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ABSTRACT. Consider a family of infinite tri-diagonal matrices of the
form L+ 2B, where the matrix L is diagonal with entries Ly = k2, and
the matrix B is off-diagonal, with nonzero entries By r+1 = Br41,k =
k%, 0 < o < 2. The spectrum of L + zB is discrete. For small |z| the
n-th eigenvalue E,(z), En(0) = n?, is a well-defined analytic function.
Let R, be the convergence radius of its Taylor’s series about z = 0. It
is proved that

Rn < Ca)n* ™ if 0 < a < 11/6.

1. INTRODUCTION

Since the famous 1969 paper of C. Bender and T. Wu [2], branching
points and the crossings of energy levels have been studied intensively in the
mathematical and physical literature (e.g., [8, 1 [4, B3] and the bibliography
there). In this paper our goal is to analyze — mostly along the lines of J.
Meixner and F. Schéfke approach [10] — a toy model of tri-diagonal matrices.

We consider the operator family L + zB, where L and B are infinite
matrices of the form
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@@ 0 0 0 - 0 by 0 0
0 g2 0 0 - ctc 0 by O
(1.1) L=10 0 qs 0o - s B=10 (&) 0 b3
0 0 0 q - 0 0 e¢3 O
with
(1.2) qe = k2,
(1.3) |bk‘, |Ck| < Mka,
(1.4) o< 2.

Sometimes we impose a symmetry condition:

(1.5) by = ¢.
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Under the conditions (L2)—(L4]) the spectrum of L + zB is discrete. If
a < 1 then a standard use of perturbation theory shows that there is r > 0
such that for |z] < r

(1.6) Sp(L + zB) = {E,(2)}5%,, FEn(0) =n?,

where each E,(z) is well-defined analytic function in the disc {z : |z] < r}.

If a € [1,2), then in general there is no such r > 0. But the fact that n?
is a simple eigenvalue of L guarantees (see [9], Chapter 7, Sections 1-3) that
for each n there exists r, > 0 such that, on the disc {z : |z| < r,}, there are
an analytic function E,(z) and an analytic eigenvector function ¢, (z) with

(1.7) (L+ zB)on(2) = En(2)en(2), |2| < ra,
(1.8) ©n(0) = e,, Fn(0)=n?
Let

(1.9) E,.(z) = Z ap(n)2"
k=0

be the Taylor series of E,(z) about 0, and let R,,, 0 < R,, < 00, be its radius
of convergence. The asymptotic behavior of the sequence (R,,) is one of the
main topics of the present paper.

It may happen that R,, > r,. Then, by (L9), E,(z) is defined in the disc
{z : |z| < R,} as an extension of the analytic function (I7) in {2 : |z| < rp}.
But are its values E,(z) eigenvalues of L 4+ zB if z is in the annulus r, <
|z] < R,? The answer is positive as one can see from the next considerations.

In a more general context let us define Spectral Riemann Surface

(1.10) G={(zFE): 3g€ Dom(L), g#0| (L+zB)g= Eg}.
This notion is justified by the following statement (coming from K. Weier-

strass, H. Poincare, T. Carlemann — see discussions on the related history
in [6l 111 [7]).

Proposition 1. If (1.1])-(1-4) hold, then there exists a nonzero entire func-
tion ®(z,w) such that

(1.11) G = {(z,w) € C*: &(z,w) = 0}.
Proof. The identity
(1.12) (L+2B)g=wg, ¢g#0, ge& Dom(L)

is equivalent to

(1.13) (1—A(z,w)h =0 with h=L"Y%2g e Dom(L'?), h+#0,
where

(1.14) A(z,w) = —2zL7V2BL™Y2 4 wL ™1,

Therefore, w is an eigenvalue of the operator L + zB if and only if 1 is an
eigenvalue of the operator A(z, w).
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On the space S7 of trace class operators T the determinant
(1.15) d(T) =det(1-T)

is well defined (see [6], Chapter 4, Section 1 or [12], Chapter 3, Theorem
3.4), and 1 € Sp(T) if and only if d(T') = 0 (see [12], Theorem 3.5 (b)).

Of course, the second term L' in (ITI4]) is an operator of trace class
(even in S,,p > 1/2) by (1.2). But (L3)-(T4) imply that L~Y/2BL~1/2 is
in the Schatten class Sp,p > 1/(2 — «); only a < 1 would guarantee that it
is of trace class.

However, (LI5) could be adjusted (see [6] Chapter 4, Section 2 or [12],
Chapter 9, Lemma 9.1 and Theorem 9.2). Namely, for any positive integer
p > 2 we set

(1.16) d,(T) = det(1 — Q,(T))

where

2 —1
QP(T):1—(1—T)exp<T+T7+---+Zp_l>.

Then Q,(T) € S if T € S, so dp, is a well-defined function of T' € S, and
1 € Sp(T) if and only if d,(T) = 0.
In our context we define, with A(z,w) € (LI4) and p > 1/(2 — ),

(1.17) ®(z,w) = det [(1 — Qp(A(z,w))] .

Now, from Claim 8, Section 1.3, Chapter 4 in [6] it follows that ®(z,w) is
an entire function on C2.

The function ® vanishes at (z,w) if and only if 1 is an eigenvalue of the
operator A(z,w), i.e., if and only if (2, w) € G. This completes the proof. [

In particular, the above Proposition implies that ®(z, E,,(z)) = 0 if |z] <
Tn, SO by analyticity and uniqueness ®(z, E,(z)) = 0 if r, < |z] < R,.
Equivalence of the two definitions (ILI0) and (ILIT) for the Spectral Riemann
Surface G explains now that E,(z) is an eigenvalue function in the disc
{z:|z| < Rn}.

Our main focus in the search for an understanding of the behavior of R,
will be on the special case where

(1.18) 0<a<?2,
(1.19) be = = k.

If & = 0 in (I9]), we have the Mathieu matrices. They arise if Fourier’s
method is used to analyze the Hill-Mathieu operator on I = [0, 7]

Ly = —y" + 2a(cos 2zx)y, y(m) =y(0), ¥'(7) =y'(0).

In this case J. Meixner and F. W. Schéfke proved ([L0], Thm 8, Section 1.5;
[11], p. 87) the inequality R, < Cn? and conjectured that the asymptotic
R, =< n? holds. This has been proved 40 years later by H. Volkmer [13].
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But what can be said if 0 < a < 27 Proposition 4 in [5] shows that if

(CI)—(T3) and (LI8]) hold, then
(1.20) R, > en'™e.

This estimate from below cannot be improved in the class (LI)—(L3),
(LI8) as examples in Section 4 show. But in the special case (LI8)—(LI9)
one could expect the asymptotic

(1.21) R, = n*"°.

We show that
R, < Cn?*™@,

at least for 0 < a < 11/6.

Notice that in the Hill-Mathieu case we have o = 0, b = 1 Vk, so the
operator B is bounded, while it could be unbounded in the case a > 0. We
use the approach of Meixner and Schéfke [10], but complement it with an
additional argument to help us deal with the cases where the operator B is
unbounded (but relatively compact with respect to L). The main result is
the following.

Theorem 2. If the conditions (L2) and (ZI3) hold, then for each a €
[0, %) there exist constants Co > 0 and N, € N such that

(1.22) R, < Con®*™®, n>N,.

Proof is given in Section Bl It has two parts. In Section 2 we prove
an upper bound for Taylor coefficients |ax(n)| in terms of k, n, R, and «
(see Theorem [B)). In Section B] we show how a certain lower bound on
|ag(n)| , in terms of k, n, and «, can be used to prove the desired inequality
on particular subsets of [0,2). In the same section we provide such lower
bounds for |az(n)|, |as(n)],...,|a12(n)|. This general scheme could be used
in an attempt to prove ([22]) for larger subsets of [0,2). One would then
need to compute (and manipulate) ai(n) for values of k& > 12. See Section
[ for details.

2. AN UPPER BOUND FOR |ak(n)|

In what follows in this section, suppose that n is a fized positive integer.

Theorem 3. In the above notations, and under the conditions (1.2) and
(L3), if
(a) a € [0,2) and (I3) holds, or  (b) a €]0,1),
then
(2.) ax(m)] < Cp~®D (n 4 p% ), 0<p <Ry,

where C' = C(o, M).
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Proof. For r > 0, let
A, ={ze€C:|z|<r}, Cr={ze€C:|z|]=r}

Let us choose, for every z € Ap, , an eigenvector g(z) = (gn(2))22; such
that [|g(2)|,2 = 1 (this is possible by Proposition [1l). Then

(2.2) (L +2B)g(2) = En(2)g(2), llg(2)llee =1,
which implies (after multiplication from the right by g(z))
(2.3) 0(z) + 2b(z) = En(2), z€ Ag,,
where
(2.4) U(z) == (Lg(2), 9(2)) = > K|an(2)[,
k=1
and
(25)  b(=) = (By(2).9(2)) = Y (crgu(2)9001(2) + brgeos () (2) )
k=1

The functions ¢(z) and b(z) are bounded if |z| < p < R,. Indeed, by (2.4)
we have ¢(z) > 0. By (23] and (L3])

(2.6) b(2)] < D ME* (|ge(2) + lgral?) < 2M )k gi(2)[,
k=1 k=1

so, estimating the latter sum by Holder’s inequality, we get
(2.7) |b(2)| < 2M (£(2))*/2.
Therefore, in view of (2.3]).
0(2) < |En(2)] + |2b(2)] < |Ea(2)] +2Mp(¢(2))*,  |2] < p.

Now, Young’s inequality implies

0z) < |En(2)] + (1 0/2)27°5 (2Mp) =5 + (a/4) - £(2),
so, in view of (ILI8]), ¢(z) is bounded by

(=) < 20Ba(2)| +2(1 - 0/2)255 2Mp) ==, |2] <.

By (27, the function b(z) is also bounded if |z| < p.

Since in ([2.2]) the vectors g(z), z € Ag, , are chosen in an arbitrary way,
we cannot expect the function z — g(z) to be continuous, or even measur-
able. But the functions ¢(z) and b(z) are measurable. The explanation of
this fact is the only difference in the proof of (2.1]) in the cases (a) and (b).

(a) The functions ¢(z) and b(z) are continuous on Ag, \ (—R,, Ry).

Indeed, in view of (2.X) the symmetry assumption (5] implies that
the function b(z) is real-valued. Therefore, from (23] it follows yb(z) =
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Im E,(z) with z = x+1iy, so £(z) and b(z) are continuous on Ag, \(—R,, R,)
because

(2.8) b(z) = i[m(En(z)), 0(z) = Re(Ey(2)) — g Im(En(z)), y#0.

(b) For every z such that E,(z) is a simple eigenvalue of L + wB the
values £(z) and b(z) are uniquely determined by ([2.4]) and (2.5]) and do not
depend on the choice of the vector g(z) in (2.2)). Therefore, the functions
¢(z) and b(z) are uniquely determined on the set

U={z¢€Ag,: E,(z) is a simple eigenvalue of L+ zB}.

On the other hand, the set Ag, \ U is at most countable and has no finite
accumulation points (see Section 5.1 in [5]).

If w € U, then it is known ([9], Ch.VII, Sect. 1-3, in particular, Theorem
1.7) that there is a disc D(w, 7) with center w and radius 7 such that E,(z)
is a simple eigenvalue of the operator L + 2B for z € D(w,7) and there
exists an analytic eigenvector function ¢ (z) defined in D(w, 1), i.e.,

(L +2B)Y(2) = En(2)¥(2), 9(2) #0, z¢€ D(w,T).

Let g(z) = ¥(2)/|[¢¥(2)]|2 for z € D(w, 7). Then the coordinate functions
gk (z) are continuous, and by (2.4)) the function ¢(z), z € D(w,7), is a sum
of a series of positive continuous terms. Therefore, the function ¢(z) is lower
semi—continuous in D(w, 7), so it is lower semi-continuous in U. Thus, ¢(z)
is measurable on Ag . By ([23]) we have b(z) = (E,(z) — ¢(z))/z for z # 0.
Thus, b(z) is measurable in Ag,_ as well.

For each p € (0, R,,), consider the space L?(C,) with the norm ||-|| , defined

by | f1I2 = = 027r |f(pe??)|?dh. The functions £(z) and b(z) are integrable on
each circle C,, p < R, because they are bounded and measurable on C,.
From (2.7)) and Hoélder’s inequality it follows that

(2.9) lo(2)ll, < 2Ml€(2)l1572.
Since £(z) > 0, by 2.3) and (2.7) we have
[Im (Bp(2) = n®)| = [Im (2b())| < plb(2)].
Therefore,
(2.10) 1m (Bn(2) = n®)llp < p- [16(2)]],-

If f is an analytic function defined on Ag, with f(0) = 0, then ||[Re(f)]||, =
[Im(f)||,- In particular, we have

1Re (En(2) = n®), = [Hm (En(2) = 1),
which implies, by (2.10]),
(2.11) 1B (2) = 2l < V20 [[6(2)]l-
In view of (2.3) and (2.I1]), the triangle inequality implies
1llp < n® +1En(2) = n®llp + ()], < 0* + (14 V2)p - [1b()]],-
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Therefore, from (2.9) it follows that
(2.12) 1€, < n* + 5Mpleo/.
Now, Young’s inequality yields

2
o (6 _2 1
SMpllelg/? < (1 - a/2)(6M27/29) % + 2, < Crp7s + Sl

2
with €y = (1 — a/2)(5M2"/2)2*“ . Thus, by (2.12)), we have

€] < 2n% + 20, p7-s.
In view of (2I1)) and (29), this implies

(2.13) |En(2) —n?[l, < 3Mp (20‘/%‘1 + (201)“/2,0*2%) :
By Cauchy’s formula, we have
1 En(C) - ’I’L2
== ——dC.
ak(n) 2mi Jon, (P ¢

From (2.13)) it follows that
ak(n)] < p M| En(z) = 02, < 3Mp~F (2700 + (201)°/2p27a )

which implies (1)) with C' = 3M (2 + 2C1)*/2. This completes the proof of
Theorem [3 O

Remark. In fact, to carry out the proof of Theorem [3] we need only to
know that there exists a pair of functions ¢(z) and b(z) which satisfy (2.3)
and (2.1), and are integrable on each circle C,, p < R,,. We explained that
the pair defined by ([2.2]), (24) and (23] has these properties. In the case
(a) of Theorem [B] the same argument could be used to define a pair of real
analytic functions functions ¢(z) and b(z) which satisfy ([2.3]) and 27).

Indeed, by (L)) the operator B is a self-adjoint, so L+xB, = € R, is self-
adjoint as well. Thus, the function F,(z) takes real values on the real line
and its Taylor’s coefficients are real. Since the quotients % Im(z +iy)*, k €
N, are polynomials of y, it is easy to see by the Taylor series of E,,(z) that
%I m(Ey(z)) (defined properly for y = 0) is a real analytic function in Ag,, .
Therefore, if one defines a pair of functions #(z) and b(z) by (Z8), then

([23) holds immediately, and (27 follows because on Ag, \ (—Ry, Ry,) these
functions coincide with ¢(z) and b(z).

3. AN UPPER BOUND FOR R,

In this section we use (2] in the case of (I.I9) to prove Theorem [2
Roughly speaking, the bound (22 will be achieved for a € |0, %) by
inserting the known (from [5]) formulas for az(a,n),...,a12(a,n) into in-
equality (2.I). With our approach, using only asi, k& < 6, it is possible to
get good lower bounds only if 0 < a < 11/6.
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We begin with the following observation.

Lemma 4. Suppose the conditions (L.2),(13) and (I18) hold.

(a) If for some fized k,n € N and o € [0,2 — %) we have ag(n) # 0, then
R, < 0.

(b) If R, = oo, then E,(2) is a polynomial such that deg F,(z) < 5%—.

2—a

Proof. Let a = |ag(n)| > 0. Then, by Theorem [3]
(3.1) aptt<C <n°‘ + pﬁ) , Vp<R,.

The condition a € [0,2 — 2) implies k — 1 > 7%; therefore, (3] fails for
sufficiently large p. Thus, R,, < sup{p: p € BI)} < oo, which proves (a).
If R, = oo, then (a) shows that ay(n) = 0 for all k& such that k > 52
This proves (b).
(]

Lemma 5. Suppose that conditions (1.2) and (I3) hold. If for some fized
k,neN, A>0 and a € [0,2—%) we have

(3.2) AnFem2=1 <y (n)),
then
(3.3) R, < Cn*™*,

where C' = Cla, M, A, k).
Proof. 1t is enough to prove that
(3.4) p<Cn* % Vpe(0,Ry).

Then (3.3) follows if we let p — R,,.
By (21]) we have

ApFe=2=1) < g (n)] < 2C (o, M) p~* =D max(n®, pz-a).

If n® > p7-=, then we get B4) with C = 1.
Suppose that n® < p2-«. Then max(n®, p?- a) = p2-2, 80
AP TR < 20 (a, M) (n2 ) ==
Thus, whenever v < 2—2/k, this inequality implies (33)) with C = (2C/A)?,
where v = (2 — a)/(k(2 — a) — 2). O

According to the preceding lemma, all one needs in order to get an upper
bound on R, of the form ([B.3]) (or even to explain that R, is finite) is to find
a lower bound on |ag (n)| of the form ([B:2)) (or at least to explain that ay(n) #
0). We now describe a technique to provide such lower bounds. Theorem
will follow when we get such lower bounds for |aa(n)l,...,|ai2(n)|.



CONVERGENCE RADII FOR EIGENVALUES 9

Lemma 6. Under conditions (I.4) and (LI9), for each fized o < 2, the
coefficient ar(n,a) can be written in the form
(3.5) ap(n, o) = nFe= k= ¢ (1/n)

where
w) = Pu(j, )’
=0

is analytic on the disk |w| < 1/k, and Py(j, o) are polynomials of a.

Proof. We begin this proof by stating the equation (3.7) from [5]

(36)  aln) = 5 /6 X o ) | ax
i—n|<k

where R) = (A\— L)1, ej is the 4" unit vector, and IT is the square centered
at n? of width 2n. This formula appears in [5] only in the case of o € [0, 1),
but its proof therein holds for o < 2 as well. It follows from (LI]) that for
each j € N,

j—1)> jo s
%ej_l + )\J_—jzeﬁl ifj>1

BR())\EJ' =
e if j = 1.

So, (A — n?®)(R(BRY)*e;, e;) can be written as a finite sum each of whose
terms is of the form

H n—d/
”_Jozi:)‘ (n—ji)

with j/ and d} integers satisfying |j/|, |d;| < k for each i. So, from a residue
calculation on (B3.6]), ai(n) can be written as a linear combination of terms
of the form

(3.7) (- ] 7

_ (o ka—(k=1) G _Ji
o (-3 T (-5) (-2 |

with C' = HZ 1 1(25;,)~" and |ji|,|di| < k for each i.
For n > k, we have |d;/n| < 1 and |j;/(2n)| < 1. Thus,

AN C AN G N LAY
o e (e ()
e (1-£) =1+ (2)+ (L) 4
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are analytic functions of z = 1/n whenever n > k. Combining (37 with
BI)-(39), we deduce that ag(n) can be written as in (B8] with f,(z)
analytic for |z| < 1/k. O

The preceding lemma guarantees that whenever a < 2,
ax(n,a) = Py(0,a)n**= =D L O(nk*=F) as n — co.

When ay(n),...,a12(n) were computed (following the approach of [5, p.305—
306]), an interesting phenomenon was observed. If 2 < k < 12, then

(3.10) Py(j,a) =0 for each 0 <j <k —2.
In particular, if (LI8) and (II9) hold, then
(3.11) ap(n) = Py(k — 1, @)n*=2k=0 L O(pka=2k+1y "y s o0,

the polynomials Py(k — 1,a), k = 2,4,...,12, are given in the following
table.

k Pk(k? - 1,0&)

2 —a+%

39,2 11 5
4 o’ + Ja s ¢+ 35

734 27 3, 281 2 147
6 a+ 5o+ FH5at — a+64

8 61a7_|_ 2881 6 _ 6875 5+ 33937 4 11437 3+ 64649 2 4507 o+ 1469

T o 288 144 2304 ¢ 1024 8192

1525 o? 23705 ad — 353023 af 648539 6 _ 5774039 aP 7955297 4
10 + 128 576 + 576 4608 + 9216

_ 6626165 3 | 6173425 o 148881 4471
18432 + T3 &7~ Te3sa @ 1 Te3sa

221321 11 | 8544347 |10 _ 1207947 |9 | 71029219 '8 _ 92577243 |7 . 385333821
12\ =550 @ + “o600 @ 320 + 7680 6400 + 35600

_ 16162765 5+ 9344339 4 583689039 3+ 296768801 2 12877899 + 121191

1536 1920 ~ 7409600 262144

1228800 655360

6
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Numerical computations tell us that in the following table, each inequal-
ity in the second column holds on the union of intervals shown in the first
column.

Set Inequality

a€ S =101 U[3,1) 1Py(L,a)] > &

aesi=[LI0LIUED | IPGI> 4

a €8s =[55]U[i3) [Po(5, )| > 505
aeSs=[55%]V[57) Ps(T,0)] > 15
€S =[13) |Pro(9, )] > 4
a€Sp=[24) |Pia(11,0)| > 1

Proof of Theorem [2. In view of (BI1I) and the above table, there is a
constant A > 0 such that, for each a € [0,2 — %), we have

(3.12) |ag(n, )| > AnFe=2k=D " p > N,
Therefore, Lemma Bl implies that there exists a constant C such that
R, < Con*® forn> N,.

Thus, (I22]) holds for n € N, which completes the proof of Theorem 2

4. GENERAL DISCUSSION

In this section we give a few examples to show that the order 1—« of lower
bound (L20) for R, is sharp in the class of matrices B with (L2)—(T4).
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1. A case in which R, ~n'~%. Let o € [0,1). Suppose now that in (L))
we set

(4.1) b, =cr = (24 (—1)k)k‘a
(4.2) Qi = k>
Then by [5], Section 7.5, p.35,

9 n—1 2e n2a . .
las(n)| bp—1Cn—1 bncn ‘ (2n—)1 — 5p71| ifnis odd,
as(n)| = - - o «

2n —1 2n +1 ("2;1_? — ggil if n is even

SO
laz(n)| > e¢n®*71 ¢ > 0.
In view of Lemma [ this implies that R,, < co for a € [0,1).
Therefore, by (2.I]) in Theorem 3] for each « € [0, 1), we have

(4.3) n?1 < ag(n)| < 20 ()R, max(n®, RZ*), n > ng.
_a 200—2
If n® < Ry ®, then R, > n?™® and @3] gives n?*~1 < 2C(a)R
which implies

2—2«
2C(a) > n2a—1Rana > n2o¢—ln2—2o¢ = 1.

Therefore, we have max(n®, RZ ) =n® for n > 2C(a). So, @3) implies
R, <2C(a)n'™® for n >2C(a).

On the other hand, by Proposition 4 of [5, p.296], we have R,, > énl_a for
large enough n. Hence, we have shown that in the special case of ([@.1])-(Z.2]),

(4.4) R, =< n'™@,
2. Of course we can simplify the example (41]) by choosing
(4.5) b =cp = [1 + (—1)k_1} k*

This ensures that L+ 2B — E(z)I has the structure of a tri-diagonal matrix
with 2 x 2 blocks along the diagonal. The m!" block will have the form

[T—E zb ]7

(4.6) zb V-F

where
T=02m-12% V=_02m? b=02m-1°% m=12,....

It follows that the two eigenvalues corresponding to this block are

E(z) = % (T +VEV(T-V)?+ 422b2> .

So, the branching points of these branches of E(z) occur at

(V=T
(4.7) 21,2 =+ <——?i;——> .
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Hence, we have

(4.8) 2= i% = +i(2m)' @ <1 + 227; L O(m—2)>

Therefore,
Rom—1 = Rop ~ (2m)' ™7,
i.e., we have the same sharp order 1 — «v as in ([£4).

3. This simplified example (4.5]) is extreme in the sense that the spectral
Riemann surface (SRS)

GB)={(z,E)eC*: (L+zB)f=Ef, fel* f+#0}

splits: it is a union of Riemann surfaces defined by determinants of the

blocks (4.6, i.e.,
E% — E[(2m —1)* 4+ (2m)*] + (2m — 1)*(2m)? — 22(2m — 1) =0, meN.

In the case (AI]) we have no elementary reason to say anything about
(ir)reducibility of the spectral Riemann surface G(B) (see more about irre-
ducibility of SRS in [5] [14]).

Nevertheless, we would conjecture that this surface G(B) is irreducible if
B € (&), or more generally, if

(4.9) b, = cn (1 + 7(—1)’f—1> K, 0<y<1.

If v = 0 we proved in [5], Theorem 3, such irreducibility for & = 1/2 and
many but not all /s in [0;1/2].

If 1 < a <2 let us choose in ([4.0])

1
(4.10) b=bm=5—(2m—1)% [Bn| 21

m

Then ([@T) holds, so by (48]
212 = +iB,,(2m)' ™ (1 4+ 0(1/m)).

The sequence {B,,} could be chosen in such a way that the set A of accu-
mulation points for {zf’é} is the entire complex plane C, or for any closed
K C C with K = —K we can make A = K.

4. Our argument in Section 2, uses Young’s and Holder’s inequalities,
i.e., the concavity of the function xa/2, 1<z <o0, 0<a<2 It cannot
be applied if @ < 0 although in this case the operator B € (3] is even
compact. Yet, we conjecture that R, < K(a)n?>=% holds both for a € [%, 2)
and o < 0. Moreover, we expect that our conjecture (1.21]) holds for e < 0
as well.
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