
LOGO RECOGNITION IN VIDEOS

AN AUTOMATED BRAND ANALYSIS SYSTEM

by

Murat DURUŞ

Submitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Master of Science

Sabancı University

August 2008

LOGO RECOGNITION IN VIDEOS

AN AUTOMATED BRAND ANALYSIS SYSTEM

APPROVED BY

Prof. Dr. AYTÜL ERÇİL ..

(Thesis Supervisor)

Assist. Prof. Dr. GÖZDE ÜNAL ..

Assist. Prof. Dr. HAKAN ERDOĞAN ..

Assoc. Prof. Dr. UĞUR SEZERMAN ..

Assist. Prof. Dr. YÜCEL SAYGIN ..

DATE OF APPROVAL: ..

c©Murat DURUŞ 2008

All Rights Reserved

to all Electrical and Electronics Engineers

&

who interested in Computer Vision & Pattern Recognition

Acknowledgments

I would like to thank Prof. Dr. Aytül Erçil for her kindness, understanding, and

support throughout my academic life, as well as the individual who introduced me

to computer vision and pattern recognition. I owe many thanks to her for providing

me with new perspectives in this field.

I also owe much appreciation to faculty members Asst. Prof. Dr. Müjdat Çetin

and Asst. Prof Dr. Gözde Ünal for their endless help and support during my

academic life. I am also grateful to Asst. Prof Dr. Hakan Erdoğan, Asst. Prof. Dr.

Yücel Saygın and Assoc. Prof. Dr. Uğur Sezerman for their participation in my

thesis committee.

I have been supported by Sabancı University and the Technological and Research

Council of Turkey (TÜBİTAK) during my M.Sc. research; I owe a debt of gratitude

to these foundations for their valuable support. I would like to thank to the founders

of this wonderful university, especially the late Sakip Sabanci for providing all of us,

faculty, staff, and students, with such a comfortable and creative atmosphere .

I wish to express my gratitude to the members of VPA Laboratories and graduate

students in Sabanci University. I also owe many thanks to Cenker Öden for helping

me to tackle some problems throughout the thesis. I have learnt a lot from our

discussions.

Lastly, I would like to express my deepest gratitude to my family. Their constant

encouragement, unfailing support and boundless love have always been the true

sources of strength and inspiration throughout my life. Thank you with all my

heart.

Special thanks go to Zuhal Temel for all the encouragement and support she has

provided throughout the thesis.

August 2008 Murat DURUŞ

v

LOGO RECOGNITION IN VIDEOS

AN AUTOMATED BRAND ANALYSIS SYSTEM

Murat DURUŞ

Electronics Engineering, M.Sc. Thesis, 2008

Thesis Supervisor: Aytül Erçil

Keywords: invariant object recognition, logo recognition, shape based matching,

scale invariant feature transform (SIFT)

Abstract

Every year companies spend a sizeable budget on marketing, a large portion of

which is spent on advertisement of their product brands on TV broadcasts. These

physical advertising artifacts are usually emblazoned with the companies’ name, logo,

and their trademark brand. Given these astronomical numbers, companies are ex-

tremely keen to verify that their brand has the level of visibility they expect for

such expenditure. In other words advertisers, in particular, like to verify that their

contracts with broadcasters are fulfilled as promised since the price of a commercial

depends primarily on the popularity of the show it interrupts or sponsors. Such veri-

fications are essential to major companies in order to justify advertising budgets and

ensure their brands achieve the desired level of visibility. Currently, the verification

of brand visibility occurs manually by human annotators who view a broadcast and

annotate every appearance of a companies’ trademark in the broadcast.

In this thesis a novel brand logo analysis system which uses shape-based matching

and scale invariant feature transform (SIFT) based matching on graphics processing

unit (GPU) is proposed developed and tested. The system is described for detection

and retrieval of trademark logos appearing in commercial videos. A compact repre-

sentation of trademark logos and video frame content based on global (shape-based)

and local (scale invariant feature transform (SIFT)) feature points is proposed. These

representations can be used to robustly detect, recognize, localize, and retrieve trade-

marks as they appear in a variety of different commercial video types. Classification

of trademarks is performed by using shaped-based matching and matching a set of

SIFT feature descriptors for each trademark instance against the set of SIFT features

detected in each frame of the video.

Our system can automatically recognize the logos in video frames in order to

summarize the logo content of the broadcast with the detected size, position and

score. The output of the system can be used to summarize or check the time and

duration of commercial video blocks on broadcast or on a DVD. Experimental results

are provided, along with an analysis of the processed frames. Results show that our

proposed technique is efficient and effectively recognizes and classifies trademark

logos.

vii

Vİdeo ÇERÇEVELERİNDE LOGO TANIMA

OTOMATİK MARKA ANALİZİ SİSTEMİ

Murat DURUŞ

Elektronik Mühendisliği, Yüksek Lisans Tezi, 2008

Tez Danışmanı: Aytül Erçil

Anahtar Kelimeler: bağımsız obje tanıma, logo tanıma, şekil tabanlı eşleştirme,

bağımsız öznitelik dönüşümü (SIFT)

Özet

Her yıl şirketler pazarlamaya büyük miktarda bütçe harcarlar; ki bunun geniş

bir bölümü ürünlerinin televizyonlardaki reklamlarına harcanmaktadır. Bu fizik-

sel reklam yapıları genellikle şirketin ismi, logosu ve ticari markalarıyla donatılır.

Verilen astronomik rakamlar düşünüldüğünde şirketler markalarının bu masraf için

bekledikleri seviyede görünürlüğe sahip olduğunu doğrulamaya oldukça yatkındırlar.

Diğer yönden reklamın fiyatı öncelikle yayına girdiği ya da sponsoru olduğu pro-

gramın popülaritesine bağlı olduğu için reklam veren firmalar özellikle reklamcılarla

kontratlarının söz verildiği gibi yerine getirilmesini sağlamayı isterler. Böyle doğrula

malar büyük şirketlerin reklam bütçelerini kesinleştirmeleri ve markalarının iste-

nilen seviyede görünürlüğe ulaştığından emin olmaları için gereklidir. Günümüzde

markanın görünürlüğünün doğrulanması , reklamı izleyen ve reklamda şirketin ticari

markasının her görüntüsünü not eden yorumcu kişiler tarafından elle oluşturulmaktadır.

Bu tezde şekile dayalı eşleştirme ve ölçekten bağımsız öznitelik dönüşümünün

(SIFT) bir grafik işlemci ünitesinde (GPU) uygulanması yöntemi kullanılarak yeni bir

logo tanıma sistemi önerilmiş, geliştirilmiş ve test edilmiştir. Bu sistem reklam vide-

olarında görünen ticari marka logolarının belirlenmesi ve bu logolara erişilmesi için

tanımlanmıstır. Ticari marka logolarının global (şekil tabanlı) ve yerel (SIFT)) zel-

lik noktalarına dayalı olarak video çerçevelerinde içeriğinin tanınması sistemi sunul-

maktadır. Bu gösterimler, ticari markalar farklı çeşitlerde reklam video şekillerinde

göründüklerinden dolayı onları gürbüz bir şekilde saptamak, tanımak, sınırlamak

ve onlara erişmek için kullanılabilir. Ticari marka logolarının sınıflandırılması şekil

tabanlı eşleştirmelerle ve videonun her bir çerçevesi için belirlenen SIFT öznitelik

noktalarına karşı her ticari marka örneği için bulunnan SIFT öznitelik noktalarının

eşleştirilmeleriyle oluşturulur.

Bu çalışma sonucunda yayının logo içeriğini istenilen boyut, konum ve başarı

oranıyla özetlemek için video çerçevelerindeki logoları otomatik olarak tanıyan bir

sistem tasarlanmıstır. Sistemin çıktısı yayındaki veya DVD ye kaydedilmiş reklam

video bloklarının süresini, zamanını ve içeriğini kontrol etmek ya da özetlemek için

kullanilabilir. Deneylere dayanan sonuçlar işlenmiş çerçevelerin analiziyle tedarik

edilmiştir. Sonuçlar göstermektedir ki sunduğumuz teknik etkilidir ve ticari logoları

etkin bir şekilde tanımakta ve sınıflandırmaktadır.

ix

Table of Contents

Acknowledgments v

Abstract vi

Ozet viii

1 Introduction 1
1.1 Motivations . 1
1.2 Contributions . 2
1.3 Organization of the Thesis . 3

2 Related Work 4

3 Commercial Detection 8
3.1 Characteristics of Commercials . 9
3.2 Detection Schemes . 11

3.2.1 Black Frames and Silences . 11
3.2.2 High Cut Rate and Action . 13
3.2.3 Recognition-Based Methods 14

3.3 Applications . 16

4 Shape Based Object Recognition 18
4.1 Theoretical Background on Object Recognition using Shape Based

Matching . 18
4.2 The Similarity Measures Used . 21
4.3 System Implementation . 25

4.3.1 Model Creation . 25
4.3.1.1 The Information Stored in the Model 27
4.3.1.2 Using Subsampling to Speed up the Search 29
4.3.1.3 Allowing a Range of Orientation and Scale 30

4.3.2 Optimizing the Search Process 32
4.3.3 Least-Squares Pose Refinement 34
4.3.4 Using The Results of Matching 35

x

5 Scale Invariant Feature Transform 36
5.1 Theoretical Background on Scale Invariant Feature Transform 36

5.1.1 Detection of Scale-Space Extrema 36
5.1.2 Keypoint localization . 38
5.1.3 Orientation Assignment . 38
5.1.4 Local Image Descriptor . 39

5.2 Matching . 41
5.3 SIFT on GPU . 42

5.3.1 Keypoint Detection . 45
5.3.2 Feature List Generation . 46
5.3.3 Orientation Computation . 46

6 Experiments 48
6.1 Experimental Results of Shape Based Method 52
6.2 Experimental results of SIFT based method 52

7 Summary and Conclusion 65
7.1 Future Works . 67

Bibliography 68

xi

List of Figures

1.1 Logo Recognition using Shape Based Matching 2

1.2 Logo Recognition using SIFT based Matching. 3

2.1 Various logo examples. 5

2.2 Overview of the entire system. 7

3.1 Structure of typical commercial block. 9

3.2 An example commercial block. 12

3.3 First step of recognition-based algorithm proposed by [1]. 16

4.1 Masking the part of a region containing clutter [2]. 26

4.2 Logo forms inside the image. 26

4.3 The result of matching for multiple logos. 27

4.4 a) interactive ROI; b) models for different values of threshold (or con-

trast); c) processed model region and corresponding ROI and model;

d) result of matching [2]. 28

4.5 Selecting significant pixels via threshold (i.e. contrast): a) complete

object but with clutter; b) no clutter but incomplete object; c) hys-

teresis threshold; d) minimum contour size [2]. 29

4.6 Determining the minimum angle step size from the extent of the model

[2]. 31

5.1 Difference of Gaussians are computed from a pyramid of Gaussians.

Adjacent Gaussian images are subtracted to produce a difference of

Gaussian (DoG) images [3]. 39

xii

5.2 Maxima and minima of the DoG images are detected by comparing

the pixel of interest by its 26 neighbors of the current and adjacent

scales [3]. 40

5.3 SIFT Descriptor. For each pixel around the keypoint gradient magni-

tudes and orientations are computed. These samples are weighted by

a Gaussian and accumulated into 16 orientation histograms for the 16

subregions [3]. 41

5.4 An example of matching logo in the video frame. 42

5.5 SIFT performance under large illumination variations. 43

5.6 Storage of feature list as textures. 44

5.7 Two pass of gaussian filter that uses texture from destination. 45

5.8 Keypoint Detection. 46

5.9 Display vertex generation. 47

6.1 Block diagram of the shape based logo recognition. 54

6.2 Block diagram of the SIFT based logo recognition. 55

6.3 Motion blur a) shape based matching; b) SIFT based matching. . . . 56

6.4 Transparent logo recognition a) shape based matching; b) SIFT based

matching. 57

6.5 Small and low resolution logo image a) shape based matching; b) SIFT

based matching. 58

6.6 Occlusion a) shape based matching; b) SIFT based matching. 59

6.7 Illumination a) shape based matching; b) SIFT based matching. . . . 60

6.8 Scale; a and b) shape based matching; c and d) SIFT based matching. 62

6.9 Perspective transformation a) shape based matching; b) SIFT based

matching. 63

xiii

List of Tables

6.1 Experiment results of shape based matching 52

6.2 Experiment Results of SIFT binaries in Matlab (code is provided by

Lowe). 53

6.3 Experiment results of C++ implementation of SIFT. 53

6.4 Experiment results of SIFT on GPU. 64

xiv

Chapter 1

Introduction

This thesis presents a novel automated trademark logo recognition system on com-

mercial videos, based on global and local features of the trademark logos. The

proposed method is invariant to occlusion, scale, clutter, affinity, translation and

rotation as well as to illumination. The system is designed to recognize the logos

appearing in commercial video frames in order to summarize logo content of the

commercials with the goal of detecting the content of the commercial videos.

1.1 Motivations

A large portion of the sizeable budget that international firms often spend annually

is allocated on the advertisement of their product brands on TV broadcasts. These

physical advertising artifacts are usually emblazoned with the companies’ name, logo,

and their trademark brand. Given these astronomical numbers, companies are ex-

tremely keen to verify that their brand has the level of visibility they expect for

such expenditure. In other words advertisers, in particular, like to verify that their

contracts with broadcasters are fulfilled as promised since the price of a commercial

depends primarily on the popularity of the show it interrupts or sponsors. Such veri-

fications are essential to major companies in order to justify advertising budgets and

ensure their brands achieve the desired level of visibility. Currently, the verification

of brand visibility occurs manually by human annotators who view a broadcast and

annotate every appearance of a companies’ trademark in the broadcast. [4].

In this thesis we describe a system for detection and retrieval of trademarks

appearing in commercial videos. Here a compact representation of trademarks and

1

video frame content based on global shape based object features and local scale

invariant feature transform SIFT feature points is proposed. These representations

can be used to robustly detect, localize, and recognize trademark logos as they appear

in a variety of different commercial video types. Classification of trademarks is

performed by two methods, to introduce;

1-) matching a set of shape feature descriptors for each trademark logo instance

against the set of shape features detected in each frame of the video (Figure 1.1).

2-) matching a set of SIFT feature descriptors for each trademark instance against

the set of SIFT features detected in each frame of the video (Figure 1.2).

Experimental results are provided, along with an analysis of the processed frames.

Results show that our proposed technique is time efficient and effectively recognizes

and classifies trademark logos.

Figure 1.1: Logo Recognition using Shape Based Matching

1.2 Contributions

In this thesis, a novel brand analysis system for the recognition of trademark logos

in TV commercials is proposed, developed and tested. The system is identified as a

novel one due to the implementation of the shape-based method [5] and the SIFT al-

gorithm [3] on a graphics processing unit (GPU)for trademark logo recognition. Both

of the above methods have been simultaneously developed simultaneously and tested

2

Figure 1.2: Logo Recognition using SIFT based Matching.

for a dataset of 50 different trademark logos. Results and benchmarking demonstrate

that this system posseses developed has a large performance advantages, regarding

recognition and timing results, over those of previous methods. Furthermore, the

implementation of the SIFT algorithm on a GPU card speeds up the process while

reserving the recognition performances. The results show that our system has a very

good performance of recognition and time in comparison to previous methodologies.

1.3 Organization of the Thesis

In chapter 2 related works regarding trademark logo recognition are presented. Chap-

ter 3 provides the techniques for the detection of commercial blocks in TV broadcast

and the particular methodologies involved. Chapter 4 and Chapter 5 explain the

methods for trademark logo recognition, namely shape based matching and scale in-

variant feature transform (SIFT). Chapter 6 explains the experiments implemented

with the results of the techniques employed. Chapter 7’s conclusion suggests proba-

ble, future work on trademark logo recognition in the light of our research.

3

Chapter 2

Related Work

The problem of automatic trademark and logo detection and recognition has been a

subproblem of object recognition, an issue that has been examined following many

different approaches in recent decades. The two primary types of features which

have been used are geometric and photometric object features: the former rely on

properties of objects such as lines, vertices, curves and shapes ([6],[7]), while the

latter are computed from pixel values (luminance or color) of the imaged object

([8],[9],[10]). Object detection and recognition using photometric features has been

the subject of much recent research due to the fact that if these features are computed

locally, they can cope with the problem of occlusion and are able to more accurately

distinguish similar objects [8]. However, they are generally not robust to illumination

as well as the motion blur in video frames. Some of the widely seen logo examples

are seen in Figure 2.1.

Most of the work related to trademark logo recognition deals with the problem of

content-based indexing and retrieval in logo databases, with the goal of assisting in

the detection of trademark infringement by comparing a newly designed trademark

with archives of already registered logos ([11],[12],[13],[14]). In this scenario, it is

generally assumed that the image acquisition and processing chain is controlled so

that the images are of acceptable quality and are not distorted. The problem of

trademark recognition in videos is inherently more difficult, since the entire process

is not controlled and several limitations of the imaging equipment introduce consid-

erable distortion and loss of quality of the original logos, namely;

4

(a) scale and motion blur (b) scale and motion blur

(c) rotation (d) perspective transformation

(e) occlusion (f) illumination

Figure 2.1: Various logo examples.

1-) video interlacing,

2-) color sub-sampling

3-) motion blur, etc.

In [15] the problem of detecting and tracking billboards in soccer videos was

studied, with the goal of superimposing different advertisements according to dif-

ferent audiences. Billboards are detected using colour histogram back projection

and represented using a PD in an invariant color space estimated from manually

annotated video frames. The focus of this work is on detection and tracking rather

than recognition. In [16] logo appearance is detected by analyzing sets of significant

edges and applying heuristic techniques to discard small or sparsely populated edge

regions of the image. The logo recognition method proposed in [17] extends the work

5

presented in [18] and deals with logos appearing on rigid planar surfaces that have

a homogeneously colored background; the video frame is binarized and logo regions

are combined using heuristics. The Hough transform space of the segmented logo is

then searched for large values to find the image intensity profiles along lines. Logo

recognition is performed by matching these lines with the line profiles of the models.

In [19] candidate logo regions are detected using color histogram back-projection and

then are tracked. Multidimensional receptive field histograms are then used to per-

form logo recognition. For every candidate region the most likely logo is computed,

and thus if a region does not contain a logo the precision of identification is reduced.

In [20] the architecture for a system for media monitoring is presented. The system

provides logo detection and recognition functionalities, and the authors briefly dis-

cuss a variation of the SIFT algorithm to select and track keypoints in videos. The

points are used for trademark recognition, but the logo matching algorithm is not

described, and very few results of the proposed variation are provided.

In this thesis we propose a system for automatically detecting and retrieving

trademark logo appearances in commercial videos. Figure 2.2 presents an overview

of the entire system. In brief, a TV broadcast video is recorded directly to DVD

or it is directly taken from the broadcast. A collection of static commercial video

frames in this video are then processed to extract a compact representation or the

summarization of the logo content of broadcast. The trademark logo images are

firstly trained by using the logo images gathered from the Google image search. The

results of this processing may be stored in a file for later retrieval. In other words,

all of the trademarks are then matched against the content extracted from every

frame of the video to compute a ”match score” indicating the likelihood that the

trademark logo occurs at any given point in the video frame. The black frames are

used to detect the intervals of the video likely to contain the commercial blocks, i.e.

trademark logo image. Retrieved segments are used to drive a user interface used by

a human annotator who can then validate this automatic annotation.

6

Figure 2.2: Overview of the entire system.

7

Chapter 3

Commercial Detection

For many companies, TV commercials provide critical marketing tools. Their in-

terspersion within regular broadcast television programming can be entertaining,

informative, annoying, or a sales goldmine - depending on one’s viewpoint. As a

result, the detection or deletion of commercial segments within television broad-

casts has long been a research focus. Interestingly enough, the goals of these two

applications-at least indirectly-are at odds with each other [4].

One application seeks to identify and track when specific commercials are broad-

cast. Advertisers, in particular, like to verify that their contracts with broadcasters

are fulfilled as promised, since the price of a commercial depends primarily on the

popularity of the show it interrupts. The more individuals (the product’s demo-

graphics) watching the program, the higher the cost, usually . Thus, all advertisers

desire to ensure that a particular commercial runs during a specified program [4].

The other group, those who want to detect commercials for the purpose of elim-

ination, from their recordings is composed of viewers who desire to watch their

recorded television shows without the annoyance of commercials. Apart from indi-

viduals, video database maintainers also appreciate the ability to automatically edit

out commercials in stored shows and thereby decrease storage requirements. Adver-

tisers are naturally strongly opposed to such devices as they defeat the commercial’s

intended financial gains such commercials will provide. This section will discuss sev-

eral algorithms that have been experimentally used to detect commercials, as well

as devices that are currently available for this purpose [4].

8

3.1 Characteristics of Commercials

The problem of detecting commercials within television broadcasts is related to sev-

eral - more general - problems in video processing. These issues include scene break

detection, video segmentation, and video indexing and retrieval. However, commer-

cial segments have certain characteristics that make their identification easier than

of general video segments. These characteristics make it possible to use detection

algorithms suitable for feature extraction from a general video database.

To start with, commercials are almost always grouped into blocks, typically con-

sisting of four to 10 commercials each. As shown in Figure 3.1, at the beginning

and end of each commercial block and between each commercial in the block, several

frames of monochrome black are displayed. On many stations, the observation has

been that the last two to three commercials of a block are commercials promoting

upcoming shows. Also, some countries (e.g. Germany, Turkey) have laws requiring

that every commercial block begin with a standard “commercial block introduction”

sequence. In Turkey, it is a TV broadcast policy that at least 3 black frames have to

be introduced before going into the commercial block.

Figure 3.1: Structure of typical commercial block.

Many television stations also have a practice of displaying a network logo in the

corner of the screen during regular programming and then removing this logo during

commercial breaks. Within a given television series, all episodes generally have

commercial breaks scheduled at approximately the same time in the episode. Also,

many commercials are repeated on a frequent basis, particularly for a given station.

Several other characteristics relate to the individual commercials. The duration of

individual commercials is a minimum of 15 seconds and in order to capture viewers’

attention in the small amount of time available to convey a message, commercials

9

tend to be high in “action”, typified by a high number of cuts between frames among

other factors. (In [1] it is noted that the average “hard” cut rate in a sample of 200

commercials from German television was 20.9 cuts per minute, while the rate in the

accompanying movie clips was only 3.7 cuts per minute.) There are usually a large

number of frames with text containing the product or company’s name. Also, to leave

the product in the viewer’s mind, the last few seconds of many ads consist of “still”

shots of the product or slogan. These still images generally give us the advantage to

catch the current trademark logo and assign it to the current commercial block.

Other characteristics beyond the visual information are often present as well.

The most noticeable characteristic, and the one most irritating to viewers, is the

tendency of broadcasters to increase the volume level of the audio track during

commercials. Another audio clue to the presence of commercials is that the delimiting

black frames at the beginning and end of commercials are accompanied by silence in

the audio track. Also, the dialogue on the audio track generally contains the product

or company’s name. Finally, when closed captioning is available for a television

show, it is generally discontinued during commercial breaks. No currently proposed

detection algorithm utilizes all of these clues. Most algorithms, however, do detect

various combinations of them in order to improve detection rates.

In our work we used the arithmetic mean of gray values of the current frame

in order to detect whether it is a black frame. We also check the variance of the

gray values of the image. For our application, only the mean of the gray values was

sufficient to detect the black frames; however, we also employed the variance of the

gray values in order to re-check the detection.

µX =
1

n

n∑
i=1

Xi (3.1)

σ2
X =

n∑
i=1

(Xi − µX)2 (3.2)

where n is the number of pixels, Xi is the gray value of the pixel, µX and σ2
X

mean and variance of the image gray values, respectively. By using these features

and implementing the algorithm given by Figure 3.1 above, we were able to detect

the black frames with 100% accuracy.

10

3.2 Detection Schemes

There are two main categories of methods to detect commercials. Feature-based

detection relies on general characteristics of commercials to detect their presence.

Any of the commercial characteristics mentioned earlier could be used to indicate

the (possible) presence of a commercial. Recognition-based detection attempts to

identify individual commercials in the broadcast as matching commercials it has

already learned.

3.2.1 Black Frames and Silences

The most common characteristics used in commercial detection are the delimiting

black frames and silences. In locating black frames, the simplest method is to look

at the average intensity value of the pixels in the image. The average intensity is

determined easily in the analog domain [21] and is the basis for most current com-

mercial applications. The determination that a given frame is “black” is based on

the average being below a pre-determined threshold value. Improved black frame

detection can be accomplished by requiring that the standard deviation of the inten-

sity values also be below a threshold according to [1]. Some work has also been done

by [22] regarding a method to detect black frames in an MPEG-encoded bit stream,

without the computational cost of decoding.

Silent audio frames may be similarly detected by examining the average volume

level on the audio track. Most applications couple these two functions to decrease

the likelihood of a false detection of a black frame or the detection of an irrelevant

black frame within a program. With this rule, a black frame is only detected if

accompanied by a silence. To further reduce the chance of random black frame

detection, most algorithms require that a certain number of least black frames be

detected together, usually three or five. Here we used the black frames that have at

least two consecutive comings for entering to the recognition algorithm. Once black

frames can be reliably detected, the timing aspects of the commercial breaks can

be exploited. Two black frame series detections may indicate a commercial segment

is between them. Most algorithms establish a maximum time between black frame

11

sequences for a segment to be considered as a possible commercial. If the time

between black frame sequences is greater than this, the segment is considered to be

part of the program. The algorithm proposed by [22] sets this maximum commercial

length at ninety seconds (2250 frames at 25 frames per second). This algorithm

also looks at how many consecutive commercial segments occur to determine if the

candidate commercial is in fact part of a commercial block. The video block detection

algorithm requires that if a potential block does not contain at least three individual

commercials, then it must be part of the program. (That is, if at least four black

frame sequences occur with a maximum separation between each of ninety seconds,

it is classified as a commercial break.)

Figure 3.2: An example commercial block.

In this work we trigger the system by the detection of the first black frame while

also checking the next frames for approval. After this triggering the system enter

into the recognition mode as indicated in the block diagram of the system in Figure

2.2. Similar to our approach, using 10 broadcast clips, [22] evaluated the algorithm

3.2. The total amount of time was 315 minutes and included various genres such

as sports, news and talk shows. The 10 broadcast clips contained a total of 11

commercial breaks as determined by human inspection. The algorithm detected all

11 commercial breaks, and none of the programming content was missed. However,

the algorithm did fail to detect parts of the last commercial in some of the blocks,

incorrectly including them with the programming instead. Still, the algorithm is said

to perform reasonably well. Calculation of a performance measure called “recall”

12

which is the percentage of commercial time correctly identified as such, showed that

only one of the 11 clips had a recall rate below 85. Eight of the clips had a recall

rate greater than 98%.

Our application tested the black frame detection algorithm on a 7 different videos

lasting 36 minutes and 24 seconds. We have tested the algorithm on our dataset and

achieved a recognition rate of 100%.

3.2.2 High Cut Rate and Action

Another characteristic used in feature-based detection is the high cut rate typically

observed in commercials. The problem of determining the cut rate of a video seg-

ment is basically the same as the problem of determining shot changes (where the

video switches from one shot to another). Once shot changes have been located,

determining the cut rate is merely a matter of counting.

A number of methods have been proposed to locate shot changes; most use statis-

tics on differences in the color histogram from one frame to the next. Another

method proposed by [23] uses a wavelet-based distance metric to quantify the differ-

ence between two frames and identify cuts. One algorithm for using the cut rate in

commercial detection, proposed by [1], had two basic rules:

1) a candidate sequence must have a cut rate above five cuts per minute for its

entirety,

2) the cut rate must go above 30 cuts per minute at some point.

This algorithm had a recall rate of 93.43% and a false detection rate of 0.09%,

confirming the suitability of using strong hard cuts as a pre-filter for commercial

blocks. Some algorithms incorporate other editing techniques used frequently in

commercials, such as fades and dissolves, to indicate the possible presence of com-

mercials. Lienhart’s group uses two additional metrics related to the high level of

action in commercials [1]. First, the “edge change ratio” describes the number of

edge pixels (as found by an edge detection algorithm) entering and leaving a frame.

The second metric, called motion vector length, describes the motion of objects in

the image. It is similar to the motion vectors calculated in MPEG encoding. De-

tection methods based on these two metrics both had recall rates around 96% when

13

used on their test database.

Naturally, feature-based detection is most effective when multiple characteristics

are considered together. In [1] a combined system that has two steps is created.

First, the black frame sequence detector and the cut-rate detector are used to find

candidate commercial segments. Then those candidate segments are passed to the

action detectors (edge change ratio and motion vector length) to find the exact

commercial block limits. The advantage of this two-step system is that the more

computationally expensive operations can be reserved for the second step.

3.2.3 Recognition-Based Methods

Recognition-based detection methods are specialized video database systems that

maintain a database of known commercials. To determine if the current segment

of a television broadcast is a commercial, the segment is compared to known com-

mercials using a query-by- example type operation. If a match is found, then the

segment is almost certainly a commercial (depending on the precision of the match-

ing algorithm). This process is somewhat similar to the trademark logo recognition

but this precision is much less that the trademark matching we have performed in

our analysis since the goal is only to detect commercial blocks. Also, apart from the

recognition of logos, another indicator, such as the changed channel logo, may be

used here in order to classify commercial parts of a TV broadcast.

Because of the computational expense involved in searching through a video

database, most recognition-based algorithms use at least a simple feature-based de-

tector to determine candidate video segments, i.e. a shot segmentation algorithm or

a black frame sequence detector. Their purpose is to determine the start point for

the video segment to be sent to the database. Since the black frames or cuts are

already being located for that purpose, it is convenient to look at their timing to

perform a feature-based pre-selection.

Recognition-based systems are susceptible to problems in matching a segment

from a broadcast to the same one in the database because of the variations caused

by irregularities in the broadcast. Color levels of the same commercial, for exam-

ple, can vary from station to station. Also, commercials are sometimes edited to

14

shorten their length, which make them somewhat more difficult to match. Thus, any

recognition-based system must be flexible enough in its search algorithm to allow for

such variations. There is some evidence that, because of broadcasting variations, the

color histogram techniques that are prevalent in video database indexing may not

be ideally suited for recognizing commercials. The wavelet-based approach of [23]

and the gradient method of [24] are examples of algorithms that use non-color based

indices to overcome this problem.

The recognition-based algorithm proposed by [1] uses a database-matching scheme

that can match subsequences within video segments. This ability makes it possible

to recognize edited commercials. This algorithm searches the database in two steps.

The algorithm uses an index of color coherence vectors (CCV). These vectors are

similar to color histograms but offer give some spatial information by indicating how

many pixels are contained in “monochromatic” regions in the image.

As shown in Fig. 6, [1] used a sliding window to indicate the segment of the

current broadcast to send to the database for a possible match. In the first step,

a window of L seconds is compared to the first L+S seconds of the commercials in

the database. If a potential match is found in the database, the comparison window

is expanded to the full length of the candidate commercial. Because of the lower

number of frames compared, the first step in this algorithm is markedly shorter

than a search using the entire commercial. This first step weeds out enough non-

matches to provide a net decrease in computation time, even though two searches

are required to detect a single commercial. Experimentally, this algorithm is said

to correctly identify all 125 commercials in three hours of video when given a 200

commercial database in which to search. On the average, the beginning and end

frames of the commercials were detected to within 5 frames of the actual.

Recognition-based systems face the drawback that commercials must be known

(and indexed in the database) before they can be recognized in a broadcast. There

are three possible modes of operation that have been proposed to accomplish this

necessary commercial “learning”. First, the user could indicate to the algorithm when

a new commercial is encountered. The system would then store that new commercial

in the database. Second, companies could compile databases of the most frequently

15

Figure 3.3: First step of recognition-based algorithm proposed by [1].

aired commercials and sell such databases to users. The third, most useful, option

is for the system to automatically learn new commercials as it encounters them. In

[1] a system for such automated commercial learning has been proposed. It assumes

that most commercials are already known. New commercials are entered into the

database if they are surrounded by two previously known commercials (and are less

than ninety seconds). Of course, this method will tend to miss ads such as station

promos that generally appear at the end of commercial blocks.

3.3 Applications

As noted above, there are two major areas of application for commercial detection

algorithms: “commercial trackers” and “commercial killers”. Commercial trackers

are designed to automatically audit the broadcast of commercials so advertisers can

verify fulfillment of their “air play” contracts. Clearly, this application must use

recognition-based methods because specific commercials are being sought out. If

feature-based indicators are used within such recognition-based devices, it is desirable

to adjust any threshold values to minimize false negatives. This way the chance of

missing commercials will be minimal [4].

Commercial killers try to remove commercials from the recordings so that viewers

do not have to watch them on playback. Devices for this purpose started showing up

in the mid-90s. Today, some of the most major VCR brands offer an option, generally

called “Commercial Advance”, to accomplish this. All major brands rely on the same

16

technology developed by [25]. The algorithm is a simple one based on detecting black

frame sequences and analyzing the timing between them. As a broadcast is recorded

on the VCR, the algorithm keeps track of when the black frames occur. When the

recording stops, it performs the necessary computations to determine the location of

commercial blocks. This information is then encoded on the videotape. When the

tape is subsequently viewed, the VCR automatically fast-forwards past commercial

blocks.

17

Chapter 4

Shape Based Object Recognition

Object recognition is a broad area of computer vision and image processing which

is useful for matching an image with a model of the object. Generally the model of

the image is generated from an image of a template object.

4.1 Theoretical Background on Object Recognition using Shape Based

Matching

For our application the model of the object is generated from logos which are searched

over the image search facility ofGoogle R©. Here the selection of the logo is determined

regarding some features such as;

- the size

- the shape characteristics

- the clutter on the logo model image.

- the noise in the model image etc.

The details of these requirements are explained in the following sections. Several

methods have been proposed to recognize objects in images by 2D matching of the

models and objects. From now on matching means 2D image matching throughout

the thesis. A survey of matching approaches is given in [26]. In most matching

approaches the model image is systematically compared to the test image using all

degrees of freedom of the chosen class of transformations. The comparison in these

approaches is based on a suitable similarity measure. To speed up the recognition

process, the search is done in a coarse-to-fine manner using image pyramids [27].

The simplest class of object recognition methods is based on the gray level values

18

of the model image and test image itself and uses normalized cross correlation or

the sum of squared or absolute differences as a similarity measure [26]. Normalized

cross correlation is invariant to linear brightness changes but is very sensitive to

clutter and occlusion as well as nonlinear contrast changes. The sum of gray value

differences is not robust to any of these changes, but can be made robust to linear

brightness changes by explicitly incorporating them into the similarity measure, and

to a moderate amount of occlusion and clutter by computing the similarity measure

in a statistically robust manner [28].

A more complex class of object recognition methods do not use the gray values

of the model or object itself, but use the object’s edges for matching. Two example

representatives of this class are [29] and [30]. In most of the existing approaches,

the edges are segmented, i.e., a binary image is computed for both the model and

the search image. Usually, the edge pixels are defined as the pixels in the image

where the magnitude of the gradient is maximum in the direction of the gradient.

Various similarity measures can then be used to compare the model to the image.

The similarity measure in [29] computes the average distance of the model edges and

the image edges. The disadvantage of this similarity measure is that it is not robust

to occlusions because the distance to the nearest edge increases significantly if some

of the edges of the model are missing in the image.

The Hausdorff distance similarity measure used in [30] tries to remedy this short-

coming by calculating the maximum of the k− th largest distance of the model edges

to the image edges and the l − th largest distance of the image edges to the model

edges. If the model contains n points and the image contains m edge points, the sim-

ilarity measure is robust to 100k/n% occlusion and 100l/m% clutter. Unfortunately,

an estimate for m is needed to determine l, which is usually not available [5].

All of these similarity measures have the disadvantage that they do not take into

account the direction of the edges. In [31] it is shown that disregarding the edge

direction information leads to false positive instances of the model in the image. The

similarity measure proposed in [31] tries to improve this by modifying the Hausdorff

distance to also measure the angle difference between the model and image edges.

Unfortunately, the implementation is based on multiple distance transformations,

19

which makes the algorithm too computationally expensive for faster inspection.

In all of the above approaches, the edge image is binarized. This makes the object

recognition algorithm invariant only against a narrow range of illumination changes.

If the image contrast is lowered, progressively fewer edge points will be segmented,

which has the same effects as progressively larger occlusion.

In [5] an object recognition system which works close to real time and uses novel

similarity measures that is inherently robust against occlusion, clutter, and nonlinear

illumination change is described. In this work the matching is performed based on the

maxima of the similarity measure in the transformation space. Here there are also

options where subpixel-accurate poses are obtained by extrapolating the maxima

of the similarity measure from discrete samples in the transformation space. In

addition, for very high accuracy requirements, least-squares adjustment is used to

further refine the extracted pose.

In addition, another class of edge based object recognition algorithms is based

on the generalized Hough transform (GHT) [32]. Approaches of this kind have the

advantage that they are robust to occlusion as well as clutter. Unfortunately, the

GHT requires extremely accurate estimates for the edge directions or a complex and

expensive processing scheme, e.g., smoothing the accumulator space, to determine

whether an object is present and to determine its pose. This problem is especially

grave for large models. The required accuracy is usually not obtainable, even in low

noise images, because the discretization of the image leads to edge direction errors

that already are too large for the GHT.

In all approaches above except [5], the edge image is binarized. This makes the

object recognition algorithm invariant only against a narrow range of illumination

changes. If the image contrast is lowered, progressively fewer edge points will be

segmented, which has the same effects as progressively larger occlusion. The simi-

larity measures proposed in [5] overcome all of the above problems and result in an

object recognition strategy robust against occlusion, clutter, and nonlinear illumi-

nation changes. In the shape-base implementation, we used the similarity features

defined in [5] in order to match the trademark logo images with the selected video

frames. The details of this implementation are explained in detail in the following

20

sections.

4.2 The Similarity Measures Used

In this approach the model of an object consists of a set of edge points pi = (xi, yi)
T

and associated direction vectors di = (ti, ui)
T , i = 1, ...n [5]. The direction vectors

can be generated by a number of different image processing operations, e.g., edge,

line, or corner extraction, as discussed in the previous section. Typically, the model

is generated from a training image of the object that provides the required shape

features of the model. Here it is better to define the model from the template of the

object with low noise and scale, size, illumination differences. It is also advantageous

to specify the coordinates p relative to the center of gravity i of the ROI of the model

or to the center of gravity of the points of the model.

The test image in which a given object to be found can be transformed into a

representation in which a direction vector ex,y = (vx,y, wx,y)
T is obtained for each

image point. In the matching process, a transformed model must be compared

to the image at a particular location. In the most general case considered here,

the transformation is an arbitrary affine transformation. It is useful to separate

the translation part of the affine transformation from the linear part. Therefore,

a linearly transformed model is given by the points p
′
i = Api and the accordingly

transformed direction vectors d
′
i = Adi where;

A =

 a11 a12

a21 a22


As discussed above, the similarity measure by which the transformed model

is compared to the image must be robust to occlusions, clutter, and illumination

changes. One such measure is to sum the (unnormalized) dot product of the direc-

tion vectors of the transformed model and the image over all points of the model

to compute a matching score at a particular point q = (x, y)T the image, i.e., the

similarity measure of the transformed model at the point q, which corresponds to

the translation part of the affine transformation, is computed as follows:

21

s =
1

n

n∑
i=1

〈d′

i, eq+p′ 〉 (4.1)

=
1

n

n∑
i=1

t
′

ivx+x′
i,y+y

′
i

+ u
′

iwx+x′
i,y+y

′
i

If the model is generated by edge or line filtering, and the image is preprocessed

in the same manner, this similarity measure fulfills the requirements of robustness

to occlusion and clutter. If parts of the object are missing in the image, there are

no lines or edges at the corresponding positions of the model in the image, i.e., the

direction vectors will have a small length and hence contribute little to the sum.

Likewise, if there are clutter lines or edges in the image, there will either be no point

in the model at the clutter position or it will have a small length, which means it

will contribute little to the sum.

The similarity measure in equation 4.1 is not truly invariant against illumination

changes, however, since usually the length of the direction vectors depends on the

brightness of the image, e.g., if edge detection is used to extract the direction vec-

tors. However, if a user specifies a threshold on the similarity measure to determine

whether the model is present in the image, a similarity measure with a well defined

range of values is desirable. The following similarity measure achieves this goal:

s =
1

n

n∑
i=1

〈d′
i, eq+p′ 〉

‖ d′
i ‖ · ‖ eq+p′ ‖

(4.2)

=
1

n

n∑
i=1

t
′
ivx+x′

i,y+y
′
i

+ u
′
iwx+x′

i,y+yi√
t
′2
i + u

′2
i ·

√
v2
x+x

′
i,y+y

′
i

+ w2
x+x

′
i,y+y

′
i

Because of the normalization of the direction vectors, this similarity measure is

additionally invariant to arbitrary illumination changes since all vectors are scaled

to a length of 1. What makes this measure robust against occlusion and clutter is

the fact that if a feature is missing, either in the model or in the image, noise will

lead to random direction vectors, which, on average, will contribute nothing to the

sum.

The similarity measure in equation 4.2 returns a high score if all the direction

vectors of the model and the image align, i.e., point in the same direction. If edges

22

are used to generate the model and image vectors, this means that the model and

image must have the same contrast direction for each edge. Sometimes it is desirable

to be able to detect the object even if its contrast is reversed. This is achieved by:

s = | 1
n

n∑
i=1

〈d′
i, eq+p′ 〉

‖ d′
i ‖ · ‖ eq+p′ ‖

| (4.3)

In rare circumstances, it might be necessary to ignore even local contrast changes.

In this case, the similarity measure can be modified as follows:

s =
1

n

n∑
i=1

|〈d′
i, eq+p′ 〉|

‖ d′
i ‖ · ‖ eq+p′ ‖

(4.4)

The above three normalized similarity measures are robust to occlusion in the

sense that the object will be found if it is occluded. As mentioned above, the results

from the fact that the missing object points in the instance of the model in the image

will on average contribute nothing to the sum. For any particular instance of the

model in the image, this may not be true, e.g., because the noise in the image is not

uncorrelated. This leads to the undesired fact that the instance of the model will

be found in different poses in different images, even if the model does not move in

the images, because in a particular image of the model the random direction vectors

will contribute slightly different amounts to the sum, and hence the maximum of the

similarity measure will change randomly. To make the localization of the model more

precise, it is useful to set the contribution of direction vectors caused by noise in the

image to zero. The easiest way to do this is to set all inverse lengths 1
‖e

q+p
′ ‖ of the

direction vectors in the image to 0 if their length ‖ eq+p′ ‖ is smaller than a threshold

that depends on the noise level in the image and the preprocessing operation that is

used to extract the direction vectors in the image. This threshold can be specified

easily by the user. By this modification of the similarity measure, it can be ensured

that an occluded instance of the model will always be found in the same pose if it

does not move in the images.

The normalized similarity measures above (equations 4.2, 4.3, 4.4) have the prop-

erty that they return a number smaller than 1 as the score of a potential match. In

all cases, a score of 1 indicates a perfect match between the model and the image.

23

Furthermore, the score roughly corresponds to the portion of the model that is visi-

ble in the image. For example, if the object is 50% occluded, the score (on average)

cannot exceed 0.5. This is a highly desirable property because it gives the user a

means to select an intuitive threshold for when an object should be considered as

recognized. A desirable feature of the above similarity measures is that they do not

need to be evaluated completely when object recognition is based on a threshold

smin for the similarity measure that a potential match must achieve. Let sj denote

the partial sum of the dot products up to the j − th element of the model. For the

match metric that uses the sum of the normalized dot products, this is:

sj =
1

n

j∑
i=1

〈d′
i, eq+p′ 〉

‖ d′
i ‖ · ‖ eq+p′ ‖

(4.5)

Obviously, all the remaining terms of the sum are all 5 1. Therefore, the partial

score can never achieve the required score smin if sj < smin − 1 + j
n
, and hence the

evaluation of the sum can be discontinued after the j − th element whenever this

condition is fulfilled. This criterion speeds up the recognition process considerably.

Nevertheless, further speed-ups are highly desirable. Another criterion is to require

that all partial sums have a score better than smin , i.e. sj = smin. When this

criterion is used, the search will be very fast, but it can no longer be ensured that

the object recognition finds the correct instances of the model because if missing

parts of the model are checked first, the partial score will be below the required

score. To speed up the recognition process with a very low probability of not finding

the object although it is visible in the image, the following heuristic can be used: the

first part of the model points is examined with a relatively safe stopping criterion,

while the remaining part of the model points are examined with the hard threshold

smin. The user can specify what fraction of the model points is examined with the

hard threshold with a parameter g. If g = 1, all points are examined with the

hard threshold, while for g = 0, all points are examined with the safe stopping

criterion. With this, the evaluation of the partial sums is stopped whenever sj <

min(smin − 1 + fj/n, sminj/n), where f = (1 − gsmin)(1 − smin). Typically, the

parameter g can be set to values as high as 0.9 without missing an instance of the

model in the image.

24

4.3 System Implementation

Shape-based matching enables us to find and localize objects based on a single model

image, i.e., from a model. The method we have implemented is robust to noise, clut-

ter, occlusion, and arbitrary non-linear illumination changes. Objects are localized

and found even if they are rotated or scaled. Shape-based matching can be applied

to standard 8bit gray value images, images with more than 8bit gray value depth,

and to color (more generally: multi-channel) images. The system consists of two

modules: an offline generation of the model and an online recognition. The model is

generated from an image of the object to be recognized.

4.3.1 Model Creation

As mentioned in the beginning of this chapter the logo model images are chosen

via image search facility of Google R©. Here the selection of the logo is determined

regarding some features such as;

- the size

- the shape characteristics

- the clutter on the logo model image.

- the noise in the model image etc.

i.e the model logo is specifed by the user. Alternatively, it can be generated by

suitable segmentation techniques or manually from the frame samples.

A prerequisite for a successful matching process is, of course, a suitable model for

the object you want to find. A model is suitable if it describes the signifcant parts

of the object, i.e., those parts that characterize it and allow discriminating it clearly

from other objects or from the background. On the other hand, the model should

not contain clutter, i.e., points not belonging to the object (see, e.g., Figure 4.1).

When creating the model, the first step is to select a region of interest (ROI)

in the image or select a logo model image that covers the whole image in order to

determine the model. In this thesis we prefer to use the images that only contain

logos for the sake of simplicity and in order to prevent the previous segmentation

work to extract the logo. A region defines an area in an image or more generally a

25

Figure 4.1: Masking the part of a region containing clutter [2].

set of points. A region can have an arbitrary shape; its points do not even need to

be connected. Thus, the region of the model can have an arbitrary shape as well.

Also we have to note that the ROI should not be too “thin”, otherwise it vanishes

at higher pyramid levels! As a rule of thumb, an ROI should be 2NumLevels−1 pixels

wide [5]. Figure 4.2 shows logo forms inside the image and Figure 4.3 shows the

result of matching for multiple logos.

Figure 4.2: Logo forms inside the image.

Here we can also combine the interactive ROI specifcation with image processing.

A useful method in the presence of clutter in the model image is to create a first

model region interactively and then process this region to obtain an improved ROI.

Figure 4.4 shows an example where the task is to locate the arrows. Here we can see

26

Figure 4.3: The result of matching for multiple logos.

the results for different threshold values and the model is extracted from the image

using morphological technique opening (erosion + dilation), which eliminates small

regions. Before this, we fill the inside of the model image since only the boundary

points are part of the (original) model region.

Here we have to also note that the ROI used when creating the model also in-

fluences the results of the subsequent matching: By default, the center point of the

ROI acts as the so-called point of reference of the model for the estimated position,

rotation, and scale. The point of reference also influences the search itself: An object

is only found if the point of reference lies within the image, or more exactly, within

the domain of the image.

4.3.1.1 The Information Stored in the Model

As the name shape-based pattern matching implies, objects are represented and

recognized by their shape. Multiple ways exist to determine or describe the shape of

an object. Here, the shape is extracted by selecting all those points whose contrast

exceeds a certain threshold; typically, the points correspond to the contours of the

object.

For the model, those pixels whose contrast, i.e., gray value difference to neighbor-

ing pixels, exceeds a threshold specified by the user are selected. In order to obtain

27

Figure 4.4: a) interactive ROI; b) models for different values of threshold (or con-

trast); c) processed model region and corresponding ROI and model; d) result of

matching [2].

a suitable model, the contrast should be chosen in such a way that the significant

pixels of the object are included, i.e., those pixels that characterize it and allow to

discriminate it clearly from other objects or from the background. Obviously, the

model should not contain clutter, i.e., pixels that do not belong to the object.

In some cases it is impossible to find a single value for threshold that removes the

clutter but not also parts of the object. Figure 4.5 shows an example where the task

is to create a model for the outer rim of a drill-hole: If the complete rim is selected,

the model also contains clutter (Figure 4.5a); if the clutter is removed, parts of the

rim are missing (Figure 4.5b).

To solve such problems, the threshold provides two additional methods: hys-

teresis thresholding and selection of contour parts based on their size. Hysteresis

thresholding uses two thresholds, a lower and an upper threshold. For the model,

first pixels that have a contrast higher than the upper threshold are selected; then,

pixels that have a contrast higher than the lower threshold and that are connected

28

Figure 4.5: Selecting significant pixels via threshold (i.e. contrast): a) complete

object but with clutter; b) no clutter but incomplete object; c) hysteresis threshold;

d) minimum contour size [2].

to a high-contrast pixel, either directly or via another pixel with contrast above the

lower threshold are added. This method enables us to select contour parts whose

contrast varies from pixel to pixel. As seen in the example in Figure 4.1, with a

hysteresis threshold we can create a model for the complete rim without clutter.

The second method to remove clutter is to specify a minimum size, i.e., number

of pixels, for the contour components. Figure 4.5 d shows the result for the example

task.

4.3.1.2 Using Subsampling to Speed up the Search

To speed up the recognition process, the model is generated in multiple resolution

levels, which are constructed by building an image pyramid from the original image

as shown in Figure 4.2. The number of pyramid levels lmax is chosen by the user.

Here the pyramid consists of the original, full-sized image and a set of down

sampled images. For example, if the original image (first pyramid level) is of the size

600x400, the second level image is of the size 300x200, the third level 150x100, and so

on. The object is then searched first on the highest pyramid level, i.e., in the smallest

image. The results of this fast search are then used to limit the search in the next

29

pyramid image, whose results are used on the next lower level until the lowest level

is reached. Using this iterative method, the search is both fast and accurate. Figure

4.2 depicts 4 levels of an example image pyramid together with the corresponding

model regions.

As a result of experiments it is recommended to choose the highest pyramid level

at which the model contains at least 10-15 pixels and in which the shape of the model

still resembles the shape of the object.

4.3.1.3 Allowing a Range of Orientation and Scale

As explained in the previous section, each resolution level consists of all possible

rotations and scaling of the model, where thresholds φmin and φmax for the angle

and σmin and σmax for the scale are selected by the user. The step length for the

discretization of the possible angles and scales can either be done automatically by a

method similar to the one described in [29] or be set by the user. In higher pyramid

levels, the step length for the angle is computed by doubling the step length of the

next lower pyramid level.

During the matching process, the model is searched for in different angles within

the allowed range, at steps specified by the user. It is also possible to determine

the angle step to obtain the highest possible accuracy by determining the smallest

rotation that is still discernible in the image. The underlying algorithm is explained

in Figure 4.6: The rotated version of the cross-shaped object is clearly discernible

from the original if the point that lies farthest from the center of the object is moved

by at least 2 pixels. Therefore, the corresponding angle φopt is calculated as follows:

d2 = l2 + l2 − 2 · l · l · cosφ⇒ φopt = arccos(1− d2

2 · l2
) = arccos(1− 2

l2
) (4.6)

with l being the maximum distance between the center and the object boundary

and d = 2 pixels. For some models, such estimated angle step size is still too large.

In these cases, it is divided by 2 automatically.

Also in order to get better results, the value chosen for angle step should not

deviate too much from the optimal value (1/3φopt 6 φ 6 3φopt). We have to also

30

Figure 4.6: Determining the minimum angle step size from the extent of the model

[2].

note here that choosing a very small step size does not result in increased angle

accuracy [5].

Similar to the range of orientations, it is possible to specify an allowed range of

scale. We can allow for scaling in two forms:

- identical scaling in row and column direction (isotropic scaling)

- different scaling in row and column direction (anisotropic scaling)

For isotropic scaling, we specify the range of scales with the required parameters

as minimum scale, maximum scale, and scale step of the operator. For anisotropic

scaling, we can determine the six scale parameters separately for rows and columns

instead of the three above.

Again, it is better to reduce the limit the allowed range of scale as much as

possible in order to speed up the search process.

Similar to the angle step value, scale step (or the equivalents for anisotropic

scaling), can be determined by using the smallest scale change that is still discernible

in the image. Similarly to the angle step size the center of the object is moved by

at least 2 pixels. Therefore, the corresponding scale change ∆σopt is calculated as

follows:

∆σ =
d

l
⇒ ∆σopt =

2

l
(4.7)

with l being the maximum distance between the center and the object boundary and

d = 2 pixels. For some models, the such estimated scale step size is still too large.

In these cases, it is divided by 2 automatically.

Also in order to get better results the value chosen for scale step should not

deviate too much from the optimal value (1/3σopt 6 σ 6 3σopt). We have to also

31

note here that choosing a very small step size does not result in increased angle

accuracy [5].

As explained in detail above, the rotated and scaled models are generated by

rotating and scaling the original image of the current pyramid level and performing

the feature extraction in the rotated image. This is done because the feature ex-

tractors may be anisotropic, i.e., the extracted direction vectors may depend on the

orientation of the feature in the image in a biased manner. If it is known that the

feature extractor is isotropic, the rotated models may be generated by performing

the feature extraction only once per pyramid level and transforming the resulting

points and direction vectors. The feature extraction can be done by a number of

different image processing algorithms that return a direction vector for each image

point. One such class of algorithms are edge detectors, e.g, the Sobel or Canny [33]

operators. Another useful class of algorithms are line detectors [34]. Finally, corner

detectors that return a direction vector, e.g. [35], could also be used. Because of

runtime considerations the Sobel filter is used in the current implementation of the

object recognition system. One disadvantage using this filter maybe that in the video

frames noise poses a significant problem due to the recording equipment. Therefore

we try to select model images with less clutter and high resolution as possible. To

recognize the model, an image pyramid is constructed for the image in which the

model should be found. For each level of the pyramid, the same filtering operation

that was used to generate the model, e.g., Sobel filtering, is applied to the image.

This returns a direction vector for each image point. Note that the image is not

segmented, i.e., thresholding or other operations are not performed. This results is

robust to illumination changes.

4.3.2 Optimizing the Search Process

To identify potential matches, an exhaustive search is performed for the top level of

the pyramid, i.e., all precomputed models of the top level of the model resolution

hierarchy are used to compute the similarity measure for all possible poses of the

model. A potential match must have a score larger than a user-specified threshold

smin and the corresponding score must be a local maximum with respect to neighbor-

32

ing scores. As described above, the threshold smin is used to speed up the search by

terminating the evaluation of the similarity measure as early as possible. With the

termination criteria, this seemingly brute-force strategy actually becomes extremely

efficient. On the average, about 9 pixels of the model are tested for every pose on

the top level of the pyramid.

After the potential matches have been identified, they are tracked through the

resolution hierarchy until they are found at the lowest level of the image pyramid.

Various search strategies like depth-first, best-first, etc., have been examined. It

turned out that a breadth-first strategy is preferable for various reasons, most notably

because a heuristic for a best-first strategy is hard to define, and because depth-first

search results in slower execution if all matches should be found.

Once the object has been recognized on the lowest level of the image pyramid,

its position and rotation are extracted to a resolution better than the discretization

of the search space, i.e., the translation is extracted with subpixel precision and the

angle and scale with a resolution better than their respective step lengths. This

is done by fitting a second order polynomial (in the four pose variables) to the

similarity measure values in a 3 × 3 × 3 × 3 neighborhood around the maximum

score. The coefficients of the polynomial are obtained by convolution with 4D facet

model masks. The corresponding 2D masks are given in [34]. They generalize to

arbitrary dimensions in a straightforward manner.

When comparing a part of a search image with the model, the matching process

calculates the so-called score, which is a measure of how many model points could

be matched to points in the search image (ranging from 0 to 1).

In addition the search algorithm is broken off the comparison of a candidate with

the model when it seems unlikely that the minimum score will be reached. In other

words, the goal is not to waste time on hopeless candidates. This is named as the

“greediness”, however, can have unwelcome consequences. In some cases a perfectly

visible object is not found because the comparison “starts out on a wrong foot” and

is therefore classified as a hopeless candidate and broken off. The user can adjust

the greediness of the search, i.e., how early the comparison is broken off, by selecting

values between 0 (no break off: thorough but slow) and 1 (earliest break off: fast

33

but unsafe).

4.3.3 Least-Squares Pose Refinement

While the pose obtained by the extrapolation algorithm is accurate enough for most

applications, in some applications requiring an even higher accuracy the least-squares

pose refinement is used. This can be achieved through a least-squares adjustment

of the pose parameters. To achieve a better accuracy than the extrapolation, it is

necessary to extract the model points as well as the feature points in the image with

subpixel accuracy. If this would not be done, the image and model points would be

separated radially by about 0.25 pixels on average if each model point is matched

to its closest image point. However, even if the points are extracted with subpixel

accuracy, an algorithm that performs least-squares adjustment based on closest point

distances would not improve the accuracy much since the points would still have

an average distance significantly larger that 0 tangentially because the model and

image points are not necessarily sampled at the same points and distances. Because

of this, the proposed algorithm finds the closest image point for each model point

and then minimizes the sum of the squared distances of the image points to a line

defined by their corresponding model point and the corresponding tangent to the

model point, i.e., the directions of the model points are taken to be correct and are

assumed to describe the direction of the object’s border. If, for example, an edge

detector is used, the direction vectors of the model are perpendicular to the object

boundary, and hence the equation of a line through a model point tangent to the

object boundary is given by ti(x − xi) + ui(y − yi) = 0 . Let qi = (vi, wi)
T denote

the matched image points corresponding to the model points pi. Then, the following

function is minimized to refine the pose a:

d(a) =
n∑
i=1

[ti(ui(a)− xi) + ui(wi(a)− yi)]2 ⇒ min (4.8)

The potential corresponding image points in the search image are obtained by

non-maximum suppression only and are extrapolated to subpixel accuracy [36]. By

this, a segmentation of the search image is avoided, which is important to preserve

the invariance against arbitrary illumination changes. For each model point the

34

corresponding image point in the search image is chosen as the potential image point

with the smallest euclidian distance using the pose obtained by the extrapolation to

transform the model to the search image. Because the points in the search image

are not segmented, spurious image points may be brought into correspondence with

model points. Therefore, to make the adjustment robust, only correspondences with

a distance smaller than a robustly computed standard deviation of the distances are

used for the adjustment.

Since 4.8 results in a linear equation system when similarity transformations are

considered, one iteration suffices to find the minimum distance. However, since the

point correspondences may change by the refined pose, an even higher accuracy can

be gained by iterating the correspondence search and pose refinement. Typically,

after three iterations the accuracy of the pose no longer improves.

4.3.4 Using The Results of Matching

The results of the trademark logo recognition provides us the;

- position (row and column) of the match,

- orientation angle,

- scaling factor

- matching score

of the trademark logo found in the current frame.

The matching score, which is a measure of the similarity between the model and

the matched object, can be used “as it is”, since it is an absolute value. Here we can

determine the position, orientation, scale and the more important is the matching

score with the current frame.

35

Chapter 5

Scale Invariant Feature Transform

5.1 Theoretical Background on Scale Invariant Feature Transform

Scale-invariant feature transform (SIFT) is one of several computer vision algorithms

for extracting distinctive features from images [3]. SIFT interest points are based

on a Difference of Gaussian detector. Its high-dimensional descriptor vector relies

on gradient histograms. In addition to key point location, Lowe’s method [3] also

provides a way to extract features which are invariant to scale, rotation, and trans-

lation. The name Scale-invariant Feature Transform was chosen, as the algorithm

transforms image data into scale-invariant coordinates. Following are the major

stages of computation used to generate the set of image features:

- Scale-space extrema detection

- Keypoint localization

- Orientation assignment

- Keypoint descriptor

5.1.1 Detection of Scale-Space Extrema

The first stage of keypoint detection is to determine location and scales that can

be repeatably assigned under differing views of the same object. Detection of these

locations can be done by searching for stable features across all possible scales, using

a continuous function scale known as scale space [37]. Using the Gaussian function

as the scale-space kernel, the scale space of an image can be defined as a func-

tion L(x, y, σ), which is produced from the convolution of the image, I(x, y) with a

variable-scale Gaussian, G(x, y, σ) :

36

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (5.1)

where ∗ is the convolution operator in x and y and

G(x, y, σ) =
1

2πσ2
e−(x2+y2)/2σ2

(5.2)

In order to detect stable keypoint locations in the scale-space, difference-of-

Gaussian (DoG) function is used, which is computed from the difference of two

nearby scales that are separated by a constant multiplicative factor k:

D(x, y, σ) = (D(x, y, kσ)−D(x, y, σ)) ∗ I(x, y) (5.3)

= L(x, y, kσ)− L(x, y, σ)

Figure 5.1 shows an efficient way to construct D(x, y, σ). In the left column, the

initial image is incrementally convolved by Gaussians of different scales, which are

separated by a constant factor k in the scale space to build an image pyramid. Each

octave of scale space is divided into an integer number s, of intervals, so k = 21/s.

Adjacent image scales are subtracted to produce the DoG images as shown on the

right. Once one octave is complete, the Gaussian image in the current octave that

has a variance of 2σ is sub-sampled. It is often problematic to downsize an image

by an arbitrary scale; therefore scaling down can be mimicked by convolving the

image with a Gaussian and sub-sampling by taking every second pixel in each row

and column.

Once the DoG images are computed, the local maxima and minima are to be

detected. In the scale-space, each pixel has 26 neighbors, eight in the current scale,

nine in the scale below and nine in the scale above (See Figure 5.2). Each pixel is

compared with its 26 neighbors and is selected as a local extrema if it is larger than

all of its neighbors or smaller then all of them. Since most pixels are eliminated after

a few comparisons, the cost of detecting is much lower than building of the pyramid.

37

5.1.2 Keypoint localization

Once a set of potential keypoints have been found in the image by comparing a pixel

to its neighbors in the scale space, for each keypoint, its sub-pixel and sub-space

location (x, y, σ) are determined. This information allows points with low contrast

to be rejected. Furthermore, keypoints that lie on edges are needed to be removed

as well, because edges are poor keypoints since their location cannot be determined

well along the edge. Poorly designed peaks in the DoG function will have a large

principal curvature across the edge but a small one in the perpendicular direction.

The 2x2 Hessian matrix H can be computed at the location and the scale of the

keypoint:

H =

 Dxx Dxy

Dyx Dyy

 (5.4)

The derivatives are estimated by taking differences of neighboring sample pixels.

The eigenvalues of are proportional to the principal curvature of H. Based on the

proportion of the eigenvalues, edge like features can be detected and eliminated.

5.1.3 Orientation Assignment

Finally by calculating the dominant orientation of each keypoint, the keypoint de-

scriptor represented with this orientation becomes invariant to image rotation. First

the Gaussian image in the octave with the closest scale is selected, so that all com-

putations are carried out in a scale-invariant manner. For each keypoint the gradient

magnitude, m(x, y) and orientation, θ(x, y) are computed using pixel differences for

the current scale L(x, y).

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2 (5.5)

q(x, y) = tan−1((L(x, y + 1)− L(x, y − 1))/(L(x+ 1, y)− L(x− 1, y))) (5.6)

An orientation histogram is build using the gradient orientations within a region

around the keypoint. The histogram contains 36 bins, separating the 360 degree

orientations into regions of 10 degrees. Each sample is weighted by its gradient

38

Figure 5.1: Difference of Gaussians are computed from a pyramid of Gaussians.

Adjacent Gaussian images are subtracted to produce a difference of Gaussian (DoG)

images [3].

magnitude before being added to the histogram. Significant peaks in the histogram

correspond to dominant directions in the gradient. The highest peak in the histogram

is selected to be the orientation of the keypoint, however if other local peaks within

80% of the highest peak are detected, a new keypoint with that orientation is created.

For any keypoints with multiple peaks, multiple keypoints will be created. This

improves the orientation invariance of the SIFT algorithm.

5.1.4 Local Image Descriptor

The previous operations extract image location, scale and orientation for keypoints

from a given image. The next step is to describe a local image region in a manner

which is invariant to scale and orientation as well as to changes in illumination and to

3D viewpoint. The previous operations extract image location, scale and orientation

for keypoints from a given image. The next step is to describe a local image region

in a manner which is invariant to scale and orientation as well as to changes in

illumination and to 3D viewpoint.

39

Figure 5.2: Maxima and minima of the DoG images are detected by comparing the

pixel of interest by its 26 neighbors of the current and adjacent scales [3].

Figure 5.3 shows how keypoint descriptors are computed. In a region around the

keypoint, image gradient magnitudes and orientations are computed. The gradient

magnitudes are weighted by a Gaussian centered on the keypoint location. In a

typical application the window is divided into 4 × 4 = 16 subregions and for each

subregion, an orientation histogram is build and the histograms are placed at the

center of the subregion. Boundary effects, in which the descriptor abruptly changes

as a subregion shifts smoothly from one histogram to another or from one orientation

to another, are avoided by interpolation where each gradient votes for an orientation

in its neighboring histograms. The vote is weighted by 1 − d for each dimension,

where d is the distance to the histogram. The coordinates of the descriptor and

the gradient orientations are rotated relative to the keypoint orientation in order to

maintain orientation invariance. The 4 × 4 descriptors computed from a 16 × 16

sample array provide a 128-dimensional descriptor array.

Finally, in order to reduce the effects of illumination changes, the feature vector

is normalized to unit length. Since a change in image contrast where each pixel

value is multiplied by a constant will also reflect the gradients by the same constant,

normalizing the feature vector will remove the effect of contrast change. A brightness

change where a constant is added to every image pixel will not change the gradient

magnitudes since they are computed from pixel differences. Therefore, affine changes

in illumination do not affect the normalized keypoint descriptor. In order to reduce

the affects of non-linear illumination changes, which can occur due to camera change

40

Figure 5.3: SIFT Descriptor. For each pixel around the keypoint gradient magnitudes

and orientations are computed. These samples are weighted by a Gaussian and

accumulated into 16 orientation histograms for the 16 subregions [3].

or due to a change in illumination orientation or amount that affect 3D surfaces, the

influence of large gradient magnitudes in the unit feature vector are thresholded to be

no longer than 0.2 and then the feature vector is renormalized to unit length. This is

because nonlinear illumination changes are more likely to effect gradient magnitudes

rather than gradient orientations, therefore by thresholding the magnitude, more

emphasis is put onto orientations. The value 0.2 is determined experimentally by

Lowe [3].

5.2 Matching

The best candidate match for each keypoint is found by identifying its nearest neigh-

bor in the database of keypoints from training images. The nearest neighbor is de-

fined as the keypoint with minimum Euclidean distance for the invariant descriptor

vector. However, many features from an image will not have any correct match in

the training database because they arise from background clutter or were not de-

tected in the training images. Therefore, it would be useful to have a way to discard

features that do not have any good match to the database. A global threshold on

distance to the closest feature does not perform well, as some descriptors are much

more discriminative than others. A more effective measure is obtained by comparing

the distance of the closest neighbor to that of the second-closest neighbor. If there

are multiple training images of the same object, then we define the second-closest

41

neighbor as being the closest neighbor that is known to come from a different object

than the first, such as by only using images known to contain different objects. This

measure performs well because correct matches need to have the closest neighbor sig-

nificantly closer than the closest incorrect match to achieve reliable matching. For

false matches, there will likely be a number of other false matches within similar

distances due to the high dimensionality of the feature space. We can think of the

second-closest match as providing an estimate of the density of false matches within

this portion of the feature space and at the same time identifying specific instances

of feature ambiguity.

Figure 5.4: An example of matching logo in the video frame.

Although the SIFT algorithm is advantageous for the recognition of static and

rigid objects under small changes of illumination, it does not work under large illu-

mination changes and non-rigid deformations [38]. It is also observed through this

study as shown in Chapter 6 for “pantene” example.

5.3 SIFT on GPU

The parallel computing nature and programmability pipeline makes graphics pro-

cessing unit (GPU) a powerful tool for data parallel computation problems, and it

has been widely used for general purpose computation [39]. In this part of the thesis

we utilize the computing power of a GPU to speed up the scale invariant transform

42

Figure 5.5: SIFT performance under large illumination variations.

computations.

SIFT detects the local maxima and minima of difference of Gaussian in the Gaus-

sian scale space. Local dominant gradient orientations are then computed for each

feature point, and sub-pixel localization is applied. Descriptors are then generated

from the scale and orientation normalized image patches for each feature.

The first part, scale space computation, can be cast to a pixel parallel computa-

tion. It runs Gaussian filters on input images to get each pixel of new filtered images,

and GPU can use a fragment shader to compute multiple pixels simultaneously. The

second part, localization, orientation computation, and descriptor generation, can be

seen as a feature parallel computation. Each feature can also be mapped to a pixel

to run parallel on GPU.

Lowe’s SIFT (Scale Invariant Feature Transform) [3] detect similarity invariant

features in gaussian scale space of images, and it has been successfully applied in

many computer vision problems [40]. By exploiting the data parallel computing

feature of GPU, scale invariant feature transform can run much faster on GPU than

on central processing unit (CPU).

Here we implemented the GPU SIFT using the feature extraction method de-

scribed in [39]. Here the traditional GPU shaders are chosen as the implementation

tool instead of compute unified device architecture (CUDA), considering the fact

43

that images are easily mapped to textures on GPU. The level images in the scale

space are intuitively stored as pixel-by-pixel mapped texture. Shown in Figure 5.6,

the four color channels RGBA are used to store intensity, difference of Gaussian,

gradient magnitude, and gradient orientation respectively. To save memory usage,

feature list is used in this implementation. The feature list is also stored as textures

as shown in Figure 5.6.

Figure 5.6: Storage of feature list as textures.

Features on different levels are stored separately and the scale information does

not need to be stored. After the first stage of feature detection, a feature list texture

that saves feature location and orientation count are used, and then the feature list

texture is reshaped to make a list of features with separate orientations. A point

that needs to mention is that all the feature list generation and feature list reshaping

are implemented on GPU.

Similar with [41], separable gaussian filtering is used to run filtering horizontally

and vertically separately. This is necessary to achieve good performance, because

the Gaussian kernel needs to be very large for large σ. 6σ is used as the filter width,

when the number of DOG levels is 3. Then largest Gaussian filter σ will be 3.0, and

it will require a 19 × 19 Gaussian kernel. Using separable filter will save a lot of

texture fetches and also reduces the shader code size.

Gaussian filter shaders are generated on the fly according to the parameter user

inputs, each with different different sizes and kernels. Multiple texture coordinate

44

feature of OpenGL is used, and when the number of coordinates is more than 8, they

will be computed automatically in shaders.

Figure 5.7 demonstrates the two stage Gaussian filter. The second pass, by

carefully writing back the temporary intensity to the original color channel, can read

and write the same texture. The experiments show that reading and writing the

same texture is faster than PingPong [42] which is a technique used with a method

of using pixel data that has been rendered as a texture (RTT) to avoid reading and

writing the same buffer simultaneously, instead bouncing back and forth between a

pair of buffers. It can be explained by that PingPong requires more switching of

texture caching. Difference of Gaussian is also computed in the second pass.

Figure 5.7: Two pass of gaussian filter that uses texture from destination.

After one octave is computed, sub-sampling is used to get the first several level

images of the next octave. For example when the level range is from -1 to s + 2,

the scale doubles every s steps. There are 3 pairs of doubling in one octave, and

the highest 3 level of an octave can be used to generate the first 3 level of the next

octave. One restriction is that the filter size cannot be truncated for higher level,

other wise the Gaussian will be inaccurate for sub-sampling. When subsampling

more than one level, both intensity and DOG can be generated from sub-sampling,

and this can save some time on filtering. This trick hasn’t been seen in other SIFT

implementations.

5.3.1 Keypoint Detection

Keypoint detection needs to compare the DOG of a pixel with its 26 neighbours in

the scale space. This step is split into intra-level suppression and inter-level to save

45

texture fetching. As shown in Figure 5.8, the first pass will compare the DOG value

of a pixel with its 8 neighbours, and save whether the point is a local minimum and

local maximum to an auxiliary texture. The maximum and minimum of the 9 pixels

are also stored in the auxiliary texture. Gradient magnitude and orientation is also

computed in this pass. Edge elimination is also applied in this pass to delete the

features that are on edges.

In the second pass, early-z is first applied to exclude the pixels that are already

filtered out in the first pass, then each pixel is compared with the maximum or

minimum value of its 2 neighbor in the scale space. A point is the maximum in the

3x3x3 cube only when it is identified as an intra-level local maximum and it is larger

than the maximum values in its two neighbours. Similar thing applies to minimum.

Figure 5.8: Keypoint Detection.

5.3.2 Feature List Generation

Method in [43] is used here to generate feature lists on GPU. Our implementation

used the full 4 color channel to build the histogram pyramid, which can be seen

as pointer textures and the feature list generated by tracking down the histogram

pyramid. For every image, only one pixel at the top of the histogram pyramid needs

to be read back, and the number of features is the sum of the four channels. This

method can avoid the read-back of textures, and also avoid the upload of feature list.

5.3.3 Orientation Computation

This step computes the orientation candidates for each feature. It first obtain

an weighted orientation histogram in the circular window of radius 3s, then ap-

ply smoothing on the histogram, and finally the angles whose voting is larger than

46

0.8 times the maximum are outputted. The 36 angle for orientation histogram is im-

plemented as 9 float4/vec4. Since GPU arrays does not support dynamic indexing,

a binary search of index is used here to locate the expected 4-angle bin. Then this

bin is added with a voting vector as follows

bin+ = weight ∗ float4(fmod(idx, 4) == float4(0, 1, 2, 3))

With this kind of 4 angle bins, smoothing can be easily applied with a larger

window. The smoothing in [44] runs (1, 1, 1)/3 filtering for 6 times, and, because four

values are stored in one bin, it can be implemented as running (1, 3, 6, 7, 6, 3, 1)/27

filtering for twice.

Finally, the orientations are written to the orientation texture, and the numbers

of features are writing to the original feature texture. Then the point list generation

method as in the feature list generation is used again to reshape the feature list, and

this step is shown in Fig 5.7. Instead of assigning different point location in the last

step, different feature orientations are assigned to different feature candidates.

A display list can also be generated on GPU without reading back the features.

SIFT features here are displayed as scaled and rotated squares. A texture with 4

times space is allocated for saving the output vertices, and a shader will automatically

compute the feature index of the point, and also the sub-index in the rectangle. The

point can then be rotated and translated according to the feature orientation and

scale. Figure 5.9 shows this vertex generation. The vertex result can then be copying

to a Vertex BufferObject to demonstrate SIFT features. Figure 5.9 shows an example

of the result.

Figure 5.9: Display vertex generation.

47

Chapter 6

Experiments

The experiments are run on seven different datasets of commercial videos that is a

total of 53668 frames lasting 36 minutes and 24 seconds. The broadcast videos are

recorded from Turkish TV channels to the computer using the TV card that can

record the current TV broadcast.

After data collection, we worked on the classification of video blocks. For this

purpose we have designed the commercial block detector as explained in Chapter 3.

Here we determined the transition of commercial blocks by checking the occurence

of at least two consecutive black frames. The commercial block detector, using the

mean and the variance of the gray values of the frames in process, was able to detect

all of the blocks with a performance of 100%.

Through the data collection process, we generally attempted to collect videos with

problematic trademark logo images. Trademark logo images retained are the ones

including noisy images or the logos not studied extensively in the previous works.

Also, most of the images are blurry due to their nature of motion in the commercial

video since the attraction of the trademark logo is mostly carried out by motions or

static images that stay on the screen for a long time. For example, the transparent

logos have been the very problematic ones to recognize in previously used methods.

After analyzing our dataset we selected 50 different trademark logos for the recog-

nition process. Transparent, low resolution and noisy logos are included in the se-

lection since they have generally been one of the important problems of trademark

logo recognition.

We then focused on the recognition algorithm and implemented the shape based

48

object recognition algorithm, as explained in Chapter 3, for recognizing the trade-

mark logos in video frames. The algorithm is explained in detail in Figure 6.1. For

the test process we have firstly generated the models of the logos in the offline phase

and saved them in memory to use them for online recognition. The edge points are

saved in the model for the matching process. The algorithm is triggered by the de-

tection of the black frame; the recognition process is carried on since the next black

frame block is detected.

In the next phase we tried to implement another object recognition algorithm for

recognizing the logos. We decided to implement the SIFT algorithm due to its high

performance in object recognition. The block diagram of the system is as shown in

Figure 6.2 below. In the offline phase the keypoints of logos are generated and saved

in memory; in the online phase, the keypoint of the current frame is generated and

matched with the keypoints of all 50 logos in the database. The SIFT features for

the logos and the current frame are extracted, creating two sets of features. Feature

matching is then performed between the features in each frame for all logos. For

each feature in the logo, the nearest neighbor is found in the frame; in order to find

the nearest neighbor, we use some distance measure based on feature descriptors or

other properties, such as scale and orientation. In order to speed up the matching,

the SIFT feature extraction and matching is done on a GPU card. The matching

keypoints are normalized and a matching score is computed for a frame. If the score

is higher than a specified threshold, the logo is assigned to the current commercial

video; this process continues until the video ends. Here the “Logo Found?” box in

the block diagram of the system is done by using the SIFT based matching. Also the

cycle time is computed for a frame and scale and orientation is computed by using

the locations of the matched keypoints.

For the SIFT algorithm, we have firstly used David Lowe’s binary implementation

which was coded in Matlab. The recognition results were promising, but the speed of

the algorithm was very low. With these results in hand, we then coded the algorithm

in C++ and tested in again. The recognition performances were the same and we

were able to speed the computations up to 7-8 times as shown in Table 6.3. However,

the timing results were still far away from those of the recognition speed of the shape

49

based method. Then we used SIFT on a GPU in order to speed up the computations.

With the implementation of the SIFT algorithm on the GPU, we could speed up the

process around 50 times fasters regarding the implementation of Lowe in Matlab.

In addition, every 30th frame is processed in order to speed up the recognition

algorithm. The results below show the performance analysis for each of the 30th

frames. This sampling ratio is determined by experiment. During the tests and we

have also observed that a logo stays on screen at least 30 frames which is enough for

us to recognize the logo.

The experiments were run on a IntelPentium R© 3.2 GHz PC with NVidia GeForce

8400 GS GPU, Microsoft Windows R© XP SP2 operating system and 3 GB RAM.

The following paragraphs we summarize the performances of the shape based

and the SIFT based method under the most difficult situations, namely motion blur,

transparency, low resolution, occlusion, illumination, scale and perspective transfor-

mations.

Tables 6.1, 6.2, 6.3 and 6.4 summarize the results of our experiments. The first

column on each table shows the dataset number and the second column gives the

number of frames which include the logo images from our library. The third column

on the tables gives the the number of frames where the predefined logo was not

recognized. The fourth column shows the number of frames where the false positives

occured which means the logo recognition result was positive for a logo model from

the library where in fact no logo was present inside the frame. In addition, fifth

and sixth columns explain the processing cycles for all 50 logos and the number of

frames processed (number of sampled frames for recognition) through the dataset,

respectively.

From the tables we can conclude that the shape based algorithm in general per-

forms better than the SIFT based method in recognition while the SIFT on GPU

based method always performs faster than the shape based method regarding the

computation time. Figure 6.3 shows that the shape based method performs very

well under motion blur due to the powerful extraction of edge points, i.e. features.

Dataset 5 includes a channel logo which is transparent and with the shape based

method we can effectively identify the logo. Figure 6.4 shows that the shape based

50

algorithm also performs better than the SIFT based method when the logo is trans-

parent. The transparent logos are the most problematic ones and they have not been

studied extensively in the literature. Figure 6.5 shows that the shape based algo-

rithm gives better results in the cases of small and low resolution frames. This is also

observed through all the datasets. For these small and low resolution logos we were

able to extract the features by the help of the powerful edge detection algorithms

which resulted in better performance through these cases. Figure 6.6 also shows

that both of the algorithms performs similar in case of occlusion and here the SIFT

on GPU also has the computation speed advantage. In addition we can conclude

from Figure 6.7 that the shape based algorithm performs better in large illumination

variations. Both algorithms in general perform similar for scale variations in general

cases but if we reduce the size lower than a certain threshold the shape based algo-

rithm still gives better results as shown in Figure 6.8. This robustness indicates that

shape based algorithm is better than the SIFT based algorithm in scale changes. In

addition Figure 6.9 shows that both of the algorithms perform similar in recognition

in case of perspective transformation.

The results shown in Figures 6.3 - 6.9 also indicate the general charateristics of

the logo recognition system developed through the thesis. In other words, we can

conclude about the general performances of the logo recognition algorithms from

these figures.

51

6.1 Experimental Results of Shape Based Method

The results of the designed algorithm for shape based logo recognition are given in

Table 6.1.

Table 6.1: Experiment results of shape based matching

Logo Not Incorrectly Average # Processed

Dataset Including Recognized Recognized Cycle Time Frames

Frames Frames Frames (for 50 logos)

1 107 16 4 2.518 ms 325 out of 8130

2 93 13 12 2.640 ms 271 out of 6779

3 90 4 18 2.480 ms 211 out of 5281

4 85 4 15 2.594 ms 312 out of 7808

5 124 5 8 2.396 ms 124 out of 3123

6 164 21 10 2.497 ms 398 out of 9972

7 125 24 14 2.672 ms 503 out of 12575

52

6.2 Experimental results of SIFT based method

The results of the designed algorithm for SIFT based logo recognition are given in

Tables 6.2, 6.3 and 6.4.

Table 6.2: Experiment Results of SIFT binaries in Matlab (code is provided by

Lowe).

Logo Not Incorrectly Average # Processed

Dataset Including Recognized Recognized Cycle Time Frames

Frames Frames Frames (for 50 logos)

1 107 35 56 100.053 ms 325 out of 8130

2 93 2 67 107.482 ms 271 out of 6779

3 90 11 31 106.406 ms 211 out of 5281

4 85 14 83 104.564 ms 312 out of 7808

5 124 0 82 108.416 ms 124 out of 3123

6 164 14 78 102.307 ms 398 out of 9972

7 125 5 54 108.346 ms 503 out of 12575

53

Table 6.3: Experiment results of C++ implementation of SIFT.

Logo Not Incorrectly Average # Processed

Dataset Including Recognized Recognized Cycle Time Frames

Frames Frames Frames (for 50 logos)

1 107 35 56 14.293 ms 325 out of 8130

2 93 2 67 15.138 ms 271 out of 6779

3 90 11 31 15.200 ms 211 out of 5281

4 85 14 83 14.937 ms 312 out of 7808

5 124 0 82 15.057 ms 124 out of 3123

6 164 14 78 14.209 ms 398 out of 9972

7 125 5 54 15.260 ms 503 out of 12575

Table 6.4: Experiment results of SIFT on GPU.

Logo Not Incorrectly Average # Processed

Dataset Including Recognized Recognized Cycle Time Frames

Frames Frames Frames (for 50 logos)

1 107 35 56 2.019 ms 325 out of 8130

2 93 2 67 2.140 ms 271 out of 6779

3 90 11 31 2.302 ms 211 out of 5281

4 85 14 83 2.294 ms 312 out of 7808

5 124 0 82 2.380 ms 124 out of 3123

6 164 14 78 2.307 ms 398 out of 9972

7 125 5 54 2.346 ms 503 out of 12575

54

Figure 6.1: Block diagram of the shape based logo recognition.

55

Figure 6.2: Block diagram of the SIFT based logo recognition.

56

(a)

(b)

Figure 6.3: Motion blur a) shape based matching; b) SIFT based matching.

57

(a)

(b)

Figure 6.4: Transparent logo recognition a) shape based matching; b) SIFT based

matching.

58

(a)

(b)

Figure 6.5: Small and low resolution logo image a) shape based matching; b) SIFT

based matching.

59

(a)

(b)

Figure 6.6: Occlusion a) shape based matching; b) SIFT based matching.

60

(a)

(b)

Figure 6.7: Illumination a) shape based matching; b) SIFT based matching.

61

(a)

(b)

62

(c)

(d)

Figure 6.8: Scale; a and b) shape based matching; c and d) SIFT based matching.

63

(a)

(b)

Figure 6.9: Perspective transformation a) shape based matching; b) SIFT based

matching.

64

Chapter 7

Summary and Conclusion

In this study we have explored the applications of object recognition algorithms for

trademark logo application in video frames. For this purpose, an automated logo

recognition system is proposed, designed and tested. The system is implemented

using the shape-based matching and SIFT based matching, as explained in detail in

Chapters 3 and 4, respectively. As stated above, shape based matching uses global

shape features (edges and edge points) for keypoint generation and SIFT uses local

features (DOGs) for keypoint generation. This work also compares the performance

of the global and local feature based algorithms for the purpose of logo recognition.

The recognition and timing performance is analyzed in the previous section.

In the first part of the thesis we have implemented a commercial block detec-

tion algorithm in videos by using the statistical information of the gray values in

frames. In this part of the thesis we have researched about the characteristics of the

commercial blocks in TV broadcast and have tried to implement the distinguishing

parameters of the commercial broadcast blocks. Then we have implemented our

algorithm and tested our commercial detection algorithm. As a result we observed

that the implemented algorithm works very well on the TV broadcast in Turkey. As

a result we concluded that using the statistical information within the frames were

sufficient to detect the black frames.

With the success in commercial video block detection, we have focused on the

trademark logo detection in video frames. In the second part of the thesis we have

implemented a shape based trademark logo recognition algorithm in order to catch

the logos in video frames and assign them to the commercial block on broadcast.

65

During our tests, we have observed that the shape - based trademark logo detection

algorithm was robust to occlusion, scale, and illumination as shown in the results in

Table 6.1. Also the logos in TV broadcast video frames are affected by motion blur

by their characteristics since the trademark logo is generally in motion in video to

get people’s attraction. Because of the communication issues, the frames generally

have low resolution. As shown above the shape based trademark logo recognition

algorithm was successful in classifying the trademark logos in low resolution frames.

In the next chapter, our dissatisfaction with the timing results of the shape based

object recognition led us to implementation of the well known SIFT algorithm on

a GPU card. The timing results of the SIFT were better than were those of the

shape based recognition algorithm but the recognition performance was worse than

recognition results for the shaped based one. Experiments demonstrate that the

shape based trademark logo recognition algorithm was better than the SIFT in many

applications ranging from the blurred, low resolution and transparent images to the

ones that have very large illumination variances. However the SIFT algorithm on

the GPU card performs faster than the shape based method.

From this thesis work we can also conclude that the shape based methods perform

better than the SIFT based methods in rapidly changing environments since we have

observed that SIFT was not very successful in environments that has large variance

of illumination changes. Also since the local features all depend on the photomet-

ric features they are not robust to changes in illumination. However they perform

better than the shape based method in occlusion and perspective transformation in

recognition. Also for the logo recognition issues the transparent logos are one of the

most problematic cases to recognize. It is also observed in this thesis that the shape

based recognition algorithm showed very good results on the transparent trademark

logos compared to the SIFT algorithm.

To sum up we can conclude that for trademark logo recognition shape based meth-

ods perform better in recognition and reasonable performance in computation. In

addition we have observed that SIFT based methods perform better in computation

performance.

66

7.1 Future Works

Our technique can be improved on several fronts. First of all, in our technique, we

record the TV broadcast on a DVD and the work from the offline video. For future

studies a system that stores the TV broadcast on a buffer and does the detection

and recognition without recording the video on a DVD can be implemented.

In addition the parallel processing can be used which means the simultaneous

use of more than one CPU to execute a program. Ideally, parallel processing makes

a program run faster because there are more engines (CPUs) running it. Also with

single-CPU computers as we have used it is possible to perform parallel processing

by connecting the computers in a network in order to speed up the computations.

However, this type of parallel processing requires very sophisticated software called

distributed processing software.

In addition the system can be combined with a speech recognition system that

recognizes the speech signal throughout the commercial video blocks.

During our experiments we have observed that the shape based recognition algo-

rithm is better suited for low quality images and changes in illumination and SIFT is

robust to coarse translations and rotations with low variance illumination changes.

A hybrid approach, combining the outputs of shape based algorithm and SIFT based

algorithm might result in a better recognition system.

67

Bibliography

[1] R. Lienhart, C. Kuhmnch, and W. Effelsberg, “On the detection and recognition

of television commercials,” in in Proc. IEEE Conf. on Multimedia Computing

and Systems, 1997, pp. 509–516.

[2] [Online]. Available: http://www.mvtec.com/halcon/

[3] D. Lowe, “Distinctive image features from scale-invariant keypoints,” in Inter-

national Journal of Computer Vision, vol. 20, 2003, pp. 91–110.

[4] B. Satterwhite and O. Marques, “Automatic detection of tv commercials,” Po-

tentials, IEEE, vol. 23, no. 2, pp. 9–12, April-May 2004.

[5] C. Steger, “Occlusion, clutter, and illumination invariant object recognition,”

in International Archives of Photogrammetry and Remote Sensing, vol. XXXIV,

part 3A, 2002, pp. 345–350.

[6] Y. Lamdan, J. Schwartz, and H. Wolfson, “Affine invariant model-based object

recognition,” vol. 6, pp. 578–589, 1990.

[7] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recognition

using shape contexts,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 24, no. 4, pp. 509–522, 2002.

[8] C. Schmid and R. Mohr, “Local grayvalue invariants for image retrieval,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 5, pp.

530–535, 1997.

[9] T. Gevers and A. Smeulders, “Color-based object recognition,” vol. 32, no. 3,

pp. 453–464, March 1999.

68

[10] D. Lowe, “Distinctive image features from scale-invariant keypoints,” vol. 60,

no. 2, pp. 91–110, November 2004.

[11] Y.-S. Kim and W.-Y. Kim, “Content-based trademark retrieval system using

visually salient features,” in CVPR. IEEE Computer Society, 1997, pp. 307–

312.

[12] P. Y. Yin and C. C. Yeh, “Content-based retrieval from trademark databases,”

Pattern Recognition Letters, vol. 23, no. 1-3, pp. 113–126, Jan. 2002.

[13] J. P. Eakins, K. J. Riley, and J. D. Edwards, “Shape feature matching for

trademark image retrieval,” in CIVR, 2003, pp. 28–38.

[14] R. H. van Leuken, M. F. Demirci, V. J. Hodge, J. Austin, and R. C. Veltkamp,

“Layout indexing of trademark images,” in CIVR ’07: Proceedings of the 6th

ACM international conference on Image and video retrieval. New York, NY,

USA: ACM, 2007, pp. 525–532.

[15] F. Aldershoff and T. Gevers, “Visual tracking and localisation of billboards in

streamed soccer matches,” 2004.

[16] B. Kovar and A. Hanjalic, “Logo appearance statistics in a sport video: Video

indexing for sponsorship revenue control,” 2002.

[17] R. J. M. den Hollander and A. Hanjalic, “Logo recognition in video stills by

string matching,” in ICIP (3), 2003, pp. 517–520.

[18] R. den Hollander and A. Hanjalic, “Logo recognition in video stills by string

matching,” Image Processing, 2003. ICIP 2003. Proceedings. 2003 International

Conference on, vol. 3, pp. III–517–20 vol.2, Sept. 2003.

[19] F. Pelisson, D. Hall, O. Riff, and J. Crowley, “Brand identification using gaussian

derivative histograms,” 2003, p. 492 ff.

[20] G. Kienast, H. Stiegler, W. Bailer, H. Rehatschek, S. Busemann, and T. De-

clerck, “Sponsorship tracking using distributed multi-modal analysis (direct-

info),” 2005, pp. 341–348.

69

[21] R. Hurst, “Tv commercial editor,” p. 31, 1994.

[22] D. A. Sadlier, S. Marlow, N. E. O’Connor, and N. Murphy, “Automatic TV

advertisement detection from MPEG bitstream,” in PRIS, A. L. N. Fred and

A. K. Jain, Eds. ICEIS Press, 2001, pp. 14–25.

[23] X. Wen, T. D. Huffmire, H. H. Hu, and A. Finkelstein, “Wavelet-based video

indexing and querying,” Multimedia Syst., vol. 7, no. 5, pp. 350–358, 1999.

[24] A. Hampapur and R. Bolle, “Feature based indexing for media tracking,” Mul-

timedia and Expo, 2000. ICME 2000. 2000 IEEE International Conference on,

vol. 3, pp. 1709–1712 vol.3, 2000.

[25] C. M. A. N. H. C. Iggulden, Jerry (Santa Clarita, “Method and

apparatus for controlling a videotape player to automatically scan

past recorded commercial messages,” July 1994. [Online]. Available:

http://www.freepatentsonline.com/5333091.html

[26] L. G. Brown, “A survey of image registration techniques,” ACM Comput. Surv.,

vol. 24, no. 4, pp. 325–376, 1992.

[27] S. Tanimoto, “Template matching in pyramids,” vol. 16, no. 4, pp. 356–369,

August 1981.

[28] S. H. Lai and M. Fang, “Robust and efficient image alignment with spatially-

varying illumination models,” in IEEE Computer Vision and Pattern Recogni-

tion or CVPR, 1999, pp. II: 167–172.

[29] G. Brogefors, “Hierarchical chamfer matching: A parametric edge matching

algorithm,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 10, no. 6, pp. 849–865, 1988.

[30] W. J. Rucklidge, “Efficiently locating objects using the hausdorff distance,” Int.

J. Comput. Vision, vol. 24, no. 3, pp. 251–270, 1997.

70

[31] C. F. Olson and D. P. Huttenlocher, “Automatic target recognition by matching

oriented edge pixels,” IEEE Transactions on Image Processing, vol. 6, pp. 103–

113, 1997.

[32] D. H. Ballard, “Generalizing the hough transform to detect arbitrary shapes,”

in RCV87, 1987, pp. 714–725.

[33] J. Canny, “A computational approach to edge detection,” IEEE Trans. Pattern

Anal. Mach. Intell., vol. 8, no. 6, pp. 679–698, 1986.

[34] C. Steger, “An unbiased detector of curvilinear structures,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 20, no. 2, pp. 113–125, 1998.

[35] W. Foerstner, “A framework for low level feature extraction,” Lecture Notes in

Computer Science, vol. 800, pp. 383–396, 1994.

[36] C. Steger, “Subpixel-precise extraction of lines and edges,” in International

Archives of Photogrammetry and Remote Sensing, vol. XXXIII, part B3, 2000,

pp. 141–156.

[37] A. P. Witkin, “Scale-space filtering,” in International Joint Conference on Ar-

tificial Intelligence, 1983, pp. 1019–1022.

[38] O. Pele, “Sift presentation slights,” 2006.

[39] C. Wu, “Sift on gpu,” Department of Computer Science, University of North

Carolina - Chapel Hill, Tech. Rep., 2007.

[40] M. Brown and D. G. Lowe, “Recognising panoramas,” in ICCV ’03: Proceedings

of the Ninth IEEE International Conference on Computer Vision. Washington,

DC, USA: IEEE Computer Society, 2003, p. 1218.

[41] S. N. Sinha, J.-M. Frahm, M. Pollefeys, and Y. Genc, “Gpu point list generation

through histogram pyramids,” Max-Planck-Insitut fr Informatik, Tech. Rep.

MPI-I-2006-4-002, 6 2006.

[42] [Online]. Available: http://www.gpgpu.org/w/index.php/Glossary#Ping-Pong

71

[43] G. Ziegler, A. Tevs, C. Theobalt, and H.-P. Seidel, “GPU-based video feature

tracking and matching,” Department of Computer Science, University of North

Carolina - Chapel Hill, Tech. Rep. TR06-012, May 5 2006, mon, 14 Aug 2006

14:36:13 UTC.

[44] A. Vedaldi, “An open implementation of the SIFT detector and descriptor,”

UCLA CSD, Tech. Rep. 070012, 2007.

72

