature and real-life applications, and the routing of a fleet of vehicles is one of the
most widely addressed problem in a distribution network. The Vehicle Routing Problem
(VRP) firstly introduced by Dantzig and Ramser (1959) determines a set of vehicle
routes originating and terminating at a single depot such that all customers are visited
exactly once, and the total demand of the customers assigned to each route does not
violate the capacity of the vehicle. The objective is to minimize the total distance
traveled by all vehicles. An implicit primary objective is to use the least number of
vehicles. The Vehicle Routing Problem with Time Windows (VRPTW) is a variant of
VRP in which an earliest and a latest delivery time are imposed for each customer. The
arrival at a customer outside the specified delivery times is either penalized (soft time
windows) or strictly forbidden (hard time windows). While modeling VRP many
assumptions are made to simplify the problem and to reduce the solution process
since the VRP is an NP-hard problem. However, as the number of assumptions
increases, the model becomes less successful to represent real-life conditions. The
most widely made assumption is that the travel times are constant and insensitive to
the changing traffic conditions during the scheduling horizon. In the Stochastic
Vehicle Routing Problem, the customer demands and/or the travel times between the
customers may vary. Although stochastic travel times and demand distributions have
been frequently used in the literature, time-varying travel speeds and Time-
dependent Vehicle Routing Problem with Time Windows (TDVRPTW) have seldom
been addressed.

Many exact and heuristic solution approaches are used to solve VRP and its
extensions. From both the computational time and solution quality point of view,

metaheuristics have gained much importance (compared to the exact solution



methods). Metaheuristics such as Tabu Search (TS), Genetic Algorithm (GA),
Simulated Annealing (SA), Greedy Randomized Adaptive Search Procedure
(GRASP) and the recently introduced Ant Colony Optimization (ACO) are solution
methods capable of avoiding getting trapped in a local optimum while performing an
extensive search in the solution space by utilizing the interaction between local
search improvement procedures and higher level strategies (Glover and
Kochenberger, 2003).

ACO is a population-based metaheuristic that can be used to find approximate
solutions to difficult optimization problems (Dorigo, 2008). It is based on the
observation of the behavior of real ant colonies searching for food sources. Real ants
deposit an aromatic essence, called pheromone, on the path they walk. Other ants
searching for food sense the pheromone and use this information in selecting their path.
The quantity of pheromone deposited on a path is based on the length of the path and
the quality of the food source. As more ants follow a path the level of pheromone on
that path will increase, increasing its selection probability by other ants. In ACO,
artificial ants are used for searching good solutions to an optimization problem by
taking advantage of this cooperative learning process (Catay, 2008).

The aim of this thesis is to develop an ACO approach to efficiently solve both
the time-dependent and -independent VRP with hard time windows. The thesis is
organized as follows. In Chapter 2, the mechanisms of the ACO metaheuristic are
described and some of its variants proposed in the literature are summarized. Chapter 3
is devoted to the description of TDVRPTW and the overview of the approaches
proposed for solving the problem. Chapter 4 introduces the proposed ACO approach
and Chapter 5 presents the computational study to test its performance and the results

achieved. Finally, concluding remarks and future research are given in the last chapter.



CHAPTER 2

ANT COLONY OPTIMIZATION

ACO, introduced by Dorigo (1992), is a metaheuristic approach, developed to attack
hard combinatorial optimization problems. The approach is motivated from the common
behaviors of the real ant colonies. A foraging member of a real ant colony
communicates with the other members via stigmergy, an indirect form of
communication based on the modification of the environment. The main component of
stigmergy in a real ant colony is a chemical substance called pheromone which an ant
deposits on the trail it walks while searching for food. As the number of ants that follow
the path increases, the pheromone amount on the path and the selection probability of
the path will increase. The other ants are likely to follow the path on which they sense
pheromone instead of traveling at random. Pheromone on a trail is also subject to
evaporation and even to exhaustion unless the path is traversed, which in turn will
decrease the chance of other ants to follow the path. The amount of pheromone
deposited and evaporated is correlated with the distance between the nest and the food
source. The longer the path between the nest and the food source the more the
pheromone evaporates. On the other hand, the shorter the path the more the pheromone
is deposited. Thus, the pheromone levels remain higher on the shorter paths. Also, the

quality of the food is another factor that affects the amount of pheromone deposited.

Path 1
|
- wn §
- 1 { \‘\ | Path2 _ \
| / = S, A ——

L N D Ny v “\\
_ _ ‘ L \\\_”/
Path3 ~-——-—~

Figure 2.1. Illustration of pheromone deposit



Figure 2.1 illustrates an ant ready to depart from the nest for the food which can be
reached via three paths. The pheromone levels on these three paths are determined by
the path choice of the previous ants. The weights of the paths in Figure 2.1 are
proportional to the amount of pheromone they are deposited. Pheromone on the longest
path, path 3, has totally evaporated. The ant in the nest is most likely to choose path 2
having the largest amount of pheromone, thus reinforcing the path.

The behavior of real ants is simulated via artificial ants in ACO to solve
combinatorial optimization problems. The artificial ants search the solution space for a
good solution while the real ants search their environment for food of good quality. In
order to implement ACO, a transformation of the optimization problem into the problem
of finding the path that best serves the objective function on a weighted graph is
performed. The artificial ants incrementally build solutions by moving on the graph
using a stochastic construction process guided by artificial pheromone and a greedy
heuristic known as visibility (Dorigo, 2008). As the solution quality increases, the
amount of pheromone deposited increases accordingly.

The first ACO algorithm is the Ant System (AS) which was applied for solving the
well-known Traveling Salesman Problem (Dorigo, 1992; Dorigo et al., 1996). In AS,
each ant probabilistically chooses the next city to visit based on a heuristic combining
the distance to that city and the amount of virtual pheromone deposited on the arc to
that city. The ants explore, depositing pheromone on each arc that they cross, until they
have all completed a tour. At this point the ant which has completed the shortest tour
deposits virtual pheromone along its complete tour. The amount of pheromone
deposited is inversely proportional to the tour length; the shorter the tour, the more it
deposits.

Although AS provided competitive results its performance was still inferior in large
instances compared to other algorithms specifically designed for the TSP. However, its
successful application has led to many extensions for various combinatorial
optimization problems utilizing the similar construction mechanism. Some early
applications include the elitist strategy for Ant System (EAS) proposed by Dorigo
(1992) and Dorigo et al. (1996), rank-based version of Ant System (AS,,) by
Bullnheimer et al. (1999), MAX-MIN Ant System (MMAS) by Stiitzle and Hoos
(1997), and Ant Colony System (ACS) by Dorigo and Gambardella (1997).



In the next section, we explain the mechanisms of the AS approach and discuss its
extensions applied to the TSP following the detailed description provided in Catay
(2008).

2.1. Ant System

In AS, K artificial ants probabilistically construct tours in parallel exploiting a given
pheromone model. Initially, all ants are placed on randomly chosen cities. At each
iteration, each ant moves from one city to another, keeping track of the partial solution
it has constructed so far. The algorithm has two fundamental components:

e The amount of pheromone on arc (i, /), ;;

e Desirability of arc (i, /), ;;
where arc (i, j) denotes the connection between city i and city j.

At the start of the algorithm an initial amount of pheromone 7, is deposited on each
arc: T;j= To = K/Lo, where Ly is the length of an initial feasible tour and K is the number
of ants. In AS, the initial tour is constructed using the nearest-neighbor algorithm;
however, another TSP heuristic may as well be utilized. The desirability value (also
referred to as visibility or heuristic information) between a pair of cities is the inverse of

their distance 7;; = 1/d;;, where d;; is the distance between cities i and j. So, if the

ijo
distance on the arc (i, j) is long, visiting city j after city i (or vice-versa) will be less
desirable.

Each ant constructs its own tour utilizing a transition probability: an ant k&

positioned at a city i selects the next city j to visit with a probability given by

a,B’
pl =4 TiensThnt @1
0 , otherwise
Here, V' lk denotes the set of not yet visited cities; o and f are positive parameters to
control the relative weight of pheromone information 7;; and heuristic information 7;;.

Note that rf{ng is also referred to as the attractiveness and is denoted as ;.
After each ant has completed its tour, the pheromone levels are updated. The
pheromone update consists of the pheromone evaporation and pheromone

reinforcement. The pheromone evaporation refers to uniformly decreasing the
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pheromone values on all arcs. The aim is to prevent the rapid convergence of the
algorithm to a local optimal solution by reducing the probability of repeatedly selecting
certain cities. The pheromone reinforcement process, on the other hand, allows each ant
to deposit a certain amount of pheromone on the arcs belonging to its tour. The aim is to
increase the probability of selecting the arcs frequently used by the ants that construct

short tours. The pheromone update rule is the following:

K
T« (1 —p)t; + Z Arlkj AY)) (2.2)
k=1

In this formulation, p (0 <p < 1) is the pheromone evaporation parameter and Azf; is
the amount of pheromone deposited on arc (i, j) by ant k and is computed as follows:

if ant k uses edge (i, j) on its tour

Atjy =4 LF 2.3)

0, otherwise

where L* is the length of tour constructed by ant £.

Note that prior to the pheromone update a local search procedure may be applied on
the tours constructed by the ants to reduce the distance traversed. It has been observed

that such a procedure enhances the performance of the AS algorithm (Catay, 2008).

2.2. The Extensions of AS

In the EAS (Dorigo, 1992; Dorigo et al., 1996) an elitist strategy is implemented by
further increasing the pheromone levels on the arcs belonging to the best tour achieved
since the initiation of the algorithm. That best-so-far tour is referred to as the “global-

best” tour. Then, the pheromone update rule performed as follows:

K
Tjj < 1- p)rij + Z Arg‘j + WArigjb v (i,]) (2.4
k=1

Here, w denotes the weight associated with the global-best tour and Arigjb is the amount

of pheromone deposited on arc (i, j) by the global-best ant and calculated by the

following formula:



Ap9P — )T if global best ant uses edge (i, j) on its tour
ij (2.5)
0 , otherwise

where L#” is the length of global-best tour.

In the AS, ;. (Bullnheimer et al., 1999) a rank-based elitist strategy is adopted in
an attempt to prevent the algorithm from being trapped in a local minimum. In this
strategy, w best-ranked ants are used to update the pheromone levels and the amount of
pheromone deposited by each ant decreases with its rank. Furthermore, at each iteration,
the global-best ant is allowed to deposit the largest amount of pheromone. The update

rule is the following:
w—1
Tjj < (1- p)Tl-j + Z (w—1)A Tl-rj + WATigjb v (i,)) (2.6)
r=1

The ACS presented by Dorigo and Gambardella (1997) attempts to improve AS
by increasing the importance of exploitation versus exploration of the search space. This
is achieved by adopting a strong elitist strategy to update pheromone levels and a
pseudo-random proportional rule in selecting the next node to visit. The strong elitist
strategy is applied by using the global-best ant only to increase the pheromone levels on

the arcs that belong to the global-best tour:
Tj < (1 —p)tj + pA‘rf}b V (i, j) belonging to global best tour  (2.7)

The mechanism of the pseudo-random proportional rule is as follows: an ant & located at
customer 7 may either visit its most favorable customer or randomly select a customer.

The selection rule is the following:

( argmaxri“jng. , ifz <z,

s jea 238)
|
kjk , otherwise

where zis a random variable drawn from a uniform distribution U [0,1] and zj
(0 < zp < 1) is a parameter to control exploitation versus exploration. /¥ is selected
according to the probability distribution (2.1). ACS also uses local pheromone updating

while building solutions: as soon as an ant moves from city i to city j the pheromone



level on arc (i, j) is reduced in an attempt to promote the exploration of other arcs by

other ants. The local pheromone update is performed as follows:

T;j <« (1 =81y + &1 (2.9)

where & is a positive parameter less than 1.

Similar to ACS, MMAS (Stiitzle and Hoos, 1997) uses either the global-best ant
or the iteration-best ant alone to reinforce the pheromones. It has been observed that
using iteration-best ant at the start of the algorithm and then gradually increasing the
frequency of using the global-best ant for the pheromone update performs good.
However, this strategy may cause a rapid convergence to a sub-optimal solution. Thus,
maximum and minimum limits on the pheromone levels are imposed to avoid
stagnation. The interval in which the pheromones may vary is set to [Tuin, Tmax]. The
pheromone levels are initialized at 7,,, to allow the exploration of the search space at
the beginning. In addition, the pheromone levels are reinitialized whenever the system
approaches stagnation or no improvement has been achieved after a number of
consecutive iterations.

The interested reader is referred to Dorigo and Stiitzle (2004) for more details on

ACO metaheuristic and its variants.



CHAPTER 3

VEHICLE ROUTING PROBLEM WITH TIME WINDOWS

VRP determines a set of vehicle routes originating and terminating at a single depot
such that all customers are visited exactly once and the total demand of the customers
assigned to each route does not violate the capacity of the vehicle. The objective is to
minimize the total distance traveled by all vehicles. An implicit primary objective is to
use the least number of vehicles. VRPTW is a variant of VRP in which an earliest and a
latest delivery time are imposed for each customer. The arrival at a customer after the
specified delivery time interval is either penalized (soft time windows) or strictly
forbidden (hard time windows). An extension of the classical VRPTW is the time-
dependent VRPTW (TDVRPTW) where the travel times vary due to different factors

such as traffic and road conditions.

3.1. Description of the VRPTW

In VRPTW, N geographically dispersed customers are serviced by a homogenous
fleet of K vehicles with capacity Q. All vehicle routes start and end at the depot,
denoted with 0, visiting each customer i, i€ {1,..., N}, exactly once. Each customer
has a demand ¢, service time s; and time window [e;, /; ]. The time window refers to
the time interval in which the demand must be met and may prohibit the visit of
certain customer pairs one after the other. The concept is illustrated in Figure 3.1.
The service time shown by the shaded region is the loading or unloading service
time at the customer i where the terms e; and /; denote the earliest and latest
available service start time for customer i. As no arrival is allowed after /;, this type

of time window is referred to as a hard time window. In the soft time window, the
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Figure 3.1. Illustration of time window concept

arrival out of the time window is allowed but penalized. If the vehicle arrives at
customer i before e; it must wait. In Figure 3.1, if the vehicle departs from customer
1 at d; after a service time of d’-a’j, it arrives at customer 2 at a’,. However, if the
vehicle departs from customer 1 at dj after a service time of d’j-a’j, it arrives at
customer 2 at a’, beyond the corresponding time window. Thus, the vehicle that is

currently visiting customer 1 and will depart at time d’;/ cannot visit customer 2 on its

route.

3.2.  Description of the TDVRPTW

An extension of the classical VRPTW is the time-dependent VRPTW (TDVRPTW)
where the travel time between any source and destination pair on the road network is
not a function of the distance alone and is subject to variations due to accidents,
weather conditions or other random events. Hourly, daily, weekly or seasonal cycles
in the average traffic volumes also result in temporal variations in travel times
(Malandraki and Daskin, 1992). Speed limitations imposed by the road type and the
traffic density distribution of the road which is also affected by the time of the day
are two main components that cause fluctuations in travel speeds. That is, the travel
time between two customers is not constant during the entire scheduling horizon and
changes with the changing sub-divisions of the horizon, called time-periods. This
time dependency on both road type and time-period is embedded in the model where

deterministic travel times are used by using a travel speed matrix.
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Table 3.1. A travel speed matrix example

‘ Period 1 Period2 Period 3
Road Type 1 0.6 0.9 0.7
Road Type 2 0.8 1.2 0.5

A sample discrete travel speed distribution is given in Table 3.1. The scheduling
horizon is divided into three time periods and the road network composes two types
of roads. A travel speed with value 1.0 corresponds to the time-independent VRP.
The higher the travel speed, the lighter the traffic density. Road type 1 in Table 3.1 is
mostly congested during the day. In period 2, traffic density is lighter and is
modeled by a higher travel speed coefficient. Having lower travel speed coefficients,
period 1 and period 3 are more congested during the day. The rush hours for road
type 2 are in period 3. The travel time is found by multiplying the distance with the
corresponding coefficient. Thus, in period 2 for road type 2, the travel time is less

than the time-independent case as the travel speed coefficient is bigger than 1.

-] | |- ---
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Figure 3.2. Illustration of unrealistic waiting time in constant travel speed case

Ignoring the time dependency of the travel times may result in sub-optimal
solutions or solutions in which the time-windows constraints are violated. Besides,
assuming a constant speed over the entire length of an arc may lead to waiting time
at a customer until the end of the current time interval when it is more advantageous
to wait than departing to the next customer immediately. This situation is
exemplified in Figure 3.2. The vehicle at customer 1 with time window [e;, /] is
ready for departure at time d;. The travel speed is higher in time-period 7Tj+;
compared to the time-period 7; in which the vehicle resides currently. Under the
constant travel speed assumption, the vehicle is motivated to wait until the end of

time-period 7} rather than departing immediately. When the vehicle departs
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immediately, it arrives at customer 2 at ¢; whereas it arrives at 7, in the former case.
That is, departing later results in an earlier arrival. In other words, the vehicle that

departs later passes the vehicle which departs earlier.
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Figure 3.3. An example of travel speed and travel time functions (Ichoua et al., 2003)

To overcome this unrealistic effect of passing, Ahn and Shin (1991) considered
the travel speed as a step function of the time of the day (Figure 3.3 (a)). This leads

to a piecewise continuous travel time function and guarantees that a customer with
an earlier departure time will always arrive earlier (Figure 3.3 (b)). This property is

named as non-passing property.
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Figure 3.4. Changing arrival times in time-dependent case

In TDVRPTW, the feasible and unfeasible customer pairs are not necessarily
same as in the time-independent case. A dynamic travel time calculation is required
to check feasibility in the route construction phase. The arrival time to the next
customer may be realized earlier or later compared to the time-independent case
which are illustrated in Figure 3.4 as ¢, and ¢;, respectively, where ¢, shows the

arrival time in the time-independent case. Visiting customer 2 after customer 1 is
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infeasible when the arrival time at customer 2 is ¢, due to a slower travel speed.
Similarly, an infeasible customer may become feasible due to the changing travel

speeds as illustrated in Figure 3.5.
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Figure 3.5. Illustration of an infeasible customer that becomes feasible

3.3. Literature Review

VRP has been extensively studied in the literature. However, research related to the
time-dependent VRP with and without time windows is relatively scarce. In
TDVRPTW, time-dependency is taken into consideration in two ways: stochastic travel
times and deterministic travel times. Variable travel times which include real time
information on traffic congestion and variable demands have also been studied in the
literature. Since these cases are beyond the scope of this thesis we skip further
discussion and refer the reader to Fleischmann et al. (2004), Taniguchi et al. (2004),
Haghani et al. (2005), Kim et al. (2005) and Chen et al. (2006) (variable time) and
Gendreau et al. (1996) (variable demand) for a more detailed description and

discussion.

3.3.1. Stochastic travel times

Laporte et al. (1992) introduced the stochastic travel times in the vehicle routing
problem where the fleet consists of uncapacitated vehicles. They presented three
mathematical programming models and used a branch-and-cut approach to solve
instances with 10 to 20 customers and 2 to 5 scenarios where target route completion
times are incorporated. Kenyon and Morton (2003) examined the same problem by
developing two models. The first model aimed at minimizing the expected completion
time. The probability that the operation is completed without exceeding a preset target

time is maximized by the second model. The actual travel times of the routes regarding
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the random travel times are computed after the route construction phase. Van Woensel
et al. (2007) incorporated the traffic congestion into their model through a queuing
approach by modeling the behavior of the traffic flows. They used the mean of the
speed distributions as the expected total travel time. Potvin et al. (2006) described a
dynamic version of the problem where the customer demands occur in real time and the
travel times are subject to stochastic variations. The stochastic nature of the travel times
arise from the short term bias factor that depended on a random variable distributed
uniformly. Hsu et al. (2007) have extended the literature by considering TDVRPTW in
perishable food delivery industry where the commodity is subject to quality changes
due to the time-varying temperatures and time-dependent travel times. Besides the
transportation costs, they try to minimize the inventory, energy and penalty costs related

to late deliveries.

3.3.2. Deterministic travel times

In the deterministic case, the travel times are not subject to randomness and are known
in advance. The most widely used approach is to divide the scheduling horizon into time
intervals and use the travel times, which depend on the distance and the time of the day,
accordingly. The first study in VRPTW where the time-varying congestion and time-
dependent travel times are considered in a deterministic setting belongs to Ahn and Shin
(1991). In this study, the important non-passing or first-in-first-out (FIFO) property was
introduced. Using this property, they extended the basic routing heuristics efficiently.
Malandraki and Daskin (1992) examined mixed integer linear programming
formulations for the VRP as well as for the TSP. They presented several nearest
neighbor heuristic based algorithms. Hill and Benton (1992) proposed a time-dependent
travel speed based model for the VRP without time windows. However in Malandraki
and Daskin (1992) and Hill and Benton (1992), the travel time is a step function
disregarding the FIFO/non-passing property. Park and Song (2006) used a structure that
utilizes different passing areas and discrete time intervals. They considered the travel
time as a function of the travel speeds at the customers where the vehicle departs and
arrives, the time of the day and the corresponding passing areas. The model of Hill and
Benton (1992) is modified and savings, proximity priority searching and insertion
techniques are applied in the solution phase. Park (2000) extended this research by
proposing a heuristic named BC-saving algorithm to solve a model that minimizes the

total operation time and total weighted tardiness.
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The proposed solution methodology of Ichoua et al. (2003) for solving TDVRPTW
satisfies the FIFO property. Taking the rush hours into account, they divide the
scheduling horizon into three time intervals and consider three types of roads which also
affect the travel time. As the customers have soft time windows, the infeasible solutions
are avoided but the exceeded time windows are penalized. They implemented a parallel
tabu search approach and tested its performance both in dynamic and static
environments. Furthermore, Zheng and Liu (2006) addressed VRPTW where the travel
time was regarded as a fuzzy variable. They employed a hybrid intelligent algorithm to
minimize the total distance traveled. In a very recent study Donati et al. (2008) have
utilized ant colony optimization in a multi-colony setting. The first colony aims to
minimize total number of vehicles whereas the second colony aims to minimize the total
travel time. A speed distribution related with the arc length accounts for the time
dependency. Proven to be efficient on time-independent problems, the algorithm was

tested on time-dependent version of the problems.
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CHAPTER 4

AN ANT ALGORITHM FOR THE VRPTW

In this chapter, we propose an ant algorithm for solving the VRPTW with hard
time windows and discuss its mechanisms such as the heuristic information, route
construction phase, local search procedures and rules on pheromone trails. At the
end of the chapter, the approach is extended to the time-dependent case. When no
time dependency exists for the travel times, the objective function of the discussed
problem is to minimize the total distance traveled. However, in the time-dependent
case, the objective function becomes minimizing the total tour time, which is the
sum of the total routing times of each vehicle. The flowchart of the proposed

algorithm is also provided in Appendix A.

4.1. Heuristic Information

As the objective function of the problem is to minimize the total distance traveled, a
distance based visibility function will best serve to this purpose. Two main distance-

based heuristics are widely used in the literature. The first one (ni}) uses the inverse
of the distance between the customers and is as follows:

ni = 1/d;; 4.1)
where d;; denotes the distance between customers i and j. The second visibility
function (ni‘}l ) is the well-known Clarke and Wright’s (1964) savings function which
is

nil =dip +doj — dj; (4.2)

where d; is the distance between customer i and depot and d,; is the distance

between depot and customer j.
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The experimental results in the literature (as well as our own results) revealed

that 1716-1 performs in general better than n; ]I .

4.2. Route Construction

At the start of the route construction procedure, K ants are placed at the K nearest
customers to the depot. These ants move in parallel, that is, the number of customers
visited by all ants at each step is equal. After a vehicle has returned to the depot, it
continues its tour from the customer with the largest attractiveness value.

To put a limit on the exploration and to speed up the algorithm, we use a
candidate list which consists of the nearest CL (candidate list size) neighbors of
customer. Neighbors that satisfy all of the following conditions are included in the
candidate list:

e The vehicle departing from customer i arrives at the neighbor before its latest

possible arrival time (also referred to as due date);

e The remaining capacity of the vehicle can accommodate the demand of the

neighbor;

e After visiting the neighbor the vehicle can return to the depot before the

depot’s due date.

If the list is empty, then there exists no feasible customer to visit after customer
i and the vehicle returns to the depot. If the candidate list includes only one
customer, it is selected; otherwise, the next customer is selected using the

probabilistic action choice rule given in equation (2.1).

4.3. Local Search

Dorigo and Stiitzle (2004) analyzed the efficiency of ACO with and without local
search procedures and showed that ACO is more efficient when combined with a local
search procedure. As the neighborhood structures of ACO and local search are different,
there is a good chance that the quality of our solution constructed by ACO will improve
by the local search.

In this thesis, two types of local search procedures, namely Move and Exchange,
are utilized to further improve the routes constructed by the ants. These procedures are

applied at the end of each iteration and pheromone trails are updated accordingly.
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4.3.1. Move Procedure

Move procedure attempts to improve the solution by removing a customer and inserting
it between two other customers, intra-route or inter-route. The procedure is illustrated in

Figure 4.1 (intra-route) and Figure 4.2 (inter-route).

3 3
1 1
4 4
Depot Depot
5 5

Depot-1-2-3-4-5-Depot Depot-1-3-4-2-5-Depot

Figure 4.1. Intra-route move

Depot
Depot-1-2-3-4-5-Depot Depot-1-2-3-5-Depot
Depot-6-7-8-9-Depot Depot-6-7-8-4-9-Depot

Figure 4.2. Inter-route move

The underlined customer in Figure 4.1 and Figure 4.2 is the customer that is being
considered for “moving”. Note that the inter-route move procedure may reduce the total

number of vehicles by moving all the customers on one route to other routes.

4.3.2. Exchange Procedure

The “exchange” procedure was first proposed for TSP by Croes (1958). The simple idea
behind this procedure is to exchange two customers in a single route (intra-route) or
between routes (inter-route) until no further improvements are available. Intra-route
“exchange” and inter route “exchange” procedures are illustrated in Figure 4.3 and

Figure 4.4, respectively.
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Figure 4.3. Intra-route exchange
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Figure 4.4. Inter-route exchange

The customers to be exchanged are underlined in Figure 4.3 and Figure 4.4. In a
problem with N customers, there exist a maximum number of N(N-1)/2 possible
customer exchanges. However, possible number of exchanges in our problem decreases

significantly due to the feasibility rules.

4.3.3. Push Forward Approach

To speed up the local search, we utilize a structure called push forward (PF), which
is similar to the structure introduced by Solomon (1985). In the route construction
process, the maximum available PF value of each customer is calculated and stored.
Then in the local search, the new PF values are compared with the stored values. If
any of the new PF values exceeds the corresponding stored values, then the
exchange/move under consideration is infeasible.

The calculation of the new values is as follows. First, the PF values at the

customers that are to be exchanged (in “exchange”) or to be moved (in “move”) are
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calculated. The vehicle might be waiting at the next customer before the move or the

exchange and PF is calculated accordingly (Figure 4.5).

if (waitingTime > 0)

PF = MAX (newArrival-readyTime, O0)
else

PF = MAX (newArrival, readyTime)-arrivalTime
end if

Figure 4.5. PF calculation for the exchanged/moved customers

Time spent at the next customer before the start of the service time is denoted as
waitingTime. The arrival times at the next customer before and after the move or the
exchange are denoted as arrivalTime and newArrival respectively where readyTime
denotes the earliest possible arrival time. For the other customers, the change in
travel time (referred to as change) due to the possible time interval changes is
calculated. The PF is again calculated by taking the waiting times into consideration

(Figure 4.6).

if (waitingTime > 0)
if (PF + change > 0)
PF = MAX(PF + change - waitingTime, O0)
else
PF =0
end if
else
if (PF + change > 0)
PF = PF + change
else
PF = MAX (readyTime - arrivalTime, PF + change)
end if
end if

Figure 4.6. PF calculation for the remaining customers

This calculation continues for the remaining customers until an infeasible
customer is found, all customers are evaluated or PF is zero. A PF value of zero
means no change in the arrival and departure time of the customer.

Figure 4.7 illustrates the calculation of the PF values. The PF values of the
customers in circles are calculated first and then the calculation is done for the
customers in rectangles. The arrival and departure times of the other customers in

the figure do not change.
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Figure 4.7. Illustration of push forward calculations

4.4. Update of Pheromone Trails

There is a high correlation between the size of the search space and the amount of
pheromone deposited and evaporated. In a setting where the evaporation is relatively
high, a slower convergence is observed. Besides, the ratio of the initial pheromone
to the amount of pheromone deposited at each iteration is also another factor on the
convergence rate. The initial pheromone should be high enough to prevent a quick
stagnation. In this study the nearest neighbor solution with distance L, is used for
the initial pheromone setting. Pheromone amount on each arc is initialized as N/Lj.

In the latter iterations, first the pheromone trails are evaporated at the rate p and
then £ elitist ants are allowed to reinforce the trails. In our pheromone reinforcement
strategy, we utilize k-1 best-ranked ants for the first P iterations (referred to as
preliminary iterations) and in the remainder of iterations we allow best-so-far ant
along with the k-1 best-ranked ants to deposit pheromone. Our aim in adopting this
strategy is to avoid a quick stagnation.

A heuristic procedure called pheromone re-initialization is also implemented in
order to assist the exploration of the search space. If the objective function value
does not change for a certain amount of iterations, after a number of preliminary
iterations, all of the pheromone deposited on each arc is evaporated and re-

initialized using the best-so-far ant’s total distance, best’.
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procedure re-initializePheromone

input currentIteration

input index

1« currentIteration

if (i > preliminaryIterations and best”(i)=best”(i-1)) then
index <« index + 1

else
index «— 0

end if

if (index=nonImprovingIterations) then
reset all pheromone trails
initialize pheromone trails with best® (i)
end if
end procedure

Figure 4.8. Pseudo-code of the pheromone re-initialization

Figure 4.8 gives the implementation of the pheromone re-initialization
procedure. The performance of re-initializing the pheromones is analyzed in Chapter

5 within the context of preliminary experiments.

4.5. Extensions to the Time-dependent VRPTW

In TDVRPTW, the objective function and travel speeds are adapted accordingly. In
addition, the local search and pheromone update procedures are modified in line with

the new objective function of minimizing the total travel time.

4.5.1. Time Dependency / Travel Speeds

In this study, deterministic time-dependent travel times are obtained by dividing the
scheduling horizon into time intervals. In addition to the time interval of the day, the
travel times depend on the road types. Each arc between customer pairs is assigned a
road type randomly. Also, each road type has its own travel time distribution over
the time intervals. During rush hours, the travel time increases and it may become
infeasible to visit a customer after the current customer. Time-dependent travel
speeds are embedded in the algorithm by utilizing a travel time matrix similar to
Ichoua et al’s (2003) approach. Different from their approach, the scheduling
horizon is also divided to time intervals of inequal length and the performances of
the settings with equal and unequal time intervals are compared. The whole travel

speed matrix used in this study is given in Chapter 5 (Experimental Study 3).
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In the algorithm, the travel speeds are calculated via a procedure named
calculateTravelTime by taking the travel times and the current time into
consideration. The pseudo-code of the calculateTravelTime procedure is given in

Figure 4.9.

procedure calculateTravelTime
input ¢,
input d;;
input v.q,
t « currentTime
d<«— d;;
th—t + (dij/Ver,)
while (t° > T, ) do
d < d - ver, (tx—t)
t «— t,
t’ —t + (d/v
k«—k +1
end while
return (t'- ty)
end procedure

CTk+1)

Figure 4.9. Pseudo-code of the calculateTravelTime procedure

The start time of the travel is denoted by ¢, while d;jand v.r, denote the distance

between the customers i and j and the corresponding travel speed coefficient
respectively. t;, denotes the start time of period £.
4.5.2. Local Search

As the objective function of the time-dependent problem discussed in this thesis is

minimizing the total tour time, the local search procedures are modified accordingly.
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i . : I i Customer 1 1 ' I i
Y ! ! b ! |4 km
i i . : iCustomer 2 E i i
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Figure 4.10. Illustration of an exchange where no gain in terms of tour time is obtained
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Figure 4.10 illustrates an exchange resulting in a shorter tour distance but the
same tour time. Local search procedure is applied on a route with 2 customers (depot -
customer 1 - customer 2 - depot) and an anonymous route (not included in the figure).
The waiting times resulting from arrivals earlier than the start of the time windows are
shown in red shaded regions. The first customer with time windows [8.30 am-2.00 pm]
is exchanged with a customer with time windows [8.00 am-1.00 pm]. However, both
routes end at the depot at 4.00 pm. So, although this exchange decreases the total

distance it does not improve the solution in the time-dependent case.

4.5.3. Pheromone Update

Since the objective is minimizing the total tour time, the initial pheromone level is
set to N/LI where LI is the total tour time obtained using the nearest neighbor
solution. The reinforcement of the pheromone trails is also performed based on the
tour travel times. Since the scheduling horizon is divided into multiple time intervals,
the pheromone network also comprises multiple dimensions. An ant in a time interval

deposits pheromone on the corresponding dimension on the network.
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CHAPTER 5

COMPUTATIONAL STUDY

This chapter is dedicated to the test of the performance of the proposed algorithm.
The most widely used VRPTW benchmark instances in the literature were
introduced by Solomon (1985). Though, there is not one common objective and data
type that the literature agreed upon. The lack of agreement on the objective function
can be observed in different studies which try to minimize the total distance
traveled, the number of vehicles, total waiting time, total tour time and combinations
of them. The disagreement on the data type arises from the usage of truncated and
real arithmetic numbers. These differences lead to difficulties in comparing the
results. However, the use of Solomon instances is still the best way to perform an
evaluation on the performance of a new approach (Alvarenga et al., 2007). Thus, the
proposed algorithm is tested on these problems using real numbers (float precision)
only.

The benchmark problems of Solomon include six different problem types,
namely C1, C2, R1, R2, RC1 and RC2. Each type of problem consists of 100
customers which reside in a 100x100 square area. In the C-type problems the
customers are clustered whereas they are uniformly randomly distributed over the
area in the R-type. The RC problem sets include a combination of clustered and
randomly distributed customers. Problem sets of type 1 and type 2 differ not only by
the length of the time windows but also by the vehicle capacity. In type 2 problem
sets the customers have larger time windows and the vehicles have larger capacity.
Thus, the number of routes is less compared to type 1 problems.

Due to the random assignment of road types to the arcs in the network, a direct
comparison with the studies on the time-dependent version of the problem (which
are scarce in the literature) is not possible. Therefore, the performance of the
algorithm is tested on the time-independent benchmark problems. The algorithm is

first shown to be efficient and then applied for the time-dependent version.
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Three main experimental studies are executed. First, the effect of using a multi-
dimensional pheromone network of time intervals is tested. After determining the
best parameter set, the second experimental study is carried out on the time-
independent case. In these experiments, some best-known solutions in the literature
are outperformed. Finally the algorithm is tested on the time-dependent case
utilizing the findings in the first two experimental studies.

A trade-off exists between the solution quality and computational time.
Although narrowing the neighborhood in local search decreases computational time, the
whole neighborhood is searched to increase the diversification. To reduce the
computational effort, an elitist local search approach can also be applied in which only
the solutions obtained by a subset of ants (selected with respect to the solution quality
they have achieved) are subject to the local search. However, we do not adopt such an
approach since we attach more importance to the solution quality.

The order of the local search procedures may also affect the solution quality. In
addition to decreasing the total distance/total tour time, “move” procedure may decrease
the total number of vehicles. Applying first the “exchange” procedure narrows down the
search space of the “move” procedure, thus, resulting in more vehicles. As an implicit
objective function is minimizing the total number of vehicles, “exchange” procedure is
applied after the application of “move”.

The algorithm is coded in C# and executed on a Pentium 2.40 GHz processor.

5.1. Preliminary experiments

The preliminary experiments are performed to gain some insights on the algorithm.
These experiments include the stand-alone performance comparison of ACO and local

search and the performance evaluation of the re-initializing pheromone procedure.

5.1.1. ACO and Local Search comparison

ACO without being supported by a local search procedure exhibits poor performance
whereas the performance of a local search procedure increases with the increasing
quality of the initial solution (Dorigo and Stiitzle, 2004). In this experimental study,
the contribution of the ACO and the local search procedures to the solution quality
are compared. This comparison is made on the first problems of each set of the

instances of Solomon, namely C101, C201, R101, R201, RC101 and RC201.
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ACO performs diversification in the initial iterations. The weight of the
intensification increases with the increasing number of iterations thank to the
evaporation of pheromone. Thus, the contributions at the 50" jteration over 5 runs

are used for comparison.

Table 5.1. Stand-alone solutions of ACO and local search procedures

ACO After Move After Exchange Optimal
Problem TD VN TD VN TD VN TD VN
C101 891.875 10.4 828.936 10 828.936 10 8273 10
C201 714.674 4.8 633.161 42  632.651 42  589.1 3
R101 1749.108 20.8 1657.517 20.2 1655.633 20.2 1637.7 20
R201 1568.053 10.2 1247.214 9.4 1247.133 94 1143.2 8

RC101 1882.978 184 1687.613 17 1683.501 17 1619.8 15
RC201 1840.711  11.2  1424.418 10 1421.064 10 1261.8 9

Table 5.1 summarizes the average results. TD and VN denote the total distance
traveled and the total number of vehicles used, respectively. In the second and the
third columns, the total distance and the total number of vehicles found by ACO
without utilizing any local search procedures are given. The fourth and the fifth
columns give the results gained after the application of Move procedure whereas the
two columns that follow give the results gained after the application of Exchange
procedure. In C type problems the gap between the optimal solution and the ACO
without local search procedures is small due to the clustered network structure. The
gap increases in R and RC type problems. The average gap over all problem types is
22.1%. However, it reduces to 5.5% after the application of the local search
procedures. The total distance decreases by 13.5% on the average after the
application of “move”. In addition, the total number of vehicles, which is expected
to decrease implicitly by the “move”, is 6.5% less than the ACO solutions. After the
“exchange” procedure the total distance decreases by 0.13% on the average.

Although the local search procedures improve the solution quality considerably,
they add up to the computational effort much more than the ACO. Figure 5.1 shows
the average results of the runs made on the first problems of each problem set in

order to compare the computational times of ACO and local search procedures.
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Figure 5.1. Computational Time of Local Search in iterations 1, 25, 50, 75 and 100

It can be observed from the Figure 5.1 that nearly 92.02% of the computational
time is consumed by the local search procedures. For the type 1 problems with tight
constraints, this percentage decreases to 88.86% whereas it is 95.18% for the type 2
problems.

The contributions of ACO and the local search procedures to the overall
solution quality inquire the role of ACO. One may think that the local search, given
any initial solution, may bring the objective function to a good value. However, this
is not the case. The performance of the local search procedures without interacting
with ACO is also tested using the nearest neighbor solution as the initial solution.
The test is again carried on a sample including only the first problem of each

problem set.

Table 5.2. The performance of the local search procedures on the nearest neighbor

solution
Nearest After Local
Neighbor Search Optimal
Problem TD VN TD VN TD VN
C101 1779.251 21 857.825 11 8273 10
C201 1982.492 15 900.865 8 589.1 3
R101 2623.245 37 1845.213 25 1637.7 20
R201 2011.562 15 1342.217 13 11432 8

RC101 2780.442 27 1832.121 18 1619.8 15
RC201 2487.719 14 1677.929 11 1261.8 9
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The results are given in Table 5.2. The average gap with the optimal solutions is
19.4%. There is also a tremendous gap of 32.3% on the number of vehicles. This gap
was 8.9% in the previous experiment.

The experiments presented above show that the local search procedures
contribute a lot to the solution quality of ACO. However, the local search
mechanism is efficient if it is fed by a good initial solution, such as the solution

obtained through ACO.

5.1.2. Re-initialization of Pheromones

The re-initialization of the pheromones would allow diversification when stagnation
is observed in the algorithm. In a run with 150 iterations, this approach is applied
when no improvements in the objective function is observed for 25 consecutive
iterations. The first 25 iterations are set for diversification and are not accounted for.
The effect of re-initializing the pheromones is tested on a sample comprising the

first problem of each set.

Table 5.3. Effects of pheromone re-initialization procedure

Problem TDB TDA  Improvement (%)

C101 828.936 828.936 0.00
C201 591.556 591.556 0.00
R101 1647.428 1644.937 0.15
R201 1171.934 1165.981 0.51
RC101 1660.904 1659.346 0.09
RC201 1297.818 1295.556 0.17
Average 1199.763 1197.719 0.15

The results are given in Table 5.3 with TDB and TDA indicating the total
distance before and after re-initializing pheromones, respectively. After re-
initialization, the objective function improves 0.15% on the average with the best
improvement being 0.51%. As the gain of this procedure is very small considering
the additional computational effort it creates for searching the solution space from
the beginning, it is not utilized in the rest of the experiments.

A snapshot of a sample run in which the pheromones are re-initialized is given

in Appendix E.
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5.2. Experimental Study 1 — One-dimensional network — multi-dimensional

network comparison

In this experimental study, a multi-dimensional pheromone network is compared
with the one-dimensional pheromone network. To our knowledge, there is no
previous study on ACO that utilizes multi-dimensional pheromone network for time-
independent VRP. In our experimental setting, the multi-dimensional pheromone
network consists of three dimensions, each representing a time interval. All ants
deposit pheromone on the same single pheromone network in one-dimensional case.
However, an ant in time interval ¢ deposits pheromone on the corresponding

dimension in multi-dimensional case as illustrated in Figure 5.2.

(c) (d)

Figure 5.2. Pheromone levels on a three-dimensional network for a 25-customer
problem: (a) Pheromones in the first time interval, (b) Pheromones in the second
time interval, (c) Pheromones in the last time interval, (d) Route assignments.

This figure shows the pheromone levels on each network in a sample solution of
the problem R101 with 25 customers found by using a three-dimensional network.

The length of each interval is found by dividing the due date of the depot by the
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number of intervals and the first (second, third) network is used to keep track of the
pheromone levels in the first (second, third) time interval. It can be observed that on
the first network, the arcs directed from the depot to the customers have high
pheromone levels whereas on the third network the pheromone levels on the arcs
directed from the customers to the depot are higher. In the second network,
pheromone is accumulated only on the arcs which are traversed in the second time
interval. Multi-dimensional network structure implicitly indicates the most suitable
time interval for the travel between each customer pair. The pheromone trails and
the final routes overlap strictly.

For each problem, 10 runs are made with the following parameter settings that are
found to perform well in the preliminary experiments; a = 1, =0, p = 0.15, number of
iterations = 100, number of preliminary iterations = 25, number of ants = 100, elitist

ants = 6, CL = 50.

Table 5.4. The summary of the results of experimental study 1

Problem 1 Network 3 Networks Best Known

Set TD NV TD NV TD NV
Cl 828.380 10.00 828.380 10.00 828.380 10.00
R1 1186.501 13.58 1187.282 13.58 1181.453 13.08
RC1 1352.620 13.13 1357.403 13.25 1339.235 12.75
C2 589.859 3.00 589.859 3.00 589.859 3.00
R2 908.767 5.82 901.507 5.55 898.067 5.55

RC2 1033.056  6.38 1027.401 6.50 1015.738 6.38

The average results of the experiment 1 are given in Table 5.4. ‘1 Network’ and ‘3
Networks’ columns show the results for the one-dimensional and multi-dimensional
pheromone network settings respectively. For C problem sets, both one-dimensional
and multi-dimensional pheromone networks find the best-known distances as a
result of the clustered network structure which narrows the feasible solution space.
For R and RC problem sets there is no global best pheromone network policy. One-
dimensional pheromone network outperforms the multi-dimensional pheromone
network in type 1 problems where time windows are narrower and vehicle capacities
are smaller compared to the type 2 problems. However, a multi-dimensional policy
is more suitable for type 2 problems. When the overall performances are analyzed,

the multi-dimensional network with the average gap of 0.67% slightly outperforms
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the one-dimensional network with the average gap of 0.79%. This improved solution
quality comes at the cost of an increased computational effort. The usage of a multi-

dimensional network increases the average computational time by 22.2%.

Table 5.5. New best values found in experimental study 1

Number of Best Known
Problem TD NV Networks TD NV Ref.

R110 1079.097 12 1 1080.360 11 RT!

R202 1048.510 7 3 1049.730 7 A’
R203 884.752 6 3 900.080 5 A
R204 756.185 5 3 772330 4 A
R211 782.815 4 1 787.511 5 A
RC203  942.059 5 3 945960 5 A

The proposed algorithm (ACO-TI) finds the same best-known results reported in
the literature in 23 instances and gives better results for 6 instances out of 56
instances. The new best distances are given in Table 5.5. Two of the new best
distances are of type 1 problems and found by utilizing a one-dimensional
pheromone network. The rest are found by using a three-dimensional pheromone

network. Detailed results of the experimental study 1 can be found in Appendix B.

5.3. Experimental Study 2 — Extension of Experimental Study 1 with

parameter analysis

Experimental study 2 aims at analyzing the role of the heuristic information on the
solution quality. We first perform a preliminary experimental study to determine the
best parameter setting. The following parameters are taken into consideration: a = 1,
p=0,1,2,3,p=0.05, 0.10, 0.15, number of iterations = 100, number of preliminary
iterations = 25, number of ants = 100, elitist ants = 6, 12, 18, CL = 25, 50, 100. A total
number of 108 parameter sets are tested on a sample set that consists of the first

problems of each set again.

" Rochat, Y. And Taillard, E.D. (1995)
% Alvarenga, G.B. et al. (2007)
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Table 5.6. Results of the parametric analysis

Parameter Elitist Average Average

Set p CL Ants f TD VN Gap
1 0.15 25 6 1 1441.245 13.75 -
2 0.15 25 6 2 1441566 1370  0.02%
3 0.15 50 6 1 1441887 1390  0.04%
4 0.10 25 6 1 1442411 13.70  0.08%
5 0.15 100 12 1 1443.554 13.55 0.16%

The results of the parametric analysis are shown in Table 5.6. The 5 best parameter
sets and the gaps between the first and the other parameter sets are reported. The results
show that the difference between the best performing parameter setting and the fifth is
minor. We have conducted our experiments on the best parameter with the values a = 1,
f =1, p =0.15, number of iterations = 100, number of preliminary iterations = 25,

number of ants = 100, elitist ants = 6 and CL = 25.

Table 5.7. The summary of the results of experimental study 2

Problem 1 Network 3 Networks Best Known

Set TD NV TD NV TD NV
Cl 828.380 10.00 828.380 10.00 828.380 10.00
R1 1187.465 13.58 1183.613 13.50 1181.453 13.08
RC1 1362.345 13.63 1352.636 13.13 1339.235 12.75
C2 589.930 3.00 589.859 3.00 589.859 3.00
R2 920.780 6.20 900.940 5.73 898.067 5.55

RC2 1035.055 6.38 1029.411 6.50 1015.738 6.38

The average results of the experiment 2 are given in Table 5.7. For C problem sets
of type 1, both one-dimensional and multi-dimensional pheromone networks find the
best known distances. In C problem sets of type 2, multi dimensional pheromone
network finds the best results and the one-dimensional network exhibits the same
performance except the instance C204. For both R and RC problem sets, the best
pheromone network policy is to use the multi-dimensional version. The average gap
of the multi-dimensional network with the optimal is 0.44% whereas it is 0.92% for
the one-dimensional network. The gap between one-dimensional and multi-

dimensional network settings is only a 0.66%.
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Table 5.8. New best values found in experimental study 2

Number of Best Known
Problem TD NV Networks TD NV Ref.

R104 977.547 11 3 982.010 10 RT’
R108 946.422 10 3 948.573 10 A*
R110 1075911 12 3 1080.360 11 RT
R202 1046.281 7 3 1049.730 7 A
R203 883.025 6 3 900.080 5 A
R204 759.775 5 3 772330 4 A
R205 964.870 6 1 970880 6 A
R211 785.813 4 3 787.511 5 A
RC202 1111.796 8 3 1113520 8 A

Table 5.8 gives the new best values found in this experimental study. The new
best value of the instance R205 is found using one-dimensional network whereas all
other 8 problems are found by using a multi-dimensional setting. The proposed
algorithm (ACO-TI) also finds the same results in the literature in 21 instances.

Detailed results of the experimental study 2 can be found in Appendix C.

5.4. Experimental Study 3 — Time-dependent Vehicle Routing Problem

In this experimental study, the performance of the algorithm (ACO-TD) is tested
on TDVRPTW using an objective function that minimizes the total tour time in a
multi dimensional setting. Ichoua et al. (2003) set the number of dimensions to three
besides introducing three types of roads. The first and the third dimensions stand for the
morning and evening rush hours. The second dimension represents the middle of the

day. Their approach and travel speed matrix given in Table 5.9 is used in this thesis.

Table 5.9. The travel speed matrix

Period 1 Period 2 Period 3
Road type 1 0.54 0.81 0.54
Road type 2 0.81 1.22 0.81
Road type 3 1.22 1.82 1.22

The travel speed coefficients are given in such a way that the average of the

coefficients is approximately 1 to keep the difficulty of the problems same as

3 Rochat, Y. And Taillard, E.D. (1995)
* Alvarenga, G.B. et al. (2007)
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Solomon’s original problems (Ichoua et al., 2003). The assignment of road types to arcs
is done randomly. However, these assignments are same for all instances, as reported in
Appendix G. Thus, they can be utilized in any future research as a benchmark data.
Three settings are used for dividing the scheduling horizon into three time-periods.
In the first setting, the length of each period is equal to each other which are the mostly
used method in the literature. Alternatively, the second and the third settings assume the
rush hours to be more close to the beginning and the end of the horizon by increasing

the length of the second time-period.

1* period 2" period 3" period

ml wm [ s | s
@ | | 2/4 | |
€) | 1/5 | 3/5 | 1/5 |

Figure 5.3. The first (1), the second (2) and the third (3) time-period settings

Experimental study 3 includes three main experiments, namely 3.1, 3.2 and 3.3,
each corresponding to a time-period setting described in Figure 5.3. In each
experiment, the following parameters are used: a = 1, f = 0, p = 0.15, number of
iterations = 100, number of preliminary iterations = 25, number of ants = 100, elitist

ants = 6, CL = 50.

Table 5.10. Summary of the results of experimental study 3

Experiment 3.1 Experiment 3.2 Experiment 3.3

TD NV TT TD NV TT TD NV TT
Cl |1093.140 10.47 9946.00|1021.797 10.42 9898.02|1026.571 10.41 9875.36

C2 941.016 4.16 9854.87| 952.494 4.06 9841.83| 967.617 4.00 9829.22
R1 1499805 12.72 2298.31|1495.079 12.42 2215.54|1516.487 12.44 2193.30
R2 1627551 3.69 2352.81|1648.421 3.55 2283.58|1667.776 3.52 2252.03
RCI | 1645.410 12.64 2405.31|1639.316 12.21 2301.62|1653.922 12.06 2270.71
RC2 | 1988.114 4.25 2672.62|2034.117 4.01 2589.75|2035.624 4.04 2550.01

Table 5.10 gives the average results of the time-dependent problem using three

mentioned settings. As the problem gets closer to the time-independent version of the
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problem, the total tour time is decreased regardless of the problem type. The average
tour time of experiment 3.2 is 1.35% less compared to the experiment 3.1. Besides, the
average tour time of experiment 3.3 is also 0.54% less compared to the experiment 3.2.
When the average number of vehicles is analyzed it is observed that as the rush hours
gets more close to the beginning and the end of the scheduling horizon, less vehicles are
used.

The detailed results of experiment 3.1, experiment 3.2 and experiment 3.3 are given

in Appendix D.

5.5.  Summary of Results

The main difference between experimental study 1 and experimental study 2 is the
usage/utilization of the visibility function in the second study. However, there is
only a slight difference when the average total distances are compared. Unless the
parameters are changed dramatically, the algorithm exhibits the same performance
due to the robustness of the local search procedures.

Table 5.11. Comparison of experimental studies 1 and 2

Equal 21
" Exp. Study 1 is better 13
%/5 Exp. Study 2 is better 22
% Exp. Study 1 Average Gap 0.556%
E Exp. Study 2 Average Gap 0.461%
New best known values in Exp. Study 1 4
New best known values in Exp. Study 2 8
Equal 19
Exp. Study 1 is better 17
‘&‘5 Exp. Study 2 is better 20
% Exp. Study 1 Average Gap 0.723%
Z | Exp. Study 2 Average Gap 0.925%
New best known values in Exp. Study 1 3
New best known values in Exp. Study 2 3

A comparison of the experimental studies 1 and 2 is summarized in Table 5.11.
For a multi-dimensional network setting, the results of the experimental study 2
which uses a visibility function are more satisfactory. Although the average gap is

smaller for the experimental study 1 using a one-dimensional network, the number of
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instances that the experimental study 2 finds better is higher. The solutions found in
experimental study 1 and experimental study 2 overcome 10 of the recently known best
known solutions.

From the type of problem point of view, it is observed that a centralized
pheromone deposit policy is more successful in problems where a small feasible
solution space exists. As the problem become less constrained, it is more
advantageous to use a distributed pheromone structure.

The distances of experiment 3 are longer on the average compared to the time-
independent case. This is an expected result since two problems have different objective
functions. On the other hand, the average number of vehicles is smaller in time-
dependent case. It is also observed that type 2 problems are more sensitive to the time-
dependent travel times. The distances for type 2 problems increase dramatically due to

the existence of tighter constraints.

Table 5.12. Standard deviations of Experimental Study 3

Problem Set  Setting 1 Setting 2 Setting 3

Cl 0.58%  0.33% 031%
C2 0.66%  047%  0.57%
R1 097%  1.01%  0.99%
R2 1.58%  1.49%  1.59%
RCl1 1.19%  1.03%  1.10%
RC2 1.97%  1.73%  1.89%

As there exists no base for comparison for time-dependent problems, the
efficiency of the algorithm is shown via standard deviations given in Table 5.12. The

algorithm is shown to be robust over the average standard deviations.
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CHAPTER 6

CONCLUSION AND FUTURE RESEARCH

In this thesis, we propose an ACO algorithm for solving the VRPTW and TDVRPTW.
Our experimental results show that the proposed algorithm provides good quality
results; however, the computation times are rather long. We have observed that the
local search procedure enhances the solution quality of ACO significantly. On the
other hand, a large portion of the computational time is consumed by the local
search procedure.

Further research may focus on a selective local search policy to reduce the
computational effort. To improve the performance of the algorithm, a visibility
function using the time window information can be implemented and a more
detailed analysis on the trade-off between the solution quality and computational

effort may be conducted.
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Appendix A

Flow chart of the algorithm
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Figure A.1.1. Flow chart of the algorithm
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Appendix B

Detailed results of the experimental study 1

A : Alvarenga, G.B. et al. (2007),

C :Cordeau, J-F. et al. (2000),

M : Mester, D. (2002),

RT : Rochat, y. and Taillard, E.D. (1995),
S : Shaw, P. (1998)

Table B.1 The average results of experimental study 1 for type 1 problems with 1
network and 3 networks

ACO-TI ACO-TI
1 Network 3 Networks

Problem Nv D Comp. NV D Comp.

Time (min) Time (min)
C101 10.00 828.936 476 10.00 828.936 6.01
C102 10.00 828.936 9.00 10.00 828.936 10.79
C103 10.00 828.064 14.25 10.00 828.065 16.32
C104 10.00 824.776 23.50 10.00 824.812 26.52
C105 10.00 828.936 547 10.00 828.936 6.89
C106 10.00 828.936 6.15 10.00 828.936 7.71
C107 10.00 828.936 6.57 10.00 828.936 8.50
C108 10.00 828.936 8.22 10.00 828.936 10.52
C109 10.00 828.936 13.32  10.00 828.936 16.46
R101 20.50 1652.607 375  20.00 1644.863 431
R102 18.30 1477.616 6.56 18.00 1475.424 7.16
R103 15.00 1225.745 9.34  14.60 1219.238 10.32
R104 11.40 995.296 13.19 11.80 1003.092 15.61
R105 16.00 1375.951 478 16.00 1373.015 5.67
R106 14.00 1254.128 7.76  13.90 1256.158 8.79
R107 12.00 1088.860 11.13  12.00 1093.655 12.13
R108 10.50 956.968 1495 10.60 957.833 16.92
R109 12.80 1153.232 7.87 1290 1156.430 8.81
R110 12.00 1085.842 10.33  12.00 1086.740 10.96
R111 12.00 1057.948 10.70  12.00 1057.781 11.91
R112 10.90 972.314 1542 11.00 972.953 16.37
RC101 16.90 1667.407 430 16.70 1655.778 4.92
RC102 15.00 1495.219 6.10 15.00 1486.899 7.01
RC103 12.00 1281.044 8.38  12.00 1286.142 9.65
RC104 10.60 1157.701 13.38 10.90 1162.586 14.29
RC105 15.80 1544.204 5.85 16.10 1547.280 6.42
RC106 13.90 1402.267 6.62 14.00 1402.879 7.48
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Table B.2 The average results of experimental study 1 for type 2 problems with 1
network and 3 networks.

ACO-TI ACO-TI
1 Network 3 Networks

Problem NV  TD - Comp. v 1D ~ Comp.

Time (min) Time (min)
C201 3.00 591.556 8.69 3.00 591.556 10.59
C202 3.00 591.556 2095 3.00 591.556 24.47
C203 3.00 591.908 33.76  3.00 591.173 39.86
C204 3.00 591.643 65.83  3.00 593.789 71.77
C205 3.00 588.876 1294 3.00 588.876 15.99
C206 3.00 588.493 1796  3.00 588.493 20.93
C207 3.00 588.286 19.49 3.00 588.286 23.78
C208 3.00 588.374 2428 3.00 588.341 28.76
R201 9.40 1177.562 12.97 8.80 1175.163 14.06
R202 8.00 1074.425 26.74  7.80 1056.298 28.30
R203 7.20 913.204 48.60 6.20 897.163 52.47
R204 4.80 771.894 89.33 470 768.836 98.10
R205 5.90 1000.514 26.27  5.70 994.279 29.26
R206 6.00 936.137 43.18 590 925.800 47.07
R207 5.50 859.701 66.36  5.40 850.008 74.04
R208 4.10 750.516 128.87 3.50 739.571 129.35
R209 6.10 896.446 36.28 5.40 899.955 41.23
R210 6.40 948.861 4036  6.00 942.684 43.03
R211 420 796.871 71.62 420 802.108 80.52
RC201 9.60 1298.338 12.69  8.60 1295.461 13.38
RC202 8.60 1146.624 23.51  8.20 1132.250 25.27
RC203 630 982.383 40.22  5.60 960.726 42.65
RC204 4.60 829.874 84.48 420 823.992 88.80
RC205 7.30 1178.932 1891  7.90 1183.235 20.55
RC206 6.40 1111.072 26.56  6.20 1113.660 28.43
RC207 6.60 1023.812 38.26  6.60 1013.357 41.44
RC208 5.10 825.959 73.46  5.10 836.571 78.89
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Table B.3 Best total distance (TD) published heuristic results and ACO-TI results for
type 1 problems. The results are emphasized in bold when ACO-TI overcomes the
previous best solutions

Previous best

TD solution ACO-TI
Comp.

Problem Ref. NV TD NV TD Gap Number of Time

Networks * (min) **
C101 RT 10 828.940 10 828.940 0.000% 1-3 4.81
C102 RT 10 828.940 10 828.940 0.000% 1-3 8.75
C103 RT 10 828.060 10 828.060 0.000% 1-3 14.36
C104 RT 10 824.780 10 824.780 0.000% 1-3 23.61
C105 RT 10 828.940 10 828.940 0.000% 1-3 5.40
C106 RT 10 828.940 10 828.940 0.000% 1-3 6.37
C107 RT 10 828.940 10 828.940 0.000% 1-3 6.65
C108 RT 10 828.940 10 828.940 0.000% 1-3 8.28
C109 RT 10 828.940 10 828.940 0.000% 1-3 13.34
R101 A 20 1642.870 20 1642.876 0.000% 3 3.91
R102 A 18 1472.620 18 1472.815 0.013% 1-3 6.60
R103 RT 14 1213.620 14 1213.624 0.000% 3 10.01
R104 RT 10 982.010 11 984.204 0.223% 1 13.51
R105 A 15 1360.780 16 1369.080 0.610% 3 5.76
R106 A 13 1241.518 14 1250.756 0.744% 1 7.69
R107 A 11 1076.125 12 1087.041 1.014% 1 11.10
R108 A 10 948.573 10 948.573 0.000% 1 15.48
R109 A 13 1151.839 13 1151.838 0.000% 1 8.07
R110 RT 11 1080.360 12 1079.097 -0.117% 1 10.01
R111 A 12 1053.496 12 1053.496 0.000% 1-3 10.16
R112 RT 10 953.630 10 968.621 1.572% 1 15.58
RC101 RT 15 1623.580 16 1646.532 1.414% 3 4.95
RC102 A 14 1466.840 15 1480.458 0.928% 3 7.01
RC103 S 11 1261.670 11 1276.059 1.140% 3 9.83
RC104 C 10 1135.480 10 1147.546 1.063% 1 12.61
RC105 A 16 1518.600 16 1518.599 0.000% 3 6.26
RC106 A 13 1377.352 13 1389.098 0.853% 1 7.54
RC107 A 12 1212.830 12 1224.244 0.941% 1 8.81
RC108 A 11 1117.526 11 1119.830 0.206% 1 11.19

* Multiple numbers indicate that each of the algorithms with the corresponding number of networks
has found the same best solution

** Computational time is taken as the average of the algorithms with the corresponding number of
networks
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Table B.4 Best total distance (TD) published heuristic results and ACO-TI results for
type 2 problems. The results are emphasized in bold when ACO-TI overcomes the
previous best solutions.

Previous best

TD solution ACO-TI
Comp.

Problem Ref. NV TD NV TD Gap  Number of Time

Networks * (min) **
C201 RT 3 591.560 3 591.560 0.000% 1-3 8.87
C202 RT 3 591.560 3 591.560 0.000% 1-3 20.58
C203 RT 3 591.170 3 591.170 0.000% 1-3 32.53
C204 RT 3 590.600 3 590.600 0.000% 1-3 66.20
C205 RT 3 588.880 3 588.880 0.000% 1-3 12.53
C206 RT 3 588.490 3 588.490 0.000% 1-3 17.65
C207 RT 3 588.290 3 588.290 0.000% 1-3 18.96
C208 RT 3 588.320 3 588.320 0.000% 1-3 24.40
R201 A 9 1148.480 9 1157.269 0.765% 1 12.85
R202 A 7 1049.730 7 1048.510 -0.116% 3 27.92
R203 A 5 900.080 6 884.752 -1.703% 3 48.97
R204 A 4 772.330 5 756.185 -2.090% 3 99.43
R205 A 6 970.880 S 978.551 0.790% 3 28.94
R206 A 5 898.914 5 919315 2.269% 3 47.18
R207 RT 4 814.780 5 827.821 1.601% 3 73.51
R208 A 3 723.610 3 724228 0.085% 3 128.53
R209 A 6 879.531 6 886.648 0.809% 1 40.24
R210 A 7  932.887 6 933.597 0.076% 3 42.10
R211 A 5 787511 4 782815 -0.596% 1 71.64
RC201 A 9 1274.530 10 1282.432  0.620% 3 12.94
RC202 A 8 1113.520 8 1118.766 0.471% 3 25.34
RC203 A 5 945.960 5 942.059 -0.412% 3 41.99
RC204 M 3 798.410 4 801.938 0.442% 3 87.40
RC205 A 7 1161.810 7 1168.217 0.551% 3 20.98
RC206 A 7 1059.886 6 1089.589 2.802% 3 28.17
RC207 A 7 976.400 7 1001.923 2.614% 3 40.49
RC208 A 5 795.390 5 811.898 2.076% 1 72.40

* Multiple numbers indicate that each of the algorithms with the corresponding number of networks
has found the same best solution

** Computational time is taken as the average of the algorithms with the corresponding number of
networks
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Appendix C

Detailed results of the experimental study 2

Table C.1 The average results of experimental study 2 for type 1 problems with 1
network and 3 networks

ACO-TI ACO-TI
1 Network 3 Networks
Problem Ny D Comp. NV D Comp.
Time (min) Time (min)

C101 10.00 828.936 5.77 10.00 828.936 4.61 10.00
C102 10.00 828.937 9.04 10.00 828.936 8.91 10.00
C103 10.00 828.065 15.05 10.00 828.065 12.64 10.00
C104 10.00 828.305 24.66  10.00 825.322 20.53 10.00
C105 10.00 828.936 5.67 10.00 828.936 5.35 10.00
C106 10.00 828.936 5.94 10.00 828.936 6.21 10.00
C107 10.00 828.936 6.44 10.00 828.936 6.96 10.00
C108 10.00 828.936 8.35 10.00 828.936 8.57 10.00
C109 10.00 828.936 13.09 10.00 828.936 13.47 10.00
R101 20.00 1644.500 3.34  20.00 1643.502 3.39 20.00
R102 18.00 1473.129 6.02 18.00 1473.840 5.86 18.00
R103 15.00 1224.608 8.31 15.00 1224.332 8.13 15.00
R104 11.80 1004.532 14.01 11.60 999.277 13.15 11.80
R105 16.00 1373.692 4.61 16.00 1373.043 4.55 16.00
R106 13.60 1253.720 7.34  13.80 1255.105 7.21 13.60
R107 11.80 1088.170 10.33  11.90 1091.095 10.19 11.80
R108 10.70  959.761 1442 10.60 956.589 13.82 10.70
R109 12.70 1155.462 742  13.00 1156.569 7.60 12.70
R110 12.00 1091.197 9.54 12.00 1084.813 9.15 12.00
R111 12.00 1054.402 10.10  12.00 1055.652 9.95 12.00
R112 11.00 973.624 1429 10.80 970.898 14.05 11.00
RC101 16.70 1657.636 4.17 16.80 1654.072 422 16.70
RC102 15.00 1486.150 6.01 14.90 1485.018 6.12 15.00
RC103 12.30 1305.846 8.30 12.20 1304.595 8.13 12.30
RC104 11.00 1167.720 12.51 1090 1164.156 12.18 11.00
RC105 16.00 1555.107 6.60 16.00 1547.663 6.14 16.00
RC106 14.00 1403.100 6.16 13.90 1399.774 5.82 14.00
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Table C.2 The average results of experimental study 2 for type 2 problems with 1
network and 3 networks.

ACO-TI ACO-TI
1 Network 3 Networks

Problem NV  TD - Comp. v 1D ~ Comp.

Time (min) Time (min)
C201 3.00 591.557 8.84 3.00 591.556 9.17
C202 3.00 591.556 20.55 3.00 591.556 21.43
C203 3.00 591.989 3233 3.00 591.173 33.82
C204 3.00 596.534 69.74  3.00 593.426 58.45
C205 3.00 588.876 13.02 3.00 588.876 13.70
C206 3.00 588.493 1723 3.00 588.493 18.40
C207 3.00 588.286 19.24 3.00 588.286 20.40
C208 3.00 588.374 23.66 3.00 588.341 24.96
R201 9.30 1179.243 1233  9.40 1182.010 11.89
R202 8.20 1075.924 26.04 7.50 1066.827 26.53
R203 7.10 915.365 45.06 6.10 890.658 45.57
R204 5.00 778.274 90.51 490 769.571 87.76
R205 5.60 994.617 2591 5.70 986.679 24.76
R206 5.80 935.904 4250 5.80 925.597 43.17
R207 5.70  855.183 65.41 530 846.408 66.98
R208 3.90 750.499 11532 3.40 736.690 117.94
R209 6.00 904.026 35,76 590 897.921 36.05
R210 6.70  954.080 39.49  6.50 943.136 38.65
R211 420 801.418 68.14 430 797.018 69.04
RC201 9.60 1289.744 11.52  9.30 1298.449 11.86
RC202 8.30 1144.355 22.67 8.10 1138.043 22.50
RC203 6.20 984.588 4037 5.70 967.793 38.35
RC204 4.70 832.575 84.76  4.10 821.297 77.58
RC205 7.80 1186.877 20.79  8.00 1190.386 16.88
RC206 6.20 1100.560 2427  6.20 1101.030 23.47
RC207 6.50 1024.169 36.61 6.60 1016.741 35.52
RC208 5.00 842.794 74.87  5.00 833.717 66.96
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Table C.3 Best total distance (TD) published heuristic results and ACO-TI results for
type 1 problems. The results are emphasized in bold when ACO-TI overcomes the
previous best solutions

Previous best

TD solution ACO-TI
Comp.

Problem Ref. NV TD NV TD Gap Number of Time

Networks * (min) **
C101 RT 10 828.940 10  828.940 0.000% 1-3 5.23
C102 RT 10 828.940 10  828.940 0.000% 1-3 9.43
C103 RT 10 828.060 10  828.060 0.000% 1-3 14.12
C104 RT 10 824.780 10  824.780 0.000% 1-3 22.01
C105 RT 10 828.940 10  828.940 0.000% 1-3 5.73
C106 RT 10 828.940 10  828.940 0.000% 1-3 6.08
C107 RT 10 828.940 10  828.940 0.000% 1-3 6.65
C108 RT 10 828.940 10  828.940 0.000% 1-3 8.47
C109 RT 10 828.940 10  828.940 0.000% 1-3 13.26
R101 A 20 1642.870 20 1642.876 0.000% 1-3 342
R102 A 18 1472.620 18 1472.814 0.013% 1-3 5.75
R103 RT 14 1213.620 15 1222.050 0.695% 3 8.18
R104 RT 10 982.010 11 977.547 -0.454% 3 12.86
R105 A 15 1360.780 16 1371423 0.782% 1-3 4.41
R106 A 13 1241.518 13 1247.875 0.512% 1 7.10
R107 A 11 1076.125 11 1076.567 0.041% 3 9.72
R108 A 10 948.573 10  946.422 -0.227% 3 12.99
R109 A 13 1151.839 13 1151.838 0.000% 1 7.41
R110 RT 11 1080.360 12 1075911 -0.412% 3 9.23
R111 A 12 1053.496 12 1053.496 0.000% 1-3 9.86
R112 RT 10 953.630 10 961.287 0.803% 3 13.99
RC101 RT 15 1623.580 16 1637.999 0.888% 3 4.15
RC102 A 14 1466.840 14 1473.801 0.475% 3 6.03
RC103 S 11 1261.670 12 1277433 1.249% 1-3 8.02
RC104 C 10 1135480 10 1149.961 1.275% 3 12.17
RC105 A 16 1518.600 16 1518.576 -0.002% 3 5.94
RC106 A 13 1377352 13 1382.944 0.406% 3 5.95
RC107 A 12 1212.830 13 1245.530 2.696% 3 8.61
RC108 A 11 1117.526 11 1134.846 1.550% 3 10.29

* Multiple numbers indicate that each of the algorithms with the corresponding number of networks
has found the same best solution

** Computational time is taken as the average of the algorithms with the corresponding number of
networks
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Table C.4 Best total distance (TD) published heuristic results and ACO-TTI results for
type 2 problems. The results are emphasized in bold when ACO-TI overcomes the
previous best solutions.

Previous best

TD solution ACO-TI
Comp.

Problem Ref. NV TD NV TD Gap  Number of Time

Networks * (min) **
C201 RT 3 591.560 3 591.560 0.000% 1-3 8.87
C202 RT 3 591.560 3 591.560 0.000% 1-3 20.87
C203 RT 3 591.170 3 591.170 0.000% 1-3 33.12
C204 RT 3 590.600 3 590.600 0.000% 3 57.06
C205 RT 3  588.880 3 588.880 0.000% 1-3 12.85
C206 RT 3 588.490 3 588.490 0.000% 1-3 17.80
C207 RT 3 588.290 3 588.290 0.000% 1-3 20.08
C208 RT 3 588.320 3 588.320 0.000% 1-3 24.57
R201 A 9 1148.480 9 1165922 1.519% 1 11.95
R202 A 7 1049.730 7 1046.281 -0.329% 3 26.20
R203 A 5 900.080 6 883.025 -1.895% 3 45.63
R204 A 4 772.330 5 759.775 -1.626% 3 87.06
R205 A 6 970.880 6 964.870 -0.619% 1 25.85
R206 A 5 898914 6 914477 1.731% 3 44.03
R207 RT 4 814.780 5 825.735 1.345% 3 66.24
R208 A 3 723.610 3 725236 0.225% 3 118.17
R209 A 6 879.531 6 890346 1.230% 3 35.21
R210 A 7 932.887 6 934971 0.223% 3 39.49
R211 A 5 787.511 4 785.813 -0.216% 3 68.92
RC201 A 9 1274.530 9 1281.144 0.519% 1 11.51
RC202 A 8 1113.520 8 1111.796 -0.155% 3 22.25
RC203 A 5 945.960 5 947.068 0.117% 3 37.40
RC204 M 3 798.410 4  804.391 0.749% 3 75.06
RC205 A 7 1161.810 7 1164.085 0.196% 1 19.96
RC206 A 7 1059.886 6 1082938 2.175% 1 23.80
RC207 A 7  976.400 6 1001.396 2.560% 3 34.56
RC208 A 5 795.390 5 822992 3.470% 3 66.30

* Multiple numbers indicate that each of the algorithms with the corresponding number of networks
has found the same best solution

** Computational time is taken as the average of the algorithms with the corresponding number of
networks
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Appendix D

Detailed results of the experimental study 3

Table D.1. Average results of experimental study 3 for setting 1

Comp. Comp.
Problem NV TD TT Time Problem NV TD TT Time

(min) (min)
C101 10.10  902.87 9906.83  4.74 C201 3.00 590.66 9585.51  8.58
C102 10.10 1112.89 10017.36 10.29 C202 4,70 1016.16 10054.86 23.34
C103 10.80 1337.64 10119.23 20.85 C203 4.80 1562.93 10402.45 51.84
C104 10.30 1269.33 9981.59 47.16 C204 4.60 1318.27 10098.72 157.07
C105 10.10  927.79 9860.73  6.55 C205 4.00 678.84 9622.23 14.92
C106 10.50 1028.03 9938.79  7.92 C206 390 766.57 9658.75 22.34
C107 10.50 1007.53 987535 9.94 C207 420 784.30 9689.82 30.09
C108 10.80 1096.65 9906.17 14.58 C208 4.10 810.39 9726.64 34.64
C109 11.00 1155.53 9907.94 24.96 R201 4.20 2234.84 3077.85 12.95
R101 18.20 2015.73 3158.74 3.43 R202 430 2141.71 2903.67 29.69
R102 16.00 1922.04 2815.23 6.73 R203 4.00 1737.31 2419.06 62.01
R103 13.10 1642.10 2379.19 11.23 R204 340 1311.47 2030.86 173.75
R104 10.60 1265.50 202235 21.76 R205 420 1771.26 2462.77 37.15
R105 1430 1676.78 2529.02  5.66 R206 3.90 1593.71 2281.10 64.85
R106 12.80 1568.63 2269.08  9.84 R207 3.40 141295 2112.79 117.42
R107 11.40 1395.35 2101.75 15.40 R208 3.00 1082.71 1859.22 291.81
R108 10.40 1192.59 1923.06 26.45 R209 3.30 1594.18 2279.22 62.86
R109 12.20 1468.52 2227.41 10.00 R210 3.90 173494 245590 53.86
R110 11.70 1352.23 2122.04 16.04 R211 3.00 1287.98 1998.45 215.95
R111 11.10 1311.29 2083.14 16.03 RC201 5.20 2412.80 3230.02 12.57
R112 10.80 1186.89 1948.70 31.41 RC202 4.70 2400.04 3027.71 25.04
RC101 14.70 1917.46 279224  4.69 RC203 4.20 1880.62 2535.23 55.18
RC102 13.30 1819.64 2539.36  7.67 RC204 3.50 1487.22 217192 151.51
RC103 12.00 1597.50 2283.71 15.57 RC205 5.00 2469.78 3131.98 19.58
RC104 11.20 1443.67 2132.13 20.99 RC206 4.30 2070.31 2709.94 33.47
RC105 13.60 1880.36 2650.75  6.70 RC207 4.10 1856.34 2530.22 54.93
RC106 13.00 1638.76 2438.62 8.14 RC208 3.00 1327.80 2043.92 198.22
RC107 12.00 1494.42 2258.71 13.26
RC108 11.30 137147 2146.96 20.37
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Table D.2. Best results of experimental study 3 for setting 1

Comp. Comp.
Problem NV TD TT Time Problem NV TD TT Time

(min) (min)
C101 10.00 863.95 9851.08 4.76 C201 3.00 591.55 957635 8.51
C102 10.00 988.67 9904.66  9.98 C202 5.00 822.08 9935.95 2331
C103 10.00 1254.40 10025.82 20.97 C203 5.00 1363.69 10261.57 51.64
C104 11.00 1184.44 9899.42 46.90 C204 4.00 1128.58 9913.54 156.75
C105 10.00 854.77 9816.66  6.48 C205 4.00 614.04 9562.56 14.82
C106 10.00 951.92 9839.86  7.78 C206 4.00 670.55 9548.86 23.11
C107 10.00 871.51 9795.89  9.98 C207 4.00 677.85 9579.18 31.35
C108 10.00 966.48 9822.43 14.60 C208 4.00 711.54 9661.52 34.39
C109 11.00 1056.79 9820.19 24.94 R201 4.00 2040.98 3034.64 13.15
R101 18.00 1941.23 3094.54 3.41 R202 4.00 2088.65 2838.19 29.28
R102 16.00 1925.17 2786.56  6.74 R203 4.00 1728.75 2370.29 61.95
R103 13.00 1584.00 236197 11.16 R204 3.00 1263.18 1995.52 173.54
R104 10.00 1170.88 1981.74 21.49 R205 4.00 1677.75 2399.73 36.69
R105 14.00 1606.65 2446.19 5.56 R206 3.00 1467.54 2167.96 65.71
R106 12.00 1507.79 222436  9.80 R207 3.00 1336.99 2061.17 119.92
R107 11.00 1325.76 2046.26 15.28 R208 3.00 1015.34 1817.93 289.42
R108 11.00 1148.16 1902.97 26.60 R209 4.00 1530.89 2220.23 62.35
R109 12.00 1418.11 2197.06 9.93 R210 4.00 1556.85 2321.06 53.86
R110 11.00 1350.43 2101.73 16.25 R211 3.00 1313.44 1985.90 217.02
R111 11.00 1283.76 2064.55 15.63 RC201 5.00 234424 3106.05 12.61
R112 11.00 1159.84 1936.80 31.10 RC202 5.00 2273.20 2950.51 24.94
RC101 14.00 1883.96 272096 4.71 RC203 5.00 1742.81 2446.02 58.20
RC102 13.00 1754.76 2484.83  7.60 RC204 4.00 1424.13 2122.75 167.82
RC103 11.00 1572.02 221522 15.29 RC205 5.00 2267.42 2981.71 19.62
RC104 11.00 143494 2108.85 20.77 RC206 4.00 2130.40 2655.50 33.19
RC105 13.00 1798.18 2584.76  6.55 RC207 4.00 1815.61 2429.87 5491
RC106 13.00 1557.97 2421.90  8.32 RC208 3.00 1344.58 2013.95 199.71
RC107 12.00 1430.19 2210.52 12.95
RC108 11.00 1310.27 2093.07 20.03
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Table D.3. Average results of experimental study 3 for setting 2

Comp.
Problem NV TD TT Time Problem NV TD TT
(min)

Comp.
Time
(min)

C101 11.00 1009.54 10032.95 494 (C201 370  612.87  9652.78
C102 10.10 1018.01 9918.11 11.03 C202 4.10 1229.77 10123.65
C103 10.50 1255.57 10027.93 22.54  C203 490 1590.81 10332.17
C104 10.60 115691 9907.68 50.35 C204 440 1324.97 10038.40
C105 10.00 895.57 9852.66 6.71  C205 3.40 65447 9614.93
C106 10.00 897.13 9820.24 8.07 C206 420 732777 9659.13
C107 10.30 918.49 9837.93 10.14 C207 4.00 740.39  9665.69
C108 10.40 96199 981540 1490 C208 3.80 73390 9647.87
C109 10.90 1082.96 9869.30 25.66 R201 4.00 2292.95 2973.24
R101 18.00 2056.02 3082.87 3.61 R202 430 2160.16 2809.11
R102 17.00 2025.54 2802.17 7.18 R203 3.80 177137 2344.64
R103 13.00 1610.46 2283.00 12.18 R204 3.50 134042 1998.17
R104 10.30 1260.29 1944.20 24.00 R205 3.60 1750.53  2347.82
R105 13.30 1617.97 2387.81 5.87 R206 3.60 1594.27 2199.32
R106 12.10 1513.24 2168.38 10.43 R207 3.40 1454.42  2067.00
R107 10.70 1348.08 2001.90 16.85 R208 290 1092.94 1808.43
R108 10.00 1207.51 1866.20 29.26 R209 3.20 1639.59 2231.45
R109 11.90 1457.14 2137.05 10.75 R210 3.70 1776.96  2402.43
R110 11.60 1364.29 2049.36 17.83 R211 3.00 1259.03 1937.78
R111 10.90 1315.80 2000.64 17.36 RC201 4.40 245296 3054.83
R112 10.20 1164.62 1862.94 33.59 RC202 4.70 2456.64 2961.43
RC101 13.70 184248 259152 5.00 RC203 430 1966.75 2490.87
RC102 1290 1834.07 244230 8.75 RC204 330 1512.69 2110.28
RC103 11.70 1592.76 2208.60 13.82 RC205 4.20 2526.19 3096.84
RC104 10.80 1458.16 2047.30 23.37 RC206 4.10 2049.21 2567.64
RC105 13.10 1865.75 2542.06 729 RC207 4.10 1942.14 2445.84
RC106 1230 1635.86 232296 9.06 RC208 3.00 1366.36 1990.26
RC107 12.00 1492.12 2182.92 15.12

RC108 11.20 1393.34 2075.31 23.13

9.32
25.52
57.16

172.42
15.41
22.70
31.31
35.77
14.03
32.12
67.58

191.56
40.83
69.87

126.72

323.54
68.15
56.90

236.14
13.85
28.36
61.67

163.50
20.80
37.51
60.47

217.70
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Table D.4. Best results of experimental study 3 for setting 2

Comp. Comp.
Problem NV TD TT Time Problem NV TD TT Time

(min) (min)
C101 11.00  969.30 9984.49  4.86 C201 4.00 607.94 9650.60 9.10
C102 10.00  937.55 9842.49 11.00 C202 4.00 893.58 9889.14 25.08
C103 10.00 1226.08 9960.42 21.93 C203 5.00 1492.50 10264.79 56.60
C104 11.00 1032.94 9835.28 50.84 C204 4.00 1192.75 9979.05 171.55
C105 10.00 879.69 9839.16 6.70 C205 3.00 660.30 9604.12 15.59
C106 10.00  893.49 9804.56  8.28 C206 4.00 662.23 9607.27 22.47
C107 10.00 859.31 9806.11 10.24 C207 3.00 660.56 9622.08 31.80
C108 10.00 878.09 9770.90 14.69 C208 3.00 666.30 9593.74 36.98
C109 10.00 978.52 9811.68 25.09 R201 4.00 2238.97 2927.79 14.18
R101 18.00 1990.56 3042.50  3.59 R202 4.00 1930.43 274734 31.76
R102 17.00 2049.31 2783.51 7.13 R203 3.00 1681.19 2281.52 67.33
R103 13.00 1594.65 224388 12.14 R204 3.00 1303.89 1942.93 188.68
R104 10.00 1229.17 1913.56 23.74 R205 4.00 1720.70 2309.52 40.43
R105 13.00 1577.03 2339.60 5.74 R206 4.00 1519.67 2130.07 69.34
R106 12.00 1515.77 2127.21 10.33 R207 3.00 1341.99 2024.03 124.42
R107 10.00 1305.37 1965.82 16.52 R208 3.00 1017.83 1780.26 319.10
R108 10.00 1158.81 1845.03 29.41 R209 3.00 1590.68 2178.45 67.40
R109 11.00 1360.85 2081.00 10.52 R210 3.00 1777.65 2364.38 56.79
R110 11.00 1361.66 2009.03 17.76 R211 3.00 1214.97 1910.64 232.68
R111 10.00 1246.98 1957.64 17.32 RC201 5.00 2437.26 2947.12 13.90
R112 10.00 1134.55 1827.04 32091 RC202 5.00 2268.97 2812.06 28.65
RC101 13.00 1785.58 2524.76  4.94 RC203 4.00 1866.92 2405.15 61.58
RC102 12.00 1781.16 2404.62  8.51 RC204 3.00 1465.62 2065.42 166.52
RC103 11.00 1501.95 2155.57 13.56 RC205 4.00 2283.40 3027.85 20.94
RC104 11.00 1420.93 2021.43 23.28 RC206 4.00 1947.86 2465.96 38.09
RC105 13.00 1837.14 2521.03  7.28 RC207 4.00 1899.03 2392.23 60.86
RC106 12.00 1575.16 2268.39  8.96 RC208 3.00 1264.23 1966.05 215.51
RC107 12.00 1438.71 2157.73 14.64
RC108 11.00 1408.51 2059.26 22.96
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Table D.5. Average results of experimental study 3 for setting 3

Comp. Comp.
Problem NV TD TT Time Problem NV TD TT Time

(min) (min)
C101 11.00 1019.59 9987.98 4091 C201 3.00 62439 9629.35 9.94
C102 10.20 1052.37 9908.84 11.18 C202 4.60 1265.35 10155.34 26.26
C103 10.40 1227.17 9991.06 23.40 C203 5.10 1664.38 10357.89 61.56
C104 10.50 1176.29 9890.33 52.55 C204 4.60 1327.82 10023.94 175.72
C105 10.00  920.20 9839.18  6.77 C205 320 656.15 9588.98 15.63
C106 10.00 887.68 9794.75  8.04 C206 3.50 684.11 9592.49 23.43
C107 1040 92523 9821.81 10.19 C207 390 767.54 9657.92 32.20
C108 10.60 1014.88 9831.56 15.63 C208 410 751.17 9627.82 37.26
C109 10.60 1015.73 9812.76 25.96 R201 4.10 2246.08 2959.68 13.81
R101 18.00 209491 3059.83 3.46 R202 4.00 2206.86 2736.92 32.32
R102 17.00 2032.34 2799.06 7.02 R203 4.00 1859.31 2364.90 70.43
R103 13.00 1670.10 2289.40 13.28 R204 3.60 1340.71 1967.27 200.54
R104 10.50 1316.24 195245 25.28 R205 3.60 1756.02 2309.22 42.23
R105 13.40 1649.52 2364.60  6.01 R206 3.30 1639.64 2180.74 71.97
R106 12.00 151932 2129.78 10.73 R207 3.20 1473.58 2030.28 129.33
R107 11.00 1385.07 198535 17.70 R208 3.00 1115.19 1782.96 338.88
R108 10.40 1208.95 1840.55 31.24 R209 3.20 1648.31 2191.85 69.53
R109 11.90 1452.59 2100.07 11.23 R210 3.70 1811.36 2363.42 57.21
R110 11.40 1386.99 2003.59 18.66 R211 3.00 1248.48 1885.03 238.82
R111 10.70 1315.19 1970.27 18.24 RC201 4.70 2487.59 3078.38 13.76
R112 10.00 1166.62 1824.71 33.87 RC202 4.40 2484.23 2887.88 28.40
RC101 13.80 1857.99 2565.61 4.81 RC203 4.30 2052.87 2477.41 62.60
RC102 13.00 1832.52 2415.80  8.58 RC204 3.40 1515.57 2057.16 181.64
RC103 1140 161534 2169.83 14.24 RC205 4.20 2386.66 3015.79 20.67
RC104 10.50 1457.38 2017.03 24.14 RC206 4.10 2060.74 2533.70 37.88
RC105 13.20 1919.42 2546.19  7.13 RC207 4.20 1898.30 2376.45 59.98
RC106 12.00 1637.96 2278.98  8.82 RC208 3.00 1399.02 1973.35 223.49
RC107 11.80 1540.16 2152.22 15.28
RC108 10.80 1370.61 2019.98 23.46
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Table D.6. Best results of experimental study 3 for setting 3

Comp. Comp.
Problem NV TD TT Time Problem NV TD TT Time

(min) (min)
C101 11.00 978.75 994598  4.96 C201 3.00 62439 9629.35 9.82
C102 10.00  952.35 9818.89 10.91 C202 4.00 857.28 9787.07 26.68
C103 10.00 1104.43 9900.80 2291 C203 5.00 1597.40 10286.84 61.12
C104 10.00 1151.68 9835.66 52.48 C204 5.00 1140.89 9867.49 177.80
C105 10.00 883.64 9823.73  6.87 C205 3.00 631.82 9569.05 15.71
C106 10.00 867.81 9780.38  8.04 C206 3.00 65545 9560.62 23.62
C107 10.00 925.48 9810.74 10.21 C207 3.00 667.97 9591.49 32.81
C108 10.00  930.00 9772.20 15.61 C208 4.00 710.26 9575.48 37.30
C109 10.00 970.26 9780.26 26.19 R201 4.00 2150.06 2914.54 13.87
R101 18.00 2087.61 3025.75 3.47 R202 4.00 2160.29 2621.35 32.49
R102 17.00 1972.22 2774.60  6.96 R203 4.00 1737.35 2271.94 69.98
R103 13.00 1610.01 224479 12.42 R204 4.00 1291.80 1949.35 195.95
R104 10.00 1222.17 1910.62 25.00 R205 3.00 1745.25 2265.04 42.08
R105 13.00 1558.24 2307.95 5.87 R206 3.00 1592.12 2093.08 72.45
R106 11.00 147534 207831 10.58 R207 4.00 1411.36 1990.15 129.21
R107 11.00 1286.89 1952.55 17.53 R208 2.00 1043.58 1760.04 333.71
R108 10.00 1208.00 1810.95 31.03 R209 3.00 1575.59 2154.23 69.46
R109 12.00 1408.79 2077.64 11.02 R210 3.00 1687.86 2257.99 56.74
R110 11.00 137420 1982.58 18.33 R211 3.00 1205.98 1849.20 233.98
R111 10.00 1244.49 1940.88 17.83 RC201 4.00 2304.06 2953.21 13.71
R112 10.00 1143.69 1806.37 33.34 RC202 4.00 2352.83 2832.59 28.64
RC101 13.00 1820.05 2474.12 4.64 RC203 4.00 1847.65 2342.86 62.13
RC102 12.00 1757.89 2359.48  8.53 RC204 3.00 1482.43 2023.34 181.25
RC103 11.00 1605.22 2139.64 14.09 RC205 4.00 2385.13 2917.04 20.80
RC104 10.00 143240 1992.48 23.79 RC206 5.00 182991 2468.05 37.46
RC105 13.00 1908.21 248735  6.85 RC207 4.00 1650.16 2229.52 59.64
RC106 12.00 1596.21 2241.90 8.63 RC208 3.00 1332.30 1947.49 222.06
RC107 11.00 1466.13 2112.26 15.30
RC108 10.00 1326.33 1999.06 23.48
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Appendix E

Pheromone Re-Initialization Illustration

OFY Average (9,24)
1387,99 i, | o S
122533 T
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* Best-so-far tvehicle) : 1214,4 (N

Figure E.1. Illustration of pheromone re-initialization procedure on instance R201. The

red line indicates the iteration the procedure is applied.
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Appendix F

The general interface of the software used
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Figure F.1. The general interface of the generated software

60



Appendix G

Road Types Used in Experimental Study 3

Table G.1. One-way road types for traveling from the customers 0-50 to the customers
0-50. The matrix should be read over rows.

11111111112222222222333333333344444444445
—]012345678901234567890123456789012345678901234567890
0 |-22323212212132222313312223322332331321323213222213
1 3-3323113323232231132333113212321113311233131132113
2 032-321222111121321321312231233333313321131231331212
3 1331-11223331221132323331113123233233231131221113313
4 (3121-3231332213122311233233132213323321213323121123
5(32113-321232211223122133133311212322123233211113332
6 |311121-31122333312233222311132212111133111212123333
7 13123213-3122222323223313213313113231111232122213111
8 (31323111-322112222133223211111322131333311322123321
9 |213322313-21313133133231221231213123223231213221222
10 (3233121312-1113113311323211123231232232131212113333
11 (22123313313-232323132121122113221212311323321223211
12 (312131112231-23211122121221133322111313121233322212
13 (3332233213322-1322331333233121211122321322131113131
14 (33231321122231-113111113123323211133321121212131332
151(212231221322223-11223122312123323131121113322322132
16 [3232112231131212-3332313212122113213211221131323121
17 (32231331221221113-332211223221322123212233221121323
18 (313231121132123212-13322333231213221213221312223121
19 (3222213123213211333-3332332223213323231331121131223
20 (31132232321131332121-212332111312312131332211121211
21 (312211111122232332211-13312122233212112321112131212
22 13312323221333133123231-3231222211211331212313333223
23 (23223123322333232132121-113312211221222311211211121
24 1332231231311331333333231-32313213322231221233111133
25 1(3132313321331112133233313-2323121113133121311232233
26 (32133313111231233333212222-131312121223132121312122
27 1333212221212122213113311122-31112113113222122323112
28 (3323123132133113312323323332-2223112211131122322112
29 131221222313121323111333212212-231213133322331122132
30 (313131323222323313132231233212-13331223223211221112
31 (3133133213133232232131221133233-3222212231112321322
32 (31213132222223111331322123332122-213323132321222113
33 (311113131223333123122333321223112-31232222333321312
34 (3113313231111121212222131132212123-1111121232331122
35 (31123333332322331222221233313313112-211122213111311
36 (331122132133112131333322321133312332-33131312321221
37 (3112221211221333112231213223311122111-1132132221211
38 (22322123222113333332223111111112121313-111311121313
39 (321331231223221221313321111213221322312-23111111133
40 (3221113213231131123211131332323122122312-2122232121
41 (33212223122322113321112323232113113213221-233132221
42 1321111322133312132312133113232121122231123-12313111
43 13321232221312111231211231231332331221321331-1323332
44 (12212112122333231123122222112231131323213232-323232
45 1333122233111132231123232322113211123331322211-32133
46 [3231321311133332322132231223231132323123121213-2222
47 133231312113123213221332333133112213312323223221-222
48 (321223111332131333332323211232311121133313223313-23
49 13232133322311113113213123221331333133113132121322-1
50 (32111123232221123213123313222333123332221123331121-

N
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Table G.2. One-way road types for traveling from the
customers 0-50. The matrix should be read over rows.
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Table G.3. One-way road types for traveling from the customers 0-50 to the customers
51-100. The matrix should be read over rows.
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Table G.4. One-way road types for traveling from the customers 51-100 to the

customers 51-100. The matrix should be read over rows.
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