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his continuous guidance, suggestions, patience, and friendship during the course of

my work. He guided me both as a mentor and as an academician. He has not

only contributed tremendously to the technical content of this dissertation, but also

provided a nice example of adviser-student relationship. I am very grateful to my
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Thesis Co-Supervisor: Assist. Prof. Dr. Gözde Ünal
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Abstract

Brain tissue and structure segmentation in magnetic resonance (MR) images is

a fundamental problem in clinical studies of brain structure and function. Due to

limitations such as low contrast, partial volume effects, and field inhomogeneities,

the delineation of subcortical (basal ganglia) structures such as caudate nucleus,

putamen, and thalamus from white matter, gray matter and cerebrospinal fluid

(CSF) is a very challenging problem.

This thesis presents a new method for simultaneous segmentation of multiple

brain structures. We formulate the segmentation problem as a maximum a poste-

riori estimation problem, in which we incorporate statistical prior models on the

shapes and relative poses of the structures of interest. Our method is motivated by

the observation that neighboring or coupling structures in medical images generate

configurations and co-dependencies which could potentially aid in segmentation if

properly exploited. Our coupled shape priors are learned through nonparametric

multivariate kernel density estimation based on training data. Relative pose priors

are modeled via standard moments. Given this framework, the segmentation prob-

lems turns into an optimization problem, which we solve using active contours. We

present experimental results on synthetic data as well as on a rich set of real MR



images demonstrating the effectiveness of the proposed method in segmenting basal

ganglia structures as well as improvements it provides over existing approaches.
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Parametrİk Olmayan Bağlaşik Şekİl ve Ortak Pozİsyon Bİlgİsİ

Tabanlİ Bİr Yöntem İle Beyİn Korteks Altİ Yapİlarİn Bölutlenmesİ

Mustafa Gökhan Uzunbaş

EECS, Master Tezi, 2008

Tez Danismani: Yard. Doc. Müjdat Çetin

Tez Yan Danismani: Yard. Doc. Gözde Ünal

Özet

Beyin manyetik rezonans görüntülerinde beyin dokularının ve yapılarının bölütlenmesi

klinik uygulamalarda temel bir problemdir. Ozellikle beyindeki beyaz madde, gri

madde ve beyin öz sıvısı içerisinde gömülü halde bulunan Putamen, Kaudat, Tala-

mus gibi korteks altı yapıların ayrıştırılması oldukca zordur. Bu zorlugun nedeni,

manyetik görüntülerde bu dokuların düşük kontrastlı görülebilmesi, homojen ol-

mayan yoğunluğa sahip olması ve kısmi hacim etkilerinin olmasıdır.

Bu tezde bahsedilen çoklu beyin yapılarının aynı anda bölütlenmesi için yeni bir

yöntem geliştirilmiştir. Bölütleme problemi en büyük sonsal kestirim çerçevesinde

oluşturulmuş ve bu çerçevede hedef yapıların istatistiksel şekil önsel bilgisi ve göreceli

poz modelleri bölütleme işlemine katılmıştır. Bu yöntemimiz medikal imgelerde

sıklıkla rastlanan birbirine komşu, çoklu yapıların belirgin kombinasyonlar ve or-

tak bağlaşıklıklar yaratmasından esinlenerek geliştirilmiştir. Buna göre eğer bu

bağımlılık ve kombinasyonlar doğru şekilde modellenebilirse, bölütlenmesi zor yapıların

bölütleme başarımını artıracağını öne sürmekteyiz. Onerimizde bağlaşık şekil ön

bilgisini parametrik olmayan çok değişkenli Parzen yoğunluk kestirimi kullanarak

oluşturmaktayız. Bunun için bölütlemek istediğimiz yapıların eğitim kümesinden

faydalınırız. Göreceli pozisyon bilgisini ise standart moment teorisi ile modelleriz.

Bu çerçevede her iki önsel bilgiyi de bölütlemeye katarken problemi bir optimizasyon

problemi olarak ele alırız ve çözümünde etkin çevritlere dayalı bir yöntem kullanırız.

Yöntemin başarımını sentetik ve pek çok gerçek beyin mayetik rezonans görüntüsü

üzerinde göstermekteyiz. Sonuçları var olan diğer yöntemlerle de karşılatırmakta ve



üstün yönlerini belirtmekteyiz.
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Chapter 1

Introduction

Medical imaging is an important source of anatomical and functional information

and it is necessary for the diagnosis and treatment of diseases. The advent of medi-

cal imaging modalities such as X-ray, ultrasound, computed tomography (CT) and

magnetic resonance imaging (MRI) has greatly improved the diagnosis of various

human diseases. In the last two decade, computer-aided medical image analysis

techniques have been employed to provide a better insight into the obtained im-

age data. With the recent developments, medical image analysis community has

become interested in many challenging problems of creating algorithms. According

to the developments, the primary tasks of medical image analysis in this field are;

image segmentation, registration, and matching. Such techniques provide better

insight about the patient condition and allows for more accurate, shortcut diagnosis

methods. Computerized applications like image data fusion, quantitative analysis,

generating anatomical atlases, 3D visualization are very hot topics which helps for

better diagnosis and treatments.

Medical images can also be analyzed for examining relationships between struc-

tural abnormalities and deformations and certain functional abnormalities and dis-

eases. Many computer-based methods are used to define the detailed shape and

organization of anatomic structures for more accurate and faster treatments. In

this context, in recent years, image analysis on MR images has become popular. In

particular, MRI has become a leading technique widely used for imaging soft brain

tissue. MR images are generated by measuring the behaviour of soft tissue under a

magnetic field. In an MR image different tissues give different intensities. From the

brain MRI perspective it provides better resolution and contrast according to other

1



Figure 1.1: Magnetic Resonance Imaging Machine Cutaway [1]

modalities.

Focusing on brain studies, quantitative morphologic assessment of individual

brain structures in neuro-imaging most often includes segmentation. Medical image

segmentation is the most important step in visualization, surgical guidance and plan-

ning, diagnosis and quantitative measurement [2]. It can provide information about

both the location and the anatomical structure of internal organs and parts of the

human body, thereby assisting medical diagnosis and therapy evaluation. Detailed

segmentation and subsequent 3D models can be used to generate an anatomical atlas

for visualization and learning. A fully segmented scan allows surgeons to both better

qualitatively visualize the shapes and relative positions of internal structures and

more accurately measure their volumes and distances quantitatively. Segmentation

tools can be also used to analyze for examining relationships between structural ab-

normalities and deformations and certain functional abnormalities and diseases. For

example, segmentation of subcortical structures in brain MR images is motivated

by a number of medical developments including the early diagnosis of neurodegener-

ative illnesses such as schizophrenia, Parkinson’s, and Alzheimer’s diseases. In this

context, the analysis of chemicals in Basal Ganglia (BG) structures is thought to

provide important cues [3]. Scans of people without pathological abnormalities can

be used as a method for comparison to define abnormality. However, their accurate

segmentation remains a challenging task in the clinical environment.
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Figure 1.2: MRI data taken from axial section in proton density sequence and its

volumetric presentation.

1.1 MR Image Segmentation Problem

Brain tissue segmentation in MR images is a fundamental problem in clinical studies

of brain structure and function. Some examples of such studies deal with measures of

tissue/structure volumes, voxel-based morphometry, etc. Segmenting an anatomical

structure in an MR image amounts to identifying the region or boundary in the

image corresponding to the desired structure. However, efficient computer-assisted

segmentation of internal anatomy that produce accurate results is limited since many

important structures in MR images do not present a clear boundary for segmentation

and have variations between different subjects. The relative contrast between brain

tissues is not constant in MR imaging. In most medical imaging applications, little

can be done about the appearance of anatomically distinct areas relative to their

surroundings. The choice of the strength and timing of the radio-frequency pulses,

known as the MRI sequence [4], can be employed to highlight some type of tissue

according to the clinical application. However, due to the limitations such as low

signal-to-noise ratio (SNR), partial volume effects, and field inhomogeneities the

delineation of subcortical regions like caudate, putamen, thalamus, etc. from white

matter (WM), gray matter (GM) and cerebrospinal fluid (CSF) is very difficult [5],

see Figure 1.2.

Motivated by these facts, most segmentation applications still require at least
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some amount of manual intervention and some are performed completely manually.

However, manual segmentation is tedious, time consuming and also not reproducible.

To compensate these drawbacks and make automated clinical segmentation tools,

there have been many methods proposed for brain tissues in the subcortical regions

[6], [7], [8], but they still remain challenging tasks.

A great amount of research was performed during the past three decades toward

complete automated solutions for general-purpose image segmentation. Variational

techniques [9], [10], statistical methods [11], [12], combinatorial approaches [13],

curve-propagation techniques [14], and methods that perform non-parametric clus-

tering [15] are some examples.

In the curve-propagation approaches, general idea is that an initial curve es-

timate of the structure boundary is provided and optimization methods are used

to refine the initial estimate based on image data. This approach, called active

contour models, is based on the optimization of an energy functional using partial

differential equations. In the definition of the energy functional, earlier methods

use the boundary information for the structures of interest [16], [14], [17]. More

recent methods use regional information such as intensity statistics like mean or

variance of an area [18], [19], [20]. In most recent active contour models, a shape

prior model is used where richer models generate more accurate results. In these

approaches several shape representation methods are used in the literature that

are based on distance functions, implicit representations, and relationships among

different shapes, including pose, orientation, and other geometrical relations [21],

[22]. In [23], the authors present an active contour segmentation method based

on (Legendre) moments analysis towards building a shape prior. From subcortical

structure segmentation perspective, typical approaches rely heavily on prior infor-

mation which is obtained from training data. The information might be in the form

of tissue probability maps (probabilistic atlases) [24] or shape priors [21], [25], [26],

[27], [28], [29]. The class of approaches using probabilistic atlas priors [24] rely on

the accuracy of the manual segmentations of subcortical structures in the training

data that generates the probabilistic atlas. Here, the accuracy of the registration

method should also be reliable to map the template space to the subject space, in

the absence of strong intensity contrast in the subcortical tissues.
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Most recent methods benefit from knowledge about the structures of interest.

This makes the segmentation process robust to the imperfect image conditions.

There are numerous existing automatic segmentation methods that enforce con-

straints on the underlying shapes. In [21] the authors introduce a mathematical

formulation to constrain an implicit surface to follow global shape consistency while

preserving its ability to capture local deformations. Closely related with [21], in [25]

[26], modeling consists of an average shape and modes of variation through princi-

pal component analysis (PCA) which is used to capture the variability of shapes.

However, this technique can handle only unimodal, Gaussian-like shape densities.

In [25], the image term and prior term are well separated where prior knowledge

and data fidelity are imposed into segmentation in a MAP (Maximum a Posteriori)

criterion . In [26] a region-driven statistical measure is used to define the image

component of the function while prior term refers to the projection of the contour

to the model space using a global transformation and a linear combination of the

basic modes of variation. In [27], [28], [29] shape model refers only to an average

shape in an implicit form and the prior term refers to the projection of the evolving

contour to this space according to a similarity transformation.

As an alternative solution to PCA limitations, [30] proposes a principal geodesic

analysis (PGA) model. In this context, [31] proves the applicability of PGA to

medical images analysis. As a solution to the limitation of PCA and unimodal

Gaussian distribution models, techniques based on nonparametric shape densities

learned from training shapes have been proposed in [10] [32]. In those works, it is

assumed that the training shapes are drawn from an unknown shape distribution

and this distribution is estimated by extending a Parzen density estimator to the

space of shapes. They formulate the segmentation problem as a MAP estimation

problem, where they use a nonparametric shape prior. In particular, one theory is

to construct the prior information in terms of a shape prior distribution such that

for a given arbitrary shape we can evaluate the likelihood of observing this shape

among shapes of a certain category (e.g. the Caudate Nucleus).

Although nonparametric priors are adequate to capture non-linear shape vari-

ability, until now they have not been used in multi-object segmentation techniques

where there is superior potential in achieving accurate segmentation, if they can
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model the inter-shape relationships among the components. The anatomical struc-

tures in the brain are related to the neighboring structures through their location,

size, orientation, and shape. In many cases, objects to be segmented, have one or

more neighboring structures. An integration of these relations into the segmentation

process can improve the accuracy and robustness [33], [34], [35]. Very little work

has been presented toward the automatic simultaneous detection and segmentation

of multiple organs. In [33], a joint prior based on a parametric shape model, is

proposed to capture co-variations shared among the different shape classes, which

improves the performance of segmentation. With a similar approach in a Bayesian

framework, in [35], [34] joint prior information of the multiple objects is used to

capture the dependencies among the different shapes where multiple objects with

clearer boundaries are used as reference objects to provide constraints in the seg-

mentation of poorly contrasted objects. Another coupled shape prior model, which

is based on the cumulative distribution function of shape features, is proposed in

[36]. In [36], relative inter-object distances are defined as a shape feature to capture

information about the interaction between multiple objects. Among spatial depen-

dencies between multiple structures , one basic aspect is inter-shape pose analysis

[37]. Clinical applications support a statistical shape modeling of multi-object group

rather than one of single structures outside of their multi-object context. Neighbor-

ing anatomical shapes usually exhibit strong mutual spatial dependencies [31]. In

this context, [38] proposes a solution for the segmentation problem in the presence of

hierarchy of ordered spatial structures. In [39] the authors present progress towards

modeling the shape and pose variability of sets of multiple objects. They use prin-

cipal geodesic analysis (PGA) which is the extension of the standard technique of

principal component analysis (PCA) into the nonlinear Riemannian space. There-

fore, inter-shape pose analysis is a challenging problem, which aims augmenting

segmentation algorithms.

1.2 Main Contributions

In this section we introduce the contributions of the thesis to the field of active

contour models for medical image segmentation. The paragraphs below present our

work in a general context and point to different chapters within the thesis where the

6



reader can find detailed information about specific contributions. Note that minor

overlap in the chapters may be noticed since they were written to be self-contained.

We propose a new multi-object segmentation scheme that introduces nonparamet-

ric coupled shape and inter-shape pose priors. Our multi object, coupled shape

prior computation is closely related with [32] and [10] where nonparametric density

estimate of single object shape is computed. We use multivariate Parzen density

estimation to estimate the unknown density of multiple subcortical structures in

the brain. Different from other multi object segmentation methods, our model pro-

vides coupling effect in a very natural and easy way. Motivated by the fact that,

inter-shape pose analysis provides strong mutual dependencies between subcortical

structures we introduce inter-shape pose prior into segmentation with shape prior

in the same framework. We propose that our relative pose prior is a strong force

that attracts the active contours to evolve toward more accurate segmentation. In

this context, we define two probability densities in the space of shapes and pose

by modeling the statistical prior information of the analyzed objects. Both of the

densities are evaluated during the evolution of active-contours, aiming an energy

functional minimization.

To the best of our knowledge, our approach is the first scheme of multi-object

segmentation, which employs coupled shape and inter-shape pose priors based on

moment computations in a probabilistic framework. We present experiments on

synthetic and real MR images accompanied by quantitative analyses of the segmen-

tation accuracy.

For coupled shape priors, we propose nonparametric density estimates based on

signed distance functions (SDF) of training shapes. This key property of our method

allows segmenting multiple objects simultaneously where the new prior provides

automated, coupled constraints to be used in challenging image scenarios. Moreover,

as compared to existing methods [33], [35] which are based on prior of multiple

objects, our approach has the advantage of using nonparametric density estimate,

in order to capture non-linear shape variability.

For inter-shape pose priors, we use standard moments, which are intrinsic to

shape and have natural physical interpretations [40]. Standard moments describe,

among other pose parameters, the size, the mass center, and the orientation of

7



the analyzed objects’ SDFs. In addition, moments evaluation is computationally

attractive.

1.3 Organization

This paper is organized as follows. Chapter 2 provides the background and context

that underlie the work described in subsequent chapters. It begins with a brief

review of key pieces of work in the development of active contour models and some

previous work on shape and pose analysis. Chapter 3 presents our coupled shape

and inter-shape pose prior based multi object segmentation method. Chapter 4

presents experimental results for subcortical structures on synthetic and real MR

images with validation consequences. In chapter 5 we conclude by summarizing the

contributions of this paper. We also suggest some possible extensions and future

research directions.

8



Chapter 2

Background

In this chapter, we provide background material relevant to the development of the

material in later chapters. In Section 2.1, we briefly review key pieces of work in

the development of active contours and discuss some related work on image seg-

mentation. Section 2.1.1 provides preliminary information on energy minimization

and gradient flow, which are used in the implementation of active contours. Section

2.1.2 also presents level set formulation and curve evolution theory based on signed

distance functions. In section 2.2, we review nonparametric density estimation in

shape spaces. In particular, section 2.2 provides formulation for nonparametric den-

sity estimation of multiple random variables. In Section 2.3, we review previous

work on shape and inter-shape pose analysis. Section 2.3.1 reviews the topic of

shape prior based segmentation. Section 2.3.1 provides preliminary information on

moment theory, which is used to extract geometric features of shapes.

2.1 Active Contour Based Image Segmentation

Deformable models pioneered by Kass et al. [14], are in general, curves or surfaces

that move under the influence of internal and external image forces. The approach in

[14] represents the boundary between regions as a closed contour and the contour is

evolved until it converges to the boundaries of objects. The evolution process corre-

sponds to an iterative optimization of a variational cost functional. In the literature

there are two major classes of deformable models. The first one is parametric, point

based models through which the contour is represented explicitly. The second one

is implicit models that represent the surface implicitly as the level set of a higher

9



dimensional scalar function [41].

In explicit representation the contour or the surface is represented by a finite set

of parameters, eg. the spatial positions of points on the curve are used to reconstruct

the evolving surface by connecting them with line segments in 2D as in polygons and

in three dimensions, as polyhedrals [42]. One difficulty of this approach is keeping

connectivity of the points on the surface which are very likely to change during the

evolution. Another consideration is that, the discretization should be fine enough

to reconstruct the surface. Moreover, if the points come too close together, they

may cross each other if the time step is not adjusted properly. A solution for such

problems is to redistribute the points every few time steps, and add or remove

points where this is necessary. However, this task becomes complicated, especially

in three dimensions. A more serious problem arises in the presence of a change in the

topology. Generally, the parametric approach is not capable of handling topology

changes, unless special constraints are implemented for detecting possible splitting

and merging of contours [41].

The difficulties in parametric models bring us to one of the main advantages of

level set methods since they represent the interface implicitly. Level sets can handle

topology changes naturally and automatically in any dimension where parametric

models require modification in representation for different dimensions. The level

set method works equally well in any dimension. For these reasons, active contour

models based on level set methods have received considerable attention, and the

evolution method in our thesis also depends on level sets.

The evolution of the deformable models is derived in an energy minimization

process. The energy functional is composed of several internal and external po-

tential forces. Different approaches have been proposed to construct such energy

functionals. According to the definition of the external forces, active contour based

segmentation methods are classified into 2 major classes: edge (boundary) based and

region based methods. In the earlier development of deformable models, boundary

based methods have been introduced first. Boundary based methods primarily use

edge information to attract the snake to boundaries with large image gradients

(strong edge locations). Initially introduced by Kass et al. [14], the energy func-

tional to be minimized is composed of two smoothness terms for the contour and
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one external energy that attracts the contour toward edges, which are points of high

intensity gradient. The energy functional is given by

E1(C) = α

1∫

0

‖C ′(s)‖2
ds + β

1∫

0

‖C ′′(s)‖2
ds

+ γ

1∫

0

‖∇I(C(s))‖ ds (2.1)

where α, β, γ are corresponding weighting coefficients for each energy term. Here, s

corresponds to (x(s), y(s)) and C(s) is the evolving curve parameterized with spatial

coordinate s, andI is the image intensity. In this approach, such reliance on edge

information, makes the model sensitive to image noise and to various other image

artifacts. For example, the contour may get stuck in local minima due to strong

edges inside or outside the object’s true boundary. The drawback of this method is

that it requires a good initial curve for accurate segmentation [43].

The level set based models proposed by Caselles et al. [16], called geodesic active

contours, and by Yezzi et al. [44], called geometric active contours, drive the curve in

the normal direction of contour curvature attracted with an edge indicator function.

E2(C) =

1∫

0

g(I(C(s)))ds (2.2)

Here, the edge indicator function g(.) is given as

g(I) =
1

1 + ‖∇(Gσ(s) ∗ I(s))‖2 (2.3)

where Gσ(s) ∗ I(s) is the convolution of the image with a Gaussian filter. The edge

indicator function becomes smaller as the gradient gets larger. In this case it behaves

as a stopping function. A drawback of this approach is that if the boundary does

not provide high gradient the contour passes through the boundary. The stopping

function may not become small enough to stop the evolution. Moreover, in the

presence of high noise even if we have significant smoothing to prevent detection of

false boundaries it increases the probability of missing edges.

To address these limitations there have been significant efforts in the literature

to integrate region information into deformable models. In general, region based

deformable models drive the contour or surface according to the first and second
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order intensity statistics. Initial region based methods rely on the homogeneity of

spatial features such as gray level intensity and texture. The advantage of such

methods according to edge based methods, is that since they rely more globally

on the gray level image, they are less susceptible to noise than methods that use

derivative information. In particular, the methods we will consider in this section are

generally based on Mumford-Shah functional which has emerged before the active

contour framework [9]. The original Mumford-Shah functional is given as follows

E(f, C) =

∫

Ω

(f − I)2ds + γ

∫

Ω−C

‖∇f‖2 ds + α ‖ C‖ (2.4)

In this equation, in image domain Ω, I is the image intensity observed and f is the

piecewise smooth approximation of the observed image. ‖ C‖ stands for the total

length of the curve. The idea is to minimize the difference between I and f with the

constraints of the curve smoothness and curve length. It has then been formulated

in an active contour framework [18] [45]. In [18], a model can be obtained which can

detect contours both with or without gradient i.e., objects with smooth boundaries

or with discontinuous boundaries. In [18], the image is assumed to be formed of two

regions of piecewise constant intensities of distinct values. In the energy functional a

fitting term is defined and this fitting term is composed of differences between mean

intensity values and observed intensities inside and outside the segmenting curve.

E3(C) =

∫

in(C)

(I(s) − c1)
2ds +

∫

out(C)

(I(s) − c2)
2ds (2.5)

where in (C) and out (C) represent the interior and exterior of C, respectively.

The fitting term provides maximizing the difference of mean intensities in the

region, outside and inside the contour. This method essentially takes the mean

intensity of each region as the discriminative statistical feature for segmentation.

In the equation above, c1 and c2 are mean intensity values inside and outside the

Higher order statistics rather than the mean and the variance were utilized in [46]

to account for textural characteristics of regions in images.

Both edge and region based deformable models often suffer from a variety of

limitations. In the presence of noise, distortion or assimilation with the background,

segmentation becomes challenging. In these cases, object boundaries do not fully
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correspond to edges in the image and may not delimit homogeneous image regions.

To improve the accuracy of segmentation results, methods that integrate edge and

region based information have been proposed in several works [47], [48], [49], [50].

In [51], the method uses Green’s theorem to derive the boundary of a homogeneous

region-classified area in the image and integrates this with a gray level gradient

based boundary finder as seen in the equation below:

E4(C) = α

∫

C

g(I(C(s)))ds + β

∫

C

I(C(s))ds (2.6)

These image segmentation problems demand the incorporation of as much prior

information as possible to help the segmentation algorithms extract the region of

interest. In curve evolution methods, a penalty on the length of the segmenting

curves is often used as a simple shape prior for the objects in the scene. However, in

many applications, more information is available regarding the shapes of the objects.

There are numerous existing active contour segmentation methods that enforce con-

straints on the underlying shapes [47], [52], [25], [10], [32], [36]. In [52], the authors

find a set of points across a set of training images to construct a statistical model

of shape variation which is then used in the localization of the boundary. In [25],

principal component analysis (PCA) is used to capture the variability of shapes.

They add an energy term to the geodesic active contour model to pull the surface

in the direction of the MAP shape. It is given by

E5(C)= − log P (α, p|C,∇I)

= − log P (C|α, p) − log P (∇I|α, p, C)

− log P (α) − log P (p) (2.7)

The first term computes the probability of a certain curve C given the shape and

pose of the final curve α, p. The second term computes the probability of seeing

certain image gradients given the current and final curve. The last two terms are

based on shape and pose priors. They assume pose prior as uniform. The authors

evolve an active contour both locally, based on image gradient and curvature, and

globally to the MAP estimate of shape and pose. However, this technique can handle

only unimodal, Gaussian-like shape densities.
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In a more challenging approach in [21], the authors proposed a method in which

they generate a shape model that can account for local variations as well. To com-

pensate the dependency of PCA based methods they consider a stochastic framework

which includes shape image and local degrees of shape deformations. They describe

each grid location in the shape model using Gaussian density function as

pM
x,y(φ) =

1√
2πσM (x, y)

e
−

φ−φ2
M

(x,y)

2σ2
M

(x,y) (2.8)

where φM(x, y) is model binary shape image and σM(x, y) is local degree of shape

deformation. Given N aligned training samples where φ̃i is the aligned transfor-

mation of φi, they construct a variational framework for the estimation of the best

shape by searching for the maximum likelihood of the local densities. They propose

a cost functional with respect to (φM , σM) as

E(φM , σM) = −
n∑

i=1

∫ ∫
[pM

x,y(φ̃i(x, y))]dxdy (2.9)

Techniques based on nonparametric shape densities learned from training shapes

have been proposed in [10], [32]. In those works, it is assumed that the training

shapes are drawn from an unknown shape distribution and this distribution is es-

timated by extending a Parzen density estimator to the space of shapes. They

construct the energy functional both using region statistics like mean and variance,

and shape distribution term.

E6(C) = − log P (data|C) − log P (C) (2.10)

In this Bayesian approach, first term at right hand side is the likelihood function

which provides data fidelity. It is computed as in [18], which is based on regional

intensity statistics and evolves the curve in order to catch smooth, unclear bound-

aries. The second term, the shape prior, is based on a set of shapes. Using a training

set, the authors compute the unknown distribution of the shapes and use this prior

as a regularizer in the active contour cost functional. They compute the shape dis-

tribution in a nonparametric way such that it brings the advantage of an ability to

catch nonlinear shape variability.

Simultaneous multiple object segmentation is an important direction of research

such that the positions of segmented parts are often highly correlated and can be
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used to further constrain the resulting boundary estimation. In [36], relative inter-

object distances are defined as a shape feature to capture information about the

interaction between multiple objects. The energy functional consists of a data term

and a shape prior term which is based on the shape distributions composed of shape

features.

E7(C) = Edata(C) + αEprior(C) (2.11)

The data term Edata(C) favors the fidelity of the solution to the data. This term is

application specific. Eprior(C) reflects the information about shape and parameter

that weighs the strength of the prior. They introduce the formulation of the shape

prior in the continuous domain as

Eprior(C) =
M∑

i=1

wi

∫ (
H̃i(λ) − Hi(C, λ)2

)
dλ (2.12)

Here M is the number of feature classes taken into account, H̃i(λ) is the target

distribution function of the ith feature class, Hi(C, λ) is the distribution function

of the ith feature class for the curve C and wi is the weighting coefficient for each

feature class. λ is a variable spanning the range values of the feature. They provide

3 feature classes: inter node distances of the discrete curve, multiscale curvature,

and finally relative inter-object distances. This 3rd feature class encodes the relative

position of C with respect to another object.

2.1.1 Energy Minimization and Speed Function Definition

Although the explicit and implicit active contour models differ both in their formu-

lation and implementation, the common theme of all this work is the evolution of

curves toward the boundary of an object through the solution of an energy mini-

mization problem. In the following we provide some mathematical tools for deriving

curve evolution equations from an energy functional E(C). We are interested in find-

ing an equation of motion for the curve that segments an image. Let us consider a

variational approach for image segmentation formulated as finding the closed curve

C such that

C̃ = min
C

{E(C)} (2.13)
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In order to minimize E(C) we evolve the curve iteratively over time t. The

velocity field ∂C
∂t

is often the best deformation δC that maximizes

lim
h→0

−E(C + hδC) − E(C)

h
(2.14)

In this sense, such a velocity field is called a gradient flow for the curve C. Com-

puting a gradient flow for a general energy functional E(C) is a not an easy task.

As shown in Equation (2.15), the energy functional is usually composed of region

integrals of the following form.

E(C) =

∫

R

F (x)dx (2.15)

Given in the form of region integrals partial differential equations can be a so-

lution to the problem of finding the best C̃ in Equation (2.13). Since F (C) denotes

the first variation of E(C), under general assumptions, the necessary condition for C

to be the minimizer of E(C) is F (C) = 0. The solution to this necessary condition

can be computed as the steady state solution of the PDE

∂C

∂t
= F · ~N. (2.16)

The form of this equation indicates that F is the speed function for the evolu-

tion of C, and we are interested only in the part of F that points in the outward

normal direction to the curve ~N . To determine the appropriate speed function for

segmentation application, underlies much of the research field in curve evolution

theory. In chapter 3 and its sections we define how we construct our speed function

or equivalently curve evolution equation in order to introduce coupled shape and

inter-shape relative pose priors into the segmentation process.

2.1.2 Level Set Representation and Curve Evolution

The use of level set theory has provided more flexibility and convenience in the

implementation of active contours. It was first introduced by Osher and Sethian

in 1988. They are numerical techniques for tracking evolving surfaces, and they

are properly used in a wide variety of applications. The level set methods can

handle interfaces with sharp corners, cusps in any dimensional data in the presence

of topological changes.
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When using the level set evolution in image segmentation, we are seeking to

detect the boundaries of some object or area in the image that we want to segment.

This is done by initializing a curve or surface somewhere in the image, and then

evolving it by letting appropriate forces act on it until it reaches the correct bound-

aries in the image. Level set methods use an implicit representation of the contour

to represent the boundaries. Rather than describing the evolution of the contour

itself, the level set approach operates on a function in one dimension higher and

the interface is described as the isocontour of this function. In order to model an

evolving contour, we let the level set function depend on time as well as space.

Let φ = φ(x, t) be the level set function. Then the interface C, at a given point

in time, t, is given as the set of points in space that corresponds to the zero level

isocontour of φ, i.e. C(t) = {x : φ(x, t) = 0}
The level set function φ : Ω × [0,∞) → ℜ is a scalar valued function of both

space and time variables. Since we restrict our attention to the image segmentation

problem, φ is defined on the same rectangular domain as the image, Ω ⊂ ℜn. Usually

we have n = 2 (a single 2D image) or n = 3 (an image volume, i.e. a set of image

slices). The level set function is initialized at time zero and evolved in time until it

stops. The function’s time domain is [0,∞).

First an initial value for the level set function is built. This is done using the

so-called signed distance function in which the initial value is constructed as

φ0 = φ(x, t = 0) = ±d. (2.17)

Here ±d is the signed Euclidean distance from each point x ∈ Ω to the initial front

assigning a positive distance if the point lies outside the region, and negative if inside

the region. For points that lie on the initial interface, the distance is zero. Now the

motion of the front is described by matching it with the zero isocontour of the level

set function [53]. The level set value of a point on the front with path x(t) is always

zero as the interface evolves,

φ(x(t), t) = 0. (2.18)

Differentiating this equation with respect to time by the chain rule we obtain

φt(x(t), t) + ∇φ(x(t), t) · x′(t) = 0. (2.19)
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Here φt designates the partial derivative of φ with repsect to t. Now, let F denote

the speed that drives the evolution, more specifically, F is the speed in the outward

normal direction to the level set interface. Then F = x′(t)· ~N where ~N is the outward

unit normal to the level sets of φ, and ~N = ∇φ/ |∇φ|. Manipulating Equation (2.19)

we get

φt +
∇φ

|∇φ| · x
′(t) · |∇φ| = 0

φt + (x′(t) · ~N) |∇φ| = 0 (2.20)

which brings us to the general form of the level set equation similar to equation

(2.16)

φt + F · |∇φ| = 0 (2.21)

given φ(x, 0) = φ0. If φ is a signed distance function, it satisfies the condition

|∇φ| = 1, [41]. In this case, the outward normal vector is given by

~N = ∇φ (2.22)

which means that ~N and ∇φ point in the same direction with the assumption that

velocity field F is defined only on the curve and the velocity outside the curve is

assumed zero. In order to do that the value of the level set function φ is updated

on the grid in the image domain. However we only increase the speed of the level

set of the surface by a method called narrow band proposed by Chopp [54]. The

goal of the speed function F is to act on the contour and pull it towards the edges

of the image. Therefore, we model the speed function in such a way that when the

contour reaches the desired position, the speed becomes zero.

After initializing φ at the grid points, the contour is moved across the grid by

evolving φ forward in time by applying numerical methods to update its values. Let

φn = φ(tn) represent the values of φ at a given point tn in time. φ is updated by

finding new values after some time increment ∆t , i.e. finding φn+1 = φ(tn+1) where

tn+1 = tn +∆t. This is done using a simple first-order accurate method for the time

discretization, the forward Euler method [41]. φn+1 is computed by approximating

φt at time tn as

(φt)
n =

φn+1 − φn

∆t
(2.23)
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When this substituted into Equation (2.21), after rearranging terms, we get

φn+1 = φn − ∆t(F n · |∇φn|). (2.24)

where the superscripts in F n and |∇φn| denote that the respective functions are

evaluated at time tn.

2.2 Nonparametric Density Estimation

Most statistical analysis tasks involve the use of probability density functions. For

instance, Bayesian detection is based on the likelihood ratio, which is a ratio of two

density functions. If we know the underlying densities, we can use them for the

statistical analysis. In most cases we do not know these densities, so we estimate

them. There are two types of estimation: parametric and non-parametric. Unlike

the parametric density estimation where assumptions are made, the nonparametric

density estimation makes less rigid assumptions about the distribution of the data.

Nonparametric density estimation does not impose a structure on the density and

learns the density function from data samples drawn from the unknown density.

Considering a finite dimensional density estimate, Parzen density estimation is given

by:

P (x̃) =
1

N

N∑

i=1

k (x − Xi, Σ) (2.25)

where X1, X2, . . .XN are samples drawn from a population with density function

f(x) and k(x, Σ) is a m-dimensional gaussian kernel with covariance matrix Σ. If

the kernel is spherical, i.e. Σ = σI the above density becomes

P (x̃) =
1

N

N∑

i=1

k(d(x, xi), σ) (2.26)

where d(x, xi) is the Euclidean distance function and k(x, σ) is a one dimensional

Gaussian kernel.

Multivariate Parzen Density Estimation

In many applications we are not only interested in estimating the density of one

random variable, but also density estimate of multiple random variables. Consider
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an M-dimensional random vector X = (X1, X2 . . .XM) where X1, X2 . . .XM are one

dimensional random variables. Having N observations for each of the M random

variables, the ith observation of each of the M are collected in the vector Xi.

Xi = {Xi1 . . . XiM} , i = 1, 2, . . . , N (2.27)

where Xij is the ith observation of the random variable Xj. Our goal is to estimate

the joint pdf X. From the previous experience with the one random variable case in

the beginning of section 2.2, we might consider adapting the kernel density estimator

to the M-dimensional case, and write:

f(x) =
1

N

N∑

i=1

k(x − Xi, σM) (2.28)

=
1

N

N∑

i=1

k((x1 − Xi1, . . . , xM − XiM), σM) (2.29)

Here k denotes a multivariate kernel function operating on M arguments. The

solution for defining the form of the kernel k is to use a multiplication of separate

kernels for M random variables. In this case Equation (2.29) becomes:

f(x) =
1

N

N∑

i=1

M∏

j=1

k(d(xj , xj
i ), σj) (2.30)

2.3 Shape and Pose Analysis

When segmenting images of low quality or with missing data, the information ob-

tained from images does not often provide enough contrast or clear boundary pat-

terns of target objects. In such cases, prior information about the shape of the

object can significantly aid the segmentation process. Therefore, the use of prior in-

formation based on shape and pose is gaining increased attention to segment images

under such conditions.

As discussed in section 2.1, being a large research field, the problem is to extract

such prior information from available example shapes and use it in segmentation.

This section reviews some previous work in shape analysis and introduces shape

priors into segmentation.

20



2.3.1 Shape Representation and Space of Shapes

There has been considerable amount of work in shape analysis and representation

since the concept has been introduced by Kendall [55] and Small [56]. The first

approach was to represent the object in image plane by finite number of salient

points or landmarks. Regarding landmark based approach Cootes et al. [52] used

principal component analysis (PCA) to reconstruct a typical shape and to compute

shape variability from a training set of shapes. In this method the condition for

good modeling is that training set should be as large as possible and the number of

eigenvalues chosen in PCA should be appropriate according to the experiment. Fur-

thermore, there is the issue of correspondence between landmarks among training

shapes. The selection of landmarks was manual in the beginning which was not effi-

cient and very complicated especially in 3D. Later in [57], [58] the authors proposed

a way to select the landmarks automatically, yet this approach is computationally

expensive.

Addressing the drawbacks of landmark based methods, there has been increasing

interest in representing shapes via level set methods. As we mentioned in section

2.1, building shape priors form training shapes as signed distance functions and

introducing into segmentation framework was initially proposed by [25]. In [25]

and [45], PCA of the signed distance functions of training data is used to capture

the variability in shapes. The statistical information that comes up with PCA, is

used in segmenting noisy and occluded images. On the other hand the drawback

of these methods is that the space of signed distance functions (SDF) is not closed

under linear operations like addition or taking average. For example mean shape

of a training set is not a reasonable SDF. As an effort to reduce this inconsistency

Paragios et al. [21] estimated the mean shape by deforming shape in the direction

of reducing its distance both from example shapes and from the space of SDFs. The

main idea behind this approach is to perform a shape matching using the level set

representations of the training examples. They construct a variational framework

for the estimation of the best shape by seeking for the maximum likelihood of the

shape density subject to the constraint of preserving SDF.

Another approach to represent a shape model is using maximum a posteriori

(MAP) estimation framework in which a Bayesian formulation is constructed in
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order to compute probability of shape given an image. In particular, in an active

contour framework which involves level set methods, a nonparametric shape model

is proposed based on the example shapes in a training set [32]. The underlying shape

distribution is computed by extending a Parzen density estimator to the space of

shapes. Now the question is how to compute such a probability measure on a set

of shapes. Here the intuition is that a shape is more likely if it is similar to the

shapes in the training set. The issue is to define a similarity measure which can be

used in statistical analysis of shapes. Mathematically, this suggests defining distance

metrics in the space of shapes to measure similarity and dissimilarity of shapes. The

density estimation is done in infinite dimensional shape space which is a manifold

embedded in Euclidean space. The authors extend the Parzen density estimate to

an infinite dimensional one, following the Equation (2.26) in section (2.2). The

unknown density of the shapes is computed as

P (C) =
1

N

N∑

i=1

k(dC(C, Ci), σ) (2.31)

where dC is a distance measure in infinite dimensional space C. Here the combi-

nation of one dimensional kernel and the distance metric together, behaves as an

infinite dimensional kernel. For the kernel size σ, they use ML kernel size with

leave one out [59]. In order to measure the similarity, they use metrics like L2 and

template metric for the space of shapes.

Geometric Properties Based on Moment Theory

In general, moments describe numeric quantities at some distance from a reference

point or axis. Moments are commonly used in statistics to characterize the distri-

bution of random variables, and, similarly, in mechanics to characterize bodies by

their spatial distribution of mass. The use of moments for image analysis is straight-

forward if we consider a binary or grey level image segment as a two-dimensional

density distribution function. In this way, moments may be used to characterize an

image segment and extract properties that have analogies in statistics and mechan-

ics. In this section we provide a short background on moments.

We take f(x, y) as a binary map, where f(x, y) = 1 if (x, y) is inside an object,
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and f(x, y) = 0 otherwise. Following [40], define the (p + q)th order moment by

mp,q =

∫

Ω

xpyqf(x, y)dxdy

Definition of the discrete version of 2D moments

mp,q =

N−1∑

x=0

N−1∑

y=0

xpyqf(x, y),

Following [40], we mention that m0,0 defines the area of the analyzed object.

When computed for a silhouette image of a segmented object, the zeroth moment

represents the total object area.Further,
{

m1,0

m0,0
,

m0,1

m0,0

}
provide the center of the mass

of the analyzed object. These coordinates define a unique location with respect

to the object that may be used as a reference point to describe the position of

the object within the field of view. When the analyzed object is represented in a

system of coordinates that has the origin in its center of mass, M2 defines a canonic

orientation of the analyzed object up to π radians. In addition, moments up to

order two define a canonic orientation of the analyzed object up to π radians. The

canonic axes senses (directions) are provided by M3, after canonic alignment (see

[40]).

The second order moments {m2,0, m0,2, m1,1} known as the moments of inertia,

may be used to determine the principal axes of the object. Besides, the angle

developed by the canonic orientation of an object as related to a global reference

coordinate can be computed as

θ (C) =
1

2
arctan

(
2 (m1,0m0,1 − m1,1m0,0)

(m0,2 − m2,0)m0,0 + m2
1,0 − m2

0,1

)
(2.32)

In section 3.2.2, we describe how we use moments for incorporating pose infor-

mation about objects into segmentation process.
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Chapter 3

Segmentation Based on Shape and

Pose Priors

In this chapter we present our approach to the multi-object segmentation problem in

detail. First, in section 3.1, we introduce the motivation of our work. In section 3.2,

we introduce our general framework that we use for segmentation. In section 3.2.1

we describe our formulation for coupled shape prior. In section 3.2.2, we describe

our formulation for inter-shape pose priors. In Section 3.3, we summarize the overall

segmentation algorithm with implementation details.

3.1 Motivation for Coupled Shape and Inter Shape

Pose Priors

Medical images are in general low quality images such that understanding some

anatomical structures is a big challenge. In particular, segmentation of brain tis-

sues, especially in the subcortical regions, remains a challenging task. This is mainly

because of low intensity contrast in structural-MR images between the white matter

(WM) and gray matter (GM) tissues in the subcortical regions that comprise struc-

tures such as the caudate, putamen, thalamus, etc. Considering that segmentation

is equivalent to extracting the shape and the pose of the boundary of the object,

prior information on both shape and pose would be helpful in segmentation, if we

have any such information. In this context, statistical shape modeling and analysis

is an important tool for understanding anatomical structures from medical images.
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In many cases, objects to be segmented, have one or more neighboring structures,

whose location and shape provide information about the local geometry that can

aid in extracting the exact location. The analysis of the structures jointly, there-

fore, should introduce more information than studying them individually. In this

fashion, the relative shape arrangements among these neighbors can be modeled

based on statistical information from a training set. In the following section we

introduce the interpretation of this model into active contour segmentation method

in a nonparametric MAP estimation framework.

3.2 Segmentation Framework by Energy Minimiza-

tion Based on Curve Evolution

In a typical active contour model, the segmentation process involves an iterative

algorithm for minimization of an energy functional. We define our energy (cost)

functional in a maximum a posteriori (MAP) estimation framework as

E(C) = − log P (data|C) − log P (C), (3.1)

where C is a set of evolving curves {C1, ..., Cm} that match the boundary of m

different shapes. We choose the likelihood term P (data|C) as in [18], and refer to

the corresponding force as C&V which are the initials of the author’s names. P (C)

is a joint prior density of multiple objects. In this work we focus on building P (C).

The joint prior is evaluated using a training set of N shapes of the objects

{C1, ...,CN}. The essential idea of using such a prior is that a candidate segmenting

curve C will be more likely if it is similar to the example shapes in the training set. So

we compare the candidate curves with training examples. In order to provide direct

comparison, the candidate curve C and the training examples {C1, ...,CN} should

be aligned since shape distances are not invariant under translation, rotation and

scale. Therefore, the pose variation of one object in the training set is removed where

we still keep the relative pose variations of objects among each other. We do the

alignment operation, as in [45] where a set of similarity transformation parameters

(translation, scaling and rotation) are calculated for each sample in the training

set to align binary shapes with each other. During this operation {C1, ...,CN} are
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aligned into
{
C̃1, ..., C̃N

}
.

In the segmentation framework, to build joint prior according to the training

set we relate each candidate segmenting curve C with its aligned version C̃ such

that C̃ = T [p]C. All evolving contours are aligned relative to the training set via

similarity transformation T [p] where p is a vector of pose parameters (p1, ..., pm) for

each object. Each pi, (i = 1, 2, .., m) corresponds to a vector of translation, rotation

and scale parameters that are updated at each iteration during the evolution. In this

context, we define the joint prior P (C) in terms of the pose and shape parameters

of multiple objects such that

P (C) = P (T−1[p]C̃) = P (C̃,p) (3.2)

We differentiate between the shape and pose prior information:

P (C̃,p) = P (C̃) · P (p|C̃) (3.3)

Now, the problem is to define the coupled shape prior P (C̃) and the joint pose prior

P (p|C̃) of the multiple objects.

We compute the coupled shape density where we avoid all the pose artifacts and

consider only shape variability. We describe its formulation in section 3.2.1. We

compute the joint pose prior in order to model the variability of relative positions

of objects. In a previous work [60], P (p|C̃) was assumed to be uniform with the

assumption that all poses p are independent and equally likely. In that specific case,

P (C) could be computed directly as:

P (C) = P (C̃) · γ. (3.4)

where γ is a normalizing constant. If the prior information about the pose P (p|C̃)

is available, one can use that information. For example, in a more general case, the

positions of each object might be dependent and the joint distribution of P (p|C̃)

can be defined among globally aligned training examples. In this approach the

main idea is that the position of each object is defined by a global and internal

pose parameters. We call the position of the object set as a whole, where position

parameters (translation, rotation and scaling) are computed for all objects at once,

a global position. Beyond global position , we define internal positions of individual
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(a) (b) (c) (d)

Figure 3.1: Alignment of training shapes for Nucleus Caudate (NC) and Putamen

(P). (a) superposition of unaligned binary shapes of multiple objects (NC + P),

(b) superposition of globally aligned binary shapes of multiple objects (NC + P)

(c) superposition of locally aligned binary NC shapes, (d) superposition of locally

aligned binary P shapes

objects as local pose differences among the multi-object set. In this context, p is

composed of

p = (pglb, p
1
int, ..., p

m
int) (3.5)

parameters. Using definition in Eq. 3.5 we reinterpret the Eq. 3.3 as:

P (C̃, p) = P (C̃) · P (pglb, p
1
int, ..., p

m
int|C̃) (3.6)

Here we propose that pglb and pint = (p1
int, ..., p

m
int) are independent parameters.

Since pglb and pint are independent, we have

P (C̃, p) = P (C̃) · P (pglb|C̃) · P (pint|C̃) (3.7)

Here, P (pglb|C̃) is assumed to be uniform. Following Eq. 3.4 we can define P (C)

as

P (C) = P (C̃) · γ · P (pint|C̃) (3.8)

Substituting P (C) into Equation (3.1), we obtain

E (C) = − log P (data|C) − log P (C̃) − log P (pint|C̃) (3.9)

Given Eq. 3.9, the focus of our work is to define the priors P (pint|C̃) and P (C̃).During

the segmentation, following Eq. 3.2 we relate evolving candidate curves C to aligned

curves C̃ via transformation T [p] such that P (C) = P (T−1[p]C̃) as presented be-

fore in [32] which focuses single object segmentation. Beyond [32], we relate the
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evolving curves to aligned curves according to both global and internal pose pa-

rameters. During the alignment which is a preprocessing step in the training, we

first align multi-object samples globally and then align individuals locally. One can

see the difference between global and local alignment of training examples for two

Basal Ganglia structures in Figure 3.1. Figure 3.1 (a) shows superposition of un-

aligned multi-object samples. Figure 3.1 (b) shows the superposition after global

alignment. Figure 3.1 (c) and (d) show superposition after local alignment for sep-

arate structures. Comparing (b) with (c) and (d) one can observe the scale factor

and sharpness in the superimposed images. For the sake of simplicity of exposition,

and without loss of generality, we present inter-shape pose issues between two ob-

jects only. However, the framework we develop is general enough to be applied to

arbitrary number of objects.

3.2.1 Coupled Shape Prior for Multiple Objects

In this section, we construct the coupled nonparametric shape prior information

P (C̃) for m different classes of objects. To build a joint prior model for multiple

objects, we choose level sets as the representation of shapes [41] and we use mul-

tivariate Parzen density estimation (see [61]) to estimate the unknown joint shape

distribution. Consider m = 2 (CN and P only) and define the joint kernel density

estimate of two shapes as,

P (C̃1, C̃2) =
1

N

N∑

i=1

m=2∏

j=1

k(d(φ eCj , φ eC
j
i
), σj) (3.10)

where k(., σj) is a Gaussian kernel with standard deviation σj . In this equation, φ eCj

is the candidate SDF of jth object, aligned to the training set and φ eC
j
i

is the SDF for

the ith training shape of the jth object. Note that, given a distance measure d(., .),

we can construct the kernel for joint density estimation, by multiplying separate

kernels k(., σj) for each object. Our nonparametric shape prior in (3.10) can be

used with a variety of distance metrics. In this work, we consider the L2 distance

dL2 between SDFs as in [32]. For the kernel size σj , for the jth object, we use

maximum likelihood kernel size with leave-one-out method (see [59]).

Our joint shape density involves modeling of inter-relationships among multiple

shapes, a capability that was not proposed in the current state of the art single
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shape prior based approaches (see, for example, [25], [32]). As compared to exist-

ing single shape prior based approaches in this framework, we produce much more

accurate joint shape densities in cases where there are shape dependencies between

the multiple objects involved. This is a phenomenon we observe in basal ganglia

structures.

Gradient Flow for the Coupled Shape Prior

In this part, we compute a gradient flow for the joint prior in equation (3.10) for

the two curves which are represented implicitly by their corresponding SDFs.

In differentiating the logarithm of the expession given in (3.10), we use shorthand

notation, kσj
for k(dL2(φ eCj , φ eC

j
i
), σj). Note that φ eCj is a function of iteration time

t and φ eCj is a shorthand notation for the evolving level set function φ eCj(t). Using

these conventions, we obtain

∂

∂t
log P (C̃1, C̃2) =

1

N

N∑
i=1

{k′
σ1

kσ2 + kσ1k
′
σ2
}

P (C̃1, C̃2)
(3.11)

Then, we compute the gradient flow in the normal direction that increases most

rapidly for each object curve. Using the L2 distance in kernels, we find that the

gradient directions for the curves C̃j are (see Appendix A):

∂φ eCj

∂t
=

1

σj
2

N∑

i=1

λi(C̃
1, C̃2)(φ eC

j
i
(x, y) − φ eCj(x, y)) (3.12)

where j = 1, 2, λi(C̃
1, C̃2) =

k(dL2
(φ eC1 ,φ eC1

i
),σ1)k(dL2

(φ eC2 ,φ eC2
i
),σ2)

N ·P ( eC1, eC2)
, and

N∑
i=1

λi(C̃
1, C̃2) = 1.

The final expression (3.12), evolves the curves toward shapes at the local maximum

of the coupled shape prior of two objects. Note that, training shapes that are closer

to the evolving curve get more weight. Furthermore, the weighting function λi

depends on each curve in exactly the same way. In particular, due to the coupled

nature of this weight, given a pair (C̃1, C̃2) in the evolution process training shape

pairs in which the second training shape is closer to C̃2 get relatively more weight

in the evolution of the first curve as well. This shows one aspect of the coupled

nature of our shape-based segmentation aproach.
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3.2.2 Moment-based Relative Pose Prior for Multiple Ob-

jects

In a multiple object system, the pose of the objects as related to their gravity center

is computed via moments. Define pj
int as the set of internal pose parameters, where

Cj is a curve defining object j. We define pj
int =

[
m0,0,

m1,0

m0,0
,

m0,1

m0,0
, Θ
]

as a vector of

real values which correspond to scale, translations and rotation respectively. They

are computed from level set representation of each curve via standard moments

(see Appendix B for details). We estimate P (pint|C̃) using Parzen kernel density

estimation in a similar way to Section 3.2.1 as follows

P (pint|C̃) =
1

N

N∑

i=1

2∏

j=1

k
(
d
(
pj

int, p
ji
int

)
, σj

)
, (3.13)

where k is a Gaussian kernel. We define a Mahalonobis distance between the pose

parameters of the candidate curve and the training curves being the second weighted

norm of the difference vector. d(pj
int, p

ji
int) = ||pj

int − pji
int||2. Note that computing the

norm of the difference vector, we consider weighting coefficients for each term of

pj
int. We compute the coefficients by normalizing into [0, 1] in order to compute

normalized values which are reasonable norms for each type of pose parameter.

Gradient Flow for the Relative-Pose Prior

In this part, we define a gradient flow for the joint pose prior in Eq. (3.13) in

order to minimize the cost functional in Eq. (3.9). We use one curve for each

object and they are represented implicitly by their corresponding SDFs. During the

evolution of the level sets, the inter-shape pose parameters pj
int are updated. During

this update, to minimize the cost functional in Eq. (3.9), instead of computing

the gradient descent for each explicit pose parameter, we compute the update for

the signed distance functions (SDF) of the objects C̃j at each iteration time step

since the pose parameters are represented in terms of moment values computed over

SDFs. This key point shows the merit of using moments, then we can introduce

pose priors in order to make local deformations in the evolving curves.

Following Eq. (3.13), we obtain the update for pose based evolution as

∂Φ eCj

∂t
=

1

P (pint|C̃) · N

N∑

i=1

kσ1kσ2

−σj
2

MPF (j, i), (3.14)
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(a) (b) (c)

Figure 3.2: Moments based inter-shape pose reconstruction. The small white circles

are the mass centers of the corresponding objects. The green small circles are the

mass centers of the blue and red objects together. (a) initialization, (b) iteration

140, (c) steady state after iteration 200.

where

MPF (j, i) =
(
m̃0,0 − m̃i

0,0

)

+
∑

(r,s)∈{(1,0),(0,1)}

(
m̃r,s

m̃0,0
−

m̃i
r,s

m̃i
0,0

)
(xrysm̃0,0 − m̃r,s)

m̃2
0,0

+
(
θ̃ − θ̃i

) 2∑

r=0

2−r∑

s=0

xrysMθ
rs (3.15)

for each j ∈ {CN, P}. Here, m̃r,s denotes moments of aligned evolving curve, m̃i
r,s

means moments of the aligned training ith image, whereas the rotation angles θ

follow similar conventions. Note that, the moments and the rotations depend on j.

In the equation, the short notation term Mθ
r,s depends on θ (of the evolving CN or

P). Its complete definition and all elaborations are part of Appendix.

We provide an example for the inter-shape pose prior based curve evolution in

Figure 3.2. To construct prior distribution, in the training set, we use only one

training sample in which we have two arbitrarily positioned parallel ellipses with

size ratio of 3 and the same θ angles with the principal axis of the whole system.

Looking at the table 3.1, one can understand that the ratio of distances between

centers of the objects and mass center is also 3 since their size ratio is 3. In the

figure each white small circle shows the mass center of the corresponding ellipse.

The small green circle is the mass center of both ellipses. We illustrate the moment

based evolution towards the reconstruction of the inter-shape pose of two ellipses in

Figures 3.2 (a), (b), and (c). In (a) arbitrary initialization with same sizes is shown.
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Blue Object Red Object

Area MCD Area MCD

Training 471 45 1413 15

Initialization 153 17.91 299 9.16

Iteration 140 482 43.71 1471 14.32

Steady state 503 41.1 1465 14.15

Table 3.1: Area and mass center distance (MCD) reconstruction measurements in

pixels. MCD is the distance between the white (corresponding) mass center and the

green one in pixels.

In (b) one can see the result after a certain amount of iteration where the size ratio

of two ellipses and the distance between center of masses are reconstructed according

to training sample. Note that the relative orientation of the ellipses is also recovered,

as shown in Figure 3.2 (c). In this experiment, considering only relative position

information we converge to a local minima in order to obtain corresponding ratios for

the objects in the training sample where we disregard global position information.

The area measurements and mass centers positions of the blue and red objects are

shown in Table 3.1.

3.3 Segmentation Algorithm

In this section we summarize the segmentation algorithm with implementation de-

tails. We describe our algorithm in Figure 3.3. In an iterative segmentation process,

we show the basic utilities that provides data force, shape force and pose force in

seperate branches of the diagram. We start the procedure with the initializations of

the segmenting curves correspond to separate structures. This initialization can be

simple curve / sphere pair put inside the target structures. Having initial curves, we

generate SDFs and, as shown in the top branch, for a certain amount of iterations

we drive the curves using only data force (C&V) without any training information.

After a certain stage, at each iteration, we continue to update the SDFs φ by adding

the C&V, the coupled shape, and the inter-shape pose forces (2nd and 3rd branches)

together, until the curves reach steady state. We use a local optimization scheme
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(in particular, gradient descent) to find a local minimum of our non-convex cost

functional.

During iterations we relate segmenting curves to the training set samples via

transforation T [p] to compute coupled shape and inter-shape pose priors. In order

to do that, describing each candidate curve by its shape and pose, we interpret C̃ as

the shape of C after being transformed by T [p]. Before adding forces together we

retransform the curves into test image domain by T−1[p]. Regarding sensitivity to

transformation issues, we wait for the curves to reach to a reasonable shape before

computing prior forces, since shape distances are not invariant under translation,

scale and rotation. For details, see Eq. (3.12) and (3.14) respectively.
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Figure 3.3: Segmentation Algorithm - In each step, three forces are evaluated: C&V, Coupled Shape (see Section 3.2.1), and Inter-Shape

Pose (see Section 3.2.2)
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Chapter 4

Experimental Results

Now we present experimental results demonstrating our segmentation method based

on nonparametric coupled shape and inter-shape pose priors of multiple objects. We

show several segmentation results for the head of Caudate Nucleus and the Putamen

of brain Basal Ganglia. Here the coupled shape prior not only involves the shape

prior of seperate objects but also captures the coupled shape information of multiple

objects. Inter-shape pose prior involves parameters such as the distance between

objects, surface area and relative orientation of individuals among each other. In

our experiments, we demonstrate the effects of coupled shape and inter-shape pose

prior in comparison with the C&V force (see [18]) and the single shape prior (see

[32]) based segmentations. During the experiments, we differentiate between the

results on synthetic and real MR images. We perform a quantitative analysis of the

accuracy of the segmentations in terms of false positive (FPR) and false negative

(FNR) rates, (see [62]), as well as Dice coefficients DC (see [63]). Our ground

truths are binary images which were created by a medical operator who manually

segmented the Caudate Nucleus and the Putamen of real brain MR images. A user

guided interface was used for this task. Figure 4.1 shows a picture of the interface

that is used by an operator to segment structures that we focused in the experiments.

Our synthetic data is created on top of the ground truth shapes by adding noise.

As for real images, we present results on proton density (PD) and T2 MR images,

which present challenges due to their low contrast. In all the result images, the blue,

red, and green small circles, represent the mass centers of the Caudate Nucleus, the

Putamen, and the joint mass center, respectively. One hundred iterations require

twenty five seconds for computing the coupled shape forces and eighty seconds for
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Figure 4.1: A picture of interface that is used for manual segmentation.

computing inter-shape pose force, in average. We use 512x448 pixels images and

run the proposed segmentation scheme on a Core 2 Duo Pentium with 3GHz speed.

Based on the condition of the initial curve or surface, it takes between 100 and 200

iterations to converge to a steady state situation. If the initial curves are far from

the target structure it requires more time to obtain a good segmentation.

4.1 Synthetic Data

In this section, we demonstrate our coupled shape and relative pose prior based seg-

mentation algorithm with the segmentation of synthetic brain structure images. We

use twelve ground truths of the Caudate Nucleus and Putamen extracted manually

as shown in Fig. 4.1. We choose one binary ground truth and add noise to it towards

segmentation testing, whereas the rest of the ground truths are used in training. We

work with high contrasted Caudate Nucleus and low contrasted occluded Putamen,

in order to show the effect of using the coupled shape and inter-shape pose priors.

The results of one round are shown in Fig. 4.2. The C&V method (see Fig. 4.2

(a)) cannot recover the occluded part of Putamen. The result of using single shape

prior of seperate objects provides better segmentation for the occluded part (see

4.2 (b)). In particular, Fig. 4.2(c) shows the effect of using relative pose prior of

two objects. Here we intend to show the merit of using moment based relative pose

prior such that it improves the result although it is used without shape prior (com-
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Prior P

FPR FNR 1-DC

Single

Shape 0.024 0.091 0.177

Pose 0.012 0.183 0.195

Shape &

Pose 0.004 0.06 0.07

Table 4.1: Average quantitative accuracy results for the experiment shown in figure

4.2

(a) (b) (c) (d)

Figure 4.2: Segmentations on synthetic data. (a) C&V method, (b) single shape

[32], (c) inter-shape pose only, (d) proposed coupled shape and inter-shape pose

priors.

pare 4.2(a) and 4.2(c)). Using coupled shape and inter-shape pose prior together

provides better segmentation than the other results in Fig. 4.2, as seen in (d). The

coupled shape and inter-shape pose forces try to push or expand the contour to

cover the bottom parts of the Putamen. They try to shrink the upper parts and

also recovers the occluded regions of Putamen. Regarding the qualitative results

shown in Fig. 4.2 we illustrate the average validation results of Putamen in twelve

leave one out experiments (see Table 4.1). All three performance criteria indicate

superior accuracy when using coupled shape and inter-shape pose priors together.
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4.2 Real Data

In this section we demostrate the results of segmentation for proton denstiy and T2

MR data. We first show the results using only coupled shape prior. In the next group

of experiment we show several segmentation results using not only coupled shape

prior but also adding inter-shape pose prior of multiple objects. We demonstrate

the effects of coupled shape and inter-shape pose prior in comparison with the C&V

force ([18]) and the single shape prior ([32]) based segmentations.

In the first experiment on real MR data, we apply our coupled shape prior based

segmentation method to segment the head of Caudate Nucleus and Putamen. We

use a training set of twenty binary shapes that include the focused structures. We

compare our multi object coupled prior with single object prior. The benefit of

using a coupled prior is expected to be greater when the boundary of some objects

is not well supported by the observed image intensity. We demonstrate the results

for several images in Fig. 4.3. The first column in Fig. 4.3 show the results of using

only intensity based curve evolution method [18] using only curve length penalty

as the regularizing term in the energy functional. This method presents serious

leakages for both structures. Figure 4.3 second and third columns show the single

shape prior based results for separate structures. Both of the structures can not be

effectively extracted because the samples in the training set for separate structures

cause the corresponding curves to collapse into them. Here, the training set includes

structures taken from sequential slices of several patients. The variability in their

geometry and shape is very high. In fact this is a problem in clinical applications,

too. Depending on the spacing between slices, the shapes of the structures that stays

in adjacent slice levels varies significantly. During the evolution of related contour,

the highest weighted train sample corresponds to one which is extracted from a

different slice level. According to the results for Putamen, this method presents a

considerable amount of miss in Putamen. The contour can not catch all the regions

belongs to Putamen. For the head of Caudate Nucleus it also presents miss and small

leakages towards the Ventricles. With the proposed coupled shape prior (force), both

structures can be segmented more effectively due to the fact that coupling effect

between shapes provides higher weighting for the train samples extracted from the

proper slice levels (see Fig. 4.3 last column). Average segmentation error rates
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CN P

Prior FPR FNR 1-DC 1-DC

Single

shape 0.0165 0.071 0.19 0.15

Coupled

shape 0.0098 0.044 0.11 0.10

Table 4.2: Average quantitative accuracy results for the experiments in figure 4.3

CN P

Prior FPR FNR 1-DC 1-DC

Single

shape 0.005 0.112 0.18 0.04

Pose 0.0039 0.132 0.151 0.108

Shape

& Pose 0.003 0.065 0.1 0.08

Table 4.3: Quantitative accuracy results for the experiments in figure 4.2.

given in Table 4.2 qualitatively confirm the superior performance attained using our

coupled prior.

In the second experiment on real MR data, we apply our coupled shape prior

based segmentation method to segment only left part of Caudate Nucleus and Puta-

men. We use a training set of twelve binary shapes that include only the left part

of the focused structures. The C&V method results in inevitable leakages for both

NC and P (see Figure 4.2 (a)). The result of the method that uses single shape

prior is shown in Figure 4.2 (b) for each structures. The result of the moment based

inter-shape pose prior is shown in Figure 4.2 (c). The inter-shape pose prior alone

bounds leakages. One can understand that the moment based curve evolution pro-

vides significant amount of reduction in leakages as compared with the method in

(a). It brings area, distance and rotation constraints into segmentation naturally.

Besides, the synergy of the coupled shape and the inter-shape pose priors provides

the best overall performance (consider structures together), as shown in Figure 4.2
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CN P

Prior 1-DC 1-DC

C&V Force 0.42 0.39

Single Shape 0.123 0.179

Coupled Shape 0.112 0.131

Shape and Pose 0.109 0.121

Table 4.4: Average quantitative accuracy results for the experiments in figure 4.5

(d). We show the achieved accuracy by means of three error rate parameters in

Table 4.2.

In another experiment, we compare the segmentations of the complete head of

Nucleus Caudate and Putamen by using three methods. We demonstrate the results

of this experiment in Figure 4.5. During the experiments for three different method,

we start with the same initial conditions and show the results obtained in steady

state. We use the same data term (C&V) in each method. The usage of same

data term simplifies the comparison of our approach among others since only the

coupled shape or inter-shape pose prior components of the methods are different.

The C&V method, alone, results in inevitable leakages for both Nucleus Caudate

and Putamen (see Figure 4.5 first column). In the second and third column, we

show the results obtained by using single shape prior for separate structures. This

method performs well for the Putamen in first and second rows. On the other

hand it presents misses in the Nucleus Caudate for the same images. The result of

the proposed coupled shape prior using globally aligned structures (without using

pose prior) is shown in Figure 4.5 (forth column). One can see that the coupled

shape force recovers the misses of the Nucleus Caudate and provides almost same

performance for the Putamen. When applying the synergy between the coupled

shape and the inter-shape pose forces we reduce the error in Putamen and Nucleus

Caudate for all images. This result is shown in Figure 4.5 (fifth column). We also

show the achieved average accuracy by means of the DC parameters in Table 4.4.

Next experiment is on 3 dimensional data. We present surface evolution for

Nucleus Caudate and Putamen in Figure 4.6. Blue volume corresponds to ground

truth of the Nucleus Caudate and green volume corresponds to the ground truth
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of Putamen. We show segmenting active surface in red and violet for NC and P,

respectively in Figure 4.6 (a). We show the axial section of the brain in gray scale

intensity with the plane Z. We show the results with using only data based force

(C&V) in Figure 4.6 (b). We show coupled shape prior based evolution result for

both structures in Figure 4.6 (c). According to (c), the volumetric targets can be

captured accurately by the evolving surfaces of the both structures.
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(e) Experiment on PD MRI data

(j) Experiment on T2 MRI data

(o) Experiment on PD MRI data

Figure 4.3: Segmentation results of the CN and the P in an MR slice: (First column) C&V method, (Second column) single shape prior

only (Putamen), (Third column) single shape prior only (head of Caudate), (Forth Column) proposed coupled shape prior.
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(a) (b) (c) (d)

Figure 4.4: Segmentation results of the left part of the CN and the P in an MR

slice: (a) C&V method, (b) single shape prior only (see [32]), c) inter-shape pose

prior only, (d) proposed coupled shape and inter-shape pose prior.
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(f) Experiment on PD MRI data

(l) Experiment on PD MRI data

(r) Experiment on T2 MRI data

Figure 4.5: Segmentation results of the CN and the P in an MR slice: (First column) C&V method (see [18]), ( Second and Third column)

single shape prior, (Forth column) proposed coupled shape prior only, (Fifth column) proposed coupled shape and inter-shape pose prior.
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Figure 4.6: 3D segmentation: (a) Volumetric representation of target structures, segmentation results of the CN and the P in an MR

volume (b) Using only ChanVese, (c) Using coupled shape prior
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Chapter 5

Conclusion

5.1 Summary

Brain tissue segmentation in MR images is a fundamental problem in clinical studies

of brain structure and function. Efficient computer-assisted segmentation of internal

anatomy that produce accurate results is limited since many important structures

in MR images do not present a clear boundary for segmentation and have variations

between different subjects. In particular, segmentation of brain tissues, especially

in the subcortical regions, remains a challenging task. This is mainly because of low

intensity contrast in structural-MR images between the white matter (WM) and

gray matter (GM) tissues in the subcortical regions that comprise structures such

as the caudate, putamen, thalamus, etc.

Considering that segmentation is equivalent to extracting the shape and the pose

of the boundary of the object, prior information on both shape and pose would be

helpful in segmentation, if we have any such information. In this context, statistical

shape modeling and analysis is an important tool for understanding anatomical

structures from medical images. In many cases, objects to be segmented, have one

or more neighboring structures, whose location and shape provide information about

the local geometry that can aid in extracting the exact location. In this thesis, we

have proposed a multi-object segmentation approach that employs coupled shape

and inter-shape pose prior information of different Basal Ganglia structures. In

an active contour framework, we achieve multi-object segmentation by evolving

different curves in parallel. We use the training information of structures that we are

interested, to estimate the coupled shape information as well as the inter-relationship
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pose information among them. For coupled shape priors, we propose nonparametric

density estimates based on signed distance functions (SDF) of training shapes. For

inter-shape pose priors, we use standard moments, which are intrinsic to shape and

have natural physical interpretations. We compute the probability density of joint

pose prior based on SDFs, too. We apply pose effect on evolving contours as local

deformations in order to obtain more accurate segmentation. We have demonstrated

our approach in several experiments, with comparisons to other techniques to show

the superiority of our coupled shape and joint pose priors.

5.2 Future Work

In the following we provide several topics for future research. We suggest several

ways to increase the accuracy of the segmentation results. Our nonparametric priors

were used on top of a weak data based likelihood term where we wanted to show the

merit of our approach. However for more specific purpose cases, introducing a more

structured data term, based on intensity characteristics or texture properties of the

tissues could be considered. Initializations based on atlas based registrations could

provide faster and better results since our framework is based on gradient descent

optimization.

Our inter-shape interaction is based on relative pose information among multiple

objects. More complex inter-shape interactions can be used to introduce into seg-

mentation other than just pose. Also other multi object shape modeling approaches

can be used with our moment based pose interaction.

Another future work topic would be that, in medical imaging there are many

imaging modalities, each of them provide different facilities for specific purposes.

Multi modality processing can be used to provide better data fidelity in order to

increase segmentation accuracy in the presence of low contrast or inhomogeneity.

The results of our segmentation can be also used for shape analysis to examine

relationships between structural abnormalities and deformations and certain func-

tional abnormalities and diseases.

We evolve multiple curves simultaneously and represent them using signed dis-

tance functions per objects. Doing this we do not put any constraint on SDFs to
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avoid intersection of evolving curves. Our joint pose prior should provide natural

constraints. But, for further studies where we consider more complicated systems

putting spatial constraints could be helpful to avoid collisions. However, in our

experiments we do not encounter such problems.

We also mention that applying the proposed approach on other subcortical struc-

tures than CN and P can increase the help of joint pose prior. Among these topics,

we are still working on 3D implementation of our current approach.
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Appendix A

Analytical Computation of Coupled Shape Prior Flow

We compute the gradient flow for log p
C̃1,C̃2(C̃1, C̃2)

log p
C̃1,C̃2(C̃1, C̃2) = log

1

N

N∑

i=1

2∏

k=1

k(dL2(φC̃k , φC̃k
i

), σk) (A.0.1)

where φ
C̃k

i

is the signed distance function for the ith training shape for kth

object. Note that φ
C̃k is a function of time t and φ

C̃k is a shorthand notation for

the evolving level set function φ
C̃k(t). Using a Gaussian kernel, we have

k(dL2(φC̃k , φC̃k
i

), σk) =
1√

2πσk
2

exp(− 1

2σk
2

∫
(φ

C̃k(x) − φ
C̃k

i

(x))2dx) (A.0.2)

A.1 Derivation of the Coupled Shape Prior Evolution Formula

To differentiate the expession given in (1), first we define the derivative of
2∏

k=1

k(dL2(φC̃k , φC̃k
i

), σk). For simplicity, we will use shorthand notation

kσk
for k(dL2(φC̃k , φC̃k

i

), σk).

∂

∂t
kσ1kσ2 = k′

σ1
kσ2 + kσ1k

′
σ2

(A.1.3)
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Using equations (3), (4 )and (5) we can define ∂
∂t

log p
C̃1,C̃2(C̃1, C̃2) as

∂

∂t
log p

C̃1,C̃2(C̃1, C̃2) =
1

p
C̃1,C̃2(C̃1, C̃2)

1
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Since kσ1 and kσ2 are common multipliers,
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The inner product definition;

〈φ1, φ2〉 =

∫
φ1(x)φ2(x)dx (A.1.9)

Using the above definition in equation (8)
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We have to maximize this expression to obtain the gradient directions that increases

log p
C̃1,C̃2(C̃1, C̃2) most rapidly for each object curve. So the gradient directions for the

curves C̃1 and C̃2 are

∂φ
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A.2 Coupling Effect of Multiple Shapes

These final expressions for the two curves, evolve the curves toward shapes at the local

maximum of objects joint shape prior, which is approximately weighted average of the

neighboring training shapes of each object. Having these expressions, one can show that

at the local maximum of the joint shape prior p
C̃1,C̃2(C̃1, C̃2), the gradient flow will be

zero. This means at the steady state when joint shape prior is maximum, there is no need

any flow for both curves. At the steady state,

∂φ
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Then the coupled shapes at the local maximum can be given as
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Appendix B

Analytical Computation of Inter-Shape Pose Prior Flow

Definitions:

M be the set of all moments.

M0 = {m0,0}
M1 = {m1,0,m0,1}
Mn = {mi,j|mi,j ∈ M, i + j = n}

M2 = M0UM1UM2

Following Meriam - Dynamics, define the inertia moments as Ixx = m0,2, Ixy = Iyx = m1,1,

and Iyy = m2,0. Moreover, consider the following matrix

IM =


 Ixx −Ixy

−Ixy Iyy


 . (B.0.1)

Let θ be the angle between the eigenvectors of IM and the axes coordinates. Then, we

have

θ (C) =
1

2
arctan

(
2Ixy

Iyy − Ixx

)
. (B.0.2)

Therefore,

θ (C) =
1

2
arctan

(
2 (m1,0m0,1 − m1,1m0,0)

(m0,2 − m2,0) m0,0 + m2
1,0 − m2

0,1

)
. (B.0.3)

B.1 Derivation of the Inter-Shape Pose Prior Evolution Formula

During the evolution of the active contour, the inter pose parameters depend on time,

therefore, we have

θ (C) =
1

2
arctan

(
2 (m1,0 (t)m0,1 (t) − m1,1 (t)m0,0 (t))

(m0,2 (t) − m2,0 (t))m0,0 (t) + m2
1,0 (t) − m2

0,1 (t)

)
. (B.1.4)

Define

un sin (2θ) = 2 (m1,0 (t) m0,1 (t) − m1,1 (t) m0,0 (t))
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and

un cos (2θ) = (m0,2 (t) − m2,0 (t)) m0,0 (t) + m2
1,0 (t) − m2

0,1 (t) .

In addition, define S > 0 by un sin2 (2θ) + un cos2 (2θ) = S2. Then, we can use the

following interpretations: un sin (2θ) = S sin (2θ) , and un cos (2θ) = S cos (2θ) .

k
(
d
(
pint

eCk
, pint

eCk
i

)
, σk

)

=
1√

2πσk
2

exp

{
− 1

2σk
2

[(
m0,0

(
C̃k
)
− m0,0

(
C̃k

i

))2
+

∑

mr,s∈M2,r+s=1




mr,s

(
C̃k
)

m0,0

(
C̃k
) −

mr,s

(
C̃k

i

)

m0,0

(
C̃k

i

)




2

+

(
θ
(
C̃k
)
− θ

(
C̃k

i

))2
]}

In the following, we develop the derivative of the orientation angle as related to time. We

use trigonometric relationships to model the moments based expressions, while keeping in

mind their dependence on time. Therefore, we have

θ (C)
′

=
1

2

tan
′

(2θ)

1 + tan2 (2θ)

=
1

2

un sin
′

(2θ)un cos (2θ) − un sin (2θ)un cos
′

(2θ)

un cos2 (2θ) (1 + tan2 (2θ))

=
1

2

(
un sin

′

(2θ) un cos (2θ) − un sin (2θ)un cos
′

(2θ)
)

S2
.

=
[(

m
′

1,0 (t)m0,1 (t) + m
′

0,1 (t) m1,0 (t) − m
′

1,1 (t) m0,0 (t) − m
′

0,0 (t) m1,1 (t)
)

cos (2θ)

S
−
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m

′

0,2 (t) − m
′

2,0 (t)
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m0,0 (t) + (m0,2 (t) − m2,0 (t))m
′

0,0 (t)

+2m
′

1,0 (t)m1,0 (t) − 2m
′

0,1 (t)m0,1 (t)
) sin (2θ)

S

]

=

[(
m

′

1,0m0,1 + m
′

0,1m1,0 − m
′

1,1m0,0 − m
′

0,0m1,1

) cos (2θ)

S
−
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m

′

0,2 − m
′

2,0

)
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′

0,0 + 2m
′

1,0m1,0 − 2m
′

0,1m0,1

) sin (2θ)

S

]

=

{
m

′

0,0

[
(m2,0 − m0,2)

sin (2θ)

2k
− m1,1

cos (2θ)

S

]
+

m
′

1,0

[
m0,1

cos (2θ)

S
− m1,0

sin (2θ)

S

]
+ m

′

0,1

[
m1,0

cos (2θ)

S
+ m0,1

sin (2θ)

S

]
+

− m
′

0,2m0,0
sin (2θ)

2S
+ m

′

2,0m0,0
sin (2θ)

2S
− m

′

1,1m0,0
cos (2θ)

S

}
. (B.1.5)
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Define the following coefficients:

Mθ
0,0 = (m2,0 − m0,2)

sin (2θ)

2S
− m1,1

cos (2θ)

S

Mθ
1,0 = m0,1

cos (2θ)

S
− m1,0

sin (2θ)

S

Mθ
0,1 = m1,0

cos (2θ)

S
+ m0,1

sin (2θ)

S

Mθ
2,0 = m0,0

sin (2θ)

2S

Mθ
0,2 = −m0,0

sin (2θ)

2S

Mθ
1,1 = −m0,0

cos (2θ)

S
(B.1.6)

Then, by substituting Equations (B.1.6) into (B.1.5), we have

θ (C)
′

=
2∑

r=0

2−r∑

s=0

m
′

rsM
θ
rs. (B.1.7)
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k′
σj

= kσj



− 1

σj
2



(
m0,0

(
C̃k
)
− m0,0

(
C̃k

i

)) ∂m0,0

(
C̃k
)

∂t
+

∑

mr,s∈M2,r+s=1




mr,s

(
C̃j
)

m0,0

(
C̃j
) −

mr,s

(
C̃

j
i

)

m0,0

(
C̃

j
i

)


 ∂

∂t




mr,s

(
C̃j
)

m0,0

(
C̃j
)


+

(
θ
(
C̃k
)
− θ

(
C̃k

i

)) ∂

∂t
θ
(
C̃k
)]}

= kσj

{
− 1

σj
2

[(
m̃0,0 − m̃i

0,0

) ∂m̃0,0

∂t
+

∑

emr,s∈M2,r+s=1

(
m̃r,s

m̃0,0
−

m̃i
r,s

m̃i
0,0

)
∂

∂t

(
m̃r,s

m̃0,0

)
+
(
θ̃ − θ̃i

) ∂θ

∂t

]}

= kσj

{
− 1

σj
2

[(
m̃0,0 − m̃i

0,0

)
m̃

′

0,0+

∑

emr,s∈M2,r+s=1

(
m̃r,s

m̃0,0
−

m̃i
r,s

m̃i
0,0

)(
m̃

′

r,sm̃0,0 − m̃r,sm̃
′

0,0

m̃2
0,0

)
+

(
θ̃ − θ̃i

) 2∑

r=0

2−r∑

s=0

m̃
′

r,sM
θ
rs

]}

= kσj



− 1

σj
2


(m̃0,0 − m̃i

0,0

) ∫

Ω

Φ
′

eCj
+

∑

emr,s∈M2,r+s=1

(
m̃r,s

m̃0,0
−

m̃i
r,s

m̃i
0,0

)


∫
Ω

(xrysm̃0,0 − m̃r,s)Φ
′

eCj

m̃2
0,0




(
θ̃ − θ̃i

) 2∑

r=0

2−r∑

s=0

∫

Ω

xrysΦ
′

eCj
Mθ

rs








= kσj

{
− 1

σj
2

[(
m̃0,0 − m̃i

0,0

) 〈
1,Φ

′

eCj

〉
+

∑

mr,s∈M2,r+s=1

(
m̃r,s

m̃0,0
−

m̃i
r,s

m̃i
0,0

)〈
(xrysm̃0,0 − m̃r,s)

m̃2
0,0

,Φ
′

eCj

〉

(
θ̃ − θ̃i

) 2∑

r=0

2−r∑

s=0

〈
xrysMθ

rs,Φ
′

eCj

〉]}

= kσj

{〈
− 1

σj
2

[(
m̃0,0 − m̃i

0,0

)
+

∑

emr,s∈M2,r+s=1

(
m̃r,s

m̃0,0
−

m̃i
r,s

m̃i
0,0

)
(xrysm̃0,0 − m̃r,s)

m̃2
0,0

+

(
θ̃ − θ̃i

) 2∑

r=0

2−r∑

s=0

xrysMθ
rs

]
,Φ

′

eCj

〉}

62



Define the moments speed factor (MSP ) of the object o in{NC,P} as

MSF (o) =
(
m̃0,0 − m̃i

0,0

)
+

∑

mr,s∈M2,r+s=1

(
m̃r,s
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−
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+

(
θ̃ − θ̃i

) 2∑

r=0

2−r∑

s=0

xrysMθ
rs (B.1.8)

∂

∂t
log P
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=

〈 N∑
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kσ1kσ2

−σ1
2 MSF (1)

P
p(eC)(pint|C̃) · N

,
∂Φ eC1

∂t

〉
+

〈 N∑
i=1

kσ1kσ2

−σ2
2 MSF (2)

P
p(eC)(pint|C̃) · N

,
∂Φ eC2

∂t

〉

(B.1.9)

∂Φ eC1

∂t
(x, y) =
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P
p(eC)(pint|C̃) · N

∂Φ eC2

∂t
(x, y) =
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−σ2
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P
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