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ABSTRACT

We address the Clarke-Wright (CW) savings algorithm proposed for the Capacitated Vehicle
Routing Problem (CVRP). In the past,

Gaskell (1967), Yellow (1970), Paessens (1988), and Altel and Oncan (2005) proposed
modifications on the CW function by either parameterizing it or by adding new parameterized
terms. The primary objective of all these approaches is to obtain short tours with least
computational effort. In this study, we propose several enhancements to the two- and three-
term versions of CW savings function. Our aim is to further improve the solution quality
without bringing additional computational burden to the existing approaches. To test the
performance of our savings functions, we conduct an extensive computational study on a
large set of well-known instances from the literature. These instances were also used by the
earlier savings algorithms that we benchmark our approach with. The results show that the
proposed savings functions provide shorter distances in many instances and the average

performance is better than those of the previous approaches reported in the literature.



KAPASITE KISITLI ARAC ROTALAMA PROBLEMLERI iCiN KULLANILAN
CLARKE-WRIGHT TASARRUF YONTEMININ PERFORMANSININ
ARTTIRILMASI

Tamer Doyuran
IE, Yiiksek Lisans Tezi,2008
Tez Danismani: Dog. Dr. Biilent Catay

Anahtar Kelimeler: Arag¢ rotalama problemi, Clarke-Wright algoritmasi, sezgisel yontemler

OZET

Bu calismamizda, Kapasite Kisitli Arag Rotalama Problemleri i¢in kullanilan Clarke-Wright
(CW) tasarruf algoritmasina deginiyoruz. Ge¢miste, Gaskell (1967), Yellow (1970), Paessens
(1988) ve Altinel-Oncan (2005) tasarruf formiiliindeki terimleri parametrize ederek ve bu
formiile yeni terimler ekleyerek CW algoritmasina yeni agilimlar getirmislerdir. Tiim bu yeni
acilimlarin baslica amaci, hizli hesaplama siiresinde kisa rotalar bulmaktir. Calismamizda,
CW tasarruf formiiliiniin iki ve ii¢ terimli versiyonlarmin performansini arttiran c¢esitli
yaklasimlar Onerdik. Amacimiz, ek bir hesaplama yiikii getirmeden ¢6ziim kalitesini
arttirmaktir. Algoritmayi, literatiirdeki en bilinen ornek setleri {izerinde test ettik. Bu 6rnek
setleri, daha once Onerilmis ve bizim de karsilatirmali degerlendirme yaptigimiz tasarruf
formiillerini test etmek i¢in de kullanilmigtir. Algoritmamiz, birgok problem igin literatiirdeki

diger sezgisel yontemlerden daha iyi sonuglar vermektedir.

Anahtar Kelimeler: Arag rotalama problemi, Clarke-Wright algoritmasi, sezgisel yontemler
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CHAPTER 1

INTRODUCTION

The Capacitated Vehicle Routing Problem (CVRP) is a well-known NP-hard problem
(Lenstra and Rinnooy, 1981) introduced first by Dantzig and Ramser (1959). It has attracted a
lot of attention since then because of its applicability to many practical settings, and various
variants have been proposed for different environments such as VRP with time-windows,
VRP with pick-up and delivery, stochastic VRP, etc.

In the classical CVRP, n customers are serviced with a fleet of K identical vehicles. The
vehicles are based at a central depot and have capacity C. Each customer has a non-negative
demand d;, which is known in advance and cannot be split. The objective is to determine a set
of vehicle routes originating and terminating at the depot such that all customers are visited
exactly once, the total demand of the customers assigned to one route do not violate the
capacity of the vehicle, and the total distance travelled by all vehicles is minimized. In some
cases, a maximum length restriction D may be associated with each vehicle route.

In the literature, exact algorithms, heuristics, and metaheuristics have been proposed for
solving the CVRP. Exact algorithms such as column generation, dynamic programming, and
relaxation-based methods are inefficient since the computational time grows exponentially as
the size of the problem increases and/or as new constrains are introduced. Since these
algorithms cannot be applied to large practical instances, significant research effort has been
spent on heuristic methods to find good quality solutions fast. Until 1990s, the researchers
have extensively studied heuristic methods. Heuristics are easy to implement; they produce
fairly good quality solutions, and require lower computing times. Furthermore, they are
flexible and can easily be adjusted to handle various constraints in real-life applications. On
the other hand, due to the limited exploration of the search space, the solution quality of the
heuristics is poorer compared to the solution quality of metaheuristics. Hence, the research on
metaheuristic approaches for CVRP problems has gained momentum in recent years with the
development of new and efficient techniques. With metaheuristics, the exploration of the
solution space is performed deeply by the integration of complex neighbourhood search
methods and memory structures. Moreover, the metaheuristics do not only accept the

solutions improving the objective function but they also allow some infeasible moves in order



to escape from the local minima. Nevertheless, better solution quality of the metaheuristics is
achieved at the expense of more computational efforts. As reported in Laporte et al. (2000),
Toth and Vigo (2001), and Cordeau et al. (2004) metaheuristcs such as tabu search, genetic
algorithm, simulated annealing, deterministic annealing, ant colony systems, neural networks
have been successfully applied to CVRP and its variants. Since metaheuristic approaches are
beyond the scope of this study, further discussion is skipped and the interested readers are
referred to the above mentioned papers.

An extensive study about the classical heuristics for the CVRP can be found in Laporte
and Semet (2001). Laporte and Semet classified the classical heuristics in three categories:
constructive heuristics, two-phased heuristics, and improvement heuristics. In the constructive
heuristics, a feasible solution is constructed iteratively by checking the routing cost. In the
two-phased heuristics, the customers are first clustered into feasible routes and then the final
tours are constructed by considering the clustered routes. Finally, in the improvement
heuristics the feasible solution is improved by exchanging edges or group of edges within or
between the tours. Among constructive heuristics, the well-known Clarke and Wright (CW)
savings algorithm (1964) uses a saving criterion for combining the routes. First, it calculates
the cost savings of using one vehicle rather than two for servicing a pair of customers and
sorts them in the non-increasing order. Then, the routes are constructed by merging customer
pairs starting from the top of the savings list. The algorithm continues to merge feasible
customers until all customers are assigned to a route.

CW algorithm is widely used even in the commercial packages due to its simplicity,
accuracy, flexibility, and speed. Several enhancements of CW algorithm have been proposed
in the literature by parameterizing the savings formula and adding new terms to it. In this
study, we propose several enhancements to the two- and three-term versions of CW savings
function. Our aim is to further improve the solution quality without bringing additional
computational burden to the existing approaches. The thesis is organized as follows. Chapter
2 reviews the related literature about CW algorithm and its enhancements. The proposed
enhancements to the two-term version of CW savings function and the computational study
are given in Chapter 3. In Chapter 4 the drawbacks of the Altinel and Oncan’s formula are
discussed, new enhancements for this three-term version of CW savings function and the
computational study are provided. Finally, contributions of the proposed savings functions are

summarized, and concluding remarks are given in the last chapter.



CHAPTER 2

LITERATURE REVIEW

In this section, the metaheuristics and classical heuristics for the CVRP are discussed. In
particular, Clarke-Wright savings heuristic and its enhancements, which are the primary focus
of this paper, are explained in detail.

The CW algorithm is one of the earliest and most widely used heuristics for solving the
CVRP. Two versions of the CW algorithm are proposed in the literature: parallel and
sequential. The best feasible merge of sub-tours are performed in the parallel approach
whereas the route extension is considered in the sequential approach. The parallel version
dominates the sequential savings method, as stated in Laporte and Semet (2001). So, the
parallel approach is adapted to the implementations in this study. The algorithm starts with
computing the cost savings of using one vehicle rather than two for servicing all customer

pairs i and j. The savings formula is as follows:

Sij = (¢, +CitG,; +Cj0)_(COi t¢; +Cj0) (1)

=C T, —C
where c;y (c¢) 1s the distance of customer i (f) to the depot and c;; represents the distance
between the customer 7 and ;.

The algorithm calculates the savings values between the customer pairs using formula
(1), and sorts them in the non-increasing order. It initially places each customer into the route
of a separate vehicle. Since this requires one vehicle for each customer, implying a fleet of n
vehicles, it is not a desirable solution. The next phase attempts to eliminate one vehicle at
each iteration by serving customers i and j with the same vehicle if the total demand of the
customers does not violate the capacity constraint and the total distance traversed by the
vehicle does not exceed the route length constraint, if any. In the parallel version of CW
algorithm, the customer pair i and j providing the highest saving value is considered and the
feasibility of merging the two feasible routes, one starting with (0,7) and another ending with
(7,0) is checked. If feasible, these two routes are combined by deleting (0,/) and (,0) and
inserting (7,7). In the sequential version, the route extension is considered: given an existing
route (0,i,...,7,0) the algorithm determines the first saving Sy; or S, that can be used to feasibly

merge this route with another route ending with (%,0) or starting with (0,/). If a feasible merge



exists it is performed; otherwise, the next route is considered following the same procedure.
In both versions, the algorithm runs until no further route combination is possible.

CW savings algorithm is eager to construct good quality routes at the early stages. The
reason is that the savings values are high at the top of savings list due to smaller distances
between customers relative to their distance to the depot. However, this characteristic of the
formula restrains the exploration ability of the algorithm. Gaskell (1967) and Yellow (1979)
highlighted this weakness and proposed a parameterized savings formula:

S, =¢, +¢,; — A, 2)

The motivation in using the parameter A is to avoid circumferenced formation of routes
that are usually produced by the original CW algorithm. In other words, this parameter helps
to reshape the routes by taking only non-negative values in order to find better quality
solutions.

Paessens (1988) introduced a new term to the Gaskell and Yellow’s formula in an
attempt to collect more information about the distribution. The proposed savings function is

the following:
S =ci0+coj—/7,cl.j+,u‘ci0—coj‘ (3)

where u is a positive constant. The inclusion of the new term in (3) may exploit the
asymmetry information between customers i and j regarding their distances to the depot.
Nevertheless, this information adds an unfair savings to certain customer pairs in some cases
such as a case in which one customer is very close to the depot and another is very distant.
Altinel and Oncan (2005) propose an enhancement to Paessens’ formula by introducing a
third term which considers the demand of customer pairs and the overall average demand.
Inspired from the well-known first fit decrease idea of Martello and Toth (1990), originally
used for the bin packing problem (BPP), they adopt put first larger item approach which gives
priority to the customers with large demands. The new formula is follows:
d +d,

Here d; (d)) is the demand of customer i (j), d is the average demand, and v is the new non-
negative parameter. Since this algorithm is based on three parameters it requires more
computational effort.

Very recently, Battara et al. (2007) have applied a genetic algorithm to a small subset of
representative CVRP problems to determine a robust set of parameters. In the next stage, they

used this set of parameters as the starting points for a fast local search procedure. By doing so,



they were able to more deeply investigate the space of parameter sets for each problem to be
solved. They tested their method in Altel and Oncan (2005)’s algorithm using the same
instances and achieved approximately same solution quality in a very short computational
time.

Apart from the savings algorithm related methodologies, a method proposed by
Schneider (2001) attempts to find a set of reasonable good solutions after a number of
independent trials. After these trials, algorithm finds the sub-tours identical in all of the routes
obtained by these trials, and create route backbones to be used in the second phase of the
algorithm. Without destroying the set of backbones, the algorithm constructs different
configurations of routes. The performances of all these routes are tested, and new longer
backbones are found to be used for configuring new set of routes. These procedures are
repeated until the algorithm finds the same quality of solutions for all configurations of the
routes.

A more recent approach is Algetect Electrostatic Algorithm proposed by Faulin and
Valle (2007). Inspired by the Coulomb’s Law, this algorithm imitates the customer demands
to the behavior of two electrostatic charges. The primary objective of the algorithm is to
minimize the number of routes. Thus, in most of the instances it finds longer vehicle routes

compared to the CW algorithm, though with less number of vehicles.



CHAPTER 3

ENHANCEMENTS ON THE TWO-PARAMETER SAVINGS FUNCTION

3.1 Proposed Enhancements

In this chapter, we study the two-parameter CW savings function and proposed some
enhancements on it. As mentioned in the previous section, the CW savings formulation of
Paessens (1988) aims at collecting more information about the spatial distribution of the
customers. The second term proposed in this formulation increases the savings value of the
customer pairs if the difference of the displacements of the customers to the depot is high. The
disadvantage of this approach is it disregards the distance between the customers and gives an
unfair savings to some customer pairs. On the other hand, the contribution of the new term is
controlled by a parameter and the negative effect is partially eliminated.

The proposed enhancement attempts to weaken the effect of this unfair contribution of
the second term by multiplying it with the cosine value of the polar coordinate angles of the
customers with the depot. This coefficient provides positive savings value to the customer
pairs when this angle is acute. This positive contribution increases as the angle gets more
acute, implying that the customers are closer in the polar coordinate. On the other hand, if the
angle between the customers is greater than 90 degrees, our term has a negative contribution
to the savings of this particular customer pair, since the cosine value of the angle is negative.
Thus, as the angle gets more obtuse, the effect of this negative contribution increases due to
decreasing negative cosine value. The approach is similar to that of the sweep algorithm. The
sweep algorithm is firstly mentioned in a paper by Wren and Holliday (1972). This algorithm
applies to planar instances of VRP. By rotating a ray centered at the depot, feasible clusters
are initially formed. Then, final routes are obtained by solving a TSP for each cluster. The
idea of the sweep algorithm is integrated to the Paessens’ savings formula by proposing the

following savings function:
S, =¢o ey —Ac, + ucos(@/.)‘cl.o - co_l.‘ ()

In the above function, 6; is the angle formed by the two rays originating from the depot

and crossing the customers i and j. By utilizing the cosine theorem, cos(6;) is simply



calculated as (cjy +¢;; —¢;)/2¢,¢,;. This new savings expression (5) can be regarded as a

more general enhancement to the Gaskell and Yellow’s and Paessens’ savings formulae.

Figure 3.1. Classical Clark-Wright algorithm
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Figure 3.2. Sweep algorithm



Figure 3.3. Proposed algorithm with A =pu =1

To illustrate the effect of the proposed formula, an example consisting of 22 customers
is used. Figure 3.1 shows the two routes obtained by using the classical CW algorithm. The
depot is denoted as 0. Classical CW algorithm provides a total distance of 324.87. Figure 3.2
depicts the solution given by the sweep algorithm. It corresponds to a total distance of 358.45.
The result of the proposed approach is illustrated in Figure 3.3. Total distance of 298.87 is
obtained by setting 4 = 4 = 1. Note that we selected these parameter values for simplicity and
a better solution maybe obtained by tuning the parameters.

Figures 3.1-3.3 illustrates that the classical CW algorithm constructs more
circumferenced routes since the savings are high at the top of the savings list due to smaller
distances between customers relative to their distance to the depot. This deficiency of the
classical CW limits the shape of the routes to be constructed and restricts the exploration
ability of the algorithm leading relatively high cost. On the other hand, the sweep algorithm
takes into account only the polar angles of the customers with the depot. This algorithm
ignores the distance between the customers and the distances of the customers to the depot.
Consequently, the total routing cost becomes highest due to the lack of information. Our
formula, however, takes the advantage of the information used both in the sweep and CW
heuristics, and may provide shorter distance for the sample. Figure 3.3 shows how the routes
are reshaped and their circumferenced characteristics disappear by integrating the cosine
value. Moreover, the greedy feature of the sweep algorithm is eliminated by preserving the

idea of classical savings algorithm.



Next, we present a two-term savings function where the second term is completely new.
In this function, the second term includes the absolute value of the difference between the
maximum distance among all customer pairs and the average of the distances between
customers i and j and the depot as well as the cosine of the angle associated with customers i
and j. The adjusting parameter x4 is preserved. The proposed new savings formula is as

follows:
Sy = Gy + €y = Ay + 11008(6,)|[c™ = (¢ +¢y;)/ 2| (6)

max

where ¢™ represents the largest distance among all distances between the customers. Note

that ¢™ is usually greater than(c,, +c,,)/2 unless the customers are accumulated at one side

of the depot, which is rarely the case in real world problems. In order to handle such
exceptional cases, we use the absolute value of the term. Our motivation in using this
approach is to give an early placement priority to the customers located near the depot. The
last term in formula (6) will contribute more to the savings value of customer pair if the

average distance of customer i and customer j to the depot is low.

3.2 Experimental Analysis

The performance of the proposed savings functions is tested against that of Paessen’s formula
on a large number of experimental problem instances. The computational effort in formula (5)
is slightly higher due to the inclusion of “cos 6;”. In formula (6), the additional computational

effort arises from the calculation of the average distance of the customer pair to the depot and

X

finding of ¢™ as well as the inclusion of the “cos 6;” term. The search effort, on the other
hand, is the same since we use the same parameters. Our algorithm stores the savings in a
vector of size (n*(n+1)/2) and uses vector of size n to keep track of the assignment of the
customers to the vehicle routes.

The results are reported in Tables 3.1-3.6. Tables 3.1-3.5 consist of only capacity
restricted instances whereas the instances in Table 3.6 include maximum route length
restriction as well. For Tables 3.1-3.3, the instances are chosen from Augerat’s (1995) test
sets. Table 3.4 consists of Christofides and Eilon’s (1969) data set, and Christofides et al.’s
(1979) test set is included in Table 3.5. In Table 3.6, a unique data set of Christofides et al.’s

with maximum route length constraint is reported. The data sets and best known results



reported in Tables 3.1-3.4 are obtained from http://www.branchandcut.org. The best known
results for Christofides et al.’s data set are obtained from Laporte et al. (2000).

10



Table 3.1 Relative deviations on Augerat et al.’s test set P

Instance Best P A %Dev SAVEI1 Al %Dev SAVE2 At %Dev
P-n16-k8 450 45194 0.5,2.0 0.43 45194 0.5,2.0 0.43 45194 0.1,0.8 0.43
P-n19-k2 212 220.64 0.5,0.9 4.08 220.64 0.6,0.8 4.08 220.64 0.1,1.3 4.08
P-n20-k2 216 23399 0.7,0.2 833 22943 2.0,1.0 6.22 22824 1.7,1.0 5.67
P-n21-k2 211 236.18 0.7,0.2 11.93 231.54 2.0,1.0 9.74 21271 04,1.5 0.81
P-n22-k2 216  219.89 0.7,1.9 1.80 219.89 0.7,1.9 1.80 217.87 0.2,1.5 0.87
P-n22-k8 603  589.39 0.0,0.9 -2.26 58939 0.0,0.9 2.26 588.79 0.3,0.7 -2.36
P-n23-k8 529  536.71 0.0,1.2 1.46 53634 02,14 1.39  536.34 0.1,0.9 1.39
P-n40-k5 458 468.20 1.0,1.2 223  468.20 1.0,1.2 2.23  485.63 0.6,0.6 6.03
P-n45-k5 510 52391 0.7,1.9 2773 52391 0.7,1.8 2.73  531.23 0.5,0.6 4.16
P-n50-k10 696 712.77 0.1,1.2 241 712777 0.1,1.2 241 71277 09,03 2.41
P-n50-k7 554 57894 04,1.7 4.50 578.43 0.7,2.0 441 57773 0.7,0.8 4.28
P-n50-k8 631 646.54 02,14 246 646.54 0.3,1.3 246 646.54 0.7,0.7 2.46
P-n51-k10 741 75497 0.3,1.1 1.89 75497 0.4,0.8 1.89 755,59 0.6,0.9 1.97
P-n55-k10 694 716.06 0.3,14 3.18 716.06 03,14 3.18 71323  0.7,1.2 2.77
P-n55-k15 989 963.32 05,14 -2.60 96332 05,14 2.60 97155 0.3,1.1 -1.76
P-n55-k7 568 589.54 0.1,14 3.79 589.54 0.1,14 3.79 585.63 04,14 3.10
P-n55-k8 576 59484 05,14 327 59484 05,14 327 596.28 0.9,0.5 3.52
P-n60-k10 744 769.27 0.5,1.5 340 768.12 0.5,1.6 324 78525 0.3,1.0 5.54
P-n60-k15 968 1006.94 0.0,0.8 4.02 1006.94 0.0,0.8 4.02 1000.63 0.5,1.2 3.37
P-n70-k10 834 853.94 04,0.6 2.39 853.05 1.0,0.9 2.28 855.10 0.4,0.3 2.53
P-n76-k4 593  643.14 0.8,1.7 8.46 643.14 0.8,1.6 8.46 63492 0.9,09 7.07
P-n76-k5 627 655.03 0.7,2.0 4.47 655.03 0.5,1.7 447 665.18 1.3,0.4 6.09
P-n65-k10 792  829.17 1.0,0.3 4.69 831.78 0.0,1.2 5.02 831.78 1.1,0.1 5.02
P-n101-k4 681 72283 0.2,1.2 6.14 716.8 0.6,1.2 526 71452 1.6,04 4.92
Average 3.47 3.25 3.10
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Table 3.2 Relative deviations on Augerat ef al.’s test set A

Instance Best P Au %Dev SAVEI1 Au %Dev SAVE2 A %Dev
A-n32-k5 784  828.70 0.8;0.6 5770 82796 0.1;0.4 561 83339 04;1.3 6.30
A-n33-k5 661 679.72 1.4;0.8 2.83 679.72 1.2;0.8 2.83 676.10 0.3;1.0 2.28
A-n33-k6 742 74732  1.6;0.5 0.72 74732 1.5;0.4 0.72 74698 0.2;1.8 0.67
A-n34-k5 778  793.05 0.7;0.1 1.93  793.05 0.7;0.1 1.93  793.05 0.6;0.2 1.93
A-n36-k5 799  806.78 0.9;0.0 097 806.78 0.9;0.0 097 806.78 0.6;0.4 0.97
A-n37-k5 669 695.08 0.7;0.9 390 695.08 0.6;0.9 390 699.15 0.7;0.9 4.51
A-n37-k6 949  976.01 1.0;0.1 2.85 976.01 1.0;0.1 2.85 976.60 1.0;0.0 291
A-n38-k5 730 75594 1.4;0.3 3.55 75594 1.3;0.3 3.55 75594 0.6;0.8 3.55
A-n39-k5 822 851.25 1.6;0.1 3.56  851.25 1.6;0.1 3.56  848.25 0.6;1.2 3.19
A-n39-k6 831 849.55 0.8;0.2 2.23 84955 0.6;1.0 223 857.69 0.1;0.9 3.21
A-n44-k7 937 968.84 2.0;0.9 340 97320 1.3;0.2 3.86 971.85 0.7;0.7 3.72
A-n45-k6 944  957.05 1.1;0.1 1.38 957.05 1.1;0.1 .38 972.72 0.9;0.2 3.04
A-n45-k7 1146 1169.00 1.9;0.9 2.01 1169.00 1.9;0.9 2.01 1179.81 0.2;1.7 2.95
A-n46-k7 914 933.66 1.1;0.1 2.15 933.66 1.1;0.1 2.15 93441 0903 2.23
A-n48-k7 1073 1104.23 1.7;0.7 291 1104.23 1.7;0.7 291 1104.41 0.9;0.3 2.93
A-n53-k7 1010 1045.98 1.5;0.6 3.56 1043.86 1.3;1.4 3.35 1050.89 0.2;1.8 4.05
A-n54-k7 1167 1188.64 1.7;0.9 1.85 1188.30 1.7;0.9 1.83 1197.92 1.0;0.0 2.65
A-n55-k9 1073 1099.55 1.3;0.2 2.47 1099.83 1.0;0.0 2.50 1099.84 1.0;0.0 2.50
A-n60-k9 1354 1389.59 1.6;1.0 2.63 138535 1.6;1.0 2.32 139456 0.8;1.0 3.00
A-n61-k9 1034 1051.37 1.1;0.0 1.68 1051.37 1.1;0.0 1.68 1051.37 0.9;0.3 1.68
A-n62-k8 1288 1351.11 1.2;0.2 490 1351.11 1.2;0.2 490 1345.65 0.8;0.4 4.48
A-n63-k10 1314 1349.58 2.0;1.2 2.71 134958 2.0;1.2 2.71 1348.18 1.0;0.1 2.60
A-n64-k9 1401 144244 1.1;0.5 2.96 1434.63 1.4;0.5 240 145192 0.7;0.7 3.64
A-n63-k9 1616 1648.92 1.6;0.6 2.04 1648.82 1.6;0.6 2.03 1663.06 0.2;0.6 291
A-n65-k9 1174 1224.71 1.0;0.2 432 1216.72 1.0;0.2 3.64 1209.85 0.7;0.4 3.05
A-n69-k9 1159 1185.08 1.3;0.0 2.25 1185.08 1.3;0.0 225 1183.11 1.1;0.2 2.08
A-n80-k10 1763 1818.64 1.8;0.7 3.16 1818.64 1.8;0.7 3.16 1815.07 0.6;1.0 2.95
Average 2.76 2.71 2.96

12



Table 3.3 Relative deviations on Augerat ef al.’s test set B

Instance Best P AH %Dev SAVEI1 A %Dev SAVE2 A %Dev
B-n31-k5 672 679.43 0.0,0.9 .11  679.02 1.0,1.5 1.05 677.34 0.8,0.1 0.80
B-n34-k5 788 789.84 0.0,1.2 0.23 789.84 0.0,1.2 0.23  789.84 1.0,0.3 0.23
B-n35-k5 955 97832 0.2,0.8 244 97832 0.2,0.8 244 97538 05,13 2.13
B-n38-k6 805 824.00 04,14 236 824.00 04,14 2.36 82555 0.8,0.6 2.55
B-n39-k5 549 55499 03,14 1.09 55451 0.5,1.6 1.00  554.44 1.0,0.2 0.99
B-n41-k6 829 867.42 0.5,0.6 4.63 861.67 0.5,0.6 3.94 861.02 0.3,03 3.86
B-n43-k6 742 754.04 0.6,14 1.62  754.04 0.6,14 1.62 75795 0.7,0.3 2.15
B-n44-k7 909 93232 0.8,1.8 2.57 93232 0.8,1.8 2.57 937.73 1.0,0.0 3.16
B-n45-k5 751  757.16 0.0,1.0 0.82 757.16 0.0,1.0 0.82 756.60 0.6,0.6 0.75
B-n45-k6 678 713.24 0.6,0.9 520 716.15 0.3,0.6 5,63 719.05 0.7,04 6.06
B-n50-k7 741 74792 0.0,1.1 0.93 74792 0.0,1.1 093 74792 09,03 0.93
B-n50-k8 1312 133944 0.7,1.6 2.09 1344.60 04,12 2.49 1339.89 0.9,0.2 2.13
B-n51-k7 1032 1050.00 0.0,1.5 1.74 1050.00 0.0,1.5 1.74 1049.57 13,04 1.70
B-n52-k7 747 763.96 0.2,1.1 227 76396 04,13 227 764.89 0.8,0.3 2.40
B-n56-k7 707  723.76  0.1,0.7 2.37 72376  0.1,0.7 2.37 722.61 03,02 2.21
B-n57-k7 1153 1148.97 0.8,1.8 -0.35 114897 0.8,1.8 -0.35 115426 0.2,1.6 0.11
B-n57-k9 1598 1619.71 0.0,0.9 1.36 1619.71 0.0,0.9 1.36 1619.71 0.8,0.2 1.36
B-n63-k10 1496 1562.59 0.0,0.9 4.45 1557.74 1.3,1.1 4.13 1552.36 0.9,0.1 3.77
B-n64-k9 861 919.37 0.8,1.7 6.78 919.49 0.4,0.5 6.79 910.39 0.2,0.1 5.74
B-n66-k9 1316 1372.09 04,14 426 1364.70 0.5,1.4 3.70 1371.54 0.6,0.2 4.22
B-n67-k10 1032 1090.18 0.2,0.8 5.64 1090.18 0.2,0.8 564 1096.19 09,04 6.22
B-n68-k9 1272 1317.77 0.0,1.0 3.60 1317.66 1.0,2.0 3.59 1316.22 0.7,0.5 3.48
B-n78-k10 1221 1263.05 0.1,1.0 344 1263.05 0.1,1.5 344 126436 0.8,0.2 3.55

Average 2.64 2.60 2.63
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Table 3.4 Relative deviations on Christofides and Eilon’s test set

Instance Best P A %Dev SAVEI1 A %Dev SAVE2 N %Dev
E-n22-k4 375 37528 0.6,1.5 0.08 37528 0.9,1.8 0.08 378.66 1.3,0.5 0.98
E-n23-k3 569 573.01 0.5,1.7 0.71 573.01 0.5,1.8 0.71 573.01 03,14 0.71
E-n30-k4 503 506.67 0.3,1.3 0.73 506.67 0.3,1.3 0.73 507.51 0.6,1.1 0.90
E-n33-k4 835 843.09 0.1,0.9 0.97 842.83 0.1,0.9 0.94 843.09 0.8,0.2 0.97
E-n76-k14 1021 10523 0.1,1.1 3.07 10523 0.1,1.1 3.07 1051.67 1.0,0.2 3.00
E-n76-k8 735 783.12 0.3,1.2 6.55 77942 0.5,1.0 6.04 775.73 0.7,03 5.54
E-n76-k7 682 718.88 0.8,1.7 541 718.88 0.8,1.7 541 71749 04,1.0 5.20
E-n101-k14 1071 1133.99 0.5,0.7 5.88 1131.2 0.5,0.6 5.62 113255 1.4,03 5.75
Average 2.92 2.82 2.88
Table 3.5 Relative deviations on Christofides ef al.’s test set
Instance Best P A %Dev SAVEI1 Au %Dev SAVE2 Au %Dev
C50 524.60 566.10 0.9,0.8 791 566.10 0.4,0.8 791 537.29 1.0,14 2.42
C75 835.30 866.29 0.1,1.0 3.72  866.29 0.1,1.0 3.72  866.29 0.7,0.3 3.72
C100a 826.10 865.60 0.4,1.5 478 865.60 0.3,1.5 478 877.24 1.2,0.0 6.19
C150 1028.00 1101.81 0.7,2.0 7.14 1098.80 0.8,0.8 6.84 1097.52 1.0,0.1 6.72
C199 1291.00 1370.04 0.2,1.4 6.09 1370.04 0.2,14 6.09 1367.53 1.3,0.2 5.89
C120 1042.00 1066.40 0.3,1.3 2.33 1065.60 0.4,1.4 2.25 1068.14 1.0,0.0 2.50
C100b 819.60 826.00 0.4,1.2 0.79 826.00 0.4,1.2 0.79 829.88 0.6,0.5 1.26
Average 4.68 4.62 4.10
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Table 3.6 Relative deviations on Christofides ef al.’s distance restricted test set

Instance Best P Lu %Dev SAVEI1 Au %Dev SAVE2 A %Dev
CD50 555.40 59531 0.3,1.3 7.18 59531 0.3,1.3 7.18 59326 0.8,1.0 6.81
CD75 909.60 94298 0.7,2.0 3.67 94298 0.7,1.9 3.67 95378 0.7,0.9 4.85
CD100a 865.90 942.69 0.3,1.7 8.86 942.69 0.3,1.7 8.86 922.76 0.7,0.1 6.56
CDI150 1163.00 1222.10 0.0,1.3 5.12 1222.10 0.0,1.3 512 1217.62 1.2,0.2 4.74
CD199 1396.00 1485.50 0.6,1.9 6.42 1485.50 0.5,1.8 6.42 1478.12 1.2,04 5.89
CD120 1541.00 1583.24 0.1,0.7 2.73 1577.87 0.4,0.7 2.38 1586.90 1.1,0.1 2.97
CD100b 866.40 869.61 0.2,1.2 037 869.61 0.6,2.0 037 873.75 0.9,0.2 0.85

Average 491 4.86 4.67
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In the first columns of tables 3.1-3.4, A, B, P and E represents the name of the data set,
the numbers shows the total nodes including all customers and the depot. For Table 3.5-3.6, C
and CD represent the name of the data sets and the number of customers are represented next
to the name of datas.In tables 3.1-3.6, the instances are represented in the first column and
best-known results are reported in the second column. The third, fourth, and fifth columns
show the results obtained from Paessen’s savings algorithm and represents total distance,
parameters A and u, and relative deviations, respectively. Similarly, the total distance,
parameters 4 and u and the relative deviations from best-known results are represented in the
sixth, seventh, and eighth columns, respectively for our SAVE1 heuristic expressed with
formula (5). And for our SAVE 2 heuristic expressed with formula (6), the total distance,
parameters A and u and the relative deviations from best-known results are represented in
ninth, tenth, and eleventh columns. In all instances, distances and customer demands are
integer numbers. The number of customers in the problems varies between 15 and 199. All
the instances are symmetric. The savings values are calculated by increasing A and u with an
increment of 0.1 in the interval [0.1, 2] and [0, 2], respectively. The distances reported for
Paessen’s, SAVE1 and SAVE2 algorithms are the best values obtained among the 20 x 21 =
420 possible parameter combinations. Finally, we note that the algorithms are coded in C++.

In all benchmark instances, SAVE1 outperforms the average solution quality of
Paessens (1988). SAVE2 also outperforms the savings function of Paessens (1988) in all
problems except Augerat et al.’s test set A. However, SAVE2 performs significantly better
than SAVEL especially in Christofides et al.’s both test sets (0.53% and 0.21% additional
improvement as compared with SAVEL1 for unrestricted and restricted route length instances)
and Augerat et al.’s test set P (0.31%). For three instances, we have negative values in relative
deviations, implying a better distance compared to the reported best solutions. These results
are obtained at the cost of an additional vehicle and do not represent any better solutions.
Although significant improvements are achieved in certain instances the reductions in the
average deviations are not dramatic. Nevertheless, the proposed savings functions are capable

of providing shorter distances with almost no additional computational effort.
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CHAPTER 4

ENHANCEMENTS ON THE THREE-PARAMETER SAVINGS FUNCTION

4.1 On the Enhancement Proposed by Altinel and Oncan (2005)

In this chapter, we first investigate the improvements achieved by the savings function of
Altinel and Oncan (2005), and then propose some enhancements on the three-parameter CW
savings function. We claim that Altinel and Oncan’s approach benefits mostly from the
extended ability of searching the solution space by using a third term rather than the put first
larger items idea. To justify this claim two modified savings functions based on the
conflicting idea of putting first smaller item are proposed. The first savings function is the
same as (4); however, parameter v is used as a “non-positive” parameter. This penalty-based
formulation promotes the customers with smaller demands by penalizing the customer pairs
with larger demand more than the customer pairs with smaller demands. The second savings
function uses the inverse of the third term giving priority to the customers with small
demands and expressed as follows:
d

Yd v,

(7)

Sy = t¢y, —Agy +,u‘ci0 —coj‘+

In the literature, Gaskell (1967) and Yellow (1979) parameterize the distance between
the customer pairs in the original CW formula and expand the search space of the algorithm.
The original CW algorithm calculates the saving values of customer pairs once and constructs
routes according to a single savings list. However, in formula (2) the shaping parameter A is
adjusted in the interval [0.1, 2] with an increment of 0.1. This implies that a best route is
obtained using 20 different saving lists at the end of 20 iterations. Consequently, the
computational effort increases in parallel with the number of iterations. Similarly, in
Paessens’ formula (3), the parameter p changes within the interval [0, 2] with an increment of
0.1. Thus, this approach requires a total of 20 x 21 = 420 iterations. Formulation (4) proposed
by Altinel and Oncan (2005) includes a third parameter v which changes with an increment of
0.1 1n [0, 2], resulting in 20 x 21 x 21= 8820 iterations. When compared to Paessens’ formula,
it involves 8400 additional iterations implying a deeper search of the solution space achieved
by different combinations of three parameters. To make a fair comparison, experiments are

conducted the same way as Altinel and Oncan (2005) did. The parallel version is adopted and
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the same parameter values are used. Since the search effort is the same, the computational
time is not reported.

The detailed results are given in the Appendix where the instances are represented in the
first column and best-known results are included in the second column. The results obtained
using Altmel and Oncan’s savings function are denoted as AO and reported with the
corresponding parameter values. NEG shows the results obtained using the same function
with parameter v changing in [-2, 0] and INV shows the results obtained using formula (7)
with the same parameter values as in AQ. These results are reported with the corresponding
parameter values as well. The % Dev column gives the deviations of distances in NEG and
INV from AO and is calculated as (NEG/AO — 1) and (INV/AO — 1), respectively. Hence, a

negative deviation value represents a shorter distance than that of AO.

Table 4.1 Performance comparison in terms of the number of problems

NEG vs. AO INV vs. AO

# of # Perc | # Perc| # Perc # Perc # Perc #  Perc
Test set Prob | "<" (%) |"=" (%) |'">" () | "<" %) | "=" (%) | ">" (%)
Aug (P) 24 8 33.3 9 375 7 292 11 45.8 9 37.5 4 16.7
Aug (A) 27 9 333 4 148 | 14 519 11 40.7 5 18.5 11 40.7
Aug (B) 23 11 47.8 3 130 | 9 39.1 11 47.8 3 13.0 9 39.1
ChrkEil 8 2 25.0 4 5001| 2 250 4 50.0 2 25.0 2 25.0
Chr (O) 7 2 28.6 0 0.0 5 71.4 2 28.6 1 14.3 4 57.1
Chr (CD) 7 4 57.1 1 14.3 2 28.6 4 57.1 2 28.6 1 14.3
Total 96 36 375 | 21 219 | 39 40.6 43 44.8 22 229 | 31 323

We observe that the average distances provided by both NEG and INV are shorter than
those of AO on the benchmark instances of Augerat et al’s test set B and Christofides et al’s
route length restricted test set. Furthermore, in Augerat et al’s test set P and Christofides and
Eilon’s test set INV outperforms AO as well. Only in two test sets, the average performance
of AO is better than the performance of both NEG and INV. In addition, we observe that the
performance of NEG and INV is significantly better in the existence of route length restriction
with 0.689 % and 0.496% improvement, respectively. The results show that there is not
significant difference in employing either approach. It is important to note here that although
the majority of our results match those of Altmel and Oncan (2005) in the implementation of
their savings function there are certain instances for which we find shorter or longer distances

with different parameter values. This may be due to the implementation of the algorithm on
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the computer code. Variability in the numerical results reported for different savings
heuristics is also pointed out in Laporte et a/ (2000). For consistency, we compare our
distances and the corresponding parameter values with those we obtained in our code using
Altinel and Oncan’s (2005) formula.

To compare the number of instances in which NEG and INV find shorter distances

e

than (“<”), same distance as (“="), or longer distance than (“>") AO, we provide Table 4.1. In
this table, Aug, ChrEil, and Chr, respectively, denote the test sets of Augerat et al,
Christofides and Eilon, and Christofides et al, respectively. The results show that NEG gives
the best distance in 38% of the problems whereas AO performs better in 41%. Moreover, we
observe that in 45% of the problems INV provides the best distance while AO finds the best
distance only in 32%. The performance of INV is significantly better than AO for Augerat et
al’s test set P (46% vs. 17%), the test set of Christofides and Eilon (50% vs. 25%), and
Christofides et al’s route length restricted test set (57% vs. 14%). AO outperforms INV in
only Christofides ef al’s test set with no route length restriction. These results confirm that the
idea of put first smaller items works as good as the put first larger items idea and even better
in many instances, particularly in the case of INV formulation. In sum, we believe that the
good performance of both approaches is more likely due to the ability of better searching the
solution space using the newly introduced third parameter rather than the put first larger items
idea as claimed in Altinel and Oncan (2005).

In addition, another drawback of (7) is that the first two terms consist of a distance
measure whereas the third term is the ratio of demands and is unitless. Thus, if the distance
measure changes, the relative weight of the third term will also change. That is, for instance,
if the distances are switched from kilometers to meters the same value of v will not work as
good. Hence, it will need to be readjusted in a new search interval, requiring additional
computational effort.

To overcome these shortcomings of Altinel and Oncan’s algorithm and improve its
performance, we present in the next section two new enhanced savings formulations which

offer a more robust solution quality.

4.2 Proposed Enhancements

Our first enhancement attempts to improve Paessens’s two-term savings function by

introducing a third term that aims at eliminating vehicle capacity losses due to inefficient

19



routing. Our third term is also demand-based as is the case in Altinel and Oncan (2005);
however, the underlying idea is quite different. The proposed formula is as follows:

Cio T ¢y, —Ac; ‘cio—co_i‘Jrv‘;—(dierj)/Z

SU = cmax + ﬂ Cmax dmax

(8)

where " denotes the maximum demand among all customers.

First, we normalize the savings function by dividing the distances by the maximum
distance and the demands by the maximum demand. Hence, all distances and demands are
represented within a unit measure. Therefore, the parameter intervals do not need to be
readjusted for different measures. Second, v is allowed to take both positive and negative
values. As far as the positive values are concerned, the savings value increases as the average
demand of a customer pair diverges from the overall average. In other words, two customers
both having low or high demands are rewarded the most and ranked closer in the savings list.
In CVRP, one of the most challenging aspects of using savings algorithms is the losses in
capacity utilization. Especially, if a vehicle visits customers with larger demands at the
beginning of the tour, its remaining capacity cannot be usually utilized by nearby customers
having lower demands. Formulation (8) aims at increasing the possibility of customers having
low and high demands to be fit into the same route together and thus, minimizing the capacity
losses. On the other hand, if v takes negative values, customer pairs having an average
demand close to the overall average will be penalized the least and ones with large or small
demands will be penalized most. In this case, the former customer pairs move towards the top
of the savings list, while the latter ones go downwards. However, the idea of keeping
customer pairs having lower and higher demands close in the savings list is preserved.

As discussed in the previous chapter, the idea of giving early placement priority to the
customers located near the depot and utilizing the polar angles between the customer pairs in
the savings functions provide shorter distances. Thus, in the second enhancement, we

incorporate the same approach in the second term and propose the following savings function:

¢ 4 —de.  cos(O)|c™ = (¢, +c, )2 |d—(d, +d )2
SU = . (r)n]ax - +ﬂ - ‘ max . s ‘+V‘ dmax - ‘ )

C C

The distances and the demands are also normalized in (9) to have a robust formula

independent from the measurement units.
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4.3 Experimental Analysis

For fair comparison, we conduct our experiments on the same data set the same way as
Altinel and Oncan (2005). We adopt the parallel version and use the same number of
iterations. Since the search effort is the same we do not report the computation times. The
algorithm is coded in C++. The results are given in Tables 4.2-4.7. In all the tables, the
instances are reported in the first column and best-known results and the results given by
classical CW method are included in the second and third columns, respectively. The results
obtained using Altinel and Oncan’s savings function are denoted as AO and reported with the
corresponding parameter values (4, ¢, v). DC1 and DC2 columns show the results obtained
using savings functions (8) and (9), respectively, reported with the corresponding parameter
values as well. Our experiments showed that the parameter v changing within the interval
[-0.1, 0.1] with an increment of 0.01 works well. The % Imp column gives the improvements
in the distances obtained by AO, DC1, and DC2, respectively, in comparison with CW and is
calculated as (CW-AQ)/CW, (CW-DC1)/CW, and (CW-DC2)/CW, respectively.

We observe that both DC1 and DC2 provide shorter average distances than AO for all
benchmark instances. To compare the number of instances in which DC1 and DC2 perform
“better than AOQ” and “better than or same as AO” we provide Table 4.8. The results show
that DC1 outperforms AO in 58% of the problems whereas DC2 outperforms AO in 55% of
the problems. Moreover, DC1 and DC2 provide “better or equal quality” solutions in 74% and
68% of the problems, respectively. We also investigated the effect of increasing the
computational effort twice by extending the interval of parameter v to [-0.2, 0.2]. However,
this extended interval has only a negligible contribution of 0.14% to the average distance of
all benchmark instances. We should also point out that we tested formulas in which the
demand terms are the inverse of the last term used in formula (8) and (9). The inverse of the
newly integrated demand idea provide no improvement.

These results indicate that the newly integrated demand idea works better in many
instances and proposed savings functions are capable of providing shorter distances with
almost no additional computational effort. It is worth noting that the parameter tuning
procedure proposed by Battara er al. (2007) is also applicable to our new three-parameter
versions of CW algorithm to reduce the intensive computational requirement of parameter

adjusting.
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Table 4.2 Relative deviations on Augerat et al.’s test set P

Instance Best CW AO  iuy % Imp DC1 A,V % Imp DC2 Al v % Imp
P-n16-k8 450 47877 45194 1.8,0.7,1.5 5.604 45194 1.7,0.4,-0.10 5.604 451.95 0.1,1.6, 0.04 5.603
P-n19-k2 212 237.89  220.64 0.9,0.5,0.0 7.252  220.64 0.6,0.7,-0.03 7.252  220.64  0.1,1.3,-0.10 7.252
P-n20-k2 216  234.00 23286 1.2,1.0,1.7 0.485 224.01 0.4,0.9,0.09 4267 224.13 0.1,1.4,0.09 4.215
P-n21-k2 211 236.19  231.54 1.4,1.0,2.0 1.967 22390 1.9,1.1,-0.10 5201 21271 0.8,1.4,0.01 9.939
P-n22-k2 216 23950 219.89 1.8,0.2,0.8 8.188  219.89 1.4,0.6,-0.10 8.188 217.87  0.2,1.5,-0.04 9.031
P-n22-k8 603  590.62  589.39 0.9,0.0,0.0 0.208  589.10  0.8,0.0,0.06 0.257 588.79  0.1,0.9,0.03 0.309
P-n23-k8 529 53948 536.71 1.4,0.2,1.3 0.513 53635 1.2,0.0,0.10 0.580 536.35 0.1,0.8, 0.05 0.580
P-n40-k5 458 51837  468.20 1.1,1.0,0.3 9.679  468.20 1.1,0.8,-0.07 9.678 470.20  0.7,1.4,0.07 9.293
P-n45-k5 510 57295 52241 1.5,0.1,0.7 8.821 52276  1.4,0.3,0.10 8.760 521.31 1.2,1.3,-0.10 9.014
P-n50-k10 696  739.84 71277 1.2,0.1,0.0 3.659 711.22  1.0,0.2,0.07 3.868 712.77  0.8,0.4,-0.04 3.659
P-n50-k7 554  597.03 57773 1.7,0.4,1.9 3.233  576.73  1.4,0.5,0.10 3.401 577.73  0.7,0.8,-0.01 3.232
P-n50-k8 631 67434 646.55 1.2,0.2,0.8 4.121  646.55 1.2,0.1,-0.10 4.121 646.55  0.6,0.7,-0.04 4.121
P-n51-k10 741 790.97 75498 0.9,0.4,0.1 4.550 748.62 1.4,0.3,0.10 5354 747.25 0.7,0.6, 0.09 5.528
P-n55-k10 694  736.45 715.21 1.2,0.1,1.7 2.884 713.56  1.3,0.1,0.10 3.107  709.33 1.8,0.8,0.05 3.683
P-n55-k15 989  978.07 963.32 1.6,0.9,0.0 1.508 963.33  1.6,0.8,-0.10 1.507 959.93 0.2,1.2,0.08 1.854
P-n55-k7 568 618.68 587.44 1.4,04,13 5.049  584.23  1.5,0.0,0.07 5.569 584.23 1.4,0.1,0.10 5.569
P-n55-k8 576  631.67 588.04 1.3,0.3,1.7 6.907 592.03 1.4,0.5,-0.08 6.276 59430  1.3,0.1,-0.10 5917
P-n60-k10 744 800.20 768.12 1.7,0.5,0.1 4.008 764.38 1.9,0.6, 0.08 4.476 765.08  0.6,0.8,0.09 4.388
P-n60-k15 968 1016.96 1002.77 0.9,0.0,0.5 1.395 1002.78  0.8,0.0,0.01 1.394 996.87  0.5,1.2,-0.10 1.975
P-n70-k10 834  896.86  853.94 0.6,0.4,0.0 4786  853.94  0.7,0.3,0.02 4.786 855.10  0.3,0.4,0.01 4.656
P-n76-k4 593 688.34 641.78 1.9,0.8,0.4 6.765  620.81 1.8,1.3,0.07 9.810 616.30 1.0,0.8,-0.05 10.466
P-n76-k5 627  709.38 65293 1.6,0.3,0.9 7957 65142  1.8,0.8,0.02 8.171 64731  0.6,0.9,-0.09 8.749
P-n65-k10 792  844.61 82592 1.9,0.7,0.7 2213  816.17 1.9,1.0,-0.07 3.367 81596  0.3,1.3,-0.04 3.392
P-n101-k4 681 76538 711.03 0.6,1.0,0.0 7.101  707.25 1.6,1.0,-0.10 7.595 702.04 1.7,0.3,-0.10 8.275
Average 4.536 5.108 5.446
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Table 4.3 Relative deviations on Augerat ef al.’s test set A

Instance Best CW AO Ly % Imp DC1 A,V % Imp DC2 A, v % Imp
A-n32-k5 784  843.69 828.70 0.8,0.6,0.0 1.777  828.70  0.7,0.4,0.05 1.777  828.70 0.3,0.5,0.03 1.777
A-n33-k5 661 712.05 676.10 2.0,1.0,1.6 5.049 679.73  1.2,0.8,0.03 4539 676.10 0.3,0.9,-0.01 5.049
A-n33-k6 742 776.26 743.21 1.2,0.0,1.0 4.258 747.22 1.9,1.1,0.09 3.741 74699  0.1,1.8,-0.08 3.771
A-n34-k5 778  810.41 793.05 0.6,0.3,1.1 2.142  793.05 0.6,0.4,0.06 2.142  793.05 0.6,0.2,-0.06 2.142
A-n36-k5 799  828.47 806.78 0.8,0.0,0.1 2.618 806.78  0.8,0.0,0.01 2.618  806.78  0.6,0.4,-0.02 2.618
A-n37-k5 669 707.81 694.43 1.5,0.3,0.9 1.890 69444  1.3,0.1,-0.1 1.889  694.44  1.0,0.3,-0.09 1.889
A-n37-k6 949 976.61 974.56 1.0,0.0,0.4 0.210 972.51 1.0,0.1,-0.1 0.420 976.61  0.8,0.3,-0.04 0.000
A-n38-k5 730 768.13  756.11 1.4,0.3,0.0 1.565 75594 1.5,0.5,0.01 1.587  755.94 0.6,0.8,0.00 1.587
A-n39-k5 822 901.99 848.24 1.2,0.2,0.3 5959 848.18 1.6,0.4,0.1 5966  843.23 0.3,1.5,0.09 6.514
A-n39-k6 831 863.08 849.56 0.8,0.2,0.0 1.566 849.56 0.8,0.2,-0.01 1.566  849.90  0.5,0.4,-0.09 1.527
A-n44-k7 937 976.04 959.43 1.6,0.4,2.0 1.702  957.03 1.5,0.3,-0.1 1.948  957.03  0.7,0.8,-0.04 1.948
A-n45-k6 944 1006.45 957.06 1.0,0.0,1.4 4907 957.06 1.1,0.1,0.01 4907  957.06 1.0,0.1,0.01 4.907
A-n45-k7 1146 1199.98 1166.39 1.5,0.2,2.0 2.799 1167.66 1.6,0.4,0.07 2.693 1168.97 1.1,0.6,0.05 2.584
A-n46-k7 914 939.74 933.66 1.1,0.1,0.0 0.647 929.42 1.1,0.3,0.1 1.098  929.42 0.8,0.1,0.08 1.098
A-n48-k7 1073 1112.82 1104.24 1.7,0.7,0.0 0.771 1103.99 1.0,0.0,-0.04 0.793 1103.99  0.7,0.5,-0.04 0.793
A-n53-k7 1010 1099.45 1045.47 0.7,0.0,1.5 4910 1043.86 1.8,1.6,0.07 5.056 1048.79  0.8,0.2,-0.02 4.608
A-n54-k7 1167 1197.92 1173.77 1.1,0.1,0.9 2.016 1172.27 1.1,0.1,-0.03 2.141 1172.27  0.8,0.4,-0.02 2.141
A-n55-k9 1073 1099.84 1098.51 0.9,0.1,1.1 0.121 109891 1.2,0.2,0.05 0.085 1099.56 1.1,0.0,0.06 0.025
A-n60-k9 1354 1421.88 1376.20 1.4,0.0,0.9 3.213 1384.19 1.8,1.0,0.09 2.651 1379.86  0.9,0.8,-0.10 2.955
A-n61-k9 1034 1102.23 1051.10 1.1,0.0,0.1 4.639 1051.06 1.1,0.0,0.05 4.642 1051.06 0.9,0.3,0.07 4.642
A-n62-k8 1288 1352.81 1347.87 1.0,0.0,0.2 0.365 1326.52 1.2,0.2,-0.07 1.943 1326.54  0.7,0.4,-0.01 1.942
A-n63-k10 1314 1352.48 1348.17 1.5,0.4,0.2 0.319 1346.84 1.3,0.3,0.05 0.417 134730 1.0,0.1,-0.04 0.383
A-n64-k9 1401 1486.92 1439.75 1.9,0.9,0.1 3.172 143525 1.4,0.5,-0.04 3475 1442.66 1.0,0.1,0.07 2.977
A-n63-k9 1616 1687.96 1649.14 1.6,0.6,0.1 2.300 1648.44 1.5,0.7,-0.04 2341 1652.42 0.3,1.5,0.04 2.106
A-n65-k9 1174 1239.42 1202.08 0.9,0.1,0.3 3.013 1205.84 1.4,0.4,-0.08 2.709 1197.49 0.7,0.4,0.02 3.383
A-n69-k9 1159 1210.78 1185.08 1.3,0.0,0.0 2.123 1183.88 1.3,0.0,-0.05 2222 118191  1.1,0.2,-0.05 2.384
A-n80-k10 1763 1860.94 1816.78 1.8,1.4,1.5 2.373 181143 1.4,0.6,-0.08 2.660 1811.56  0.6,0.9,-0.03 2.653
Average 2.460 2.520 2.534
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Table 4.4 Relative deviations on Augerat ef al.’s test set B

Instance Best CW AO A,V % Imp DC1 A,V % Imp DC2 A,V % Imp
B-n31-k5 672 681.16 677.34 0.9,0.0,0.1 0.561 676.50  0.9,0.0,-0.1 0.684  676.50  0.3,1.0,-0.03 0.684
B-n34-k5 788 794.33  789.85 1.2,0.0,0.0 0.564 789.85 1.2,0.0,-0.01 0.564  789.85 1.0,0.3,0.00 0.564
B-n35-k5 955 97833 97548 1.1,0.1,1.7 0.291 97534  1.0,0.0,-0.1 0.306  973.27  0.7,0.9,-0.05 0.517
B-n38-k6 805 832.09 824.00 1.4,0.4,0.0 0.972 824.60 1.5,0.4,-0.01 0.900  820.31 0.5,1.0,0.03 1.416
B-n39-k5 549 566.71 555.00 1.4,0.3,0.0 2.066 554.16 1.5,0.4,0.0 2215 55435 1.1,0.0,-0.04 2.181
B-n41-k6 829 898.09 867.42 0.6,0.4,0.1 3415 861.67 0.8,0.7,0.01 4.055 85295 0.3,0.3,-0.06 5.026
B-n43-k6 742 781.96 75492 0.9,0.1,0.4 3458 754.04 1.1,0.2,-0.01 3.571  756.07 0.7,0.3,0.03 3.311
B-n44-k7 909 937.74 934.68 1.9,09,1.8 0.326 932.25 1.8,0.8,0.1 0.585 930.99  0.6,0.8,-0.03 0.720
B-n45-k5 751 757.16 75471 1.1,0.0,0.8 0.324 756.52  1.6,0.6,0.03 0.085  756.60  0.5,0.7,-0.01 0.074
B-n45-k6 678 727.84 713.24 0.9,0.6,0.0 2.006 708.52  0.9,0.6,0.08 2.654  717.24 0.2,0.5,0.10 1.456
B-n50-k7 741  748.80 74537 1.0,0.0,0.2 0.458 74477 1.1,0.0,-0.05 0.538 74477  0.9,0.3,-0.03 0.538
B-n50-k8 1312 1354.03 1338.34 1.9,0.9,0.8 1.159 1336.72 1.8,0.8,-0.01 1.278 1337.13  0.9,0.2,-0.05 1.248
B-n51-k7 1032 1059.86 1050.00 1.5,0.0,0.0 0.930 1043.58 1.2,0.0,0.04 1.536  1043.58 1.2,0.0,0.04 1.536
B-n52-k7 747 76490 756.90 1.3,0.0,1.5 1.046 762.16 1.3,0.0,-0.06 0.358  762.16  1.0,0.5,-0.06 0.358
B-n56-k7 707 733.74 722.61 0.8,0.0,0.2 1.517 723.77 0.7,0.0,-0.01 1.359  722.62 0.2,0.2,0.01 1.516
B-n57-k7 1153 1239.78 1148.98 1.1,0.0,0.5 7.324 1148.48 1.7,0.8,-0.04 7.364 1150.77 1.1,0.0,0.05 7.179
B-n57-k9 1598 1653.42 1619.72 0.9,0.0,0.0 2.038 1613.27 0.9,0.0,0.02 2428 1613.27 0.8,0.2,0.01 2.428
B-n63-k10 1496 1598.18 1562.59 0.9,0.0,0.0 2.227 1559.81 0.8,0.0,0.01 2401 1552.36 0.9,0.1,0.00 2.867
B-n64-k9 861 921.56 910.07 1.1,0.8,2.0 1.247 897.51 1.5,0.8,0.04 2.610  907.30 0.5,0.7,0.05 1.547
B-n66-k9 1316 1416.42 1358.32 1.9,1.1,1.0 4.102 1340.00 1.6,0.9,0.09 5.395 1357.17 0.3,0.8,0.06 4.183
B-n67-k10 1032 1099.95 1070.30 0.8,0.0,1.8 2.696 1071.72  0.8,0.0,-0.1 2.566 1066.79  0.7,0.2,-0.09 3.015
B-n68-k9 1272 1317.77 1316.07 1.1,0.1,0.4 0.129 1315.76 1.0,0.0,-0.03 0.153 1315.76  0.9,0.2,-0.03 0.153
B-n78-k10 1221 1264.56 1261.35 1.0,0.1,0.9 0.254 1260.99 1.0,0.0,0.06 0.282 1260.50 1.0,0.1,-0.05 0.321
Average 1.700 1.908 1.863
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Table 4.5 Relative deviations on Christofides and Eilon’s test set

Instance Best CW AO A,V % Imp DC1 A,V % Imp DC2 A, v % Imp
E-n22-k4 375 388.77 375.28 1.1,0.9,1.1 3470 375.28 1.3,0.6,0.05 3470  375.28 0.1,1.1,0.02 3.470
E-n23-k3 569 621.09 573.01 1.7,0.5,0.0 7.741  573.01 1.7,0.5,-0.10 7.741 573.01 0.2,1.4,0.01 7.741
E-n30-k4 503  534.45 506.67 1.3,0.3,0.0 5.198  506.67 1.3,0.3,-0.01 5.198  507.51 0.6,1.0,-0.02 5.041
E-n33-k4 835 843.10 843.10 0.9,0.1,0.0 0.000 842.83 0.8,0.1,0.06 0.032  842.83 0.7,0.4,0.08 0.032
E-n76-k14 1021 1054.60 1045.04 1.3,0.0,1.0 0.907 1052.20 1.2,0.0,-0.02 0.228 1049.31 0.7,0.3,0.08 0.502
E-n76-k8 735  794.74 779.42 1.0,0.5,0.1 1.928 768.82 1.3,0.1,0.06 3262  768.05 1.2,0.1,0.05 3.358
E-n76-k7 682 738.13 718.88 1.6,0.8,0.2 2.608 712.14 1.9,0.8,0.07 3.521 71648 0.3,1.0,-0.04 2.933
E-n101-k14 1071 1139.07 1126.39  0.8,0.6,0.3 1.113 1120.59 0.7,0.6,0.00 1.622 1127.01 1.3,0.3,-0.07 1.059
Average 2.871 3.134 3.017
Table 4.6 Relative deviations on Christofides ef al.’s test set
Instance Best CW AO YNRY % Imp DC1 YNIRY % Imp DC2 YN/RY % Imp
C50 524.61 584.64 555.55 1.7,0.2,0.6 4976 550.24 0.3,0.9,0.08 5.884  537.29 1.0,1.4,-0.02 8.099
C75 835.26  907.39 860.21 1.2,0.2,0.7 5200 862.81 1.1,0.3,-0.06 4913  864.29 0.5,0.4,-0.06 4.750
C100a 826.14 889.00 867.35 1.2,0.6,0.1 2.435 862.18 1.8,0.5,-0.05 3.017 85449 1.6,0.5,-0.05 3.882
C150 1028.42 1140.42 1094.06 1.3,0.1,0.3 4.065 1090.24 1.0,0.7,0.06 4.400 1089.78 0.4,0.6,-0.03 4.440
C199 1291.45 1395.74 1359.78 1.3,0.0,1.1 2.576 1363.93 1.6,0.1,-0.07 2.279 1367.53 1.3,0.2,0.00 2.021
C120 1042.11 1068.14 1057.80 1.1,0.1,0.3 0.968 1060.87 1.1,0.1,-0.03 0.681 1059.87 0.9,0.2,0.02 0.774
C100b 819.56 833.51 824.66 1.4,0.4,0.6 1.062 825.76 1.1,0.0,0.03 0.930 825.76  1.1,0.0,0.03 0.930
Average 3.040 3.158 3.557
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Table 4.7 Relative deviations on Christofides et al.’s distance restricted test set

Instance Best CW AO A,V % Imp DC1 A,V % Imp DC2 A, v % Imp
CD50 55543 618.39 589.43 1.6,0.4,2.0 4.683 5829 1.5,1.1,0.1 5.739  582.52 1.0,1.4,-0.08 5.801
CD75 909.63 97546 94298  2.0,0.7,0.0 3.330 941.78 1.9,0.7,0.05 3453 94414 0.9,0.3,0.07 3.211
CD100a 86594 973.94 942.69  0.7,0.3,0.0 3.209 90391 0.7,1.2,-0.01 7.190 92277 0.7,1.0,-0.01 5.254
CD150 1162.55 1287.64 1222.1 1.3,0.0,0.0 5.090 1218.55 1.6,0.1,0.06 5366 1216.15 1.3,0.2,0.06 5.552
CD199 1395.85 1538.66 1485.53 1.9,0.6,0.0 3.453 1488.46 1.8,0.3,0.02 3.263 1482.89 1.7,0.3,0.01 3.625
CD120 1541.14 1592.26 15822  0.8,0.0,0.2 0.632 1571.14 0.9,0.4,-0.02 1.326 1572.81 0.8,0.4,-0.06 1.222
CD100b 866.37 875.75 869.61 1.2,0.2,0.0 0.701 871.32 1.3,0.3,-0.02 0.506 872.6  0.8,0.4,0.03 0.360
Average 3.014 3.835 3.575
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Table 4.8 Performance comparison with respect to the number of problems

DC1 vs. AO DC2 vs. AO

# of # Perc | # better Perc # Perc| # better Perc
Test set Prob | better (%) |or equal (%) | better (%) | or equal (%)
Augerat et al (P) 24 15 63 22 92 16 67 21 88
Augerat et al (A) 27 12 44 19 70 11 41 17 63
Augerat et al (B) 23 17 74 18 78 16 70 18 78
Christofides and Eilon 8 4 50 7 88 3 38 5 63
Christofides et al (C) 7 3 43 3 43 3 43 3 43
Christofides et al (CD) 7 5 71 5 71 5 71 5 71
Total 96 56 58 74 74 54 55 69 68




CHAPTER 5

CONCLUSION

Metaheuristics are proven to provide the best results for vehicle routing problems. However,
they usually necessitate long computational times because of deeper exploration of the search
space. On the other hand, CW savings method is very fast, and easy to implement, and can be
simply adapted to various real-world situations due to its flexibility. These advantages make
the method still attractive for many applications, including the commercial software. Thus,
improving the performance of the CW algorithm, while preserving its simplicity, flexibility,
and speed, is of interest to many researchers and practitioners.

In this thesis, firstly we address Paessens’ (1988) two-term savings algorithm and
propose two different enhancements. Unlike the previous ones, our first enhancement
“promotes” or “penalizes” the savings value between two customers by considering the cosine
value of the angle formed by the two rays originating from the depot and crossing two
customers. Our computational results show that this approach provides shorter distances in
many instances with improved average solution quality for all problem sets. The second
enhancement enforces the customers closer to the depot to be placed into routes first. This is
achieved by considering the difference between the maximum distance among the customers
and the average distances of customer pairs to the depot. This approach also improves the
distances in many instances and provides significantly better average solution quality in three
problem sets.

Secondly, we investigate the performance of Altinel and Oncan’s (2005) savings
function based on the put first larger items idea originally proposed for Bin Packing Problem.
This function considers the customer demands as well and improves the accuracy of the
classical CW heuristic remarkably. However, we claim that the improvement achieved by the
new function is the result of better searching the solution space using a parameterized third
term rather than the “put first larger items” idea. Two modified savings functions based on the
conflicting “put first smaller items” idea is presented in order to justify our claim. The
computational results reveal that our savings functions work as good and even better in many

problem instances.
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Then, we present two alternative enhancements to Altinel and Oncan’s (2005) three-term
savings function. Instead of the idea of putting first larger items of Altinel and Oncan, the first
enhancement aims at increasing the possibility of customers having small and large demands
to be fit into the same route together and reducing capacity losses. In the second enhancement,
the second term of the proposed formulation is replaced with a new term in an attempt to
enforce the customers closer to the depot to be placed into routes first. Furthermore, both
formulations utilize normalized distance and demand values; hence, they are independent
from measurement units. Thus, the parameter intervals are robust and do not need to be
readjusted for different data in different units. The computational study reveals that both
approaches provide enhanced solution quality in many instances as compared to the solutions
of Altinel and Oncan. Moreover, the average distances are shorter in all problem sets. The
better solution quality is achieved with “slightly” more computational effort in calculating the
savings values. However, the search effort for tuning the parameter values is the same, and in

fact, this constitutes the most significant portion of the total computation time.
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APPENDIX: Computational Results for NEG and INV for CVRP

Table A.1 Results for Augerat et al’s test set P

AO NEG INV
Instance Best Dist (4 u,v) Dist (4 u,v) % Dev Dist (4 u,v) % Dev
P-n16-k8 450| 45194 1.8,0.7,1.5 459.47 0.1,0.9,0.1 1.666| 451.94 1.8,0.6,-0.4 0.000
P-n19-k2 212 220.64 0.9,0.5,0.0 220.64 0.2,0.1,0.0 0.000| 220.64 0.3,0.7,-2.0 0.000
P-n20-k2 216 232.86 1.2,1.0,1.7 229.43 0.3,1.0,0.0 -1.473| 23148 0.5,1.1,-1.3 -0.593
P-n21-k2 211 231.54 1.4,1.0,2.0 231.54 0.2,1.0,0.0 0.000| 234.43 0.2,0.5,-2.0 1.248
P-n22-k2 216 219.89 1.8,0.2,0.8 228.51 0.2,0.3,0.0 3.920| 22191 0.8,0.5,-2.0 0.919
P-n22-k8 603 589.39 0.9,0.0,0.0 589.1 0.8,0.0,1.3  -0.049 589.1 0.8,0.0,-2.0 -0.049
P-n23-k8 529 536.71 1.4,0.2,1.3 536.35 1.4,02,1.7  -0.067| 536.35 1.1,0.0,-2.0 -0.067
P-n40-k5 458 468.2 1.1,1.0,0.3 468.2 1.4,0.8,0.0 0.000 468.2 1.4,0.8,-0.2 0.000
P-n45-k5 510( 522.41 1.5,0.1,0.7 52391 1.9,0.7,0.0 0.287| 528.67 0.9,0.3,-2.0 1.198
P-n50-k10 696 712.77 1.2,0.1,0.0 712.77 1.2,0.1,0.0 0.000 712.77 1.2,0.1,-1.4 0.000
P-n50-k7 554 577.73 1.7,04,1.9 576.9 1.5,04,1.3  -0.144( 577.15 1.5,0.3,-2.0 -0.100
P-n50-k8 631| 646.55 1.2,0.2,0.8 646.55 1.4,0.2,0.0 0.000| 646.55 1.4,0.2,-0.4 0.000
P-n51-k10 741 75498 0.9,0.4,0.1 749.96 2.0,0.2,1.6  -0.665| 749.96 1.0,0.2,-1.7 -0.665
P-n55-k10 694 71521 1.2,0.1,1.7 713.02 1.3,09,1.9  -0.306| 711.93 1.5,0.8,-2.0 -0.459
P-n55-k15 989 963.32 1.6,0.9,0.0 963.33 1.6,0.9,0.0 0.001| 963.33 1.6,0.9,-0.6 0.001
P-n55-k7 568| 587.44 1.4,04,1.3 589.55 1.2,0.0,0.0 0.359| 586.17 1.5,0.5,-0.8 -0.216
P-n55-k8 576 588.04 1.3,0.3,1.7 594.84 1.5,0.4,0.0 1.156]| 592.03 1.7,0.5,-1.6 0.679
P-n60-k10 744 768.12 1.7,0.5,0.1 768.13 1.7,0.5,0.0 0.001| 768.13 1.8,0.5,-0.2 0.001
P-n60-k15 968 1002.77 0.9,0.0,0.5| 1006.44 0.5,0.3,0.0 0.366| 999.54 1.5,0.3,-2.0 -0.322
P-n70-k10 834| 853.94 0.6,0.4,0.0 853.94 0.7,0.3,0.7 0.000| 853.94 0.7,0.3,-0.4 0.000
P-n76-k4 593 641.78 1.9,0.8,0.4 639.45 1.7,0.8,0.1 -0.363| 630.89 1.4,1.0,-1.8 -1.697
P-n76-k5 627 65293 1.6,0.3,0.9 651.42 1.7,0.8,0.1  -0.231| 651.42 1.7,0.8,-0.6 -0.231
P-n65-k10* 792 82592 1.9,0.7,0.7 827.08 1.6,1.1,1.9 0.140| 820.54 1.6,1.3,-1.4 -0.651
P-n101-k4* 681 711.03 0.6,1.0,0.0 711.03 0.6,1.0,0.0 0.000| 711.03 1.8,0.4,-0.5 0.000
Average 0.192 -0.042

* These two problems are not included in Altinel and Oncan (2005)
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Table A.2 Results for Augerat et al’s test set A

AO NEG INV
Instance Best Dist (4 u, v) Dist (4 u,v) % Dev Dist (4 u,v) % Dev
A-n32-k5 784 828.70 0.8,0.6,0.0 828.70 0.8,0.4,0.9 0.000 828.70 0.8,0.5,-1.4 0.000
A-n33-k5 661| 676.10 2.0,1.0,1.6 679.73 1.2,0.8,0.9 0.537 679.73 1.2,0.6,-1.9 0.537
A-n33-k6 7421 743.21 1.2,0.0,1.0 747.32 1.5,0.5,1.9 0.553 747.32 1.4,0.4,-1.4 0.553
A-n34-k5 778 793.05 0.6,0.3,1.1 793.05 0.7,0.1,0.0 0.000 793.05 0.7,0.1,-0.3 0.000
A-n36-k5 799 806.78 0.8,0.0,0.1 806.78 0.9,0.0,0.0 0.000 806.78 0.9,0.0,-0.1 0.000
A-n37-k5 669| 69443 1.5,0.3,09 694.51 1.4,0.6,0.0 0.012 695.09 0.6,0.9,-0.3 0.095
A-n37-k6 9491 974.56 1.0,0.0,0.4 973.96 1.1,0.2,0.3 -0.062 973.96 1.1,0.2,-0.3  -0.062
A-n38-k5 7301 756.11 1.4,0.3,0.0 755.93 1.5,0.5,0.2  -0.024 755.93 1.9,0.9,-0.2  -0.024
A-n39-k5 822| 848.24 1.2,0.2,0.3 851.26 1.3,0.0,1.3 0.356 848.25 1.1,0.1,-0.2 0.001
A-n39-k6 831| 849.56 0.8,0.2,0.0 847.03 1.2,0.0,1.8  -0.298 847.01 1.4,0.0,-1.9  -0.300
A-n44-k7 937] 959.43 1.6,0.4,2.0 969.63 1.9,0.9,0.0 1.063 969.63 1.9,0.9,-0.4 1.063
A-n45-k6 9441 957.06 1.0,0.0,1.4 962.82 1.1,0.1,0.0 0.602 962.82 1.1,0.1,-0.8 0.602
A-n45-k7 1146 1166.39 1.5,0.2,2.0 1175.20 1.7,1.0,0.0 0.755( 1175.59 1.4,0.5,-0.9 0.789
A-n46-k7 914| 933.66 1.1,0.1,0.0 933.67 1.1,0.1,0.0 0.001 933.67 1.1,0.1,-0.2 0.001
A-n48-k7 1073 1104.24 1.7,0.7,0.0| 1104.41 1.2,0.0,0.4 0.015( 1104.05 1.9,0.7,-1.7  -0.017
A-n53-k7 1010| 1045.47 0.7,0.0,1.5| 1045.23 1.4,0.6,0.4  -0.023| 1040.51 1.4,1.0,-1.3 -0.474
A-n54-k7 1167 1173.77 1.1,0.1,0.9| 1185.58 1.8,0.9,0.3 1.006| 1187.59 1.8,1.0,-0.6 1.177
A-n55-k9 1073 1098.51 0.9,0.1,1.1| 1098.91 1.1,0.0,1.3 0.036( 1099.84 1.0,0.0,-0.3 0.121
A-n60-k9 1354( 1376.20 1.4,0.0,0.9| 1377.89 1.4,0.1,1.9 0.123 | 1375.44 1.0,0.0,-0.8  -0.055
A-n61-k9 1034( 1051.10 1.1,0.0,0.1| 1051.33 1.1,0.0,0.9 0.022( 1051.33 1.1,0.0,-0.6 0.022
A-n62-k8 1288 1347.87 1.0,0.0,0.2| 1346.19 0.6,0.0,1.6  -0.125| 1335.17 0.8,0.0,-2.0  -0.942
A-n63-k10 1314 1348.17 1.5,0.4,0.2| 1347.95 1.9,1.1,0.0 -0.016| 1347.45 1.9,1.0,-0.8  -0.053
A-n64-k9 1401 | 1439.75 1.9,0.9,0.1| 1433.91 1.4,0.4,0.2  -0.406| 1429.54 1.5,0.2,-1.6  -0.709
A-n63-k9 1616( 1649.14 1.6,0.6,0.1| 1648.44 1.5,0.7,0.0  -0.042| 1648.44 1.5,0.7,-0.1  -0.042
A-n65-k9 1174( 1202.08 0.9,0.1,0.3| 1225.26 1.0,0.3,0.5 1.928| 1220.58 1.1,0.3,-0.9 1.539
A-n69-k9 1159( 1185.08 1.3,0.0,0.0| 1185.09 1.3,0.0,0.0 0.001| 1184.00 1.4,0.0,-0.8  -0.091
A-n80-k10 1763 1816.78 1.8,1.4,1.5| 1812.24 1.6,0.7,1.2  -0.250| 1818.65 1.8,0.7,-0.7 0.103
Average 0.214 0.142
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Table A.3 Results for Augerat et al’s test set B

AO NEG INV
Instance Best Dist (4, 1, v) Dist (4 u,v) % Dev Dist (4L, v) % Dev
B-n31-k5 672 677.34 0.9,0.0,0.1| 679.44 0.9,0.0,0.0 0310  678.99 1.4,0.8,-0.8 0.244
B-n34-k5 788| 789.85 1.2,0.0,0.0] 789.85 1.2,0.0,0.0 0.000|  789.85 1.4,0.0,-0.1 0.000
B-n35-k5 955| 975.48 1.1,0.1,1.7| 978.33 0.8,0.1,0.6 0292 97791 1.1,0.0,-1.2 0.249
B-n38-k6 805| 824.00 1.4,04,0.0| 824.60 1.5,0.4,0.0 0.073|  823.84 1.3,0.5,-0.7 -0.019
B-n39-k5 549 555.00 1.4,03,0.0| 554.16 1.5,0.4,0.0 -0.151|  554.16 1.5,0.4,-0.1 -0.151
B-n41-k6 829| 867.42 0.6,0.4,0.1 861.67 0.9,0.7,0.6 -0.663|  867.42 0.6,0.5,-0.3 0.000
B-n43-k6 742 75492 09,0.1,04| 754.04 1.1,0.2,0.0 -0.117  754.04 1.0,0.1,-0.1 -0.117
B-n44-k7 909| 934.68 1.9,0.9,1.8] 931.95 1.7,0.7,0.4 -0.292| 92939 1.1,0.1,-0.2 -0.566
B-n45-k5 751 75471 1.1,0.0,0.8 756.35 1.0,0.0,0.2 0.217]  756.35 1.0,0.0,-0.1 0.217
B-n45-k6 678| 713.24 0.9,0.6,0.0| 713.24 0.9,0.6,0.0 0.000|  718.37 1.0,0.0,-2.0 0.719
B-n50-k7 741| 74537 1.0,0.0,0.2 745.37 1.0,0.0,0.2 0.000|  745.37 1.0,0.0,-0.1 0.000
B-n50-k8 1312 1338.34 1.9,0.9,0.8| 1338.46 1.7,0.7,1.2 0.009| 1335.98 1.8,0.8,-1.9 -0.176
B-n51-k7 1032| 1050.00 1.5,0.0,0.0| 1045.02 1.2,0.0,1.7 -0.474| 1046.19 1.2,0.0,-1.1 -0.363
B-n52-k7 747 75690 1.3,0.0,1.5| 763.65 1.2,0.3,0.0 0.892|  763.96 1.1,0.2,-0.1 0.933
B-n56-k7 707| 722.61 0.8,0.0,02| 723.12 1.0,0.1,1.0 0.071|  721.11 1.1,0.1,-0.5 -0.208
B-n57-k7 1153| 1148.98 1.1,0.0,0.5| 1147.65 1.6,0.7,0.7 -0.116 1150.38 1.6,0.7,-0.1 0.122
B-n57-k9 1598| 1619.72  0.9,0.0,0.0| 1613.27 0.9,0.0,1.4 -0.398| 1613.27 0.9,0.0,-1.1 -0.398
B-n63-k10 1496 | 1562.59 0.9,0.0,0.0| 1559.81 0.8,0.0,0.1 -0.178| 1552.13 1.0,0.0,-1.0 -0.669
B-n64-k9 861| 910.07 1.1,0.8,2.0| 898.02 1.8,1.1,0.3 -1.324|  898.02 1.8,1.0,-0.5 -1.324
B-n66-k9 1316| 1358.32 1.9,1.1,1.0| 1347.59 1.6,0.9,0.0 -0.790 134759 1.7,1.0,-0.1 -0.790
B-n67-k10 1032| 1070.30  0.8,0.0,1.8| 1090.19 0.8,0.2,0.0 1.858| 1090.19 0.8,0.2,-0.3 1.858
B-n68-k9 1272 1316.07 1.1,0.1,0.4| 1317.23 1.0,0.0,1.0 0.088| 1316.43 1.0,0.0,-0.9 0.027
B-n78-k10 1221 1261.35 1.0,0.1,0.9| 1259.14 1.0,0.0,1.8 -0.175| 126223 1.0,0.1,-1.5 0.070
Average -0.027 -0.008
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Table A.4 Results for Christofides and Eilon’s test set

AO NEG INV
Instance Best Dist (4 1, v) Dist (4, u,v) % Dev Dist (4L u,v) % Dev
E-n22-k4 375 37528 1.1,09,1.1 375.28  1.5,0.6,0.0 0.000] 376.50  1.6,0.5,-04  0.325
E-n23-k3 569| 573.01 1.7,0.5,0.0 573.01 1.7,0.5,0.0 0.000|  573.01 1.7,0.5,-0.1 0.000
E-n30-k4 503| 506.67 1.3,03,0.0| 506.67 1.3,03,0.0 0.000| 506.67 1.3,0.3,-0.1  0.000
E-n33-k4 835| 843.10 0.9,0.1,0.0| 842.84  0.8,0.1,0.5 -0.031| 84282  0.8,0.1,-0.7 -0.033
E-n76-k14 1021| 1045.04 1.3,0.0,1.0] 1052.33  1.1,0.1,0.0  0.698| 1058.65 1.1,0.2,-0.7  1.302
E-n76-k8 735| 779.42 1.0,0.5,0.1| 780.08  1.0,0.5,0.0  0.085| 77182  1.1,0.5,-1.6 -0.975
E-n76-k7 682| 718.88 1.6,0.8,02| 71888  1.8,0.8,00 0000 71418 1.7,0.8-1.5 -0.654
E-nl01-k14| 1071| 1126.39 0.8,0.6,0.3| 1120.59  0.7,0.6,0.0 -0.515| 112059  0.7,0.6,-0.1 -0.515
Average -0.005 -0.022
Table A.5 Results for Christofides et al’s test set C
AO NEG INV
Instance Best Dist (4 1, v) Dist (4 u,v) % Dev Dist (4 u,v) % Dev
C50 525| 555.55 1.7,0.2,0.6 554.17  0.7,0.8,1.9 -0.248| 55555 1.5,0.3,-1.5  0.000
C75 835 860.21 1.2,02,0.7| 864.79 1.4,09,0.0 0532 862.81 1.1,03,-1.9  0.302
C100a 826| 867.35 1.2,0.6,0.1 865.06  1.4,03,04 -0202| 869.01 0.8,02,-09  0.191
C150 1028| 1094.06 1.3,0.1,0.3| 1102.89  0.3,1.0,0.1  0.807| 1101.13  1.4,04,-1.8  0.646
C199 1291 1359.78 1.3,0.0,1.1| 1370.17  1.1,0.0,0.3  0.764| 1360.59  1.6,0.5,-2.0  0.060
C120 1042| 1057.8 1.1,0.1,03| 1067.18  1.1,0.1,0.0  0.887| 1052.19  1.0,0.0,-1.5 -0.530
C100b 820| 824.66 1.4,04,06| 82736 13,03,1.0 0327| 82423 120220 -0.052
Average 0.193 0.057
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Table A.6 Results for Christofides ef al’s test set CD

AO NEG INV
Instance Best Dist (4 1, v) Dist (4 u,v) % Dev Dist (4 u,v) % Dev
CD50 555| 589.42 1.6,0.4,2.0 58049  1.5,14,1.0 -L515| 59038  1.3,0.7,-2.0  0.163
CD75 910| 94298 2.0,0.7,0.0] 94298  1.9,0.6,00 0.000] 94298  1.9,0.6,-20  0.000
CD100a 866| 942.69 0.7,0.3,0.0 909.99  0.5,1.1,02 -3.469| 917.66 0.7,1.2,-0.1  -2.655
CD150 1163| 1222.10 1.3,0.0,0.0] 122091  1.4,0.0,04 -0.097| 122135 1.8,02,-1.4 -0.061
CD199 1396 1485.53 1.9,0.6,0.0| 148498  1.8,0.3,1.0 -0.037| 148178  1.3,0.0,-1.9 -0.252
CDI120 1541 1582.20 0.8,0.0,0.2| 1583.77  0.7,0.1,0.0  0.099| 1571.65 0.9,02,-1.3 -0.667
CD100b 866 869.61 1.2,02,00| 87132 13,0300 0197 86962 1.3,03,-1.0 0.001
Average -0.073 -0.176
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