

 FAST, COMPACT AND SECURE IMPLEMENTATION OF

RSA ON DEDICATED HARDWARE

by

ERSIN ÖKSÜZOĞLU

Submitted to the Graduate School of Engineering and

Natural Sciences in partial fulfillment of

the requirements for the degree of

Master of Science

Sabancı University

June 2008

ii

FAST, COMPACT AND SECURE IMPLEMENTATION OF

RSA ON DEDICATED HARDWARE

APPROVED BY:

Associate Prof. Dr. Erkay Savaş:

(Thesis Advisor)

Associate Prof. Dr. Albert Levi:

Assistant Prof. Dr. Đlker Hamzaoğlu:

Assistant Prof. Dr. Ayhan Bozkurt:

Post Doc. Thomas Pedersen:

DATE OF APPROVAL: ……………….

iii

ABSTRACT

 RSA is the most popular Public Key Cryptosystem (PKC) and is heavily used

today. PKC comes into play, when two parties, who have previously never met, want to

create a secure channel between them. The core operation in RSA is modular

multiplication, which requires lots of computational power especially when the

operands are longer than 1024-bits. Although today’s powerful PC’s can easily handle

one RSA operation in a fraction of a second, small devices such as PDA’s, cell phones,

smart cards, etc. have limited computational power, thus there is a need for dedicated

hardware which is specially designed to meet the demand of this heavy calculation.

Additionally, web servers, which thousands of users can access at the same time, need

to perform many PKC operations in a very short time and this can create a performance

bottleneck. Special algorithms implemented on dedicated hardware can take advantage

of true massive parallelism and high utilization of the data path resulting in high

efficiency in terms of both power and execution time while keeping the chip cost low.

We will use the “Montgomery Modular Multiplication” algorithm in our

implementation, which is considered one of the most efficient multiplication schemes,

and has many applications in PKC.

 In the first part of the thesis, our “2048-bit Radix-4 based Modular Multiplier”

design is introduced and compared with the conventional radix-2 modular multipliers of

previous works. Our implementation for 2048-bit modular multiplication features up to

82% shorter execution time with 33% increase in the area over the conventional radix-2

designs and can achieve 132 MHz on a Xilinx xc2v6000 FPGA. The proposed

multiplier has one of the fastest execution times in terms of latency and performs better

than (37% better) our reference radix-2 design in terms of time-area product. The results

are similar in the ASIC case where we implement our design for UMC 0.18 µm

technology.

In the second part, a fast, efficient, and parameterized modular multiplier and a

secure exponentiation circuit intended for inexpensive FPGAs are presented. The design

utilizes hardwired block multipliers as the main functional unit and Block-RAM as

storage unit for the operands. The adopted design methodology allows adjusting the

number of multipliers, the radix used in the multipliers, and number of words to meet

the system requirements such as available resources, precision and timing constraints.

iv

The deployed method is based on the Montgomery modular multiplication algorithm

and the architecture utilizes a pipelining technique that allows concurrent operation of

hardwired multipliers. Our design completes 1020-bit and 2040-bit modular

multiplications* in 7.62 µs and 27.0 µs respectively with approximately the same device

usage on Xilinx Spartan-3E 500. The multiplier uses a moderate amount of system

resources while achieving the best area-time product in literature. 2040-bit modular

exponentiation engine easily fits into Xilinx Spartan-3E 500; moreover the

exponentiation circuit withstands known side channel attacks with an insignificant

overhead in area and execution time. The upper limit on the operand precision is

dictated only by the available Block-RAM to accommodate the operands within the

FPGA. This design is also compared to the first one, considering the relative advantages

and disadvantages of each circuit.

* With a multiplication engine that utilizes half of the device (i.e. which use 10 multipliers)

v

ÖZET

RSA, günümüzde en sık kullanılan Açık Anahtarlı Şifreleme (AAŞ) türüdür.

Daha önce hiç karşılaşmamış iki tarafın birbirleri arasında güvenli bir iletişim kanalı

oluşturabilmesi için AAŞ sistemleri kullanılır. RSA’de en temel işlem modüler çarpım

işlemidir ve özellikle kullanılan anahtar 1024 bitten uzunsa, bu işlem çok yoğun bir

hesaplama gücü gerektirir. Günümüzün kişisel bilgisayarları birkaç RSA işlemini bir

saniyeden kısa bir zamanda bitirebilirken, avuçiçi bilgisayarları, cep telefonları ve smart

kart gibi az işlem gücüne sahip ortamlarda, bu yüksek hesap gücü gerektiren işlem için

kullanılacak ilave donanıma ihtiyaç vardır. Buna ek olarak binlerce kişinin aynı anda

erişim isteyebileceği web servis sağlayıcılarında, bu işlem, bir performans darboğazı

olarak görünebilir. Donanım için geliştirilen bazı özel algoritmalar sayesinde çok büyük

ölçekte paralel hesaplamalar yapılabilir ve böylece donanımın kullanım oranı artırılarak

hem enerji harcaması düşürülür, hem de toplam işlem zamanı kısaltılır. Bu amaçla, en

verimli modüler çarpım işlemlerinden biri olarak bilinen ve birçok AAŞ alanında

kullanılan “Montgomery Modüler Çarpım” algoritmasını kullanacağız.

Đlk olarak “2048-bitlik ve 4 tabanında çalışan Modüler Çarpım” dizaynını

anlatacağız ve bunu daha önceki çalışmalarda sıkça kullanılan 2 tabanındaki modüler

çarpım devreleriyle karşılaştıracağız. Bizim devrenin, diğer devreleri simule etmek için

yaptığımız referans devreye göre çalışma hızının % 82 arttığını ve bunu sadece

%33’lük bir alan artışıyla gerçekleştirdiğini gördük. Ayrıca, Xilinx xc2v6000

FPGA’inde 132 MHz’de çalışan bu devre, referans dizayna göre %37’lere varan

oranlarda, zaman alan çarpımını azalttı. Benzer kazanımları, UMC 0,18 µm teknolojisi

için sentezlenen devre ile de elde ettik.

Đkinci bölümde ise nispeten ucuz FPGA’lere uygun, hızlı, parametrik ve yan

kanal ataklarına karşı dayanıklı bir modüler çarpım devresini ve bir üs alma devresini

sunuyoruz. Bu dizayn, FPGA üzerinde bulunan çarpım birimlerini ve blok RAM’i

kullanacak şekilde geliştirildi. Dizaynımızda çarpım işlemi için kullanılan bileşenlerin

tabanı (radixi), çarpım ünitelerinin sayısı ve toplam word sayısı parametrik olarak

istenen özelliklere göre ayarlanabilir. Mimari yapıda pipelining tekniğini kullandık ve

bu bize yüksek frekanslarda, aynı anda birçok çarpım işlemini yapma özelliği

kazandırdı. Dizaynımız 1020-bitlik ve 2040-bitlik modüler çarpım işlemlerini Xilinx

Spartan-3E 500 FPGA’i üzerinde sırasıyla 7,62 µs ve 27,0 µs’de bitirmektedir ve bu

vi

ölçümler FPGA’de bulunan çarpım birimlerinin sadece yarısı kullanılarak elde

edilmiştir. Dizanımız daha önceki devrelerle karşılaştırıldığında en düşük alan zaman

çarpımını elde etti. Ayrıca 2040-bitlik üs alma devresinin Xilinx Spartan-3E 500 çipine

kolaylıkla sığabileceğini gördük. Kullandığımız üs alma devresi, bilinen tüm yan kanal

ataklarına karşı korumalı bir şekilde dizayn edildi ve bu koruma çok ufak bir ek

donanım getirilerek başarıldı. Üs alma devresi, işlemde kullanılan sayılar blok RAM’e

sığdığı sürece her büyüklükteki sayı için kullanılabilir. Bu dizanımız ayrıca ilk dizaynla

da avantaj ve dezavantajları açısından karşılaştırıldı.

vii

Dedicated to my family…

viii

ACKNOWLEDGEMENTS

I would like to thank my thesis advisor, Associate Prof. Dr. Erkay Savaş, for his

never-ending support and patience. His trust on my success encouraged me through the

hard times during this project, helped me finish my thesis in time. We have spent long

hours together to solve some problems, when I almost gave up hope. His energy has

given me enough power to handle the difficulties I encountered in my master years. I

really appreciate his advices and guidance concerning this thesis.

Throughout my master years, I am proud to be supported by TUBITAK, so that I

can have more time to work on my project. The financial support provided by

TUBITAK helped me very much.

Finally and most importantly, I want to thank my family, who always supported

and encouraged me from the very beginning. With their high motivation and positive

attitude to my academic life, I have succeeded in finishing my Master of Science degree

on such a great university.

ix

Table of Contents

List of Terms and Symbols .. xi

List of Figures .. xiii

List of Tables ... xiv

1 Background Information ... 1

1.1 Asymmetrical Cryptography .. 1

1.1.1 Euler’s Totient Function ... 2

1.1.2 Fermat’s Little Theorem ... 2

1.1.3 RSA Algorithm Basics .. 3

1.1.4 The Visualization of RSA ... 3

1.1.5 RSA Setup ... 4

1.1.6 An RSA Example .. 5

1.1.7 Modular Exponentiation ... 5

1.1.8 Modular Multiplication ... 6

1.2 Side Channel Attacks and Countermeasures .. 7

1.2.1 Simple Power Analysis Attack (SPA) .. 8

1.2.2 Timing Attacks ... 8

1.2.3 Fault Injection Attacks .. 8

1.2.4 Differential Power Analysis Attack (DPA) .. 9

1.3 Dedicated Hardware Basics ... 11

1.3.1 ASICs .. 11

1.3.2 FPGA .. 12

2 Radix-4 Implementation of 2048 bit Modular Multiplication on ASIC 14

2.1 Algorithm ... 14

2.1.1 Booth Recoding .. 14

2.2 Architecture .. 16

x

2.3 Theoretical Analysis of Performance ... 20

2.4 Synthesis .. 21

2.5 Conclusion .. 24

3 Parametric, Secure and Compact Implementation of RSA on FGPA 25

3.1 CIOS Method ... 26

3.2 The Multiplication Engine ... 27

3.2.1 Design Criteria .. 28

3.2.2 Implementation Details ... 29

3.2.3 Parametric Design ... 30

3.3 Simulation Results ... 31

3.4 Synthesis Results .. 32

3.4.1 Setup and Synthesis Configuration ... 32

3.4.2 Synthesis Results .. 33

3.5 Performance Analysis .. 34

3.6 Compatibility Problems ... 38

3.7 Conclusion and Future Work ... 39

4 Summary of Contributions .. 41

Appendix ... 43

References ... 44

xi

List of Terms and Symbols

� µs: micro seconds: 10-6 seconds.

� ASIC: Application Specific Integrated Circuit: Type of hardware that is
manufactured to realize specific calculations (It cannot be reprogrammed).

� Block RAM: The type of storage in an FPGA, that has write, read and address
ports and write enable input. Only one “data word” can be requested and/or can
be written in one clock cycle.

� C: Ciphertext: Encrypted message.

� CIOS: Coarsely Integrated Operand Scanning: A multi-precision multiplication
algorithm

� CPA: Carry Propagate Adder.

� CRA: Carry Ripple Adder

� CRT: Chinese Remainder Theorem: A technique that can be used to speed up
modular exponentiation.

� CSA: Carry Save Adder.

� d: Private key.

� DPA: Differential Power Analysis.

� DSP48: Data path element present in advanced FPGAs, that is capable of fast
multiplication and addition. (Digital Signal Processor)

� DSS: Digital Signature Standard

� e : Public key.

� ECC: Elliptic Curve Cryptography

� FPGA: Field Programmable Gate Array: Type of hardware that has some
memory and LUT’s that can be re-programmed by a computer.

� Gate: Basic building blocks of ASIC’s.

� LUT: Look up Tables: Logic functions in a circuit are mapped to FPGA’s
SRAM based programmable storage units.

� m: Plaintext: Numerical representation of the message to be encrypted.

xii

� MM: Montgomery Multiplier.

� ms: mili-seconds: 10-3 seconds.

� n: (p.q) Modulus for multiplications in RSA or bit length of the modulus

� p , q: Large primes (512 bit or longer)

� PE: Processing Element (The unit structure which the circuit is built upon) or
total number of Processing Elements

� PKC: Public Key Cryptosystem.

� Prime Numbers: Positive integers that can be divisible by only itself and one
without remainders.

� Radix: Base of a number.

� Register: Storage unit that can read or written synchronously both in ASIC’s
and FPGA’s.

� RSA: A PKC algorithm found by Rivest, Shamir and Adleman in 1978.

� s: Total number of words (such as two 17-bit words)

� Slice: Basic building blocks of an FPGA, which consists of two LUT’s, two flip-
flops and two carry chains.

� SPA: Simple Power Analysis.

� SRAM: Static Random Access Memory: Type of storage that is made of four
transistors and does not need a refresh signal.

� w: Bit length of a single word (e.g. 17-bit words)

� Φ(n) : Count of the numbers which are relatively prime to n. (Euler’s Totient
Function)

xiii

List of Figures

Figure 1. Visual Depiction of RSA ... 4

Figure 2. N-Residue Form .. 7

Figure 3. A three-bit CSA ... 17

Figure 4. Carry Propagate Adder .. 18

Figure 5. Radix-2 Montgomery Multiplier ... 18

Figure 6. Radix-4 Montgomery Multiplier ... 19

Figure 7. Execution Graph of The Parallelized CIOS algorithm 29

Figure 8. The Structure of a Processing Element ... 30

Figure 9. Waveform of One Stream .. 43

xiv

List of Tables

Table 1. Booth Recoding .. 15

Table 2. Time Complexities for One 2048-bit Modular Multiplication 20

Table 3. Xilinx Synthesis Tool (XST) Synthesis Results ... 21

Table 4. Overall Speed Comparison for 2048 bit modular multiplication 22

Table 5. The Time Area Products for FPGA designs ... 23

Table 6. The Time Area Products for ASIC designs .. 23

Table 7. Clock Cycles Required for One Multiplication (radix=217) 31

Table 8. Utilization Ratios (%) ... 32

Table 9. Synthesis Results for Multiplication Core .. 33

Table 10. Time Area Products .. 33

Table 11. Synthesis Results for 1020-bit exponentiation circuit 34

Table 12. Time Complexities. ... 35

Table 13. Execution Times for 1024-bit modular multiplication 36

Table 14. Execution Engine Performance: 1024-bit Exponentiation Results 37

Table 15. Time-Area products normalized to proposed implementation 38

Table 16. The Required Clock Cycles for Compatible Versions 39

xv

List of Algorithms

Algorithm 1: Binary Exponentiation (left to right) 5

Algorithm 2: Radix-2 Montgomery Multiplication 6

Algorithm 3: Montgomery Powering Ladder ... 9

Algorithm 4: Radix-4 Montgomery Multiplication 16

Algorithm 5: CIOS Montgomery Multiplication 27

1

1 Background Information

 We can explain the term “cryptology” as the science of keeping data secret by

preventing unauthorized access. Nowadays, as the Internet and the technology are

evolving at a fascinating rate, cryptology plays a crucial role in many areas in our lives

like accessing our bank account online, registering our courses, using credit cards and

so on. It is so integrated that many of us are not even aware.

We can divide the cryptology into two parts: Symmetrical and asymmetrical.

Former has only one key, which is used in both encryption and decryption. Its main

application is ciphering large volumes of data, whereas the latter has two distinct keys,

(one key for encryption, the other for decryption) and is used for key exchange and

digital signature. Asymmetric Key Cryptosystems are also called Public Key

Cryptosystems (PKC).

The functions used in the asymmetrical cryptology depend on the “Number

Theory”, which is the branch of pure mathematics related with the properties of

numbers in general, and integers in particular, and also other problems that occur from

their study. The mathematical background of the algorithms will be explained while

giving the details of the important functions.

At first, we will lay out the basic properties of asymmetrical cryptography and

its main uses. In the following section, the side channel attacks (the attacks related not

to the algorithm but to the implementation) and their countermeasures will be discussed.

In the last part of this section, we will compare two dominant hardware platforms.

1.1 Asymmetrical Cryptography

The problem of common key delivery and management among communicating

parties is the main use of asymmetrical cryptography (which is also called Public Key

Cryptosystem [PKC]). Moreover, PKC’s can be used for digital signature. There are

mainly six algorithms (or methods) that are commonly used in PKC:

• RSA [1]

• Diffie-Hellman [12]

2

• Elliptic Curve Cryptography (ECC) [13]

• El-Gamal [27]

• Digital Signature Standard (DSS) [28]

• Paillier [29]

In all PKC’s, there are two keys, one public key (known by anybody) and one

private key (only known by the owner). Public keys are used to encrypt messages and

verifying the signatures; on the other hand, private keys are used to decrypt the

ciphertext and sign messages.

Private and public keys are related to each other; however one cannot derive the

private key by knowing only the public key in the practical computation limits for

adequate key lengths. PKCs are similar to one way functions, where anyone can

encrypt a message (or verify a signature), but no one can decrypt a message (or sign a

message) without the related private key.

1.1.1 Euler’s Totient Function

In Number Theory, the Euler’s Totient of a positive integer n is defined to be the

number of positive integers less than or equal to n that are co-prime to n. The function is

calculated as follows:

Φ��� � � � �1 	 1
�

|�

For instance:

Φ�45� � 45 � �1 	 13� �1 	 15� � 45 � 23 � 45 � 24
1.1.2 Fermat’s Little Theorem

Fermat's Little Theorem states that if p is a prime number, then for any integer a,

 (ap
 – a) will be evenly divisible by p.

a
p ≡ a (mod p)

We work in (mod n) for the base and (mod Φ(n)) for the exponent and so we can

generalize Fermat’s Little Theorem using Euler’s Totient Function:

3

aΦ(n) ≡1 (mod n) (where n and a is relatively prime)

1.1.3 RSA Algorithm Basics

Rivest, Shamir and Adleman implemented a novel scheme for key exchange in

1978 [1]. It depends on the “Integer Factorization Problem” which is hard to solve if the

bit length of the operands is adequately large*. We introduce three well-known

characters in the cryptology world to describe RSA: Alice, Bob and Eve. Alice and Bob

want to communicate through a common channel, which is wire-tapped by Eve. We will

assume that Eve is a passive adversary who can see every message going through the

channel; however she is unable to alter it. Alice and Bob have to share a secret key to

encrypt the data they are sending via symmetrical cryptography; therefore, at first they

have to exchange the common key using this channel.

1.1.4 The Visualization of RSA

• Alice has a safe and its key. She sends the safe unlocked to Bob, but keeps

the key.

• Bob generates the common key (using a random number generator) to be

used in the symmetrical cryptography and puts it into the safe and locks it.

• Bob sends the “locked safe” back to Alice.

• Alice (using the key of the safe) unlocks the safe and gets the hold of the

common key (which is generated by Bob).

• As they have the same secret key, they can communicate by a symmetrical

cipher using that key.

Figure 1 depicts each step of this communication.

* Today’s most common use is 1024 bits.

4

1.1.5 RSA Setup

For k bit security level, following operations must be carried out by Alice:

• Find two distinct (k/2) bit long prime numbers (p, q)

• Calculate n=p.q

• Calculate Euler’s Totient Function Φ(n)= (p-1)(q-1)

• Generate a random number e (e<n), which is relatively prime to Φ(n); in

other words, GCD* (Φ(n), e) must be 1.

o e is the public key.

• The multiplicative inverse of e in mod Φ(n) gives out private key, d, which

is calculated by “Extended Euclidian Algorithm”:

o d ≡ e-1 mod Φ(n)

After these computations Alice sends {e, n} to Bob and keeps d.

* Greatest Common Divisor

 Figure 1. Visual Depiction of RSA

5

1.1.6 An RSA Example

Alice has to perform the following calculations:

• p=13 and q=11 (randomly choose two prime numbers)

• n=p.q=143

• Φ(n)=(p-1)(q-1)=12 x 10=120.

• e=7, (randomly chosen) check GCD(120,7)=1

• e
-1 (mod 120) ≡ d ≡ 103 (calculated by Extended Euclidian Algorithm)

Then Alice sends {e=7, n=143} to Bob.

Bob has a secret message m=111 (m<n). He must calculate C=me (mod n)

C= 1117 ≡ 45 (mod 143).

Bob sends “C=45” to Alice. Alice decrypts the message using her private key d:

45d=45103 ≡ 111 (mod 143)

1.1.7 Modular Exponentiation

As the previous example indicates, RSA is based on modular exponentiation.

However, if we try to perform an exponentiation operation of a large number by just

successive multiplying, it can take years to calculate for large exponents. Instead, we

can use “Binary Exponentiation” (or Square and Multiply algorithm):

Inputs: m�base, e�exponent (ek-1,ek-2,….,e1,e0)2

Output: result

1. result1

2. for i=k-1 to 0 do

a. resultresult * result

b. if (ei==1) then resultresult*m

3. return result.

The above algorithm is valid both in this normal form and in modular arithmetic

form. However, Algorithm 1 has some weaknesses against side channel attacks and

Algorithm 1: Binary Exponentiation (left to right)

6

timing attacks (see Section 1.2), therefore we must use a more secure algorithm. As the

steps 2.a and 2.b in Algorithm 1 indicate, the core operation in modular exponentiation

is modular multiplication.

1.1.8 Modular Multiplication

We can compute modular multiplication by the following operations:

• Ordinary multiplication (or Shift and Add Method)

• Trial division to find the remainder.

This technique is acceptable for one or two multiplications; however the loops in

RSA will be iterated thousands of times; therefore, we need a better algorithm to solve

this problem.

Modular multiplication is the most time consuming operation in RSA and entails

prohibitively expensive multiplication and subsequent division operation; and thus is

also very demanding on hardware resources. Montgomery Multiplication (MM)

algorithm [2] enables these costly operations to be performed easily and efficiently both

in hardware and software because it replaces the time-consuming division operation in

the reduction phase with simple shift operations. The method consists of repeated

additions and shifting; therefore it is well-suited for hardware implementations. The

Montgomery Multiplication algorithm for radix-2 is given in Algorithm 2.

Algorithm 2: Radix-2 Montgomery Multiplication

INPUT: X = Multiplicand,(Xk-1,Xk-2,…,X1,X0)2, X<N

 Y = Multiplier, Y<N

 N = Odd modulus

OUTPUT: MM(X,Y,N)=R = X.Y.2-k (mod N) where

 k = bit length of N.

1. R 0;

2. for i from 0 to k-1:

a. if Xi=1, then RR+Y;

b. if R is odd, then RR+N;

c. RR/2

3. if (R>N) then RR-N;

4. return R

7

Montgomery multiplication is not efficient when we perform only a few

multiplications, because MM operates in N-residue class. The normal form and the N-

residue form are mapped to each other by a one-to-one function (Figure 2).

To convert the operands to N-residue form, we have to calculate MM(X, 22k, N)

= X.2k = X at first. Now, we can use X and its multiples in Montgomery loop; because

MM(X, X, N)= X². After the last iteration, we have to use MM one more time to

convert the result from N-residue form to normal form by multiplying with one, i.e.

MM(R, 1, N)=R. There are two extra multiplications in one exponentiation, and as the

number of iterations in RSA loop is very large (>512), these additional multiplications

will be negligible for practical purposes.

1.2 Side Channel Attacks and Countermeasures

Although the RSA algorithm with certain key sizes is considered safe in the

mathematical sense, straightforward implementations of modular exponentiation on

hardware (and also software) may have vulnerabilities that can lead the attackers to

recover the secret key easily. All implementations (on both hardware and software)

have some unintentional, yet observable outputs (through side-channels), which may

compromise the desired security level substantially. Therefore, we have to mask the

side-channel information such as the variations in the power consumption of the device

and execution time of the algorithm that depend on the secret key. We also have to

prevent the faulty outputs or so-called safe-errors that can be easily induced by spikes in

 Figure 2. N-Residue Form

8

the input voltage or any other facile means. Below are the known attacks and their

countermeasures:

1.2.1 Simple Power Analysis Attack (SPA)

In the binary exponentiation algorithm (Algorithm 1), there are two operations

(square and multiply) with different power characteristics. In most hardware

implementations, squaring consumes less power than multiplying; therefore, by

analyzing the instantaneous power consumption of the device, an attacker can deduce

the secret key even in a single run. Therefore, we have to choose an algorithm that has a

more regular execution pattern than the ordinary square and multiply method.

1.2.2 Timing Attacks

We can make Algorithm 1, resistant against SPA attacks by squaring and

multiplying in each step regardless of the exponent (using different variables) and in the

next iteration, we have to select the correct variable according to the exponent, therefore

in case of having 0-bit in the exponent, we have performed one dummy multiplication

(we will use the outcome of the squaring operation only). This method is called

“Square-and-multiply-always” algorithm. However, when Chinese Remainder Theorem

(CRT) is used for faster execution times, there will be compare and subtract steps

(which is comparing message m with secret primes “p and q”) at the beginning of the

algorithm. By finding three distinct m values, (m1< p < m2 < q < m3) (The execution

time will be largest for m3); the attacker can find the ranges of the secret primes (i.e. p

and q). A brute force search in these ranges can be used to factorize n.

1.2.3 Fault Injection Attacks

Square-and-multiply-always algorithm simply masks the Hamming weight of

the exponent. However, this method cannot resist against the so-called “C and M safe-

error” attacks depicted in [20], which are based on faults inflicted on dummy

multiplications and used memory locations respectively, which do not change the final

outcome. This allows the attacker to distinguish the dummy operations and

consequently obtain the secret key bits.

9

Algorithm 3: Montgomery Powering Ladder

Inputs: m = input message,

 d = (dt-1,...,d0) exponent.

Output: C=md

1. R01

2. R1m

3. for i=t-1 to 0

a. if (di==1)

 R0R0R1 R1(R1)
2 //in parallel

b. else

 R1R1R0 R0(R0)
2 //in parallel

4. return R0

An efficient countermeasure to these attacks is to use the “Montgomery

Powering Ladder” algorithm (Algorithm 3) proposed in [20]. This algorithm

additionally provides parallelism for hardware implementations and is highly regular. A

fault induced in any step of the algorithm escalates to the end of the execution which

always produces an incorrect result; therefore the attacker cannot find any relation to the

secret exponent.

 Many techniques can be employed to prevent outputting faulty results. As the

errors induced by C and M safe-error attacks are completely at random, running the

algorithm twice and checking the equality of the two results can easily prevent these

attacks. Another method is after the calculation of md
≡ C (mod n), checking whether

C
e
≡ m (mod n), where e and d are public and private keys respectively; however both

methods are costly. In case a countermeasure is needed, the extra check proposed in

[23] can be incorporated to the data path with virtually no cost.

1.2.4 Differential Power Analysis Attack (DPA)

If a cipher algorithm is deterministic, an attacker uses the implementation as an

encryption oracle and encrypts as many messages as possible. Statistical analysis of the

differences in the power traces sampled for different input messages may reveal secret

exponent “d”. In “the doubling attack” which is explained by Yen et al [21], the

implementation can be broken in only two runs (one with input message m, other one

with m2).

10

A well-accepted countermeasure is to embed randomness into the algorithm so

that the power traces of each run will be different, even if the same input values are

used. There are three kinds of randomization methods that can be used in modular

exponentiation md
≡ C (mod n):

(1) Message Blinding: We choose a random variable r < n and calculate re (mod n)

and multiply this with C*:

(C×re)d (mod n) ≡ Cd
× r

ed ≡ m × r (mod n).

At the end of exponentiation, we can get the ciphertext C back by multiplying it

with r(-1) (mod n). The multiplicative inverse of the random value r has to be

computed on the fly, which is naturally costly and undesirable from the

implementation point of view.

(2) Modulus Blinding: The modulus n is multiplied by some random variable r (here

r around 216 is enough for practical purposes) and all exponentiation operation is

carried out in mod (n × r) [23]. We need to reduce the result to (mod n) at the end

of the calculation. In this method, we need to compute additional variables†,

which makes this method time costly.

(3) Exponent Blinding: We can add random multiples of Φ(n) to the exponent before

the main computation. At the end of the exponentiation, there is no need for

correction since md+r.Φ(n) ≡ md
 (mod n); therefore, this method of blinding costs

considerably less than the other methods. For all practical purposes a 17-bit

random number (the word size used in this implementation) r is sufficient

resulting in (1/s×100) percent overhead, where s is the number of words in the

exponent d.

There is another type of attack where all precautions to prevent side channel

attacks, except for modulus blinding, fail. When the input message is selected as

m = (n-1), there will be two intermediate results (see [21]) depending on the related bit

* ciphertext
† For 2N-1 < n < 2N, we need to calculate both 22N (mod n) and -(n0)

-1 mod 2N, and 22N+32 (mod n) and

-(n0)
-1 mod 2N+16 where r is a 16-bit integer for the Montgomery multiplication.

11

of the exponent: 1* and (n-1)†. The instantaneous power graph of a single run will

immediately shows two distinct characteristics for these two possible outputs; therefore,

as a simple countermeasure, we propose to halt the calculation if the input message is

selected as (n-1), which is easy to check.

1.3 Dedicated Hardware Basics

There are two dominant types of dedicated hardware in the market: ASICs and

FPGAs. The main difference between these two is re-programmability. ASICs

functionality, once manufactured, cannot be changed at all; however FPGAs can be re-

programmed many times. On the other hand, ASICs take the advantage of being fine

grained; therefore have a higher computation performance and lower power

consumption when compared to FPGAs.

Both hardware platforms have the technology metric, “the feature size‡” (like 90

nm or 65 nm). As the feature size shrinks, maximum possible frequency increases, the

power consumption and the cost of the chip decrease.

1.3.1 ASICs

ASIC is an integrated circuit (IC) customized for a particular use, rather than

general-purpose use. A typical ASIC generally may have the following components:

• 32-bit CPU (maybe 16-bit or 64-bit) � Central Processing Unit: The unit which

carries out sequential operations those are not “dense”.

• ROM � Read Only Memory: Non-volatile memory which is generally used to

store constants and conversation tables.

• RAM � Random Access Memory: Volatile memory which holds the data

required by current operations.

• Flash Memory � Non-volatile memory, which can be written and read.

* For even exponents
† For odd exponents
‡ The minimum feature size is the width of the smallest line or gap that appears in the design.

12

• DSP � Digital Signal Processor: A unit that is specifically designed for

performing frequently used operations (like MAC* operations)

The complexity of an ASIC is usually measured with the number of logic gates

it has (e.g. 10 k gates or 2 M gates). According to the number of gates, the ASICs can

be divided into groups like: VLSI (Very Large Scale Integration) or ULSI (Ultra Large

Scale Integration).

ASICs have two types of development procedures: Full-Custom versus Standard

Cell Library based designs. In full-custom designs, special acceleration and PAR (Place

and Route) methods can be applied on smaller scale (which can be layout level) for

better performance. In “Standard Cell Library” based designs, the functions in HDL†

code are directly mapped to predefined cells like AND2, OR4, NAND3, FF, etc. by

CAD tools.

1.3.2 FPGA

 The basic building block of FPGAs is called slice. Each slice has two flip-flops

as storage units and two 4-input SRAM based LUTs‡ which can be programmed as

combinational functions, two independent fast carry chains, and MUXs among them

[18]. Each slice can assume the role of a LUT, shift register or distributed RAM. The

term “CLB§” can be used for describing two or four slices. According to their

manufacturing purposes, FPGAs can have the following structures:

• Embedded processors (soft or hard): Some expensive operations can be

performed in hardware (by LUTs), while less complex and sequential operations

can be carried out by a general purpose CPU. The balance between hardware

and software will provide the best time area product according to the design

specifications.

• DSP units: Multiply and Accumulate (MAC) operation is frequently used in

DSP, therefore some FPGAs have dedicated blocks (e.g. DSP48 in Xilinx Virtex

4 Series) to perform multiplication and addition operations efficiently.

* Multiply and Accumulate
† Hardware Description Languages, such as Verilog and VHDL.
‡ Look Up Tables.
§ Configurable Logic Block

13

• Multipliers: While the adders can be implemented efficiently with LUTs which

utilize fast carry chains, the multiplication operation implemented by LUTs

performs poorly. Therefore many FPGAs have dedicated multiplication units

that support up to specified bit length (e.g. 17 bit unsigned operands).

• Dual-port Block RAM (BRAM): As the distributed memory consumes slices,

which are one of the most important resources in FGPA designs; large portions

of data must be stored in Block-RAMs. Block-RAMs have synchronous write

and read ports which provide fast access times.

1.3.3 The Differences between ASICs and FPGA

The advantages of FPGA platform can be summarized as follows:

• Field re-programmability: The implementation can be upgraded or changed

at any time without any cost. The user just needs to upload the new bit stream.

• Shorter time-to-market: There is no need to deal with layouts, masks or other

manufacturing steps in FPGA designs.

• No upfront NRE*: The FGPA design flow is cost effective when small

volume of chips is needed.

• Simpler design cycle: Automated software takes care of all design steps. (from

synthesis to PAR stage)

On the other hand, ASIC has beneficial properties like:

• Full custom capability: ASICs are custom built circuits; therefore the

designers have the opportunity to optimize the implementation in terms of both

area and speed.

• Higher raw internal clock speeds: ASIC implementation allows higher

frequencies, even if their feature size is the same with the FPGAs.

• Lower unit costs: For very high volume productions, the cost per chip in

ASICs is lower than that of FPGAs.

• Smaller form factor: The area utilization is higher in ASICs when compared

to FPGAs, because some sources have to be wasted in an FPGA, when the

circuit cannot exactly fit the board.

* non recurring expenses

14

2 Radix-4 Implementation of 2048 bit Modular

Multiplication on ASIC

Previous studies with pipelined approach* for modular multiplication ([6], [8],

[9], [11]) generally suffer from high latency because of the data dependency among

processing elements (PE) in ASIC implementations. Although their performance can be

adjusted by various parameters such as bit length of the words and number of PEs, they

have an upper speed bound on which adding more PEs have no beneficial effect.

Likewise, conventional radix-2 based non-pipelined organizations ([7], [10]) cannot be

optimized further than N clock cycles (bit length of the modulus); for instance, the

fastest implementation [10] needs N+1 clock cycles. As speed being our primary

concern in this ASIC implementation, we focus on decreasing the total clock cycles

with radix-4 scheme, with minimal area. We lay out the synthesis results for both UMC

ASIC library and FPGA.

2.1 Algorithm

 The MM can be used with different radices. Popular choices are radix-2, radix-4

and radix-8 [24]. In [25], it is shown that radix-4 would be a wise choice in terms of

speed and area. (Radix-2 is slow, and radix-8 is under-utilized). Higher radices than 8

need much more space and necessitate additional calculations, which reduce overall

efficiency and frequency.

2.1.1 Booth Recoding

 We have to express the multiplier, X, in MM using a different representation,

known as Booth recoding [26], where the digits are {-2,-1, 0, 1, 2} for efficient radix-4

implementation (the multiple “3” is not used because it cannot be calculated easily by

shift and/or invert operations). The booth converter reads three consecutive bits of the

* The calculation is divided into simple stages that can be overlapped to speed up the operation.

15

multiplier, X, to decide which multiple of the multiplicand, Y, is going to be added. The

conversion (-2Xi + X(i-1) + X(i-2)) is shown in Table 1.

For instance, with Booth recoding technique, 27 = (011011)2 can expressed as:

(beginning from i = 1, and adding 2 to i in each iteration since base is 4):

• For i = 1: 110 = -1 (empty bit is assumed as 0 i.e. i(-1) = 0)

• For i = 3: 101 = -1

• For i = 5: 011 = 2

 27 = (2,-1,-1)Booth

Xi X(i-1) X(i-2) Output

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 2

1 0 0 -2

1 0 1 -1

1 1 0 -1

1 1 1 0

 Table 1. Booth Recoding

We can check the recoding as follows:

-1 x 40 = -1

-1 x 41 = -4

 2 x 42 = 32

The result is 32-4-1 = 27.

2.1.2 Radix-4 Implementation

In radix-2 MM, we add the modulus N to the partial result R, if R is odd, and

shift right afterwards (Algorithm 2). In radix-4 MM, we must add multiples of N to

make the result divisible by four, because we need to shift R to the right twice. We have

four possible multiples (0, 1, 2, 3) of N and as these values are in radix-4 modular

arithmetic, we can rewrite these possibilities as (0, N, 2N, -N). Therefore, all the

multiples of N we need, are easy to handle in hardware by just shifting and/or bitwise

16

inverting. For signed calculations, “two’s complement form” is used, so we must add

one (using carry-in of the adders) for negative Y (-N does not need this correction since

it is an odd integer). The radix-4 MM algorithm, which is similar to the radix-4

multiplier in [25] is given in Algorithm 4.

As the numbers used in Algorithm 4 are signed, they have to be represented with

one bit more than N, i.e. k+1. At the end of calculation, negative results must be

converted by one last addition of N.

Algorithm 4: Radix-4 Montgomery Multiplication

INPUTS: N is odd modulus

 X is multiplicand, X=(0,0,Xk-1,Xk-2,…,X1,X0)2 < N, X-1=0

 Y is multiplier, Y<N

 {} is used for bitwise concatenation.

OUTPUT: MMr4(X,Y,N)=R = X.Y.2-(k+2) (mod N) (k=2048)

1. R 0;

2. for i from 1 to k+1 step 2:

a. RR + Booth{Xi, X(i-1),X(i-2)}*Y

b. if ({R1,R0}+ {N1,N0})%4==0) then RR+N;

c. else if ({R1,R0}+{N0,0})%4==0) then RR+2N;

d. else if ({R1,R0}-{N1,N0})%4==0) then RR-N;

e. RR/4

3. return R

2.2 Architecture

2.2.1 Carry-Save Adder (CSA)

 We need a very fast yet small adder for the Montgomery modular multiplication

algorithm, as the addition will be the core operation that will be repeated millions of

times. Carry ripple adder can be used for smaller operands; whereas carry propagation

for larger numbers (like 1024 bit) will be a significant limitation on the whole circuit.

As we are adding to the same number R in each step of the algorithm, we can use carry

save adders as shown in Figure 3, whose longest combinational path is independent

from bit length of the operands. Overall critical path is just serially connected XOR

gates in the full adder. CSA takes three operands and reduces them to two and the result

is in redundant format. (i.e. sum and carry are calculated and stored separately):

17

Figure 3. A three-bit CSA

2.2.2 Carry Propagate Adder (CPA)

 At the end of each multiplication, we have to convert the result from redundant

form to normal form. As we cannot directly add these two 2048-bit integers (i.e. sum

and carry) in one clock cycle (due to hardware limitations), we have to divide this

process into sub additions. We used a 32-bit carry ripple adder (CRA) for 64 clock

cycles as shown in Figure 4.

The CPA has two 32-bit 64-to-1 MUX and one 2048-bit shift register. Two

2048-bit input registers (sum and carry) is part of the MM logic, not CPA; therefore we

only need one 2048 bit register for CPA.

18

Figure 4. Carry Propagate Adder*

In radix-2 implementation, we can add four possible values to partial product in

each iteration and these values are (0, N, Y, Y+N). One could pre-compute Y+N at first

* Grey boxes are registers and [] is used for bitwise concatenation.

sum carry

shift register >>

64x1 mux (32-bit) 64x1 mux (32-bit)

CRA (32-bit)

carry

Bitwise OR

[2047:2016]

Figure 5. Radix-2 Montgomery Multiplier

[2049:1]

19

and then store it in a register, so using only one CSA array of 2048 bit would suffice.

Another approach (instead of one CSA array and one extra register of 2048 bit) is using

two CSA arrays and add N and Y on-the-fly, which turns out to be more efficient; as

depicted in Figure 5.

In radix-4 implementation, we need 12 pre-calculated numbers so storing all of

them will be redundant. (Four possibilities are from booth recoding of X (i.e. Y, 2Y, -Y,

-2Y) and three possibilities are from N (i.e. N, 2N, -N). Therefore we need to add these

numbers using two CSA’s like in the radix-2 case as shown in Figure 6.

In Figure 6, the CSA arrays are signed as the inputs can be negative. The carry-

in of the upper CSA is used for two’s complement of Y. Although the number from the

output of the second CSA is divisible by 4, we have to check two least significant bits

(LSB) of carry and sum registers in order not to lose information, because the output is

in redundant format. The possible values of the two LSB of the sum and carry registers

are ({00, 00}, {01, 11}, {11, 01}, {10, 10}). Except for the first one (00, 00), the

remaining cases need to be corrected by a carry that is going to be added in the next

clock cycle via the carry in of the lower CSA array.

Figure 6. Radix-4 Montgomery Multiplier

20

2.3 Theoretical Analysis of Performance

We examine various designs synthesized for different technologies to compare

with ours. Each design offers a distinct solution to the same problem and has its own

advantages and disadvantages. We focus on modular multiplication performance and

Table 2 shows the number of clock cycles required for one 2048-bit modular

multiplication with different Montgomery multipliers.

Design Implementation Time Complexity Clock Cycles

Proposed Radix-4 N/2+(N/32)*1,5 1120

[14] Radix-2, pipelined N 2048

[10] Radix-2 N+1 2049

[11] Radix-2, pipelined N+3 2051

[7] Radix-2 N+2+N/32 2114

[8] Radix-2, pipelined* (N/(w1*p)). Max (p , N/w2) 2124

[6] Radix-4, pipelined
� �
2��� ���

�� � 1� � 2�� , �� ��
�� � 2��

� �
2��� �2�� � 1� � ��

�� � 1 , � !"#��$"

~2128

(w=128,

NS=8)

[9] Radix-2, pipelined 2N +N/w-1 if N/w+1 < (2p) ~4128

[15] Radix-2, pipelined 3*N 6144

Table 2. Time Complexities† for One 2048-bit Modular Multiplication

For the design in [8], it is stated that 2048-bit modular multiplication takes 26,55

µs with a 80 MHz clock, therefore we can deduce that the multiplier uses around 2124

cycles to compute one modular multiplication. In this architecture, the word-length of

the operands, X and Y, can be chosen separately (w1 and w2).

Our radix-4 implementation and [7] uses CPA to convert numbers from

redundant format to non-redundant format. The radix-2 multiplier in [7] needs only one

addition with CPA; therefore the overhead is N/32. The architecture described in [10]

* For pipelined design, we try to find optimum values.
† w is bit length of a word and p is the number of processing elements or pipeline stages (PE or NS)

21

does not need this conversion, but uses more registers to compensate. Our radix-4

design first converts the number (costing N/32 cycles) and checks whether the result is

negative. If, for instance, the result is negative, it adds N to result to bring it to the

desired range which is from 0 to (N-1). The result can be 50% percent negative on

average so the overhead will be (N/32)*1.5.

2.4 Synthesis

We implemented the design using “Verilog” HDL and verified with “ModelSim”

[30] simulation tool. We synthesized to both UMC 0.18 µm Standard Cell Library and

Xilinx xc2v6000-6bf957 FPGA, which has following properties:

• Number of Slices: 33792

• Number of Slice Flip Flops: 67584

• Number of 4 input LUTs: 67584

To compare our radix-4 design with [7] and similar designs, we also

implemented a reference radix-2 core whose schematic is depicted in Figure 5. Both

radix-2 and radix-4 designs have been synthesized with area and speed priority to

consider time x area criterion (using execution time and slices) in FPGAs.

2048-bit (MM) Slices Freq Ex. time (µs) Time x area

Radix-4 (speed) 16657 132.4 8.47 140 905

Radix-4 (area) 16549 90.9 12.34 203 904

Radix-2 (speed) 12564 137.2 15.41 193 588

Radix-2 (area) 10920 107.1 19.74 215 545

Table 3. Xilinx Synthesis Tool (XST) Synthesis Results*

We try to optimize both designs for a fair comparison. The synthesis results for

FPGA, illustrated in Table 3, show that our radix-4 core in comparison with radix-2

design has following features:

* As speed optimized cores have smaller time area product they are going to be used for comparison with

other designs

22

• The frequency decreases a negligible amount (3.6%), because we use

inverters along the critical path in radix-4 design.

• Execution time is shortened dramatically (by 82%), since the cycle count is

approximately halved, while keeping the frequency nearly the same.

• Time area product also improves by 37%, which is one of our main goals.

Design Technology Freq (MHz) Area Ex.Time (µs)

Proposed (radix-4) Xilinx xc2v6000 132.4 16657 slices 8.47

Reference (radix-4) UMC 0.18 µm 80 158k gates 14.00

[6]* AMI05_fast 147 (T=6.8;w=128)

~66k gates 14.90

Reference (radix-2) Xilinx xc2v6000 137.2 12564 slices 15.41

[14]† Xilinx Virtex 2‡ (?) 129.1 (7222) slices 15.87

[9] 0.5µm CMOS 166 (T=6.0; w=64) 85k gates 24.87

Reference (radix-2) UMC 0.18 µm 80 118k gates 26.43

[8] N/A 80 N/A 26.55

[10] Xilinx xc2v6000 70.6 23060 slices 29.02

[11] Xilinx xcv1000 ~52 (11k) slices 39.44

[7] (REDC) 0.65 µm SOG 50 (120k) gates 42.28

[15] Xilinx V812E-BG- ~96 (10960) ~64

Table 4. Overall Speed Comparison for 2048 bit modular multiplication

We compare performances of the multipliers in terms of execution time in Table

4. The area values in parenthesis are calculated with interpolation and are

overestimated, because only the area of the datapath is subject to change in case of

doubling the operands’ bit length, not the area of the control unit. As one cannot

estimate the area coverage of the datapath and control unit separately for each reference

design, we have to assume that the datapath dominates the whole circuit area for

comparison purposes.

Our radix-4 design has the lowest execution time in Table 4 and outperforms the

other designs by a great margin, although it does not have the highest frequency. Our

* The areas of [6,9] are calculated with the parameters given in Table 2.
† Excluding pre- computation unit: This design uses pre-computed values, but the pre-computation unit is

not included in the multiplier (it is a part of the exponentiation circuitry)
‡ [14] does not mention the model of the FGPA, therefore we assumed that Xilinx Vertex 2 series was

used.

23

UMC 0.18 µm implementation is also faster than other ASIC based designs. The

authors in [10] claim to have the fastest MM whose execution time is more than triple

of ours for the same technology.

Although Table 4 shows a general comparison among a wide range of designs, we

have to compare time area products of FGPA designs and ASIC designs separately. Not

all designs are synthesized to the same technology, therefore we cannot directly use

execution times, instead we can use “total clock cycles for one multiplication” as the

performance indicator.

Design Area (slices) Clock Cycles Time x Area*

Reference (radix-2) 12564 2114 1.424

[10] 23060 2049 2.533

[11] 11000 2051 1.209

[14] 7222 2048 0.793

[15] 10960 6144 3.609

Purposed (Radix-4) 16657 1120 1.000

Table 5. The Time Area Products for FPGA designs

In Table 5 and Table 6, the proposed design and the other multipliers are

compared in terms of (area × time) metric. The design in [14] seems to have the

smallest time-area product in Table 5 ; but, as stated before, the pre-computation unit

which will consume considerable amount of hardware space is not included in the area.

Therefore, the proposed radix-4 design has one of the best (area × time) metric among

FPGA designs.

Design Technology Area (k gates) Clock Cycles Time x Area

Proposed UMC 0.18 µm 158 1120 1.000

[6]

AMI05_fast 66 2128 0.794

[9] 0.5µm CMOS 85 4128 1.983

Reference
(radix-2)

UMC 0.18 µm 118 2114 1.410

[7] (REDC) 0.65 µm SOG 120 2114 1.434

Table 6. The Time Area Products for ASIC designs

* Time area product is normalized to proposed design.

24

In Table 6, only [6] has a better time area product than ours. Our radix-4

implementation offers 41% decrease with respect to its radix-2 reference, which is a

similar case shown in Table 3.

2.5 Conclusion

We modified the well known radix-2 Montgomery multiplication (Algorithm 2) to

radix-4 scheme to decrease (time × area) product and obtained a significant reduction

(37% in FPGA and 41% in ASIC) in comparison to our radix-2 reference core. Our

radix-4 implementation for 2048 bit operands is the fastest among the other designs

given in the literature (both in execution time and total clock cycles). The main

advantage of the radix-4 scheme over radix-2 schemes is providing twice the

performance at the expense of placing bitwise inverters in the critical path. Using larger

MUXs and the necessity to convert negative numbers to positive at the end (3%

increase in clock cycles on average) are among the main disadvantages of the proposed

architecture, which are greatly compensated by the reduction in execution time and

(time × area) metric.

25

3 Parametric, Secure and Compact Implementation of

RSA on FGPA

One encryption or decryption operation in RSA, the first and most widely

deployed public key cryptosystem, requires the execution of thousands of modular

multiplications. The challenge is usually designing fast hardware multipliers to meet the

timing requirements of cryptographic applications, which cannot be attained with

software realizations on general-purpose processors. The endeavors toward designing

the fastest hardware multipliers are meaningful especially when the throughput is of a

concern (e.g. in server applications where thousands of cryptographic operations are

performed). In literature therefore, there is a plethora of reports of very fast

implementations of modular multipliers in hardware, which utilize considerable amount

of resources.

ASIC’s and FPGA’s are two commonly used hardware platforms for

cryptographic implementations where the latter becomes more and more popular

recently since it is reconfigurable and relatively easy to access from economical and

usability point of view. Therefore, some of the previous works utilize resource rich, but

relatively expensive FPGA devices to design fast multipliers. There is, however, a

paucity of interests in the implementation of multipliers on the smallest and the most

economically accessible FPGA devices such as Xilinx Spartan 3 series [18]. As our

dependency on public key operations is increasing at an impressive rate even on the

simplest devices such as car keys and identity cards, there is a great initiative to design

fast multipliers on the cheapest possible way; therefore Xilinx Spartan 3 FPGAs make

the products financially viable and shortens the time-to-market period.

As the security level provided by public key cryptosystems is directly related to

the bit length of the key and 1024-bit RSA is thought to be not providing adequate level

of security any more, RSA with 2048-bit (and longer) keys will be more and more

popular to meet the security challenge of the future. Therefore, there is a strong need to

26

implement multipliers with the longest key possible on the cheapest device without

sacrificing speed.

Koc et al. [5] proposed several algorithms to implement the Montgomery

multiplication operation in software. These algorithms also prove to be useful for

hardware implementations when fast block multipliers are available as in the case of

many FPGAs. Moreover, these multipliers can work in a pipelined fashion to take the

advantage massive parallelism, despite the fact that these software algorithms are

originally designed for a single multiplier that is available in general-purpose

processors.

Previous studies employing conventional radix-2 based non-pipelined

organizations [7, 10, 19] and pipelined approaches [6, 8, 9, 11, 15, 17] generally avoid

using multipliers which consume a considerable amount of chip space, and have a long

combinational delay. Instead, they perform multiplication by repeated addition through

carry-save adders (CSA). Although the repeated addition approach seems to be a

reasonable solution for ASIC realizations, the FPGA’s have a different inner structure

that allows us to implement alternative circuits. For instance, a recent work by Suzuki

[3] successfully utilizes powerful DSP macro cells available on an expensive FPGA

device to achieve the best time performance for multiplication and exponentiation

operations.

At first, we present the CIOS method [5] for Montgomery multiplication on

which we base our design in Section 3.1. In the following sections, we introduce our

architecture and explain the details of its inner workings and comment on the simulation

results. In Section 3.4, the results of synthesis are presented. In the next section, we

compare our circuit with previous realizations. Finally, we summarize the achievements

and contributions followed by a research plan for future in Section 3.6.

3.1 CIOS Method

 While all of the multi-precision Montgomery multiplication algorithms in [5]

require the same number of word-level multiplications, the number of additions and

memory requirements slightly differ. The CIOS method seems to be the best choice for

hardware implementation since it has a regular execution pattern and needs only s+3

words (the least among the others) memory space where s is the number of words in one

operand. Likewise, McIvor et al. [4] also conclude that the CIOS method, which is

given in Algorithm 5, provides the fastest timing results for FPGA implementations.

27

The operands and the modulus in Algorithm 5 are represented as arrays of words, e.g.

a = (as-1, as-2, …, a1, a0).

Algorithm 5: CIOS Montgomery Multiplication

Inputs: aj, bj: Operand words (w bits each)

 nj: Words of the modulus (w bits each)

 s: Number of words in the operands

 2w:=radix, C: carry, S: sum

 n0
-1:= multiplicative inverse* of n0

 {}� used for concatenation

Output: t[i]:= intermediate and final result, all words

of t are assigned to 0 at first.

for i=0 to s-1

1. C0

2. for j=0 to s-1

a. {C,S} tj + aj × bi + C

b. tj S

3. {C,S} ts + C

4. ts S

5. ts+1 C

6. C 0

7. m t0 × (-n0
-1) mod 2w

8. {C, S} t0 + n0 × m

9. for j=1 to s-1

a. {C, S} tj + nj × m + C

b. tj-1 S

10. {C, S} ts + C

11. ts-1 S

12. ts ts+1 + C

3.2 The Multiplication Engine

In this section, we outline our design criteria used in the implementation and

explain the implementation details.

* “Least significant word of inverse n” in mod 2r, where 2

r-1 < n < 2r

28

3.2.1 Design Criteria

It is essential to lay out the design criteria to meet the challenges and

requirements of the application. These criteria are enumerated as follows:

(1) The design must be flexible to fit in both small and large FPGA’s efficiently

with adjustable number of processing elements.

(2) The bit-length of the words must be parametric so that the full performance of

multipliers is utilized.

(3) The design must be scalable to work with operands of virtually any length (e.g.

2048 bit, 4096 bit, etc.)

(4) 2048-bit exponentiation engine must easily fit into even a smallest FPGA with a

good timing performance.

(5) The implementation must resist against all side channel attacks with minimal

overhead.

(6) All hardwired multipliers must work at maximum possible frequency (They

should be instantiated as registered multipliers).

(7) All variables for operands must be kept in Block-RAM’s to ensure minimum

area consumption.

(8) The connection network must be simple yet effective.

As Algorithm 5 is specifically designed for software implementations, we need

to modify it for efficient computation in hardware by taking advantage of parallelization

through hardwired multipliers. The execution graph of Algorithm 5 modified for

pipelined computation is depicted in Figure 7. The circuit essentially consists of

processing elements (PEs, shown in Figure 8) which are responsible for executing a

single iteration* of the loops in Steps 2 and 9 of Algorithm 5. Once PE0 generates the

first word of the intermediate result (i.e. the least significant word), the next processing

unit PE1 concurrently starts the computation for the second iteration of the loop with the

values it obtains from PE0. When a PE finishes the computing one iteration, it is

immediately assigned to the next available iteration. The results of last PEs are kept in

dual port Block-RAM.

* Steps 2 and 9 of Algorithm 5 are performed together within the same PE.

29

3.2.2 Implementation Details

Before the execution of each iteration of the loop (at each increment of the loop

counter “i”), the value “m” must be calculated as shown in Step 7 in Algorithm 5. (The

value of “n0
-1
” is calculated offline (only one word) and fixed as long as the modulus

does not change). However, in the meanwhile, other PEs are still performing

multiplication operation, therefore to maintain a continuous data flow, we need to insert

FIFO buffers among the PEs and compensate for the time lost by the pre-calculation

step. After “m” is ready, there are two important steps remaining for execution: Steps

2.a (multiplication) and 9.a (reduction). These steps account for all computation burden

since they are word multiplications; the remaining steps are only initializations. Once

the value ti is calculated in Step 2.a, it can immediately be used in Step 9.a.

PE0 PE1

Figure 7. Execution Graph of The Parallelized CIOS algorithm

Time (Cycles)

t0+a0b0

C

t1+a1b0 s+m*n0

S

t2+a2b0

C

t3+a3b0 s+m*n2

 S

C

s+m*n1

S
C

C

s+a0b1

 C

s+a1b1 s+m*n0

 S

s+a2b1

C

s+a3b1 s+m*n2

 S

C

s+m*n1

 S C

 C

S

S

 S

t4+a4b0

C

s+m*n4
S

C

s+m*n3

C

C

S

S

Dual Port

RAM

t

idle cycles...

5

3

4

 0

1

2

 S

 S

t5+a5b0

30

As only one word per cycle can be requested from each Block-RAM, only the

first PE directly receives data from Block-RAMs, and only the last PE writes words ti to

the Block-RAM. All PEs forward “used input variables” (aj and nj) and the sum to the

next PE to exploit data reuse and simplify connection network. Figure 8 shows the inner

structure of a processing element, which mainly consists of two multipliers, two adders

and six registers.

3.2.3 Parametric Design

We can adjust the multiplier to meet the application requirements or to utilize a

given FPGA device efficiently by changing the following three parameters at the

compile time:

(1) Number of PEs (PE): Total number of PEs is the main area vs. performance

trade-off metric. The proposed design must have at least two PEs, because the

first and last processing elements are hardwired to RAM. In other words, total

number of block multipliers must be at least four. The upper bound for PEs is

determined with the amount of hardwired multipliers of the target FPGA, which

is 10 in our case (i.e. 20 block multipliers in total).

sum

Mult.

 3-input Adder

From previous PE

Pro

Carry Register

carry

Mult.

 3-input Adder

Pro carry

Sum Register

To next PE

sum

Sum Register Product Register

Product Register

Carry Register

aj bi

m nj

Figure 8. The Structure of a Processing Element

31

(2) Radix (R): This parameter determines the bit length of the hardwired multipliers

and adders shown in Figure 8. As the radix closely relates to the maximum

combinational path delay in the adder design, it has a direct effect on the

frequency. This parameter must be adjustable to take full advantage of the block

multipliers in a given device to achieve the best timing performance.

(3) Number of Words (s): The radix and the number of words in each operand

together determine the bit-length of the operands; for instance, for 2048-bit

operands and radix=16, the number of words is 128. The number of words

determines also the depth of the Block-RAM.

3.3 Simulation Results

The clock cycles required for one multiplication heavily depends on the number

of PEs. More PEs result in faster designs as expected. However, the multiplier

utilization decreases when the number of PEs increases. Similarly, using longer words

also has a negative effect on the frequency due to longer carry chains in adders used in

PEs.

 Table 7 shows the exact cycle count for one modular multiplication including

data load time from the Block-RAM. The multiplication circuit has the following

timings (see Figure 9 in Appendix for waveform):

• After start signal is asserted, it takes 9 cycles for the first PE to yield the first word

of the result.

• The number of clock cycles spent between the appearances of the first word of the

results in consecutive PEs is 9.

 The Number of PEs

Bitlength-#words 2 4 5 6 8 10

4080* (240 words) 30256 15154 12139 10132 7630 6136

2040 (120 words) 7936 3994 3211 2692 2050 1672

1020 (60 words) 2176 1114 907 772 638 630

510 (30 words) 646 352 330 326 322 318

 Table 7. Clock Cycles Required for One Multiplication (radix=217)

*The key length must be a multiple of 17 bits (because our multipliers are 17 bits long) and (s/PE) ratio

must be an integer to take the full advantage of block multipliers.

32

The overall cycle count can be approximated (with error margin less than 5%)

using the following formula:

CC = max ((14+s), (12+PE*9)) *(s/PE) ≈
%��&'(%�

)* (for large s)
where CC, PE, and s stand for the total clock cycles, the number of processing

elements, and the number of words, respectively.

As indicated in [5], the CIOS method requires 2s2+s word multiplications. If

there were no data dependencies, the required clock cycles would be (2s2+s)/(2*PE).

The PE utilization is over 85% for 2040-bit or larger operands which can be seen in

Table 8.

The Number of PEs

Bitlength-words 2 4 5 6 8 10

4080 (240 words) 95.4 95.2 95.1 94.9 94.6 94.1

2040 (120 words) 91.1 90.5 90.1 89.5 88.2 86.5

1020 (60 words) 83.4 81.5 80.0 78.4 71.1 57.6

510 (30 words) 70.8 65.0 55.5 46.8 35.5 28.8

Table 8. Utilization Ratios (%)

3.4 Synthesis Results

In this section, we provide the synthesis results summarizing the resource usage

and timing performance of the multiplier and exponentiation circuit for the target

device. We implemented our design using Verilog and simulated with ModelSim [30]

tool.

3.4.1 Setup and Synthesis Configuration

 We use XST (Xilinx Synthesis Tool) from Xilinx ISE v9.1 package with
following optimizations:

(1) Register Balancing

(2) Equivalent register removal

(3) Optimization Effort: High

(4) Optimization Priority: Speed

(5) Maximum Fan-out: 17

33

The target device is Xilinx 3s500e-4FG320C whose properties are given in [18].

3.4.2 Synthesis Results

Table 9 shows the resource usage for different number of processing elements

from 2 to 10. As can be observed in the table, the resource usage is modest even for the

maximum configuration with the largest number of processing elements.

 Table 9. Synthesis Results for Multiplication Core*

For 1020-bit or longer operands, a multiplication engine with 4, 5 and 6 PEs

offer the lowest time-area product (Table 10). The 510-bit key is obsolete; however, we

included it for efficiency comparison. With 5 PEs per multiplication core, we can fit two

cores into the same FPGA, which takes full advantage of the parallelism in Algorithm 3.

 The Number of PEs

Bitlength-words 2 4 5 6 8 10

4080 (240 words) 1.1058 1.0277 1.0147 1.0023 1.0000 1.0000

2040 (120 words) 1.0891 1.0171 1.0078 1.0000 1.0089 1.0232

1020 (60 words) 1.0526 1.0000 1.0035 1.0109 1.1068 1.3591

510 (30 words) 1.0000 1.0111 1.1684 1.366 1.7875 2.1952

Table 10. Time Area Products: The values are normalized to the smallest in the same

row.

* radix =217, s=120 (2040 bit)

 PE=2 PE=4 PE=5 PE=6 PE=8 PE=10 Total

Slices 679 1260 1553 1838 2435 3028 4656

FF 809 1505 1854 2199 2901 3602 9312

LUT 1180 2232 2760 3292 4353 5426 9312

Block RAM 4 4 4 4 4 4 20

Multiplier 4 8 10 12 16 20 20

34

 SPA protected* SPA+DPA Protected†

Slices 3799 (81 %) 3899 (83 %)

FF 4416 (47 %) 4493 (48 %)

LUT 6750 (72 %) 6931 (74 %)

Block Ram 14 (70 %) 16 (80 %)

Multipliers 20 (100 %) 20 (100 %)

Frequency 119 MHz 119 MHz

Clock Cycles (max) 929 519 946 127

Max Ex Time 7.81 ms 7.95 ms

Table 11. Synthesis Results for 1020-bit exponentiation circuit (radix = 217 and s = 60)

The exponentiation circuit (5 PE x 2) with and without DPA countermeasure are

synthesized with speed optimization and the results are illustrated in Table 11. The area

consumption stays approximately the same for larger bit-lengths and so does the

frequency. Second circuit has a (1/s×100) percent cycle overhead due to DPA

protection.

3.5 Performance Analysis

3.5.1 Clock Cycle Comparison

 In this section, we provide a comparative analysis of the proposed design with

respect to other designs synthesized for different FPGA technologies in literature. Table

12 shows the number of clock cycles required for one 1024-bit modular multiplication

via different Montgomery multipliers.

* Montgomery Powering Ladder (Algorithm 3) is used as SPA protection.
† Exponent blinding is used for DPA protection.

35

Design Implementation Time Complexity Clock Cycles

[17] (R-2), pipelined* 2× (# multipliers+5) 134 (mult=62)

[19] Radix-4 N/2+(N/32)x1.5 560

Prop. R-217, pipelined max ((14+s), (12+9PE))×(s/PE) 907 (PE=5)

[14] R-2, pipelined N 1024

[10] Radix-2 N+1 1025

[11] R-2, pipelined N+3 1027

[7],[19] Radix-2 N+2+N/32 1058

[8] R-2, pipelined (N/(w1 × PE)). max (PE , N/w2) 1062

[6] R-4, pipelined
� �
2��� ���

�� � 1� � 2�� , �� ��
�� � 2��

� �
2��� �2�� � 1� � ��

�� � 1 , � !"#��$"
~1104

(w=64, NS=8)

[9] R-2, pipelined 2N +N/w-1 , if N/w+1 < 2.PE

(N/PE)(N/w+1)+2(PE-1), otherwise

~2080

(w=32, p = 16)

 [15] R-2, pipelined 3×N 3072

In [19], we have two circuits, one is based on conventional radix-2

implementation which is designed to simulate [7] on the same FPGA device, the other

circuit is based on radix-4. Both designs use distributed RAM as the main storage

element and are non-pipelined. Although the design in [17] is the fastest in Table 12, it

cannot fit in our target FPGA, Xilinx Spartan 3E-500, in that configuration due to its

excessive use of multipliers.

3.5.2 Execution Time Comparison

Table 13 summarizes the resource usage and performance of various FPGA

designs and the proposed one. Although the proposed design is not the fastest circuit, its

execution speed outperforms many others; moreover, it performs the best in terms of

time area product.

* For pipelined designs, we select optimum (both for area and speed) values for w and p. (w is bit length

of a word and PE (or NS) is the number of processing elements or pipeline stages)

Table 12. Time Complexities: N is the modulus bit-length and R stands for the radix.

36

Design Technology Freq (MHz) Area Ex. Time (µs)

[17] Xilinx xc2v3000-6 90.11 N/A 1.49

[19] radix-4 Xilinx xc2v6000 132.4 8328 slices 4.23

Proposed
(1020 bit)

Xilinx xc3s500e-
4FG320C

119
1553 slices +
10 multipliers

7.62

[14]* FPGA (?) 129.1 3611 slices 7.93

[19] radix-2 Xilinx xc2v6000 137.2 6282 slices 8.21

[10] Xilinx xc2v3000 75.23 11617 slices 13.45

[11] Xilinx xcv1000 ~55 5058 slices 18.67

[15] Xilinx V812E-BG-560 ~96 5706 slices 32.12

Table 13. Execution Times for 1024-bit modular multiplication

We do not have entire performance and area details concerning the

multiplication units in designs [3, 16, 17]; however, the exponentiation timings and

areas are available. Our exponentiation engine has DPA and SPA protection, which the

other designs lack and our execution time is fixed for a given bit-length.

* The authors in [14] use pre-computed values, but the pre-computation unit is not included in the

multiplier (it is a part of the exponentiation circuitry)

37

Design Technology Frequency Area Ex. Time (ms)

[3] Xilinx xc4vfx-10sf363 ~200/400*
3937 slices +
17 DSP48

1.71 (max)

[17] Xilinx xc2v3000-6 90.11
14334 slices +
62 multipliers

2.33 (avg.)

Proposed
(1020 bit) Xilinx xc3s500e 119

3899 slices +
20 multipliers

7.95 (max)

[19]
radix-4

Xilinx xc2v6000 132.4 8328 slices 8.66 (max)

[22] Xilinx xc3s4000 66
18247 slices+
66 multipliers

11.1 (?)

[16] Xilinx xc40250xv 45.66 6633 slices 11.95 (max)

[19]
radix-2

Xilinx xc2v6000 137.2 6282 slices 16.8 (max)

Table 14. Execution Engine Performance: 1024-bit Exponentiation Results

Our foremost design goal is not achieving the best timing but the best time-area

product on an inexpensive FPGA. This gap in performances can be attributed to the

following factors favoring the designs in [3] and [17]:

(1) More advanced (and expensive) FPGA,

(2) More resource usage,

(3) Higher clock frequency (favoring only [3]),

(4) Powerful DSP cells (favoring only [3]),

(5) Special acceleration techniques† used for exponentiation.

Considering that the proposed circuit is intended for a low-end device, the

achieved exponentiation speed, which is so far the record for a very low-price FPGA

device to best of our knowledge, and is satisfactory for many applications. In Table 13

and Table 14, the designs are mapped onto FPGA’s with different speed grades and

features; e.g., the multiplier in [3] uses built-in DSP cells, which are available neither in

our target device nor in many other FPGA devices. In this work, we try to use the

maximum potential available on one of the smallest FPGAs; therefore, the time-area

product is the vital criterion for us.

* The control unit is running at 200 MHz, while DSP48 cells (data path) are running at 400 MHz.
† [3] uses sliding window mechanism.

38

We cannot directly use execution times for comparison purposes (because of the

technological differences), instead we can use “total clock cycles required for one

modular multiplication” as the performance indicator. Table 15 shows that the proposed

design achieves the best {time×area} metric, which is an indication of good design and

high utilization of the target device.

Design Area (slices) Clock Cycles Time ×××× Area

[15] 5706 3072 12.607

[10] 11617 1025 8.564

[19] radix-2 6282 1058 4.780

[11] 5058 1027 3.736

[19] radix-4 8330 560 3.354

[14] 3611 1024 2.659

Proposed 1553*(3453) 907 1.000 (2.223)

Table 15. Time-Area products normalized to proposed implementation†

3.6 Compatibility Problems

As we use 17 bit x 17 bit multipliers in the design to take the full advantage of

given features of the FPGA chip, the implemented bit lengths are smaller than the

widely employed ones that are the powers of 2 (e.g. 512-bit, 1024-bit, 2048-bit, etc).

The security level provided by a 1020-bit implementation is approximately the same

with 1024-bit implementation, however there can be compatibility problems between

1024 and 1020 bit circuits in practical world (same case with 2048 bit and 2040-bit

implementations). Therefore, we also include a table (Table 16) showing the required

time for compatible versions of our implementations at the expense of some clock

cycles. The number of words in each compatible version is one more than the

previously mentioned designs; however, there will be no change in the frequency and

the area at all. The average slowdown ratio is 3.6 %.

* The hardwired multipliers (we use 10 multipliers here [only one multiplication engine]) are not included

in this area value. The value in parenthesis is the total area including the multipliers.

† for ≈1024 bit multiplication

39

 The Number of PEs

Bitlength -#words 2 4 5 6 8 10

4097 (241 words) 30620 15440 12404 10380 7850 6332
2057 (121 words) 8120 4130 3332 2800 2135 1736
1037 (61 words) 2270 1175 956 810 648 644
527 (31 words) 695 369 344 340 332 332

Table 16. The Required Clock Cycles for Compatible Versions

3.7 Conclusion and Future Work

We designed a fast, efficient and parameterized multiplier and a secure

exponentiation circuit for simple FPGA devices in the price range of $2-9 US*. This

price range is at least one order of magnitude less than other devices used in previous

works, where the primary purpose is to achieve the fastest time in modular

exponentiation. It is true that time performance is always of an important concern;

however, the price of the device used for realization is also an issue in many

applications and there is not much work in this direction. We intended to fill this gap

with our design, which achieves the best time-area product to the best of our knowledge

in this category.

Our target technology, Xilinx Spartan 3E-500, is a cost effective solution in

many aspects, especially the use of the 90nm technology significantly reduces the die

size, cost and the total power consumption, while increasing the frequency, and

therefore it is one of the best choices for practical applications, where the manufacturing

cost is the primary concern.

The proposed multiplier is parametric, and therefore can be used for virtually

any bit-length, where the upper limit on precision is dictated only by the capacity of

Block-RAM available on the device†. However, since the most popular public key

cryptosystem nowadays is RSA, we focused on the designs with precisions of 1020-bit

and 2040-bit; the latter precision will be favored over the former in the near future due

to increased security concerns. Our design completes one 1020-bit and 2040-bit

* The prices are from the year 2006

http://www.xilinx.com/products/silicon_solutions/fpgas/spartan_series/spartan3e_fpgas/index.htm
† The area and frequency of our circuit with longer operands stay approximately the same.

40

modular multiplications* in 7.62 µs and 27.0 µs, respectively with approximately the

same device usage. The timing performance achieved for multiplication is either

comparable or superior to most of the other designs in the literature despite the low

resources available on the target device. In addition, our design has the lowest {time ×

area} product among the other multipliers.

 We have also achieved to fit the exponentiation circuit (additional control unit)

into the same device. Few designs in literature can outperform our design only by using

more resources, better and expensive devices, and acceleration techniques for

exponentiation. From practical point of view, our exponentiation circuit also resists

against all known side-channel attacks (namely SPA, DPA, fault attacks and (n-1)

attacks) with minimal overhead.

 As future work, we plan to design an improved exponentiation circuit that

utilizes acceleration techniques such as the sliding window mechanism and bit encoding

schemes to reduce the total execution time of modular exponentiation. Moreover, we

will consider implementing our design to alternative FPGA’s such as Xilinx Spartan 3A

and 3AN series that have DSP units.

* With a multiplication engine that utilizes half of the device (i.e. 5 PEs which use 10 multipliers)

41

4 Summary of Contributions

In this thesis, we have presented two designs that have different goals. In the

first design, we tried to maximize the speed of 2048-bit modular multiplication for

hardware platforms. We adapted the well-known radix-2 Montgomery algorithm and

obtained following results with the use of radix-4:

� While the frequency of the circuit stayed approximately the same with respect to

our reference radix-2 core, the execution time for 2048-bit modular

multiplication improved significantly (82% reduction in FPGA implementation),

because the cycle count is approximately halved with the use of radix-4

datapath. Moreover, our circuit outperformed previous works significantly in

terms of execution time.

� A major improvement was also achieved in terms of time area product, which

decreased by 37% and 41% for FPGA and ASIC designs respectively in

comparison to the reference core.

In the second design, we optimized our circuit according to the resources on our

target FPGA, Xilinx Spartan 3E-500, which uses 90 nm technology. This technology is

advantageous over previous generations; because faster clock speeds can be obtained

while being cost effective. Our contribution in this design can be summarized as

follows:

� As the most popular PKC is RSA nowadays, we optimized our circuit for higher

bit-lengths (for operands greater than 512 bits). Our implementation can be used

in other PKC algorithms as is, except for ECC, (where a slight modification of

the design is needed) because ECC utilizes much shorter key lengths.

� We designed a high-speed multiplier and exponentiation circuit on an

inexpensive FPGA by utilizing its hardwired multipliers, which are becoming

more and more common in reconfigurable devices and we showed that 2040-bit

exponentiation circuit can easily fit on such FPGAs.

42

� We provided an efficient modification of one of the best software algorithms for

Montgomery multiplication to take advantage of simultaneously operating

multipliers.

� We showed that the {time × area} metric will shrink considerably by the use of

the dedicated multipliers on FPGA.

� We arranged the multipliers in a pipelined fashion to increase the device

utilization and clock frequency. This arrangement also rendered a parametric

design that can be used to perform multiplications and exponentiations up to

virtually any bit-length as long as the memory resources sufficed.

� We provided a parametric design for modular multiplier, which could be

implemented on an FPGA that has as low as four block multipliers where the

block size is also adjustable.

� By the use of dual-port Block RAMs, we could overlap the phases of the

algorithm and therefore the execution was accelerated considerably, while

maintaining low area consumption.

� We also implemented countermeasures to all known side-channel and fault-

induction attacks and demonstrated that they were affordable on a very modest

FPGA device.

43

Appendix

Figure 9. Waveform of One Stream

• a = Start to start time (9 cycles)

• a + b = Time required to finish one iteration of loop i in Algorithm 5. (s + 3
cycle)

• c = idle period of one multiplier

 a b � c One Stream

44

References

[1] R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital Signature and Public-

key Cryptosystems,” Comm. ACM, v01.2 1, pp. 120-126, 1978.

[2] P. L. Montgomery, “Modular Multiplication without Trial Division,” Math. Computation, vol. 44,

pp.519-521, 1985.

[3] D. Suzuki, “How to Maximize the Potential of FPGA resources for Modular Exponentiation”, CHES

2007, LNCS 4727, pp. 272-288, 2007

[4] C. McIvor, M. McLoone, J.V. McCanny. “FPGA Montgomery Multiplier Architectures - a

Comparison” in Field-Programmable Custom Computing Machines, 2004. FCCM 2004. 12th

Annual IEEE Symposium on Volume , Issue , Page(s): 279 – 282. April 2004

[5] Ç. K. Koc, T. Acar, B.S. Kaliski: “Analyzing and Comparing Montgomery Multiplication

Algorithms”. IEEE Micro, Vol. 16, No. 3, pp. 26-33, June 1996.

[6] L. A. Tawalbeh, “Radix-4 ASIC Design of a Scalable Montgomery Modular Multiplier using

Encoding Techniques”, Master Thesis, Oragon State University, USA 2000.

[7] Y. S. Kim, W. S. Kang, and J. R. Choi, “Implementation of 1024-bit Modular Processor for RSA

Cryptosystem”, The Second IEEE Asia Pacific Conference on ASICs, 2000.

[8] L. Batina, G. Muurling, “Montgomery in Practice: How to do it more efficiently in hardware”,

Cryptographers’ Track RSA Conference 2002, San Jose, USA

[9] A. F. Tenca, and C. K. Koc, “A Scalable Architecture for Modular Multiplication based on

Montgomery’s Algorithm”, IEEE Transaction on Computers, vol.52 no.9, 2003

[10] C. McIvor, M. Mcloone, J. N. McCanny, A. Daly, W. Marnane, “Fast Montgomery Modular

Multiplication and RSA Cryptographic Processor Architectures”, 37th Annual Asilomar Conference

on Signals, Systems and Computers, California , 2003

[11] A. Daly and W. Marnane, “Efficient Architectures for implementing Montgomery Modular

Multiplication and RSA Modular Exponentiation on Reconfigurable Logic”, in proc. of 10th

International symposium on FPGA’s, 2002

[12] W. Diffie and M. E. Hellman, “New Directions in Cryptography,” IEEE Trans. Info. Theory, vol.

IT-22, Nov. 1976, pp. 644–54.

[13] N. Koblitz, Elliptic curve cryptosystems, in Mathematics of Computation 48, pp. 203–209, 1987.

[14] P. Fournaris, O. Koufopavlou, "A New RSA Encryption Architecture and Hardware Implementation

based on Optimized Montgomery Multiplication" in proceedings of 2005 IEEE International

Symposium on Circuits and Systems (ISCAS 2005), Kobe, May 23 -26, Japan, 2005.

45

[15] S. B. Ors, L. Batina, B. Preneel and J. Vandawalle, “Hardware Implementation of a Montgomery

Modular Multiplier in a Systolic Array”, International Parallel and Distributed processing

symposium (IPDPS ’03), 2003

[16] T. Blum, C. Paar, “High-Radix Montgomery Modular Exponentiation on Reconfigurable

Hardware”, IEEE Transaction on Computers 50(7), 759-764 (2001).

[17] S. H. Tang, K. S. Tsui, P. H. W. Leong, “Modular Exponentiation using Parallel Multipliers” , Proc

of the 2003 IEEE International Conference on Field Programmable Technology (FTP 2003), pp. 52-

59 (2003)

[18] Xilinx, Inc.: http://www.xilinx.com, “Xilinx Spartan 3E-500 Data Sheets”.

[19] E. Oksuzoglu, E. Savas, “A Fast and Efficient Hardware Implementation of 2048-bit Radix-4

Modular Multiplication Circuit for Public Key Cryptosystems”, submitted to JCSC, 2007

[20] M. Joye, S.M. Yen, “The Montgomery Powering Ladder”, Cryptographic Hardware and Embedded

Systems – CHES 2002, vol. 2523 of Lecture Notes in Computer Science, pp. 291–302, Springer-

Verlag, 2003

[21] S.M. Yen, W.C. Lien, S. Moon, and J. Ha, “Power Analysis by Exploiting Chosen Message and

Internal Collisions – Vulnerability of Checking Mechanism for RSA-Decryption”, Mycrypt 2005,

LNCS 3715, pp. 183–195, 2005

[22] N. Mentens, K. Sakiyama, L.Batina, I. Verbauwhede, B. Preneel, “FPGA-Oriented Secure Data

Path Design: Implementation of a Public Key Coprocessor”, 16th International Conference on Field

Programmable Logic and Applications (FPL 2006), IEEE, pp. 133-138, 2006.

[23] C. Giraud, “An RSA Implementation Resistant to Fault Attacks and to Simple Power Analysis”,

IEEE Trans. Computers, (55): 9, pages 1116-1120, 2006.

[24] A.F Tenca, G. Todorov and C.K. Koc, “High-radix Design of a Scalable Modular Multiplier,” in

Cryptographic Hardware and Embedded Systems - CHESS 2001, C.K Koc and C. Paar, Eds.2001,

Lecture Notes in Computer Science, No. 1717, pp. 186-206, Springer, Berlin, Germany

[25] L. A. Tawalbeh, A. F. Tenca and C. K. Koc, “A Radix-4 Design of a Scalable Modular Multiplier

with Recoding Techniques”: islab.oregonstate.edu/papers/j66radix.pdf, 2002

[26] A.D.Booth, “A Signed Binary Multiplication Technique,” Q.J.Mech. Appl. Math, Vol.4, no.2,

pp236-240, 1951

[27] T. ElGamal, "A Public-Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms",

IEEE Transactions on Information Theory, v. IT-31, n. 4, 1985, pp469–472 or CRYPTO 84, pp10–

18, Springer-Verlag

[28] NIST, “Digital Signature Stantard (DSS)”, FIPS PUB186-2, 2000.

[29] P. Paillier, “Public-Key Cryptosystems Based on Composite Degree Residuosity Classes”,
Eurocrypt 1999, pp223-238.

[30] ModelSim Simulation Tool. Mentor Graphics Corporation, http://www.model.com/

