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Abstract 

Lipases are a group of enzymes that hydrolyze the carboxyl ester bonds in acylglycerols 

releasing organic acids and glycerol. There is growing interest in identifying plant lipases 

because literature reviews show that plant lipases can be highly substrate specific and their 

substrate specificities can be useful in industrial applications. Accordingly, the aim of this study 

is to screen Arabidopsis thaliana putative lipases. Arabidopsis thaliana is chosen since it is a 

model plant organism with its genome sequenced. The strategy followed begins by cloning open 

reading frames that have sequences similar to known lipases, obtained from Arabidopsis 

Biological Research Center into Pichia pastoris expression vectors. Pichia pastoris is the host of 

expression because it is a host that is suitable for high yield expression without the requirement 

of time-consuming purification steps. The sequence verified constructs being transformed into 

Pichia pastoris are expressed in small scale in order to screen their lipase activities through a 

robust fluorogenic activity assay using 4-methylumbelliferryl derived substrates. The screening 
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performed in this study investigated twenty seven putative Arabidopsis lipase activities and 

resulted in seven proteins of particular interest that can be further investigated through large scale 

expressions. The open reading frames screened in this study were successfully cloned into Pichia 

pastoris expression vectors; hence the constructs for large scale expressions are available. These 

constructs can be directly used for further investigation that may result in the annotation of new 

Arabidopsis thaliana lipases of commercial value in industrial applications. 
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Özet 

Lipazlar asilgliserollarda bulunan karboksil ester bağlarını hidrolize eden enzimlerdir. Bitki 

lipazlarının bulunması ilgi duyulan bir alandır çünkü bu lipazların belli substratlara karşı spesifik 

olduğu düşünülmektedir ve bu özellikleri endüstride kullanılabilir. Bu çalışmanın amacı 

Arabidopsis thaliana lipazlarının taranmasıdır. Arabidopsis thaliana seçilmiştir çünkü bütün 

genomu sekanslanmış bir model organizmadır. Kullanılan strateji Arabidopsis thaliana’nın 

bilinen lipazlara benzer sekanstaki genlerini Pichia pastoris ekspresyon vektörlerine klonlamakla 

başlamaktadır. Pichia pastoris ekspresyon sistemi olarak seçilmiştir çünkü yüksek miktarda 

protein üretebilen bir sistemdir ve bu proteinler zahmetli pürifikasyon yöntemleri kullanılmadan 

çalışılabilir.  Sekansı doğrulanmış klonlar Pichia pastoris’e aktarılıp küçük miktarlarda ekspres 

edilmiştir. Küçük miktarlarda, 4-metilumbelliferil substratları kullanılarak bu lipazlar floresan 

test ile taranmıştır. Bu çalışma sonucunda 27 Arabidopsis lipaz aktiviteleri çalışılmıştır ve 7 
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tanesinin daha ilerideki alışmalar da kullanılmasına karar verilmiştir. Bu klonlar Pichia 

pastoris’te yüksek miktarda üretilmeye hazır durumdalar; böylece hızlıca yüksek miktarlarda 

üretilip çalışılabilirler. Sonuç olarak endüstriyel uygulamalarda kullanılabilecek Arabidopsis 

thaliana lipazları bulunabilir.   
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1 I�TRODUCTIO� 

Lipases are a group of enzymes that hydrolyze the carboxyl ester bonds in 

acylglycerols releasing organic acids and glycerols. True lipases (EC 3.1.1.3) are 

classified as enzymes catalyzing the hydrolysis of long-chain acylglycerols at an 

oil/water interface. Our major concern in this study is triacylglycerol acylhydrolases 

that act on triacylglycerols to liberate fatty acids and glycerols. 

Studies on the known structures of lipases led to the finding that they have a 

characteristic α/β hydrolase fold with an active site consisting of serine-aspartate or 

glutamate-histidine. Around the active site serine, a consensus sequence of Gly-Xxx-

Ser-Xxx-Gly is found, where Xxx can be any amino acid except proline (Nardini et al., 

1999; Ueda et al, 2002). This active site is covered by an amphipathic helix called the 

lid, involved in interfacial activation at an oil/water interface. Explicitly, for the 

hydrolysis reaction to occur, the lid is displaced so that the substrate reaches the active 

site.       

Lipases are ubiquitous enzymes. Many lipases from microbial origins, animals 

and plants have been found and characterized (Prim et al., 2003) though little is known 

on plant lipases as compared to mammalian and microbial lipases. These enzymes are 

recognized as valuable biocatalysts because they can be used in various industrial 

applications. In food, detergent, cosmetics and pharmaceutical industries, lipases 

possess an important role. The great versatility of lipases in industrial applications is not 

only due to the hydrolysis reactions they catalyze but also due to the synthesis reactions 

they can catalyze. Their stability in organic solvents enables them to catalyze synthesis 

reaction in the absence of bulk water amounts. Moreover, they have a wide range of 

substrates and they do not require cofactors. Examples of lipase catalyzed reactions 

include esterification, transesterification, interesterification and aminolysis reactions 

(Krishna et al., 2007).  

Unique properties of lipases that make them important biocatalysts are their 

substrate specificity that can be either through regiospecificity, fatty acid specificity and 
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enantioselectivity. That is, there are lipases that can distinguish between primary and 

secondary ester bonds. Additionally there are lipases that are specific toward certain 

fatty acids although these enzymes are few as compared to those that are fatty acid 

chain length specific. The most important specificity that is of utmost use in organic 

chemistry is the enantioselectivity of lipases. That is to say, lipases can be used in 

kinetic resolution of chiral enantiomers (Ghanem et al., 2005).  

Although very little is known on plant lipases, their versatile substrate specificities 

make their identification and characterization an interesting area of research. Since in 

plants, triacylglycerol lipases are thought to play an important role during germination 

and post-germinative embryonic growth by hydrolyzing the triacylglycerol lipases into 

fatty acids, plant TAG lipases have been purified from seedling sources of oilseed 

plants such as rapeseed, castor bean, mustard and maize (El-Kouhen et al., 2005). In 

fact this physiological role of plant lipases is supported by the finding that patatin 

domain triacylglycerol lipase from Arabidopsis seeds is associated with the oil body of 

the seed extracts in vivo (Eastmond, 2006). The fact that plant lipases can be extracted 

from safe and cheap starting materials as germinating seeds by relatively simpler 

methods make them potential substitutes of microbial lipases in industrial applications. 

Rapeseed lipases and oat lipases are some major examples of lipases used as 

biocatalysts of commercial value. The drawback of studying plant lipases is their low 

activity and transient expression in germinating seeds until the plant can support itself 

photosynthetically.  

Arabidopsis thaliana is also an oil seed plant; accordingly, as expected crude 

extracts of Arabidopsis seedlings have lipase activity. However, this activity is also low 

(Verger et al., 2000). When the lipase consensus sequence (PROSITE pattern PS00120) 

was searched for similarities in the Arabidopsis genome, approximately 50 proteins 

with sequence similarities towards TAG lipases were found. Experimentally though, 

three such genes were annotated as lipases through direct assays. These lipases were 

characterized by El-Kouhen et al., Padham et al., and Eastmond et al.  

As mentioned, Arabidopsis lipases have a low activity; hence their activity should 

be determined through sensitive assays and specific assays. Accordingly, radiometric, 

chromogenic or fluorogenic methods should be preferred. Although traditional assays 

using radiolabelled triacylglycerols are very sensitive, these methods are not preferred 

because they cannot be measured continuously. Besides, these methods are expensive. 

On the other hand, chromogenic and fluorogenic methods are sensitive and continuous 
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but their drawback is that artificial esters can undergo non-enzymic hydrolysis. That is 

to say, these assays are non-specific but can be scaled to 96-well format. Due to these 

mentioned problems, Verger and others set up a lipase assay using a naturally 

fluorescent substrate, parinaric acid. This is a TAG purified from Parinari glaberrimum 

seed oil. Upon hydrolysis, the released parinaric acid shows increased fluorescence, in 

the presence of detergents, proportional to the amount of lipase added in the assay. This 

new method also can be scaled to microtiter-plate measurements and can detect low 

lipase levels (Verger et al., 2000).            

The fact that Arabidopsis thaliana genome contains approximately 50 hits that 

share homologies with known lipases suggests that these genes can show unique 

substrate specificities with much abundance and versatility. Consequently, in this study 

the Arabidopsis genome was searched for cDNA’s coding for proteins with amino acid 

sequences similar to the known lipase sequences. 40 such genes were purchased from 

The Arabidopsis Information Resource (TAIR) to be cloned, expressed and 

characterized. 

The aim of this study is therefore to develop a high-throughput method to clone 

these 40 genes, to express them and to perform lipase activity assays on them as a 

means of starting to characterize them. Consequenly, to achieve this aim, Pichia 

pastoris is chosen as the expression host. This is so because Pichia provides an easy and 

fast processing of the expressed proteins if vectors that carry an extracellular signal 

sequence are used. In this study, pPICZ derived vectors carrying α-mating factor pre-

pro leader sequence (α-MF) of Saccharomyces cerevisiae are used for extracellular 

expression. Moreover, the use of the Pichia pastoris expression system rather than 

Escherichia coli for the expression of eukaryotic proteins, as is the case in this study, is 

more advantageous because most post-translational modifications like glycosylation, 

disulfide bond formation and proteolytic processing can be performed (Daly and Hearn, 

2005). After the expression of the putative Arabidopsis lipases, assays that can be 

performed in microtiter-plate format are done in order to enable the initial 

characterization of the putative lipases in a high-throughput manner. Fluorogenic assays 

using esters of 4-methylumbelliferone that are commercially available in various acyl 

chain lengths are more specific than chromogenic methods; consequently, fluorogenic 

assays are performed in this study as a means of rapid and sensitive activity 

determination against various substrates.  
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Development of such a technique and determination of new plant lipases with 

unique substrate specificities from cheap and biologically safe material can be 

commercially valuable since lipases with new catalytic properties may have tremendous 

potential in industrial applications. 

 

 

 

 

2 OVERVIEW 

2.1 Historical Background on Lipases 

2.1.1 Introduction to Lipases and Lipase Catalyzed Reactions 

Lipases are a group of enzymes that belong to the class of alpha/beta hydrolases 

(Ollis et al., 1992). These enzymes express versatile activities; that is to say, they can 

show phospholipase, cutinase, amidase, cholesterol esterase and other esterase activities 

(Bornscheuer et al., 1999). Lipases of our concern are triacylglycerol acylhydrolases 

(belonging to the EC.3.1.1.3 group) catalyze the hydrolysis of triacylglycerols into fatty 

acids and glycerol at an oil-water interface (Schmid et al., 1998). Other than hydrolysis 

reactions, lipases can catalyze other reactions as well. These reactions are shown in the 

figure below. 
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Figure  2-1 Lipase catalyzed reactions (Krishna et al., 2007). 

 

The hydrolysis reaction of lipases is carried at an oil-water interface due to the fact 

that the natural substrates; of lipases, i.e. triacylglycerols, are insoluble in water (Gupta 

et al., 2004). This feature is called interfacial activation which was understood when the 

structural features of the lipases were elucidated. Lipase activity is increased at 

interface; nevertheless this does not mean that they do not show activity in bulk 

solutions (Verger, 1997). 

 



 6 

2.1.2 Structural Features of Lipases 

2.1.2.1 α/β Hydrolase Fold 

The three dimensional structure of Rhizomucor miehei was the first structure 

to be solved in 1990 (Cygler et al., 1997). This result showed that this lipase had 

an α/β hydrolase fold. Later, it was elucidated that lipases with known 3-D 

structures showed the same fold (Ollis et al., 1992). That is, lipases contain a 

central β-sheet consisting of approximately eight paralel β-strands that are 

connected by around six α-helices (Schmidt-Dannert, 1999).  

 

Figure  2-2 α/β hydrolase fold: Central β-sheet of eight β-strands (drawn as blue arrows) are 

connected by six α-helices (drawn as red cylinders) (Ollis et al., 1992). 

 

2.1.2.2 The Catalytic Triad and the Lid 

The configurations of the amino acid side chains were found to be 

stereochemically similar to that of serine proteases (Mukherjee et al., 2002). The 

active site of lipases consists of a catalytic triad of histidine, serine and aspartate 

or glutamate residues. These residues of the catalytic triad are shown in Figure 2-2 
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above. Similar to serine proteases, the catalytic residue in lipases is serine which 

is present on a loop as shown in figure 2-3.  

 

Figure  2-3 Overall Structure of lipase based on the crystal structure of Humicola lanuginosa;  

Β-sheets are shown as blue arrows, α-helices are shown in yellow, catalytic Serine is shown in 

red sticks and the lid is shown in red (Svendsen, 2000).   

Around the active site serine, a consensus sequence of Gly-Xxx-Ser-Xxx-Gly is 

found, where Xxx can be any amino acid except proline (Nardini et al., 1999; Ueda et 

al, 2002). However, in contrast to serine proteases, the active site of lipases is covered 

by a so-called “lid”, which is an amphipathic helix (Mukeherjee et al., 2002). The 

solved 3-D structures of lipases showed that some, but not all, have a lid which has to 

be displaced from above the active site during interfacial activation. Although 

interfacial activation property of lipases had been used to define them and to distinguish 

them from esterases, it is no longer true due to the presence of lipases with no lids. 

Accordingly, lipases have been defined as carboxylesterases that hydrolyse long-chain 

acylglycerols (Verger, 1997). 

Lipases can be of different origin. One of the most important features of diverse 

types of lipases from different sources is their substrate specificities. To find out the 

molecular mechanism behind substrate specificity, four main microbial lipase families 

have been analyzed with respect to the properties and shape of the fatty acid binding 

sites. These four main families are shown in Table 2-1. These families were classified 

according to their homology.  
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Table  2-1 Homologues microbial lipase families, sequences and X-ray structures (Schmidt-

Dannert, 1999) 

 

  

The members of the four lipase families are then divided into three subgroups 

according to their substrate binding sites. Namely, the subgroups are those lipases with 

crevice-like binding site near the surface, those with funnel-like binding site, and those 

with a tunnel-like binding site. These subgroups are shown in Table 2-2 below. 

 

Table  2-2 Subgrouping of lipases according to their fatty acid binding sites (Schmidt-Dannert, 

1999) 
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2.1.3 Reaction Mechanism of Lipases 

The hydrolysis of esters is a five-step process. Firstly, a carboxylic acid ester 

binds via a hydrogen bond to the residues of the oxyanion hole. The Michaelis complex 

is formed. 

In the resting state of the enzyme, the side chain hydroxyl proton of the active 

serine is part of a hydrogen bonding network comprising the catalytic triad. The oxygen 

of serine thus becomes more nucleophilic and can attack the carbon atom of the 

substrate. The negative charge of the serine is further moved to the ester oxygen and 

stabilised by H-bonds from different amino acid residues of the oxyanion hole. The 

resulting positive charge is located at the catalytic histidine and stabilized by the active 

site aspartate or glutamate, respectively. As a result, the first tetrahedral transition state 

is formed.  

The active site histidine transfers the intermediately bound proton to the ester 

oxygen. The negative charge is then transferred from the oxyanion to the ester oxygen. 

The ester bond is then cleaved leading to an acylated enzyme and an alcohol molecule. 

Afterwards the alcohol in the binding site is replaced by a water molecule. Inverting the 

first steps, the water molecule binds to the acyl enzyme. A second tetrahedral 

intermediate is formed. Finally, the active site histidine transfers its proton to the serine 

and the ester has been cleaved (Figure 2-4). 
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Figure  2-4 Reaction mechanism of lipases (Rusnak, 2004) 

 

2.1.4 Substrate Specificity of Lipases 

Substrate specificity can be achieved through regiospecificity, fatty acid 

specificity and enantioselectivity (Gupta et al., 2004).  
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2.1.4.1 Regiospecificity 

Some lipases are regiospecific. That is, some lipases are 1,3 regiospecific; thus 

have the ability to distinguish between primary ester bonds (ester bonds at C1 and C3 

positions) and secondary ester bonds (Stadler et al., 1995). Accordingly, they 

preferentially hydrolyze triacylglycerols at sn-1 and sn-3 positions rather than sn-2 

positions and result in the production of 1,2(2,3)-diacylglyceride and 2-

monoacylglyceride. The sn positions are seen in the figure below:  

 

 

Figure  2-5 Positions of the glycerol moieties with the corresponding sn designations 

For example, lipases from “Bacillus sp. (Sugihara et al. 1991; Lanser et al., 2002), 

B. subtilis 168 (Lesuisse et al., 1993), Bacillus sp. THL027 (Dharmsthiti and Luchai, 

1999), Pseudomonas sp. f-B-24 (Yamamoto and Fujiwara, 1988, 1995), P. aeruginosa 

EF2 (Gilbert et al., 1991b) and P. alcaligenes 24 (Misset et al., 1994) were found to be 

regiospecific lipases. 

 

2.1.4.2 Fatty Acid Selectivity 

With respect to fatty acid selectivity, most lipases show fatty acid chain length 

specificity rather than fatty acid selectivity (Gupta et al., 2004). For example, lipases 

from Bacillus sp. (Wang et al., 1995), P. alcaligenes EF2 (Gilbert et al. 1991a, 1991b) 

and P. alcaligenes 24 (Misset et al., 1994) were found to be specific for long-chain fatty 

acids; on the other hand, lipases from B. subtilis 168 (Lesuisse et al., 1993), Bacillus sp. 

THL027 (Dharmsthiti and Luchai, 1999), P. Aeruginosa 10145 (Finkelstein et al., 

1970), P. fluorescens (Sugiura et al., 1977), Pseudomonas sp. ATCC 21808 (Kordel et 
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al., 1991), C. viscosum (Horiuti and Imamura, 1977) and Aeromonas hydrophila 

(Angultra et al. 1993) show preferential activity towards small or medium chain fatty 

acids. An example of a lipase that is known to show fatty acid selectivity is lipase from 

Achromobacterium lipolyticum (Davranov, 1994). 

 

2.1.4.3 Enantioselectivity 

Another important property of lipases based on substrate specificity is their 

enantioselectivity. That is, some lipases have the property of discriminating between the 

enantiomers of a racemic mixture (Reetz 2001). Most of the Pseudomonas family 

lipases have this property (Reetz and Jaeger 1998). This feature is quite important in the 

field of organic synthesis and pharmaceuticals.  

 

2.1.5 Plant Lipases 

Examples given above are microbial lipases. However, lipases are ubiquitous 

enzymes that can be obtained from microbial organisms, animals and plants. Although 

microbial lipases have been widely studied and have been found to be very important 

for industrial applications, there is growing interest in identifying plant lipases and 

using them as biocatalysts in industry. This is so because of the special properties of 

plant lipases, such as substrate specificity (Huang et al., 1988), and the cheap starting 

materials as dormant or germinating seeds (Kumarjee, 1994). Isolation of plant lipases 

by relatively simpler methods is another issue that makes the use of plant lipases in 

areas of commercial interest advantageous (Hassanien et al., 1986).  

Major group of plant lipases consist of triacyglycerol acylhydrolases that 

hydrolyze the storage triacylglycerols in oil seeds. These lipases can be characterized as 

‘true’ lipases. Plant lipases other than triacylglycerol acylhydrolases are characterized 

into two groups: 

i) Non-specific acyl hydrolases that show the combinatorial effect of 

phospholipases A1 (EC 3.1.1.32), A2 (EC 3.1.1.4), B (EC 3.1.1.5), 

glycolipase, sulpholipase and monoacylglycerol lipase. 



 13 

ii) Phospholipase C (EC 3.1.4.3) and phospholipase D (EC 3.1.4.4) (Mukherjee, 

1994). 

In plants, triacylglycerols have been purified and characterized from rapeseed 

(Hills et al., 1990, O'Sullivan et al., 1990), castor bean (Ory et al., 1962), peanut 

(Sanders et al., 1975), maize (Lin et al., 1983), oat (Martin et al., 1953) rice bran 

(Funatsu et al., 1971) and potato tubers (Hasson et al., 1976). 

2.1.5.1 Applications of Plant Lipases 

Applications of plant lipases in lipid biotechnology mainly involved the use of 

their “unique substrate specificities” (Kumarjee, 1994).  

For example, in the case of oilseeds lipases were found to be abundant transiently 

in germinating oilseeds. Hence to obtain lipase preparations in a simple way, seedlings 

have been homogenized in Tricine buffer (pH 7.5) and then the sample has been 

centrifuged to obtain crude lipase preparations that can be directly used in biocatalysis 

reactions. (Hassanien, 1986)   

Rapeseed lipase has been used in esterification and hydrolysis reactions to 

selectively discriminate against fatty acids with cis-6 or cis-4 double bond. That is, this 

lipase was used to increase the amount of γ-linolenic acid via kinetic resolution (Hills et 

al., 1989, Hills et al., 1990). 

Explicitly,          

 

Figure  2-6 Esterification reactions of fatty acids of evening Primrose oil 

Above is an esterification reaction that is carried out at 30ºC in hexane. Since 

rapeseed lipase is selective against γ-linolenic acid, the amount of the fatty acid 

increased from 10% in the initial material to 65% after 72 hours of reaction (Hills et al., 

1989). The same kind of increase in the relative proportion of γ-linolenic acid can be 

increased through a selective hydrolysis reaction as well (Hills et al., 1989).  
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The hydrolysis reaction is: 

 

 

Figure  2-7 Hydrolysis reaction of triacylglycerols of evening Primrose oil 

In the above selective hydrolysis reaction, the content of γ-linolenic acid in the 

unhydrolyzed acylglycerols increased from 10% to 28% after 60 minutes of reaction. 

Another important property of rapeseed lipases is that they can esterify acids into 

primary alcohols only; rather than secondary or tertiary alcohols (Hills et al., 1991). 

Consequently, “designed” esters can be synthesized through the use of rapeseed lipases.  

Oat lipase is an example of another plant lipase that shows fatty acid chain length 

selectivity. It was found to rapidly hydrolyze oleoyl, elaidoyl, linoleoyl and linolenoyl 

moieties; on the other hand, palmitoyl, stearoyl and petroselenoyl moieties were 

selected against (Piazza et al., 1992).  

Another plant lipase that shows regioselectivity is lipase from rice bran. This 

lipase preferentially cleaves fatty acids at sn 1, 3 positions (Funatsu et al., 1971). An 

additional example of a plant lipase used in biocatalysis is lipase from cotton plant that 

is used in transesterification reactions (Kadyrova et al., 1983).  

Thanks to the above mentioned substrate specificities of different plant lipases, 

plants can be substitutes for microbial lipases in biocatalysis reactions (Palocci et al., 

2003). However, the problem with plant lipases is that their activities are low. Usually, 

the hydrolysis rate was found to be less than 0.5µmol/min/mg. This problem was 

overcome through the characterization of lipases from Euphorbia characias latex or, in 

other words, laticifers (Palocci et al., 2003). Besides, as compared to microbial lipases, 

little is known about plant lipases. Their regulation, subcellular localisation and 

physiological roles are not known. However, it is known that they play an essential role 

during seed germination and embryonal growth following germination. Their role has 

been identified to be the mobilization of lipid storages in the seed (Bhardwaj et al., 
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2001). Once plant lipases catalyze the hydrolysis triacylglycerols into free fatty acids 

and glycerol, the fatty acids are carried to glyoxysomes where they are converted to 

acyl-CoAs. Acyl-CoAs are then catabolyzed by β-oxidation into acetyl-CoA which is 

ultimately converted to sugar by gluconeogenesis (Eastmond, 2006). Since plant lipases 

are active during germination and post-germinative embryonal growth, their expression 

is transient (Huang et al., 1984). This poses another problem but once these problems 

are overcome, they can be important biocatalysts coming from a safe source that is 

available (Caro et al., 2000; Ncube et al. 1995).  

 

2.1.5.2 Arabidopsis thaliana Lipases 

Arabidopsis thaliana is a model dicot plant from mustard family. Since good 

lypolytic activity has been obtained from germinating mustard oilseeds (Mukherjee et 

al., 2002), then it has been suggested that Arabidopsis thaliana triacylglycerol (TAG) 

lipases can also show good activity. 

The Arabidopsis Information Resource (TAIR) shows that there are 50 genes that 

are annotated as triacylglycerol lipases. However, only three of these were annotated 

based on direct enzymatic assays. The rest were annotated due to computational 

predictions.  

The three triacylglycerol lipases were characterized by El-Kouhen et al., Padham 

et al., and Eastmond et al. El-Kouhen and others identified and characterized an 

Arabidopsis triacylglycerol lipase that is homologous to mammalian acid lipases. They 

used the lipase consensus sequence (PROSITE pattern PS00120) around the catalytic 

active site serine to search for Arabidopsis proteins. They identified more than 50 hits 

that shared homologies with known lipases and worked on At2g15230 gene that was 

shown to encode a protein that exhibits 30% identity towards human gastric and human 

lysosomal acid lipases.  

The protein was extracted directly by the homogenization of the seedlings and 

lypolytic activity was isolated simply by centrifugation. This lipase was found to 

preferentially cleave long-chain fatty acids with a specific activity of 45 µmol/min/mg 

protein (El-Khouhen et al., 2005). This was found to be above the specific activities of 
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expressed plant cDNA’s towards long chain triacylglycerols, which were found to be 

around 10-3 µmol/min/mg protein (Ishiguro et al., 2001; Hong et al., 2000).  

Eastmond investigated the sugar-dependent1 (sdp1) gene. This gene was 

identified by screening randomly mutagenised Arabidopsis thaliana seeds for stunted 

post-germinative growth that can be overcome by injection of sucrose. From these 

mutants, loci associated with the defective phenotype were found and one of them 

showing low activity in TAG hydrolysis was chosen for further investigation:  sdp1. 

Positional cloning of sdp1 led to the finding that the encoded protein contains a patatin-

like domain (Pfam 01734). This domain has the “conserved Ser esterase motif 

(GXSXG)” (Eastmond, 2006). Although patatin is not active against TAG, patatin-like 

proteins from yeast and animals have been characterized as new TAG lipases (Anderson 

et al, 2002; Athenstaedt and Daum, 2003, 2005). Accordingly, the lypolytic activity of 

SDP1 was determined in vitro against TAG’s using [14C] triolein with a specific activity 

approximately 40 µmol/min/mg protein. This lipase was then characterized further by 

testing its activity against other substrates. It exhibited activity against long- and 

medium-chain saturated fatty acids and long-chain polyunsaturated fatty acids. The fact 

that the enzyme was more active against TAG than against diacylglycerol (DAG) and 

that it could not hydrolyze monoacylglycerol (MAG) suggested that this lipase is 

involved in the initial step of oil mobilization in germinating seeds. Consistent with this 

suggestion was the finding that SDP1 fused to GFP was localized with oil body 

membranes in vivo (Eastmond, 2006).         

Padham and others used the full-length cDNA, At2g31690, from Arabidopsis that 

encodes a protein with GenBank accession number AAD24845. They obtained the 

cDNA by reverse-transcription PCR of the RNA from rosette leaves of 6 week old 

plants. This cDNA was chosen to be studied because the inferred amino acid sequence 

contained the active site sequence of lipases; i.e. [LIV]-X-[LIVAFY]-[LIAMVST]-G-

[HYWV]-S-X-G-[GSTAC]. In addition, it was revealed by BLAST search that this 

protein showed 73% identity to another putative Arabidopsis TAG lipase. Based upon 

this computational prediction, to characterize this protein as a true lipase, the cDNA’s 

were overexpressed in Escherichia coli as maltose binding protein (MBP) fusion 

proteins. MBP was used to purify the recombinant protein and to immobilize the fusion 

protein on amylose resin so that the activity tests can be applied in vitro. The rate of 

hydrolysis of TAG trilinolein (18:2) was measured in vitro. The mature protein 

AAD24845 fused to MBP was found to show increased activity when compared with 
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the activity of control MBP. By mature protein it was meant that the inferred protein 

AAD24845 originally had a transit peptide at its N-terminus that is cleaved; apparently 

for the protein to take on its active form. In this way, this protein was characterized as 

an Arabidopsis lipase. Besides, functional analysis had been made. Accordingly, it was 

revealed that this lipase was colocalized with neutral lipids in the chloroplast 

plastoglobuli and the suppression of the expression of this lipase curtailed growth 

(Padham et al., 2007). This is consistent with the predicted role of lipases in plants; that 

is, they mobilize fatty acids from plastoglobuli of chloroplasts. 

Phospholipases have also been characterized in Arabidopsis thaliana. 

DEFECTIVE I ATHER DEHISCECE 1 (DAD1) gene has been revealed to encode 

phopholipase A1, enzyme catalyzing the deesterification of sn1 fatty acids of 

phospholipids (Ishiguro et al., 2001). Another Arabidopsis phospholipase that is UV-B 

inducible has also been characterized by Lo and others (Lo et al., 2004).  

 

2.2 Methodological Background 

In this section, a methodological background on lipase activity assay and Pichia 

pastoris expression system will be provided. 

 

2.2.1 Methods to Measure Lipase Activities in Vitro 

Lipases are enzymes that have a wide range of substrates; hence, there are a large 

number of assays developed to detect their activities. Since lipases are involved in a 

wide scope of physiological and industrial applications, development and optimization 

of sensitive and efficient in vitro assays becomes crucial for studying the activities of 

novel lipases. Here, an overview of common assays used for lipases will be presented 

with an emphasis on assays for lipases acting on triacylglycerols (Gilham and Lehner, 

2004).  
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2.2.1.1 Titration 

Titration is a traditional method to measure lipase activity. The amount of 

released fatty acids is measured via titration with sodium hydroxide (Stadler et al., 

1995). The drawback of this method is that it is not very sensitive. Activities above 1 

µmol/min are required for the assay to be considered reliable. Another problem is that it 

is not easy to measure acidic lipolysis since fatty acids are not totally ionized at low pH. 

Thus, this may lead to inacuurate measurements (Gilham and Lehner, 2004).  

 

2.2.1.2 Chromogenic Assays 

2.2.1.2.1 Para-�itrophenyl Esters 

p-Nitrophenol esters with various lengths of acyl side chains are commercially 

available. Laurate, palmitate and oleate are examples of long-chain esters whereas 

acetate and butyrate are short-chain esters. Acetate or butyrate esters are used to test 

esterase activity. To determine lipase activity, long-chain esters should be used. The 

problem with long-chain esters is that they are not readily solubilized in aqueous 

buffers; therefore emulsifying agents that would not inhibit lipase activity have to be 

utilized. For instance, the group of Gilham and Lehner used 0.01% Gum Arabic as the 

emulsifying agent (Kordel et al., 1991). Their reaction buffer contained 20mM Tris-HCl 

(pH 8.0), 150 mM NaCl and 0.01% Triton X-100.  

After the hydrolysis reaction, p-nitrophenol is released and the amount of 

liberated p-nitrophenol is measured spectrophotometrically at 410 nm. A blank without 

the enzyme should be used as a control. The advantages of this method are that it can be 

scaled into 96-well format and it requires commonly available equipments in the lab. 

Besides, kinetic measurements can be taken. The drawbacks of the method are that non-

specific hydrolysis can occur; especially if short-chain esters are used. This kind of 

hydrolysis can be due to non-specific esterases or non-enzymatic proteins such as serum 

albumin or insulin. Another disadvantage is that the absorbance of p-nitrophenol varies 
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with pH but this problem can be overcome by using standards at different pH values 

(Gilham and Lehner, 2004).     

 

2.2.1.2.2 �aphtyl Esters 

Naphtyl esters of various chain lengths are also commercially available. Upon 

hydrolysis, naphtol is released. This molecule forms a colored product upon reacting 

with a diazonium salt. Absorbance of this colored product is measured at 560 nm in a 

ultraviolet-visible spectrophotometer (Gilham and Lehner, 2004).  

For the reaction of lipases with napthyl esters, Gandolfi and others used a reaction 

medium of 100 mM Tris-HCl (pH 7.0) with 10 mg of Gum Arabic and 200 mg of 

sodium dioctyl sulfosuccinate (Galdolfi et al., 2000).  

The advantages and the disadvantages of using these esters are the same as those 

for p-nitrophenyl esters (Gilham and Lehner, 2004).  

 

2.2.1.2.3 Resorufin Esters 

For another type of colorimetric assay, triacylglycerol analogues that have 

incorporated resorufin are used as chromogenic substrates for lipases. The figure below 

shows the structure of 1,2-dilauryl-rac-glycero-3-glutaric acid resorufin ester and the 

products of hydrolysis occurring at the ester bonds.  
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Figure  2-8 The chemical structure of 1,2-dilauryl-rac-glycero-3-glutaric acid resorufin ester and 

the products of hydrolysis occurring at the ester bonds-glutaric acid – resorufin ester and 

resorufin (Gilham and Lehner, 2004).  

 

Mass spectrometry results have shown that the abundant product resulting from 

this hydrolysis reaction by a lipase is free resorufin the absorbance of which can be 

measured spectrophotometrically at 572 nm (Bothner et al., 2000).  

The reaction buffer used by Lehner and Verger consisted of 20 mM Tris-HCl (pH 

8.0), 150 mM NaCl, and 0.05% Triton X-100. Further dilution of the substrate was 

performed in 20 mM Tris-HCl (pH 8.0), 150 mM NaCl, and 1 mM sodium 

taurodeoxycholate (Lehner and Verger, 1997). This method can also be scaled down to 

96 well format and kinetic measurements can be taken by taking absorbance 

measurements at 572 nm. A drawback of this assay is that since resorufin is polycyclic 

and not aliphatic as a fatty acid, it may not be hydrolyzed by some lipases (Gilham and 

Lehner, 2004).  
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2.2.1.3 Quantitation of Released Fatty Acids 

2.2.1.3.1 Turbidometric Method 

Turbidometric method is a spectroscopic assay that relies on increase in turbidity 

upon precipitation of the released fatty acids using calcium. Spectroscopic 

measurements are taken at 500 nm (Tigerstrom et al., 1989). This method was found to 

be more sensitive than titrimetric and chromogenic assays using p-nitrophenyl esters. 

Obviously this method cannot be used to measure lipase activity in turbid solutions, 

such as cell extracts. The reaction buffer for this assay consists of 20 mM Tris-HCl (pH 

8.0), 1.8% Tween 20 (by volume) and 3 mM CaCl2 (Gilham and Lehner, 2004).  

 

2.2.1.3.2 Chromatography 

Chromatographic methods are methods that directly determine the released fatty 

acids allowing the use of the naturally occurring lipid substrates. This is crucial for 

characterization of lipases. The problem with chromatographic methods is that only end 

point analyses can be made (Gilham and Lehner, 2004).  

 

2.2.1.3.2.1 Thin Layer Chromatography 

In TLC, radioactively labelled triacylglycerols are used and the quantity of 

released fatty acids are detected by densitometric, autoradiographic or scintillation 

counting. These methods carry the advantage of being very sensitive but include the 

disadvantages of radioactivity handling and time-consuming procedures (Gilham and 

Lehner, 2004).    

 

2.2.1.3.2.2 Gas Chromatography 

Mono-, di- and triacylglycerols and free glycerols released from lipase catalyzed 

hydrolysis reactions can be determined quantitatively using gas chromatography using 

an internal standard such as tridecanoylglycerol. This method is sensitive but requires 
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purified lipases to be used. The facts that the equipment is expensive and the procedure 

is laborious are other drawbacks of the method (Gilham and Lehner, 2004).     

 

2.2.1.3.2.3 High Performance Liquid Chromatography 

HPLC can be used to identify either the remaining acylglycerols or the released 

fatty acids in lipase catalyzed hydrolysis reactions. Identification and quantization of the 

fatty acids rely on the use of known standard. As in GC, HPLC is a useful method for 

determining the substrate specificities of lipases. However, this also is an expensive 

method and is time-consuming (Gilham and Lehner, 2004).     

 

2.2.1.4 Fluorescent Assays 

Fluorescent assay provide a quick, simple and sensitive method of activity 

determination through the use of fluorescently labeled substrates. The types of 

substrates used are listed below. Optimization of any one of the assays mentioned is 

very important for characterization of lipases and esterases. Since there are many non-

specific esterases present in biological samples long acyl-chain acyl-glycerols should be 

used to determine true triacylglycerol lipase activity. 

 

2.2.1.4.1 Pyrene 

In fluorescent assays, once hydrolyzed, reaction products become fluorescent. The 

advantages of using fluorescent substrates are that kinetic measurements can be taken; 

moreover, fluorescent assays are very sensitive. Besides, they are less affected by the 

turbidity of reaction solutions (Gilham and Lehner, 2004).       

One type of fluorescent enzyme assay uses triacylglycerols labeled with a 

fluorescent moiety such as pyrene (Thuren, 1987). In this method a quencher should 

also be introduced into the substrate molecule to lower the basal level of fluorescence. 

Then as the substrate is cleaved by a lipase, the increase in fluorescence is measured 
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continuously at 375 nm (excitation 342 nm). Duque et al., proposed a protocol where 

the pyrene labeled substrate was dissolved in tetrahydrofuran (Duque et al., 1996). 

Another method of measuring lipase activity with the use of pyrene involves 1,2-

dioleoyl-3-(1-pyren-1-yl)decanoyl-rac-glycerol triacylglycerol analogue which contains 

a pyrene decanoic acid at a primary position of a triacylglycerol as one of the fatty acyl 

groups. This method gets use of the unique fluorescence property of pyrene that forms 

excimers when in close proximity. During the assay, the decrease in excimer 

fluorescence is measured as pyrene is liberated. Alternatively, an increase in pyrene 

fluorescence in the aqueous phase can be analyzed if the aqueous phase, containing 

liberated pyrene, is extracted with organic solvent. Since the ester linkage is at a 

primary position, total lipase activity will not be reflected by this method. Another 

drawback of the method is that triacylglycerols with modified pyrene moieties may be 

poorly hydrolyzed by some lipases due to steric hindrance. Despite these drawbacks, 

this assay is useful in the sense that it is sensitive and reproducible (Gilham and Lehner, 

2004).  

 

 

2.2.1.4.2 4-methylumbelliferone (4MU) 

Esters of 4-methylumbelliferone are commercially available in various acyl chain 

lengths; hence can be used as substrate analogues of lipases in fluorogenic assays (Jacks 

et al., 1967). 4-methylumbelliferyl heptanoate (MUH) is commonly used in lipase 

assays rather than 4-MU-butyrate since MUH is insoluble in water and is not easily 

hydrolyzed by non-specific esterases. A protocol provided by Gilham and Lehner states 

that a stock solution of MUH is prepared in tetrahydrofuran and is diluted in a reaction 

buffer containing 20 mM Tris-HCl (pH 8.0), 1 mM EDTA and 300 µM sodium 

taurodeoxycholate. As the ester bond is hydrolyzed, fluorescent compound is released 

and the increase in fluorescence can be measured kinetically at excitation/emission 

wavelengths 355/460 nm. The pros of this method are its sensitivity and the fact that it 

can be scaled down to 96-well format. The disadvantages include the substrate 

resembling monoacylglycerol rather than triacylglycerols (see Figure 7) and being 

spontaneously hydrolyzed (Gilham and Lehner, 2004).  
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Figure  2-9 Chemical structure of MUH 

 

 

2.2.1.4.3 Resorufin 

Resorufin esters mentioned before as a chromogenic substrate can also be used as 

fluorescent substrates the hydrolysis of which can be measured kinetically at 

excitation/emission wavelengths 544/590 nm. The reaction buffer can be the same as 

that used for 4-MU esters (Gilham and Lehner, 2004).  

 

2.2.2 Assaying Arabidopsis thaliana Lipases 

Plant lipases are very low in abundance; thus, it is hard to purify amounts 

sufficient to study them in detail. That is why not too much is known on plant lipases. 

Moreover, Arabidopsis thaliana lipases show a very low activity even in the 

germinating oil seedlings extracts. Therefore development of sensitive and specific 

assays is crucial; furthermore a continuous assay is preferred. Accordingly, although 

assays using radiolabelled triacylglycerols are very sensitive, these methods cannot be 

measured continuously. Besides, these methods are expensive. On the other hand, 

chromogenic and fluorogenic methods are sensitive and continuous but their drawback 
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is that artificial esters can undergo non-enzymic hydrolysis. That is to say, these assays 

are non-specific (Verger et al., 2000).  

Due to these mentioned problems, Verger and others set up a lipase assay using a 

naturally fluorescent substrate, parinaric acid. This is a TAG purified from Parinari 

glaberrimum seed oil. The excitation and emission wavelengths were found to be 324 

and 420 nm, respectively. Almost half of the fatty acids obtained from Parinari oil 

contain the esterified form of parinic acid. Upon hydrolysis, the released parinaric acid 

shows increased fluorescence, in the presence of detergents, proportional to the amount 

of lipase added in the assay. This new method can be scaled to microtiter-plate 

measurements and can detect low lipase levels. The detection limit was found to be 0.1 

ng of human pancreatic lipase in microtiter-plate format using Parinari TAG’s as 

substrates (Beisson et al., 1999). The problem of this method is that the reaction should 

be carried under non-oxidative conditions because parinaric acid can be oxidized by 

atmospheric oxygen.  

 

2.2.3 Pichia pastoris as an Expression System 

For expression of heterologous proteins the methylotrophic yeast Pichia pastoris 

is a highly successful system. Pichia expression system has many important advantages:  

The promoter derived from the alcohol oxidase I gene (AOX1) from Pichia 

pastoris is a very strong and very strictly regulated. The genetic manipulation of this 

system involves quite simple techniques. Pichia pastoris is extremely useful in the 

expression of eukaryotic proteins because most post-translational modifications like 

glycosylation, disulfide bond formation and proteolytic processing can be performed 

(Daly and Hearn, 2005). Furthermore, since Pichia pastoris is a haploid organism, any 

genetic modification is revealed in the phenotype of the next generations (Cregg et al., 

2000). Another advantage of expressing protein in Pichia pastoris is that heterologously 

expressed proteins can be secreted into the medium through the use of secretion signal 

sequences, as the α-mating factor pre-pro leader sequence (α-MF) of Saccharomyces 

cerevisiae that is fused in frame to the gene of interest. Secretion of the expressed 

protein rules out the necessity of cell lysis and isolation of the expressed protein from 

cell extracts. This saves a lot of time. Moreover, high protein yields can be concentrated 
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in the supernatant because Pichia pastoris can grow to very high cell densities. Finally, 

another advantage of Pichia expression is the stability of the expression vectors due to 

the integration into the genome of P. pastoris (Daly and Hearn, 2005). 

2.2.3.1 Strains and Phenotypes 

The choice of a strain depends on the required application. Different strains that 

are available are shown in Table 2-3. 

Table  2-3 Different strains of Pichia pastoris with their genotypes and phenotypes (Daly and 

Hearn, 2005) 

 

 

The above table shows that strains GS115, SMD 118, SMD1165, SMD 1163 and 

KM71 do not have the ability to grow on a media that does not contain histidine 

because they are defective in the histidine dehydrogenase gene (his4). Those strains 

with Mut+ phenotype are “methanol utilization plus” phenotypes and they grow on 

methanol at a normal, wild type rate. Strains with this phenotype have functional copies 

of the alcohol oxidase 1 and 2 genes (AOX1 and AOX2). On the other hand, strains 

with a Muts phenotype have a non-functional AOX1 but a functional AOX2 enzyme. 

AOX2 enzyme has a lower expression level; accordingly methanol is utilized slowly 

giving rise to a “methanol utilization slow” phenotype. Strains that are defective in both 

of the alcohol oxidase genes are said to have the Mut-: “methanol utilization minus” 

phenotype (Daly and Hearn, 2005). 
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2.2.3.2 Expression Vectors 

The choice of expression vector to be used also depends on the required 

application. There are many vectors available for both extracellular and intracellular 

expression. The first P. pastoris expression vectors are pHIL-D2 or pPIC9. They contain 

a functional copy of the histidine dehydrogenase gene that can be used for selection of 

positive transformants. From these vectors, pPIC9K was derived by adding GS418 

(kanamycin) gene.  

pPICZ derived vectors confer the antibiotic zeocin resistance though the Sh ble 

gene. These vectors have either AOX1 or GAP promoter. They may also contain α-

mating factor pre-pro leader sequence (α-MF) for extracellular expression. Additionally, 

there are also vectors that do not contain signal sequence (Daly and Hearn 2005).  

 

2.2.3.3 Choice of Promoter 

The most widely used promoter is the AOX1 promoter because it is a strong 

promoter. The product of this gene is the alcohol oxidase enzyme and it regulates the 

methanol utilization of the cells (Cregg et al., 1993). A benefit of this promoter is that it 

can be switched off in the presence of glycerol or glucose. In this way toxic proteins 

may be expressed in P. pastoris because the protein expression will be induced once a 

biomass is established in repressive media (Waterham et al., 1997).  

AOX2 is another promoter is P. pastoris; however it is a weak promoter. It is 

involved in only 10% of the production of the AOX enzyme. An alternative to the AOX 

promoters is the glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter. This 

promoter is a constitutive promoter that leads to high levels of protein production. 

Nevertheless, this constitutive expression can lead to cytotoxic effects in the cells.  

The promoter of the gene encoding formaldehyde dehydrogenase, FLD1, is 

another alternative promoter. This promoter is also induced by methanol and it requires 

a nitrogen source such as ammonium sulphate (Gellissen, 2000). 
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2.2.3.4 Culture Conditions 

Culture conditions are important parameters that should be optimized for efficient 

P. pastoris expression.  

In shake-flasks, limited aeration is one of the constraints of high level expression. 

For this reason baffled flasks are used to improve the level of expression (Vilatte et al., 

2001). 

A small-scale expression condition improving the level of expression in Pichia 

was developed by Barr et al. In this method the cells are grown to very high cell 

densities and then the cells are centrifuged and resuspended in small volumes of 

induction medium (Barr et al., 1992).  

Another important parameter is the concentration of methanol since too much 

methanol may lead to methanol accumulation in the medium which may have adverse 

effects on the cells. Typically, 0.5-1.0% v/v methanol concentrations are used (Daly and 

Hearn, 2005).  

Additionally, the components and the pH of the media affect the expression 

levels. For instance, when the medium was found to be buffered between pH 3.0 and 

6.0, the amount of proteolysis was found to be reduced (Daly and Hearn, 2005). 
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3 MATERIALS A�D METHODS 

3.1 Materials  

3.1.1 Chemicals 

All of the chemicals used are listed in Appendix. 

 

3.1.2 Molecular Biology Kits 

All of the molecular biology kits used for plasmid isolation, gel extraction and 

PCR purification are listed in Appendix. 

 

3.1.3 Equipment 

General laboratory equipments that are used are listed in Appendix. 

 

3.1.4 Buffers and Solutions 

Standard buffers and solutions are prepared according to Molecular Cloning:  A 

Laboratory Manual, Sambrook et al., 2001.  
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3.1.5 Strains 

For subcloning purposes Escherichia coli XL1-Blue cells are used. 

During expression studies, Pichia pastoris KM71H cells are used. 

3.1.6 Media 

E. coli strains were grown on LB (Luria-Bertani) plates or liquid media with the 

appropriate selection antibiotic. This mixture contains the tryptone, yeast extract, and 

sodium chloride, which are mixed in appropriate amounts. 20 g of LB Broth was used 

for preparation of 1 L liquid medium. The liquid medium was autoclaved at 121ºC for 

20 min. before using. 

Low Salt LB medium is used for strains grown under zeocin selection. 

P. pastoris strains are grown on YPD (Yeast Peptone Dextrose) plates containing 

1% yeast extract, 2% peptone, 2% dextrose. 2% agar is added if YPD plates are to be 

used. Plates older than a month were not used. 

3.1.7 Plasmids and Vectors 

Putative lipase ORF’s purchased from ABRC (USA).  

pPICZalphaA, pPICZalphaB and pPICZalphaC vectors are purchased from 

Invitrogen. 

 

3.1.8 Primers 

All primers are purchased from Microsynth (CH). The primers are diluted using 

PCR grade water according to the manufacturer’s instructions.  
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F_(EcoRI)-pPICZaA 

GATGAATTCCATCATCATCATCATCATCATAGGCCAGAAGGAGATATA 

ACCATG 

F_(PstI)-pPICZaB 

GATCTGCAGGACATCATCATCATCATCATAGGCCAGAAGGAGATATAA

CCATG 

F_(ClaI)-pPICZaC 

GATATCGATCCATCATCATCATCATCATAGGCCAGAAGGAGATATAAC

CATG 

R_(�otI)pPICZaABC 

CTCGGCGGCCGCTAGAATTGTGAGCGCT 

R_(XbaI)pPICZaABC 

GATTCTAGATGTGAGCGCTCACAATTCTA 

 

3.1.9 Enzymes 

EcoRI, PstI, ClaI, otI, XbaI, BamHI, HindIII, SacI, PmeI restriction 

endonucleases (Fermentas) 

T4 DNA ligase (Fermentas) 

Klenow fragment (Fermentas) 

Shrimp Alkaline Phosphatase (SAP) (Fermentas) 

Pfu Polymerase (Fermentas) 

Taq Polymerase (Fermentas) 

 

3.1.10 Sequencing 

Sequencing service was commercially provided by MacLab.  
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3.2 Methods  

3.2.1 Cloning of the Putative Lipase Open Reading Frames into pPICZalphaA, 

pPICZalphaB and pPICZalphaC Vectors 

3.2.1.1 Polymerase Chain Reaction by Pfu Polymerase 

Those putative lipase genes that do not have an EcoRI site nor a otI sit were 

amplified with F_(EcoRI)-pPICZaA and R_(�otI)pPICZaABC. 

Those putative lipase genes that do not have an PstI site nor a otI site inside 

were amplified with F_(PstI)-pPICZaB and R_(�otI)pPICZaABC. 

Those putative lipase genes that do not have an ClaI site nor a otI site inside 

were amplified with F_(ClaI)-pPICZaC and R_(�otI)pPICZaABC. 

The PCR conditions were as follows:  initial denaturation at 94ºC for 2 minutes 

followed by 30 cycles of denaturation step (at 94ºC for 15 seconds), annealing step (at 

53ºC for 30 seconds) and an extension step (at 72ºC for 120 seconds). These cycles were 

then followed by a final extesion step at 72ºC for 7 minutes. 

 

3.2.1.2 Gel Extraction of the PCR Products 

The PCR products were run at 80V for 90 minutes using 1.2% agarose gels. 

Agarose gels were prepared using 1X TBE (Tris-Borate-EDTA) that had been prepared 

acording to the protocol in Molecular Cloning:  A Laboratory Manual, Sambrook et al., 

2001. Qiagen gel extraction kit was then used.  
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3.2.1.3 Restriction of the PCR Products 

Restriction of the PCR products were done according to the protocols provided by 

Fermentas. 

 

3.2.1.4 Phenol/Chloroform Extraction of the Restriction 

Products 

Restriction products were first diluted to 100 µl. Half volume of 

Phenol/Chloroform/Isoamylalcohol are added to the samples and mixed. The samples 

were then centrifuged for 10 minutes at 14,500 rpm and the upper phase was taken into 

fresh tubes. Then, to this phase 1/10 volume of 3M sodium acetate and 2.5 volumes of 

absolute ethanol was added. The mixture was centrifuged for 5 minutes at 14,500 rpm 

and the supernatant was discarded. The pellet was then rinsed with 70% ethanol twice 

and air-dired. Finally, the samples were eluted in appropriate volumes of elution buffer 

(EB).   

 

3.2.1.5 Digestion of the Vectors 

pPICZαA vectors were digested with EcoRI and otI. 

pPICZαB vectors  were digested with PstI and otI. 

pPICZαC vectors  were digested with ClaI and otI. 

Digestions were done according to the protocols provided by Fermentas. 

 

3.2.1.6 Gel Extraction of the Vectors 

The cut vectors were run at 80V for 90 minutes using 1.2% agarose gels. 

Agarose gels were prepared using 1X TBE (Tris-Borate-EDTA) that had been 

prepared acording to the protocol in Molecular Cloning:  A Laboratory Manual, 
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Sambrook et al., 2001. Qiagen gel extraction kit was then used to extract the 

vectors.  

 

3.2.1.7 Ligation 

Vectors extracted from gel were ligated with their corresponding 

phenol/chloroform extracted inserts in a 3:1 insert:vector ratio according to the protocol 

provided by Fermentas. 

pPICZαA vectors were ligated with insert that are digested by EcoRI and otI. 

Similarly, pPICZαB vectors were ligated with insert that are digested by PstI and otI 

and pPICZαC vectors were ligated with insert that are digested by ClaI and otI. 

 

3.2.1.8 Transformation into Competent XL1-Blue Cells 

Competent cells were prepared according to the protocol in Molecular Cloning:  A 

Laboratory Manual, Sambrook et al., 2001. The competent cells were taken from the -

80ºC refrigerator and kept on ice until they melt. Once the competent cells melt, 100µl 

of cells were added onto the ligation products in 1.5 ml eppendorf tubes cooled on ice 

before addition. The tubes were then kept on ice for 30 minutes. Heat shock was 

performed to the cells at 42ºC for 90 seconds. The tubes were then placed on ice again 

for 2 minutes and 750µl of SOC medium was added on the cells and the cells were 

incubated at 37ºC in the shaker for 45 minutes-1 hour, at 225 rpm. The cells were then 

centrifuged for 1 minute at 7000 rpm in a bench top centrifuge. Finally, in the laminar 

flow, the supernatant was removed until 100µl is left behind in each tube. The pellet is 

then gently resuspended in the 100µl of SOC medium and then 100 µl of the 

transformation mix was spread on LB-Zeocin plates containing 10-12 glass beads. Then 

the plates were incubated at 37ºC overnight for the cells to grow.  
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3.2.1.9 Colony PCR of Bacterial Cells 

Colony PCR’s on bacterial colonies were performed using Taq polymerase. The 

primers used were F_alpha and R_(NotI)-pPICZaABC.  

To set up the PCR reaction a very small amount of the colonies were taken using a 

micropippette tip. Then the tip was the placed in the PCR tube and turned around 

firmly. Then to each tube 5 µl of ddH2O was added and the tubes were kept at 95ºC for 

5 minutes. Then the PCR master mix was added to each tube and the PCR reaction was 

started. The PCR conditions were as follows: initial denaturation at 94ºC for 5 minutes 

followed by 32 cycles of denaturation step (at 94ºC for 30 seconds), annealing step (at 

53ºC for 30 seconds) and an extension step (at 72ºC for 90 seconds). These cycles were 

then followed by a final extesion step at 72ºC for 7 minutes. 

 

 

3.2.1.10 Culture Growth of Selected Colonies  

Colonies that gave positive PCR result were chosen for growth in liquid media. 

Colonies were selected and grown overnight (for 12-16 hours) in LB medium 

containing 25 µg/ml zeocin at 37ºC shaker. Glycerol stocks from these cultures were 

prepared according to Molecular Cloning:  A Laboratory Manual, Sambrook et al., 

2001.  

 

3.2.1.11 Plasmid Isolation 

Qiagen miniprep kit was used for plasmid isolations. 
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3.2.1.12 Restriction Analysis and Sequencing 

Restriction analysis of the isolated plasmids was done by digesting the plasmids 

with the appropriate enzymes and final confirmation of the clones was done by 

sequencing. 

 

3.2.2 Transformation into Pichia pastoris  

Restriction of positive clones with SacI, PmeI or BglII 

 

Restrictions were done according to the protocols provided by Fermentas. Those 

constructs containing only one recognition site of SacI were restricted by SacI 

preferably. If more than 1 restriction sites are present, then constructs are screened for 

restriction sites of PmeI and BstXI in the order of preference listed.  

 

 

Transformation 

 

The P. Pastoris KM71H strain was grown in 5 ml YPD overnight. The cells were 

then transferred into a larger volume of YPD such that the OD is 0.1-0.2. Once the OD 

reached 1.6 OD, 10 ml of cells were centrifuged at 2500 rpm, 10 min at 4ºC for 1 

transformation. The cells were resuspended in 8 ml of transformation buffer (100 mM 

LiAc, 100 mM DTT, 0.6 M Sorbitol, 10 mM Tris-HCl, pH 7.5) and incubated at room 

temperature for 30 minutes. Following a second centrifugation, the cells were 

resuspended in 1.5 mL of ice cold 1M Sorbitol and washed 3 times with 1.5 mL of 1M 

sorbitol. Finally, the cells are aliquoted in 80 µl of 1M sorbitol.  

These competent cells were then mixed with 3-5 ng of restricted plasmids that 

will be transformed. The mixed samples were then electroporated at 1500 V, 175 Ω and 

25 µF. Following electroporation, 1 mL of 1M sorbitol was added to the cells and the 

cells were shaken at 30ºC for one hour. Finally, they are spread on YPD plates 

containing 100 µg/ml zeocin.   
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Colony PCR 

 

Colony PCR’s on yeast colonies were performed using Taq polymerase. The 

primers used were F_alpha and R_(NotI)-pPICZaABC.  

To set up the PCR reaction a very small amount of the colonies was taken using a 

micropippette tip. Then the tip was the placed in the PCR tube and the tubes were 

heated in a microwave at maximum heat for 3 minutes. Then the PCR master mix was 

added to each tube and the PCR reaction was started. The PCR conditions were as 

follows: initial denaturation at 94ºC for 5 minutes followed by 32 cycles of denaturation 

step (at 94ºC for 30 seconds), annealing step ( at 53ºC for 30 seconds) and an extension 

step (at 72ºC for 90 seconds). These cycles were then followed by a final extesion step 

at 72ºC for 7 minutes. 

 

 

 

3.2.3 Expression 

After the colony PCR positive P. pastoris clones were chosen for expression and 

grown in YPD overnight. The next day, 2 ml of the cells were transferred into 100 ml 

BMG (containing 100 mM potassium phosphate buffer, pH 6.0, 1.34% Yeast Nitrogen 

Base, 4 x 10-5 % biotin, and 1% glycerol in ddH2O) and grown overnight. The next day, 

the cells were centrifuged at 2500 rpm for 5 minutes and the cells were then 

resuspended in 50 ml of BMM (containing 100 mM potassium phosphate buffer, pH 

6.0, 1.34% Yeast Nitrogen Base,4 x 10-5 % biotin and 0.5% methanol in ddH2O such 

that the starting OD for each culture is 30. First sample is taken. Then every 24 hour, a 

sample was taken and 5g/L of 100% methanol was given to the samples.  

 

3.2.4 Lipase Activity Assays 

The supernatants of the final samples of 50 ml expressions were used directly as 

the source of enzymes in the assays. SpectraMax Gemini XS from Molecular Devices 

(US) spectrofluorometer was used to measure fluorescence.  
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For each assay, standards giving the relative fluorescent units (RFU) 

corresponding to 50 µM, 25 µM, 12.5 µM, 6.25 µM, 3.13 µM, 1.56 µM, 0.78 µM, 0 

µM of 4-MU in 100mM Tris-HCl buffer (pH 7.25) and ddH2O.  

For fluorescent  assays, 96-well black microtiter plates (Costar) were used. To 

each well, 50 µl of 400 mM Tris-HCl (pH 7.25), 50 µl ddH2O and 50 µl of the 

expressed samples were added. Then, just before the readings were initialized, 50 µl of 

1mM 4-MU derived fluorescent substrates were added and the measurements were 

taken. The substrates used were 4-MU Butyrate, 4-MU Caprylate and 4-MU Caproate. 

During the assay, initial sample taken just after the methanol induction began was the 

blank of the assay for each expressed clone.  

 

3.2.5 SDS-PAGE 

SDS-PAGE gels were prepared and run according to the protocol in Molecular 

Cloning:  A Laboratory Manual, Sambrook et al., 2001.  

 

3.2.6 Western Blotting 

10% SDS-polyacrylamide gel was blotted on PVDF membrane at 200 mA 

constant current for 2 hours using the semi-dry blotting apparatus. Blotted membrane 

was blocked in blocking solution on orbital shaker overnight at 4ºC temperature. After 

washing the membrane in 1X TBS with 0.1% tween, the membrane was incubated with 

anti-his-HRP antibody (Roche) for 1 hour at room temperature. The membrane was then 

treated with ECL Advance Western Blotting Detection Kit (Amersham Biosciences) 

and resulting signals were analyzed by Hyperfilm ECL (Amersham Biosciences). 
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4 RESULTS  

The 40 open reading frames (ORF’s) were purchased from the Arabidopsis 

Biological Research Center were chosen such that they share similarities with known 

lipase sequences and are in pUNI51 vector (universal vector). The table below shows 

the ABRC codes of these ORF’s and the Sabanci University (SU) codes given to them 

for this study along with the length of the sequences and the number of the restriction 

sites present within the sequences. This table also provides the expected molecular 

weight (MW) and the isoelectric point (pI) of the translation products of the ORF’s. 
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Table  4-1 Open Reading Frames          

    Restiction Sites       
SU 

Code 
ABRC 
Code ClaI PstI EcoRI �otI 

MW 
(Da) pI 

length 
(bp) 

U001 U09178 0 1 1 0 39285 6,25 1087 
U002 U10431 1 0 3 0 43024 4,97 1204 
U004 U21413 0 1 0 0 41960 10,12 1149 
U005 U21152 0 0 0 0 39575 6,26 1089 
U006 U09850 0 0 0 0 35245 6,91 967 
U007 U10780 0 1 0 0 39599 5,15 1117 
U008 U10478 0 0 0 0 35705  7,83  985 
U009 U09165 1 0 0 0 66123 6,51 1746 
U010 U09272 0 2 0 0 69683 6,66  1870 
U011 U09873 0 0 1 0 71691 5,85  1872 
U012 U09966 0 0 1 0 50767 10,29  1423 
U013 U10266 1 0 1 0 46057  4,88  1270 
U014 U10446 1 0 0 0 60403  7,05  1621 
U015 U12336 0 0 2 0 42427 6,30 753 
U016 U12620 0 0 1 0 43611  8,62  1182 
U017 U12709 1 0 1 0 36401  5,89  954 
U018 U13183 1 2 0 0 40142 4,97  1095 
U019 U13701 0 0 0 0 44061  7,82  1179 
U020 U13852 0 0 0 0 41801  8,05  1119 
U021 U14275 0 0 0 0 41595 7,72 1155 
U022 U14432 1 0 1 0 96893 6,94 2547 
U023 U14443 0 0 0 0 60428 6,18 1584 
U024 U14794 0 0 1 0 39816 8,57 1056 
U025 U14845 0 0 0 0 15161 5,42 420 
U029 U18922 2 1 0 0 48124 9,22 1333 
U030 U19788 0 0 1 0 41555 8,77 1162 
U031 U21453 1 0 0 0 27156 6,42 729 
U032 U21478 0 0 1 0 71737 5,76 1890 
U033 U21703 0 1 1 0 58181 9,36 1572 
U034 U22031 1 0 0 0 79533 7,01 2106 
U101 U82581 0 0 1 0 44338 5,61 1182 
U102 U60295 1 0 0 0 79533 7,01 1125 
U103 U10742 1 0 1 0 80144 7,82 2146 
U104 U22182 1 0 0 0 54882 9,05 1440 
U105 U13565 1 1 0 0 50291 8,56 1335 
U106 C104831 1 0 1 0 54205 5,17 1441 
U107 U67611 0 0 0 0 40781 6,52 1077 
U108 U13081 0 0 1 0 78494 5,17 2142 
U109 U13874 1 1 0 0 73151 8,85 1950 
U110 U20520 1 1 1 0 40004 4,90 1134 
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4.1 PCR Based Cloning of the Putative Lipase ORF’s into pPICZalpha derived 

Vectors 

Those genes not containing an EcoRI and otI sites were cloned into 

pPICZalphaA vectors via PCR based cloning. Those clones and the primers are 

listed in the table below. 

Table  4-2 SU Codes of the ORF's cloned into pPICZalphaA vector 

SU Code Primers 

U002 

U006 

U007 

U008 

U010 

U014 

U017 

U018 

U020 

U021 

U029 

U109 

F_(EcoRI)-pPICZaA, 
R_(NotI)-pPICZaABC 

 



 42 

 

Table  4-3 SU Codes of the ORF's cloned into pPICZalphaB vector 

SU Code Primers 

U005 

U009 

U011 

U012 

U013 

U015 

U016 

U017 

U019 

U022 

U023 

U024 

U025 

U030 

U031 

U032 

U034 

U101 

U102 

U103 

U104 

U106 

U107 

U108 

F_(PstI)-pPICZaB, 
R_(NotI)-pPICZaABC 
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Table  4-4 SU Codes of the ORF's cloned into pPICZalphaC vector 

 

SU Code Primers 

U001 

U004 

U033 

F_(ClaI)-pPICZaC, 
R_(NotI)-pPICZaABC 

 

 

The above clones were PCR amplified using Pfu DNA polymerase. 
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Figure  4-1 PCR results of the UXXX ORF’s 
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All of the above were successfully amplified except U16 which gave a PCR result 

indicating a sequence length shorter than the length of the U16 ORF.  

The PCR products were gel extracted, purified and digested. The ORF’s in Table 

4-1 were digested by EcoRI and otI. Those listed in Table 4-2 were digested by PstI 

and otI. On the other hand, those in Table 4-3 were digested by ClaI and otI. 

Restriction products were then phenol/chloroform extracted.  

The vectors were digested at the same time. pPICZalphaA was digested by EcoRI 

and otI. pPICZalphaB was digested by PstI and otI. On the other hand, 

pPICZalphaCwas digested by ClaI and otI. Figure below shows the digestion results.  

 

 

Figure  4-2 Digestion of Vectors 

 

The PCR amplified and restricted inserts listed in Table 4-1 were ligated into 

pPICZalphaA vector. Similarly, those listed in Table 4-2 were ligated into pPICZalphaB 

vector and those listed in Table 4-3 were ligated into pPICZalphaC vector. 

After the transformation of the ligation mixtures into E. coli XL1-blue strains, the 

colonies in LS-LB-Zeocin plates that give positive colony PCR results were chosen and 

confirmed further by restriction analysis. Since there are too many colony PCR results, 

these data are not shown. For further confirmation, the plasmids isolated from positive 

colonies were analyzed by restriction analysis. Insertion of the ORF’s in table 4-1 was 

checked by restriction analysis with EcoRI and otI. Likewise, Insertion of the ORF’s 

in table 4-2 was checked by restriction analysis with PstI and otI and insertion of the 
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ORF’s in table 4-3 was checked by restriction analysis with ClaI and otI. Below are 

the results.  

 

 

Figure  4-3 Restriction Analysis of Positive Clones 

For further confirmation, the clones were also cut asymmetrically from the inside 

of the ORF’s; however, the results of this analysis are not shown for simplicity. 

Finally, sequencing results showed which ORF’s were successfully inserted into 

pPICZalpha A, B and C vectors.  
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Table  4-5 Clones that are sequence verified 

Clones Sequence Verified 
Confirmed by Restriction 

Analysis 
U002 √ √ 
U006 √ √ 
U007 √ √ 
U008 √ √ 
U009 √ √ 
U010 √ √ 
U011 X √ 
U013 √ √ 
U014 √ √ 
U015 √ √ 
U017 √ √ 
U018 √ √ 
U019 X √ 
U020 √ √ 
U021 √ √ 
U022 √ √ 
U023 √ √ 
U024 √ √ 
U025 √ √ 
U029 √ √ 
U030 √ √ 
U031 √ √ 
U032 √ √ 
U033 √ √ 
U034 √ √ 
U101 √ √ 
U102 √ √ 
U103 √ √ 
U104 X X 
U105 √ √ 
U106 √ √ 
U107 X X 
U108 √ √ 
U109 X X 

   

Those clones that have been sequence verified were transformed into Pichia 

pastoris. Randomly chosen colonies on YPD-Zeocin plates were screened by colony 

PCR.  

Colonies that have been shown to have the clones integrated in their genome were 

streaked 2-3 times on YPD-Zeocin plates prior to expression.  
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Expressions in P. pastoris were carried out for 6-7 days in 50 mL scale. In the end 

of the expression, lipase activity assays were performed directly using the supernatants. 

4.2 Activity Assays 

Fluorescent activity assays were performed using 4-MU derived substrates in 

SpectraMax Gemini-XS spectrofluorometer. 

Prior to the assays, different types of substrates in our hands were tested for their 

stability in the reaction medium. 4-MU Caproate, 4-MU Laurate, 4-MU Caprylate, 4-

MU Palmitate, 4-MU Elaidate, 4-MU Butyrate and 4-MU acetate were tested. In the 

end, 4-MU Butyrate was chosen as the substrate with medium chain length; whereas, 4-

MU Caprylate was chosen as the substrate for long chain length since they were stable 

in reaction medium and resulted in low fluorescent readings. 

Firstly, the assays were performed directly on 100 µl of the supernatants of Pichia 

expressions. As an example, one of the expressed clones will be taken into 

consideration and the calculations done will be shown on that clone. Since there are too 

many assays done, the results will be given directly for the rest. Taking the activity of 

U5-4 against 4MU-Butyrate into consideration, firstly a standard curve was drawn 

showing how much relative fluorescence unit corresponds to a certain concentration of 

4-MU released. Different concentrations of 4-Mu’s prepared were 250 µM, 125 µM, 

62.5 µM, 31.25 µM, 15.625 µM, 7.8125 µM, 3.906 µM and 0 µM in Tris-HCl buffer 

(pH 7.25) and water. The points that distrupt the linearity were thrown, in this case the 

data for 250 µM, and a trendline was added. According to the equation of the trendline, 

the velocity values provided by the software of the fluorimeter are converted from 

milliunits per minute to µM of 4-MU released per minute. For U5-2, the standard curve 

is shown in Figure 4-4. 
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RFU versus Concentration of 4MU (uM)
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Figure  4-4 Standard Curve for U5-2 supernatant 

The velocities of the final expression sample of U5-2 was given to be 474473.4 

milliunits per minute. This results in (474473.4 -1743.6) / 291.7 = 1620.603 nM of 4-

MU released per minute. The blank was the fluorescence provided by 4-MU-Butyrate in 

reaction buffer. The blank resulted in 56.48 µM of 4-MU released per minute. This 

value was subtracted from 1620.603 and the activity of U5-2 was found to be 1564.125 

µM of 4-MU released per minute. For 200 microliter reaction 1nM 4MU equals to 0.2 

nmol 4MU; so 1564.125 µM is equal to 312.825 nmol 4MU / min. Figure 4-5 also 

shows how the activity increases with increasing days of expression.  
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 Figure  4-5 Kinetic Assay on U5-2 Expression Samples: ○ Blank Sample, □ Day 5 Sample, ∆ 

Day 6 Sample, ◊ Day 7 Sample. 

Similarly, the same calculation was applied to all samples. The table below shows 

only the significant activities obtained.  

Table  4-6 Activities of the Given Samples against 4MU-Butyrate 

Samples nmol 4MU-Butyrate/min  

U004 106.234 

U005 312.824 

U008 86.000 

U010 55.830 

U017 91.770 

U020 94.084 

U021 99.754 

U022 36.568 

  

The activities of some other samples were measured after freeze-thawing the 

samples. This resulted in very little activity. 
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Table  4-7 Activities of the given samples against 4MU-Butyrate after freeze-thawing 

Samples nmol 4MU-Butyrate/min 

U002 3.360 

U006 1.004 

U007 2.484 

U008 2.204 

U009 0.000 

U013 0.216 

U015 0.502 

U019 0.000 

U024 2.644 

U032 4.216 

U103 2.818 

U106 1.622 

U108 2.576 

 

To see whether the activity will increase if the samples are concentrated or not, all 

of the samples in our hands were lyophilized. 3 ml of the samples were lyophilized and 

dissolved in 300 µl of ddH2O.  The samples were then passed through desalting 

columns and their activities were measured against 4MU-Caprylate and 4MU-Butyrate. 

The figures below show that towards 4-MU Caprylate, the activity is increased. As 

blank, the substrates in reaction buffer are used.  
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Table  4-8 Activities of the given samples against 4MU-Caprylate and 4MU-Butyrate  

Samples Substrates 

 nmol 4MU- Caprylate/min  nmol 4MU-Butyrate/min 
U002 51.657 40.756 

U006 80.692 3.638 

U007 70.028 2.592 

U008 79.530 14.670 

U009 7.376 7.660 

U010 0.238 4.886 

U013 3.178 7.300 

U014 29.370 21.192 

U017 2.428 7.164 

U018 112.712 36.458 

U020 0.000 4.444 

U021 0.000 4.574 

U024 0.306 4.020 

U029 28.750 5.116 

U030 94.842 24.392 

U032 120.086 47.440 

U103 55.572 3.870 

U105 140.852 0.864 

 

These assays were done in replicates and the values provided are the mean values. 

 

The figures below clearly show that for the majority of the samples, activity is higher 

against 4MU-Caprylate than it is against 4MU-Butyrate. 
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Figure  4-6  Comparison of the activities of the supernatants against 4MU-Caprylate and 4MU-Butyrate
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4.3 Domain Search 

The results show that U6, U7, U8, U18, U30, U32 and U105 show distinctive 

activity against caprylate rather than butyrate.  On the other hand, U10, U20, U21, and 

U24 show little activity only towards butyrate. To check whether those proteins with 

significantly higher activity towards 4MU-caprylate have domains different from the 

ones not active against 4MU-caprylate, domains in the putative lipases were searched. 

U10 has Arabidopsis, phospholipase-like domain (InterPro: IPR007942). U20, on the 

other hand, is similar to putative Arabidopsis thaliana myrosinase-associated protein, 

and contains InterPro domain: GDSL-like lipase (InterPro: IPR001087). U21 is found to 

be PLA IIIB/PLP9 (Patatin-like protein 9) and contains InterPro domain Acyl 

transferase/acyl hydrolase/lysophospholipase (InterPro: IPR016035); additionally it 

contains the InterPro domain Patatin; (InterPro: IPR002641). U24 gives hit to 

esterase/lipase/thioesterase family protein; it is similar to esterase/lipase/thioesterase 

family protein of Arabidopsis thaliana (TAIR: AT3G62860.1) and contains the InterPro 

domain Alpha/beta hydrolase; (InterPro: IPR003089) 

With respect to the clones showing high activity towards caprylate, U6 gives hit to 

alpha/beta fold family protein and is found similar to esterase/lipase/thioesterase family 

protein in Arabidopsis thaliana (TAIR:AT3G55180.1). It contains InterPro domain of 

alpha/beta hydrolase; (InterPro: IPR003089) as well as the alpha/beta hydrolase fold-1 

(InterPro: IPR000073). U6 also gave good alignment results with known lipases. This 

result is shown in the appendix section. U7, on the other hand, has the GDSL-motif of 

lipase/hydrolase family proteins and contains the InterPro Lipase, GDSL domain: 

(InterPro: IPR001087). The alignment of U7 is also shown in the appendix section. 

These alignments show that U6 and U7 have the catalytic triad. 

U8 is found similar to hydrolase, alpha/beta fold family protein of Arabidopsis 

thaliana (TAIR: AT2G39410.2) and contains the InterPro domain of alpha/beta 

hydrolase; (InterPro: IPR003089) as well as the alpha/beta hydrolase fold-1 (InterPro: 

IPR000073). 

U18 is similar to GDSL-motif lipase/hydrolase family protein of Arabidopsis 

thaliana (TAIR: AT1G29670.1) and contains the InterPro GDSL-Lipase domain: 
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(InterPro: IPR001087). Likewise, U30 is similar to GDSL-motif lipase/hydrolase family 

protein of Arabidopsis thaliana (TAIR: AT5G37690.1) and contains InterPro domain 

Lipase, GDSL, active site; (InterPro: IPR008265 and InterPro: IPR001087). 

U32 gives hit to lipase class 3 family protein / disease resistance protein-related 

and is similar to signal transducer/triacylglycerol lipase Arabidopsis thaliana  (TAIR: 

AT3G48090.1) and  contains InterPro domain Lipase, class 3; (InterPro: IPR002921). 

Similarly, U105 gives hit to lipase class 3 family protein and is similar to lipase class 3 

family protein of Arabidopsis thaliana (TAIR:AT2G30550.2 and TAIR:AT2G30550.1). 

It contains InterPro domain of Lipase, active site; (InterPro: IPR008262) and InterPro 

domain of Lipase, class 3; (InterPro: IPR002921). 

4.4 SDS-PAGE and Western Blotting 

SDS-PAGE analysis of the expressed proteins did not reveal any distinct bands 

because the abundance of the proteins is too low.  Even when the proteins were 

concentrated 10 times, they could not be detected by visualization of SDS-PAGE gels. 

The concentration levels of the expressed protein that reveal lipase activity against 

4MU-butyrate and 4MU-caprylate are so low that even Western blotting could not 

detect all of the expressed proteins. However, for two of them, bands were observed but 

at a lower molecular weight position.  
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Figure  4-7 Western Blotting Results for U007 and U013 

 

  

 

5 DISCUSSIO� 

One of the aims of this study was to devise a high-throughput method for the 

cloning, transformation and expression of a wide range of open reading frames from 

Arabidopsis Biological Research Center (ABRC). It was to our advantage that the open 

reading frames from ABRC were cloned into pUNI51 (universal) vectors, cloning 

procedure could be carried out in a high-throughput manner through the use of three set 

of primers designed to suit the three different expression vectors: pPICZ alpha A, B and 

C. Since the aim was a rapid screening of all the putative lipase clones in our hands, 

optimization measures were not taken into account for the ORF’s that could not be 

cloned through our setup. Similarly, no optimization was done for transformation into 

Pichia pastoris and expression in this host system.  A method working for most of the 

     U007       U013 

29.8 kDa 
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clones was set up and applied. In this manner, 29 out of 40 ORF’s were successfully 

cloned into Pichia expression vectors and sequence verified. Two of the 40 clones were 

initially discarded because one of them, U016, was not the right open reading frame 

according to the size of the band resulting from PCR amplification and the other one, 

U110, contained all of the three restriction enzyme sites; that is, EcoRI, PstI and ClaI, it 

should not contain in order to be in frame with the extracellular secretion signal of the 

Pichia expression vectors.  

Pichia pastoris was chosen as a host organism for the expression of putative 

lipases. Transformation of expression vectors with the gene of interest into Pichia 

pastoris was performed quickly via electroporation and since the vectors are integrated 

into the genome of the host, a stabilized expression vector Pichia expression system 

suits our aim because it provides an easy and fast method of expressing sufficient 

amounts of proteins since they can grow to high cell densities. Some proteins were 

expressed in very high yields of up to 10 g / l (Cregg et al., 2000). Although E. coli 

expression is also a fast and easy expression system, it is not suitable for functional 

expression of eukaryotic proteins that need post-translational modifications like 

disulphide bond formation, glycosylation and proteolytic processing required for proper 

folding.  Hence, Pichia expression system carries the advantages of both prokaryotic 

and eukaryotic expression systems. As prokaryotic systems, P. pastoris can be grown to 

large quantities in minimal media and as eukaryotic systems, posttranslational 

modifications are performed in P. pastoris. Furthermore, in P. pastoris expression, any 

toxic protein is not secreted into the extracellular medium, a great advantage for 

pharmaceutical use. Pichia pastoris expression is preferred over another eukaryotic 

expression system, Saccharomyces cerevisiae, because it results in higher yields of 

proteins. Moreover, processing of the expressed proteins is feasible if vectors that carry 

an extracellular signal sequence are used. In this study, pPICZ derived vectors carrying 

α-mating factor pre-pro leader sequence (α-MF) of Saccharomyces cerevisiae is used 

for extracellular expression (Daly and Hearn, 2003). Cloning the open reading frames in 

frame with the extracellular signal sequence theoretically should have led to 

extracellular expression of the encoded putative lipases in abundance. For this reason, 

without time-consuming procedures of cell lysing and protein purification, the 

supernatants of the expressions were used for SDS-PAGE gel analysis and activity 

assays.   
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In this manner, all of the ORF’s successfully cloned into expression vectors were 

transformed into Pichia pastoris. Twenty five of these resulted in colonies in YPD-Zeo 

plates that were checked whether they contain the expression vectors integrated into the 

genome by colony PCR. Colonies giving positive colony PCR results were expressed 

(data not shown). As the expressions were finished at the end of the sixth or the seventh 

day, SDS-PAGE gels were run to see whether we could detect the expressed proteins. 

Bands corresponding to the putative lipases were not detected inferring that there was 

either no expression or the proteins were expressed at very low levels. Accordingly, it 

was suggested to perform activity assays on the supernatants.  

Accordingly, activity assays on the supernatants of the 25 expression clones were 

performed. As the method of assay fluorogenic assays using 4-methylumbelliferyl 

derived substrates was chosen because this kind of assays are sensitive enough to detect 

low activities that Arabidopsis lipases exhibit. Besides, this method can be scaled down 

to microtiter-plate format and this is convenient for us because numerous samples can 

be screened for activity at once in a continuous fashion. Esters of 4-

methylumbelliferone are commercially available in various acyl chain lengths; hence 

can be used as substrate analogues of lipases in fluorogenic assays. The disadvantages 

include the substrate resembling monoacylglycerol rather than triacylglycerols and 

being spontaneously hydrolyzed in reaction medium in the absence of lipase activity 

(Gilham and Lehner, 2004). Since literature survey shows that Arabidopsis lipases have 

low activity but high specificity, these may not be the best substrates to test their 

activity (Verger et al., 2000). Additionally, the fluorescent moiety in these artificial 

substrates may cause steric hindrance and this may be the cause of activities lower than 

expected.  

Lipase activity assays are problematic in the sense that there are too many 

parameters that should be optimized for each enzyme in question. Firstly, the pH of the 

reaction medium and the temperature of the reaction should be optimized. However, 

these can be done once the best substrate for each enzyme is found. The preparation of 

the substrate is another important parameter that affects lipase activity. It is better if the 

substrates are emulsified in detergents forming micelles that provide the lipid/water 

interface where lipases can exhibit their activity. Of course this does not mimic the 

physiological conditions of lipases. The choice of the detergent used is crucial. Ma et al. 

reported that sodium taurocholate at a concentration of 7 mM increased the activity of 

the recombinant lipase they studied (Ma et al., 2000) but this should not be taken for 
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granted. For each lipase, the effects of different detergents should be tested since some 

can inhibit lipase activity. For example, Triton X resembles fatty acids and can inhibit 

lipase activity or Tween 20 may itself be hydrolyzed by lipases and compete with the 

intended substrate. Not to defeat the purpose of this study, we could not try the effects 

of different detergents for each of the 25 samples. Therefore, not to investigate the 

effects of different parameters in the activity assays we decided to use Tris-HCl buffer 

with pH 7.25 that is commonly used for most lipases.  

Similarly, we also decided not to add any detergent to our reaction medium; so the 

substrates were prepared in water accordingly; however, they were prepared freshly to 

prevent their degradation. The substrates that remained stable in Tris-HCl buffer (pH 

7.25) were 4MU-caprylate and 4MU-butyrate. Therefore these substrates were used in 

our assays.    

In the first set of assays done on U4, U5, U8, U10, U17, U20, U21, and U22 the 

activities against 4MU-butyrate were investigated as shown in Table 4-6. These 

activities were better than the ones we did later as shown in Table 4-7. One of the 

reasons for this could be the detergent effect. For this assay, 0.02% Triton X-100 was 

added to the reaction medium and the substrate was also diluted in the same medium.  

The addition of this detergent might have had a positive effect but we could not have 

known this until the latter assays were done. Unfortunately, this first set of expressions 

were done in 10 ml expression scale and all the samples left after the assay was done 

were concentrated and used for SDS-PAGE analysis.  

Seeing these promising activities towards 4MU-Butyrate in this first set of 

expressions, these expressions were repeated in a 50 ml expression scale. The rest of the 

clones were also expressed in a 50 ml scale. Unfortunately, U4, U5 and U22 could not 

be expressed again due to contamination problems. The rest of the clones were 

expressed for six days with 0.5% (v/v) of 100% methanol induction given each day. On 

the sixth day, the samples were collected and kept at -20ºC. The second set of assays 

shown in Table 4-7 were done after thawing the samples. It was observed that the 

activities against 4MU-Butyrate were lower than the first set. As mentioned, this might 

be because of the absence of Triton X-100. Another reason for the decreased activity 

may be freeze-thawing the supernatants. It is also probable that the same conditions of 

expression for 10 ml scale may not be sufficient for good expression in 50 ml scale. 

Maybe this time lower amounts of proteins were expressed. Finally, in the second set of 

assays there was a problem with the spectrofluorometer. That is, fluorescence readings 
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corresponding to only 3.13 µM, 1.56 µM, 0.78 µM, 0 µM of 4-MU could be measured; 

the values were saturated for the rest. Accordingly, this did not result in an accurate 

standard curve.  Instead of repeating this experiment, we decided to concentrate the 

expressed samples 10 times through lyophilization. Activity assay results against 4MU-

caprylate and 4MU-butyrate on the concentrated samples are shown in Table 4-8.  

These results showed that activities against 4MU-butyrate were increased as compared 

to the results in Table 4-7. This increase is probably due to concentration of the 

samples. An interesting result is that most of the samples showed high activities towards 

4MU-caprylate rather than 4MU-butyrate. Specifically, the data reveals that U6, U7, 

U8, U18, U30, U32 and U105 putative lipases exhibit substantially higher activity 

against 4MU-caprylate rather than 4MU-butyrate.  

We believe that we were successful in expression because we see activities 

towards 4MU-caprylate in all samples except U20, U21 and U24. Moreover, all except 

U19 and U105 showed low but existing activities towards 4MU-butyrate. These 

samples showing no activities are important for us because they represent the controls in 

this assay. That is, it was mentioned that fluorogenic assays might be non-specific in the 

sense that the fluorescent substrates might undergo spontaneous hydrolysis in water, 

thus the activities in Table 4-8 might infer nonspecific hydrolysis. Nevertheless, U19, 

U20, U21, U24, and U105 show that the activities we see are not due to spontaneous 

hydrolysis or nonspecific esterases that may be present in the medium because the 

medium of all the supernatants in Table 4-8 is the same.   

The finding that we observed activities when the supernatant were concentrated 

was expected because in general plant lipases have low activity. Plant lipases of 

commercial value having activities sufficient to be used in selective esterification, such 

as rapeseed lipases selectively discriminating against cis-6 and cis-4 double bonds, 

possessed such activities because they were directly extracted from plant seedlings 

during germination period when lipases are highly expressed. Hence in those 

extractions, lipases are very abundant. However, this expression is transient and occurs 

only during the germination period. On the other hand, we tried to achieve high yield of 

the expressed proteins in Pichia pastoris by placing the ORF’s under the control of a 

strong promoter AOX1. However, apparently, putative lipases are not very abundant in 

the extracellular medium due to lack of optimization of the expression samples.  

Arabidopsis lipases are even more problematic to detect than other oil plant 

lipases. Their activity is so low that it is difficult to detect them even via sensitive 
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assays such as fluorescent assays that we used. For this reason, Verger et al. suggested 

to use a naturally fluorescent substrate: parinaric acid. This is a TAG purified from 

Parinari glaberrimum seed oil. The excitation and emission wavelengths were found to 

be 324 and 420 nm, respectively. Upon hydrolysis, the released parinaric acid shows 

increased fluorescence, in the presence of detergents, proportional to the amount of 

lipase added in the assay. This new method can also be scaled to microtiter-plate 

measurements and can detect low lipase levels. If this substrate were used, maybe 

higher lipase activities could be detected.  

The supernatants showing lipase activities against 4MU-caprylate and 4MU-

butyrate could not be detected through SDS-PAGE. As mentioned, this is due to the low 

levels of the expressed proteins in the supernatant. The abundance of the expressed 

proteins was so low that the putative lipases could not be detected in concentrated 

supernatants by western blotting as well. U007 and U013 proteins detected by western 

blotting may have lower molecular weights due to degradation. Degradation from a site 

away from the active site might not have affected the activity. 

One of the promising findings of this study was U6, U7, U8, U18, U30, U32 and 

U105 supernatants exhibiting distinctive activity against 4MU-caprylate rather than 

4MU-butyrate. This provides us more insight with regards to substrate specificities of 

Arabidopsis thaliana lipases. This is consistent with literature surveys pointing out the 

potential use of plant lipases as biocatalysts due to heir “unique substrate specificities” 

(Kumarjee et al, 1994). 

It was assumed that these lipases obey the Michaelis-Menten kinetics. 

Accordingly, the substrate concentration was in excess and the linear range of the 

reaction kinetics was used. It should be noted that the activities and specificities 

observed may be apparent. This is so because the substrates do not form a homogeneous 

phase; they form precipitates. This might be the reason why we could not see activities 

in some of the samples. The pH of the reaction may be another reason. These enzymes 

may show better activity at pH 6 for example. Different pH values can be tried but for 

4MU substrates pH values between 6 and 8 are useful because at other pH values the 

substrates are unstable.  

In future studies, optimization of larger scale expressions should be performed to 

detect the lipases, which have been shown to have activities, either in SDS-PAGE or 

Western blotting. Improvement of the activities of the lipases showing specific activity 

against 4MU-caprylate could be another area of growing interest that can be taken into 
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consideration in the future. Literature reviews show that even subtle differences in the 

active site of lipases may have preeminent effects on substrate utilization and selectivity 

(Gilham and Lehner, 2005). Since uncovering of new lipases with different catalytic 

properties, enantioselectivities or substrate specificities is crucial for biocatalysis 

reactions, screening of the open reading frames from ABRC was an important task. It 

pointed out the lipases that can be obtained from safe and cheap starting material and 

this finding can be taken under further investigation.   

 

   

 

 

 

 

 

 

 

 

 

 

 

 

6 CO�CLUSIO� 

In this study, a high-throughput screening method was devised to clone putative 

lipase open reading frames into pPICZalpha A, B and C vectors for expression in Pichia 

pastoris system. Through fluorogenic assays in 96-well format, the activities of the 

expressed proteins were screened and those with considerable activities, especially 

towards 4MU-caprylate, which can be considered as a true lipase substrate, were found. 

Seven of the open reading frames were found to distinctively prefer 4MU-

caprylate cleavage over 4MU-butyrate cleavage. This pointed out one of the most 
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important properties of plant lipases that make them important substitutes of microbial 

lipases: their unique substrate specificities. This study provided us with the insight that 

ABRC open reading frames having sequences similar to known lipases can have 

important substrate specificities. Development of an efficient screening method for 

lipase activity is very important due to the growing interest in the potential use of 

lipases as biocatalysts. Properties of lipases such as their enantioselectivities, fatty acid 

selectivities and regiospecificities enhances growing interest on their identification and 

tailoring such that they suit the needs of pharmaceutical, cosmetic and detergent 

industries.  Lipases coming from a plant source, as in the current study, are preferred 

since plants are a safe and cheap starting material. 

The screening performed in this study investigated twenty seven putative 

Arabidopsis lipase activities and resulted in seven open reading frames of particular 

interest that could be further investigated in large scale expressions.  
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8 APPE�DIX  

Chemicals  

Chemical �ame    Supplier    Catalog �umber 

Acrylamide/Bis-acrylamide  Amresco, USA   0254 

Agar      Merck, Germany   101614 

Agarose Low EO    Applichem, Germany  A2114 

Ammonium persulphate  Sigma, Germany 

Ampicillin     Sigma, Germany   A9518 

Biotin     Calbiochem, Germany  2031 

Coomassie Brilliant Blue  Merck, Germany   115444 

EDTA (Ethylene diamine  Riedel-de Haen, Germany 27248 

tetraacetic acid) 

Ethanol     Riedel-de Haen, Germany 32221 

Ethidium Bromide   Merck, Germany   OCO28942 

D-(+)-glucose    Sigma, Germany   G-7021 

Glycerol     Riedel-de Haen, Germany 15523 

HCl      Merck, Germany   100314 

Isopropanol    Riedel-de Haen, Germany 24137 

Kanamycin     Sigma, Germany   K4000.102 

KH2PO4     Riedel-de Haen, Germany 04243 

K2HPO4     Merck, Germany   105099 
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KOH      Riedel-de Haen, Germany 06005 

Liquid Nitrogen    Karbogaz, Turkey 

Lithium Chloride    Fluka, Switzerland  62478 

Luria Agar     Sigma, Germany   L-3147 

Luria Broth     Sigma, Germany   L-3022 

2-Mercaptoethanol   Aldrich, Germany  M370-1 

Methanol     Riedel-de Haen, Germany 24229 

NaCl      Riedel-de Haen, Germany 13423 

NaOH     Merck, Germany   106462 

PageBlue Protein Stain   Fermentas, Lithuania  R0571  

Peptone     Merck, Germany   107213 

Phenol/Chloroform/   Applichem, Germany  A0889 

Isoamylalcohol 

Sodium Dodecyl Sulphate  Sigma, Germany   L-4390 

Sodium Acetate Trihydrate  Riedel-de Haen, Germany 25022 

D (-) Sorbitol    Applichem, Germany  A2222 

TEMED     Sigma, Germany   T-7029 

Triton X-100    Applichem, Germany  A1388 

Tris      Fluka , Switzerland  93349 

Tween 20     Merck, Germany   822184 

Yeast Extract    Applichem, Germany  A1552 

Yeast Nitrogen Base   Invitrogen, Germany  Q300-07 

(with ammonium sulphate 

without amino acids)  

Zeocin     Invitrogen, Germany  R250  
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Molecular Biology Kits 

ECL Advance Western Blotting Detection Kit  Amersham, Sweden RPN2135 

Qiaquick PCR Purification Kit     Qiagen, Germany 28106 

Qiaquick Gel Extraction Kit     Qiagen, Germany 28706 

 Qiaquick Spin Miniprep Kit     Qiagen, Germany 27106 

Qiagen Plasmid Maxi Kit     Qiagen, Germany 12165 

 

Equipment 

Autoclave:    Hirayama, Hiclave HV-110, JAPAN  

 

Balance:     Sartorius, BP211D, GERMANY  

        Sartorius, BP221S, GERMANY  

       Sartorius, BP610, GERMANY  

 

Centrifuge:    Eppendorf, 5415C, GERMANY  

        Eppendorf, 5415D, GERMANY  

        Eppendorf, 5415R, GERMANY  

       Kendro Lab. Prod., Heraeus Multifuge 3L, GERMANY  

        Hitachi, Sorvall RC5C Plus, USA  

Deepfreeze:    -80ºC, ThermoForma, USA 

-20ºC, Bosch, TURKEY 

 

Distilled Water:   Millipore, Elix-S, FRANCE 

Millipore, MilliQ Academic, FRANCE 

 

Electrophoresis:   Biorad Inc., USA 

 

Electro Cell   BTX, USA 

Manipulator 
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Gel Documentation:  Biorad, UV-Transilluminator 2000, USA 

 

Ice Machine:   Scotsman Inc., AF20, USA 

 

Incubator:    Memmert, Modell 300, GERMANY 

Memmert, Modell 600, GERMANY 

Nuve, EN 120, TURKEY  

 

Laminar Flow:   Kendro Lab. Prod., Heraeus, HeraSafe HS12, GERMANY 

 

Lyophilizer 

 

Magnetic Stirrer:  VELP Scientifica, ARE Heating Magnetic Stirrer, ITALY 

VELP Scientifica, Microstirrer, ITALY 

 

Microliter Pipette:  Gilson, Pipetman, FRANCE 

    Eppendorf, GERMANY 

 

Microwave Oven: Bosch, TURKEY 

 

pH meter:    WTW, pH540 GLP MultiCal®, GERMANY 

 

Power Supply:   Biorad, PowerPac 300, USA 

Wealtec, Elite 300, USA 

 

Refrigerator:   4ºC, Bosch, TURKEY 

 

Shaker:    Forma Scientific, Orbital Shaker 4520, USA 

GFL, Shaker 3011, USA 

New Brunswick Sci., Innova. 4330, USA 

 

Spectrophotometer:  Schimadzu, UV-1208, JAPAN 

Schimadzu, UV-3150, JAPAN 
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Spectrofluorimeter Molecular Devices, SpectraMax Gemini XS 

 

Speed Vacuum:   Savant, Speed Vac® Plus Sc100A, USA 

Savant, Refrigerated Vapor Trap RVT 400, USA 

 

Thermocycler:   Applied Biosystems, GeneAmp PCR System 9700, USA 

 

Water bath:   Huber, Polystat cc1, GERMANY 
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Vectors 

 

 

 

Figure  8-1 Ppıczalpha A,B and C vectors (Invitrogen Manual, 1997) 
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Figure  8-2 pUNI 51 vector (ABRC) 
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Alignments 

 

Figure  8-3 Alignment of U6 with a known lipase sequence 
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Figure  8-4 Alignment of U7 with a known lipase sequence 


