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Abstract – We propose a new approach for multi-sensor

multi-target tracking by constructing statistical models

on graphs with continuous-valued nodes for target states

and discrete-valued nodes for data association hypotheses.

These graphical representations lead to message-passing

algorithms for the fusion of data across time, sensor, and

target that are radically different than algorithms such as

those found in state-of-the-art multiple hypothesis track-

ing (MHT) algorithms. Important differences include: (a)

our message-passing algorithms explicitly compute different

probabilities and estimates than MHT algorithms; (b) our

algorithms propagate information from future data about

past hypotheses via messages backward in time (rather than

doing this via extending track hypothesis trees forward in

time); and (c) the combinatorial complexity of the problem

is manifested in a different way, one in which particle-like,

approximated, messages are propagated forward and back-

ward in time (rather than hypotheses being enumerated and

truncated over time). A side benefit of this structure is that

it automatically provides smoothed target trajectories using

future data. A major advantage is the potential for low-

order polynomial (and linear in some cases) dependency on

the length of the tracking interval N , in contrast with the ex-

ponential complexity in N for so-called N -scan algorithms.

We provide experimental results that support this potential.

As a result, we can afford to use longer tracking intervals,

allowing us to incorporate out-of-sequence data seamlessly

and to conduct track-stitching when future data provide ev-

idence that disambiguates tracks well into the past.

Keywords: Multi-target tracking, graphical models, mes-

sage passing, data association, smoothing, multi-hypothesis

tracking.

1 Introduction
Multi-target tracking (MTT) using data from multiple sen-

sors is a very important, well-studied, and challenging prob-

lem that has a variety of applications, ranging from mili-

tary target tracking to civilian surveillance. While a variety
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of important practical considerations add to this challenge,

even if we limit attention to the most basic problem of main-

taining track on a fixed set of targets using data from multi-

ple sensors, we are met by a fundamental problem, namely

the exponential explosion (over time) of potential associa-

tions of measurements from each sensor at each time with

each target.

Practical solutions to this NP-complete problem of data

association and target tracking consequently require some

type of approximation. One of the most widely used ap-

proaches to such problems is commonly known as mul-

tiple hypothesis tracking (MHT) [1]. While tremendous

advances have been made in organizing the computations

and data structures associated with MHT, allowing it to

be applied to practical applications of considerable size,

the fundamental structure of MHT has several implications,

some of which are well-known while others are perhaps not.

Roughly speaking, MHT keeps track of sequences of data

association hypotheses over time. In principle, to main-

tain consistency across targets we need to form consistent

global hypotheses that preclude assigning the same mea-

surement to two different tracks. While ingenious methods

have been developed to deal with this global consistency

constraint without explicit construction of global hypothe-

ses, the fact remains that exponential growth in complex-

ity is not eliminated. In particular, the extension of a track

hypothesis over time requires the growing of a hypothesis

tree, which is extended at each point in time as new mea-

surements are received and incorporated. This combinato-

rial explosion requires approximation. While the number of

variants for such approximations are numerous, they all gen-

erally involve two components, namely limiting the depth of

the hypothesis tree - i.e., how far back into the past we keep

track of possible assignments - and a method for collapsing

hypotheses that differ only in assignments at the back end

of that tree. A basic method for limiting tree depth is the

so-called N -scan approximation. One widely used method

for collapsing such hypothesis trees is simply to choose the

branch extending from time t − N to time t with highest

likelihood or probability. This corresponds to pruning the

hypothesis tree by keeping only a single root at time t − N .

There are a number of issues associated with existing

MHT algorithms. First, although the N -scan approximation

12th International Conference on Information Fusion
Seattle, WA, USA, July 6-9, 2009

978-0-9824438-0-4 ©2009 ISIF 826

Authorized licensed use limited to: ULAKBIM UASL - SABANCI UNIVERSITY. Downloaded on December 4, 2009 at 09:03 from IEEE Xplore.  Restrictions apply. 



controls the explosion of hypotheses by limiting the depth

of hypothesis trees, the complexity within the tracking win-

dow is still exponential in N . This puts a severe limit on

how large one can choose N . An additional issue is the ap-

parent logical inconsistency between the association and lo-

cation estimation operations: while future data are used for

computing probabilities for various hypotheses, these future

data are not used for estimating (i.e. smoothing) the target

states at this earlier time.

In this paper, we take a fundamentally different approach

to solve the multi-sensor multi-target tracking and data as-

sociation problem by exploiting the use of graphical mod-

els and efficient message passing algorithms. This frame-

work offers the potential for approximations quite different

than, but just as good as those in state-of-the-art MHT al-

gorithms, but with drastically reduced complexity. One sig-

nificant aspect of using graphical model representations as a

starting point is that they lead directly to so-called message-

passing algorithms to compute various probabilities, like-

lihoods, and estimates associated with variables at nodes in

the graph. A second aspect is that there are different ways in

which to construct graphical models for the same problem,

each of which exposes different aspects of the overall proba-

bilistic structure, making particular computations more nat-

ural in one representation than in another and also leading

to very different ways in which to introduce approximations

to control complexity. The graphical representation we in-

troduce here leads to algorithms that do not enumerate track

hypotheses as in MHT but rather directly compute proba-

bilities of individual data associations at each point in time

as well as both causally filtered and smoothed estimates of

track states at each point in time. Thus, in contrast to MHT

approaches, the one presented here naturally computes dif-

ferent quantities that are not easy to extract from MHT rep-

resentations. Of course the flip side is that the computations

explicitly exposed in MHT - e.g., track hypotheses over time

- are not explicitly formed in our approach.

While this new perspective in modeling is interesting,

simply by changing the way we model the problem will not

change the complexity of solving it. As we know, the exact

solution to MTT is exponential in the duration of the track-

ing window. So is the case for exact MTT using graphical

models. Thus, to make target tracking over time tractable,

it is necessary to use some approximation, however in the

message-passing framework used here, we are interested in

approximating messages. We develop our own methods us-

ing automatic, statistically principled approaches involving

message approximation through multiresolution clustering,

gating in message construction, and an N -scan approxima-

tion. In our examples we demonstrate that in some scenarios

excellent performance can be obtained with complexity that

grows almost linearly with the length of the tracking inter-

val. As a result, we can consider far greater tracking inter-

vals than methods that have to deal with exponential com-

plexity. This not only allows for incorporation of data that

Figure 1: The first of the two graphical models we use for

MTT. This graph collapses all targets and all sensors at a

single point of time into one target node and one data asso-

ciation node, respectively.

Figure 2: The second of the two graphical models we use for

MTT. This graph distributes the global assignment variable

at each point of time into individual data association nodes

for each sensor.

arrive quite late but also allows greatly enhanced possibili-

ties for track-stitching. We demonstrate all of these aspects

in our experiments.

2 Graphical Models for Tracking

2.1 Graphical Model Structure

A graphical model is simply a Markov random field de-

fined on a graph in which nodes index variables defining

our problem and an edge between nodes captures statistical

relationships among the variables at the nodes connected by

that edge. A set of nodes forms a clique if there are edges

between all pairs of these nodes. If the joint distribution

of all variables factors as a product of potential functions

on cliques, then the variables are said to be Markov on the

graph. We use the two graphical model structures in Fig-

ures 1 and 2. Each circle in these graphs represents the kine-

matic states of all targets at one time point, whereas each

square connected to a circle represents the data associations

at that particular time. The model in Figure 1 lumps all as-

sociations from all sensors at a single point in time together,

whereas the model in Figure 2 uses one association node per

sensor at each individual point in time. We note that circles

represent continuous random variables, whereas squares de-

note discrete ones. Edges between successive points in time

capture the statistical structure of the Markovian target dy-

namics. It is important to emphasize that these models cap-

ture the same type of statistical structure as that used in other

tracking algorithms (e.g., an MHT algorithm), but they sug-

gest very different algorithms based on message passing.

Although the static data association problem at a single

point in time is already a challenging problem, it is not
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the focus of this paper. Rather, the focus here is in find-

ing an efficient way to do tracking over a period of time.

For more elaborate work on using graphical models to solve

large static data association problems, see our previous work

in [2].

In our first model (Figure 1), at each time point, all targets

are lumped together to form one global target node and all

sensors are lumped together to form one global assignment

node. Here, every assignment node takes on discrete values,

each of which represents a possible global data association

assignment for all sensors at that time point. Each target

node is the collection of kinematic states of all M targets

at that time point: xt = [xT
t,1, x

T
t,2, ..., x

T
t,M ]T , where xt,i is

the kinematic state of target i at time t.

If there are M targets and K sensors, then the complex-

ity to enumerate global data associations at a single point

of time is (M !)K . To reduce that complexity, we pro-

pose the second model (Figure 2), in which the global as-

signment variable at each point in time is distributed, re-

ducing the complexity of data association at each point of

time to K(M !). Each assignment node now corresponds

to a sensor, and the value of such an assignment node in-

dicates the data association between observations generated

by that sensor and the targets it observes. From a statistical

viewpoint, the second model asserts that the assignment of

measurements at each sensor is conditionally independent

of those at the other sensors, given the target states, a rea-

sonable assumption in practice. For the sake of notational

simplicity, we derive most of our formulae using the first

model. In various parts of our discussion, we mention how

the expressions would change for the second model. In the

experiments, we use the second model, due to its reduced

memory requirements.

Now let us introduce the form of the probability density

associated with our graphical model. For a time period from

t = t0 to t = T , let x denote the kinematic states of all tar-

gets at all time points, y denote the collection of all obser-

vations from all sensors at all time points, and a denote all

data association assignments for all observations at all time

points. Then the joint probability density for the whole time

window is given by:

p(x, y, a) =
T

∏

t=t0

p(yt|at, xt)
T

∏

t=t0

p(at)p(xt0)
T−1
∏

t=t0

p(xt+1|xt)

where xt, yt, and at are hidden target kinematic states, ob-

servations, and assignment variables at time t. The dynamic

model and the observation model that make this equality

possible will be described in subsequent subsections.

2.2 Data Association (Assignment) Nodes

For the ith observation (i = 1, . . . , Ot,k), of sensor k at

time t, let us define the assignment variable as:

at,k(i) =

{

0 if observation i is assigned as a false alarm

m if observation i is assigned to target m

By stacking all assignment variables at,k for all sensors k =
(1, ...,K), we obtain the global assignment variable at at

time t.

We define the potential function for an assignment node

in such a way that it takes into account the effects of false

alarms and missed detections. Suppose that out of the Ot,k

observations made by sensor k at time t, OFA
t,k are assigned

as false alarms, and ODT
t,k are assigned to targets for a partic-

ular assignment. Assuming for simplicity that all M targets

are in the observation range of each sensor, the node poten-

tial ψa(at) = p(at) for assignment node at is given by:

ψa(at) =
K
∏

k=1

P
ODT

t,k

D (1−PD)M−ODT
t,k P

OF A
t,k

FA (1−PFA)Ot,k−OF A
t,k

(1)

where PD is the probability of detection, and PFA is the

probability of false alarm. If we used the graphical model

in Figure 2, the potential function for the assignment node

of the kth sensor at time t would simply consist of the kth

factor in (1).

2.3 Target Dynamic Subgraphs

We represent target dynamics using linear models: xt =
Axt−1 + ut−1, where A is the transition matrix; ut−1 is a

stationary zero-mean white Gaussian noise process; and xt

is the kinematic state vector at time t, in which the kinematic

states xt,m (m = 1, ...,M ) of all M targets are stacked. The

potential function for the target nodes captures only target

initial conditions and is given by:

ψx(xt) =

{

p(xt0) = N (xt0 ;µt0 ,Σt0) if t = t0
1 if t > t0

(2)

where µt0 and Σt0 are the parameters of the prior distribu-

tion for each target at the start of the time interval of interest.

The potential function for the edges connecting the target

nodes is given by:

ψt,t+1(xt, xt+1) = p(xt+1|xt) (3)

2.4 Edges Joining Associations and Targets

We use the observation likelihoods as edge potentials, and

a linear Gaussian model for the sensor measurements. Let

yt,k(i) denote the ith observation from sensor k at time

t. Unless this observation is assigned to a false alarm,

its value depends on the kinematic state of target at,k(i):
yt,k(i) = Ct,kxt,at,k(i) + vt,k, where Ct,k is the observa-

tion matrix, and vt,k is a stationary, zero-mean, white Gaus-

sian noise process. By stacking all the observations yt,k(i)
(i = 1, . . . , Ot,k) produced by sensor k at time t, we ob-

tain the observation vector yt,k for the kth sensor. Then by

stacking the observations yt,k from all sensors at time t, we

obtain the overall observation vector yt at time t. Based on

this observation model, we define the potential function for
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the edges connecting assignment nodes and target nodes as:

ψa,x(at, xt) = p(yt|at, xt) =
K
∏

k=1

p(yt,k|at,k, xt) (4)

If we used the graphical model in Figure 2, the potential

function between the kth association node and the target

node at time t would simply be the kth factor in (4).

3 Approximate, Efficient Algorithm

for Multi-Target Tracking
In this section we describe the message-passing computa-

tions required for inference in our graphical model. We use

belief propagation (BP) to estimate the posterior probability

distribution of target kinematic states x, as well as associ-

ations a, given observations y. BP message passing equa-

tions in principle provide exact computation of posterior

marginals on tree-structured graphs. However exact com-

putation of the messages in practice necessitates some spe-

cial structure. Two such special cases that have been widely

exploited are the cases of graphs involving only discrete or

only Gaussian random variables and messages. The graph-

ical models we have constructed in Section 2 result in dis-

crete and Gaussian-mixture messages. Hence, although not

as simple as the two cases mentioned, our models exhibit

some special structure as well. Exploiting this structure, in

Section 3.1 we discuss performing exact belief propagation

for multi-target tracking.

Part of the novelty of our approach is the structure of

our message-passing implementation. Among other things,

this accomplishes two things. The first is that it exploits

the Markov structure of our graphs to pass messages back-

ward in time in order not only to smooth target state esti-

mates using future data (which may be of interest in itself

for some applications) but also to use these smoothed esti-

mates in the process of updating and resolving data asso-

ciation hypotheses at previous points in time (bringing the

“data to the hypothesis” rather than the “hypothesis to the

data” as in hypothesis-tree-based approaches such as MHT).

The second consequence of this implementation is that it fo-

cuses the challenge of dealing with exponential complexity

in a different manner than in MHT. In particular, this chal-

lenge manifests itself in terms of managing the complexity

of messages passed from node to node, rather than manag-

ing temporally-growing association hypothesis sequences.

Roughly speaking, in our algorithm, each mode of the Gaus-

sian mixture messages acts like a particle1 to be transmitted

among the nodes. Running exact BP on our graphs leads to

exponentially growing number of particles in BP messages,

hence exponentially growing computational complexity in

time. In Sections 3.2 through 3.4 we describe three methods

1For the sake of clarity, we should point out that the meaning of the

term ”particle” here is different from its standard usage in the context of

particle filtering [3].

to manage and reduce that complexity via various approx-

imations. The first two of these are fairly standard in con-

cept although different in detail because of the nature of our

implementation. The third method for controlling complex-

ity, described in Section 3.4, has no counterpart in standard

MHT algorithms and is a key benefit of our formalism, as it

corresponds to approximating messages to meet a specified

fidelity criterion.

3.1 BP on the Tracking Graph

We can identify three types of messages in the graphical

models in Figures 1-2: from a continuous target node to

another continuous target node, from a discrete assignment

node to a continuous target node, and from a continuous

target node to a discrete assignment node.

Messages from a discrete assignment node to a continu-

ous target node can be computed as follows:

Ma→x(xt) = κ
∑

at

ψa(at)ψa,x(at, xt) (5)

Given the definitions in (1) and (4), this message is basically

a sum of Gaussian distributions.

We compute the forward messages Mt→t+1(xt+1) sent

from a continuous target node at time t to the next target

node at time t + 1 as follows:

κ

∫

ψt,t+1(xt, xt+1)ψx(xt)Mt−1→t(xt)Mat→xt
(xt)dxt.

(6)

With both Mt−1→t(xt) and Mat→xt
(xt) being Gaussian

mixtures, Mt→t+1(xt+1) is also a Gaussian mixture. Note

that this message computation involves multiplication and

integration of Gaussian mixtures, for which we derive and

use expressions based on the development in [4, 5]. Note

that, for backward messages, the equation is similar (with

minor changes of subscripts). If we used the distributed

model in Figure 2, then the only change would be that

Mat→xt
(xt) would be replaced by a product of messages

from individual sensor nodes. As one can imagine, the num-

ber of modes in these target-to-target messages increases

multiplicatively from time to time, which necessitates the

kind of approximations we describe in subsequent subsec-

tions.

The messages from a continuous target node to a discrete

assignment node Mx→a(at) are computed as follows:

κ

∫

ψa,x(at, xt)ψx(xt)Mt−1→t(xt)Mt+1→t(xt)dxt (7)

As the assignment variable at is a discrete variable, this

message is a finite-dimensional vector. Note that if we used

the model in Figure 2, this message would denote the mes-

sage to one particular sensor node. In that case, we would

have an additional factor in the integrand in (7) consisting

of the product of messages from the other sensor nodes to

the target node, and we would replace ψa,x(at, xt) with the

appropriate edge potential between the target node and that

particular sensor node.
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3.2 Gating in Message Construction

Gating is a standard technique used in MHT as well as other

tracking algorithms to limit the number of data association

hypotheses being generated. In the context of our message

passing algorithm, gating is done in the computation of the

message in (6), and in particular in computing the product

of the messages in the integrand, i.e., when messages from

assignment nodes, or assignment messages, are multiplied

with messages from target nodes, or target messages. With-

out gating, every particle (i.e., a mode in the Gaussian mix-

ture) in the target message would be multiplied with every

particle in the assignment message. With gating, rather than

multiplying a particle in the target message with every sin-

gle particle from the assignment message, each particle in

the target message is only multiplied with the ones in the as-

signment message with data associations that are consistent

with its gating constraints. The gating regions can be deter-

mined by the means and the covariances in target messages,

because these messages can be interpreted as estimates of

target kinematic states.

3.3 N-Scan Approximation

The version of N -scan used in our experiments involves

stopping sending messages back to points in time after they

exit the N -scan interval. The only issue, then is the last mes-

sages sent going forward from an exiting point in time. In

standard N -scan algorithms this might correspond to choos-

ing a single most likely data association hypothesis as this

point exits the window. In our algorithm, after receiving

the data at time t, messages are passed backward in the net-

work, until we compute p(at−N ) for some fixed N . Now,

when sending messages from this assignment node back to

the target node using (5), rather than considering all possi-

ble associations, we set some threshold β, order the possible

associations based on their probabilities, and keep the min-

imum number of associations whose sum of probabilities

just exceeds β. Note that the number of hypotheses kept is

determined by the algorithm in an adaptive manner. In this

way, we eliminate all the less likely associations whose sum

of probabilities is around 1 − β.

3.4 Message Approximation by Clustering

A critical component in managing complexity that is avail-

able to us thanks to our message-passing algorithm is the

approximation of messages prior to passing them to neigh-

boring nodes - i.e., approximating one Gaussian mixture dis-

tribution with another one with fewer modes. For this ap-

proximation, we use a clustering procedure that adaptively

reduces the number of particles to be used in each message

passing stage. We emphasize that this approximation is done

solely for the temporary purpose of transmitting a message,

and all of the possible data association hypotheses are still

preserved in the assignment nodes in our graph.

We use a multiresolution clustering approach based on

K-dimensional trees (KD-trees) [6]. A KD-tree is a space-

partitioning data structure used to organize a large set of data

points. In KD-trees data are stored in a multi-scale fashion,

which forms the basis of their use in a clustering algorithm.

We are interested in approximating an input Gaussian mix-

ture distribution, with another one with a smaller number of

modes by clustering together similar modes. Given a Gaus-

sian mixture, we construct a KD-tree, in which the root node

corresponds to the input Gaussian mixture, and each leaf

node corresponds to a single mode in the Gaussian mixture.

For the sake of brevity, we do not describe our procedure

for constructing the tree. We represent each node by a K-

dimensional data vector consisting of the elements of the

mean vector together with the elements of the covariance

matrix of the corresponding Gaussian.

Given the constructed tree, we calculate and store three

statistics for each node: a weight, mean vector, and covari-

ance matrix. With these statistics, each node can be viewed

as a Gaussian approximation of its children. Given the con-

structed KD-tree with computed statistics, we then use it for

clustering. We take a walk down the KD-tree starting from

the root node. At each node, we calculate the symmetrized

Kullback-Leibler (KL) divergence between the two chil-

dren, and we stop at that node if the KL-divergence between

its children is smaller than a threshold specified by the user.

We keep all the nodes at which this procedure has stopped,

and use that as the approximate representation of the in-

put mixture. This effectively makes a multi-resolution cut

through the tree, in which the number of nodes kept is the

number of modes (particles) in the approximate represen-

tation. We use this clustering procedure to limit the num-

ber of particles used in our messages. Since the number

of particles is what leads to exponential complexity of the

exact algorithm, clustering plays a key role in beating that

complexity. As will be demonstrated in our experiments,

this procedure helps us achieve almost linear complexity in

some scenarios.

4 Experimental Results

4.1 Setup

In our simulations, multiple targets move in a 2-D surveil-

lance area. The number of targets is known a priori. The

movement of each target is modeled by a linear, time-

invariant state-space model, in which the kinematic state

vector for each target consists of 2-D position, velocity, and

acceleration. Target state dynamics involve some temporal

correlation in acceleration. The process noise mainly drives

the acceleration. We consider three types of sensors moni-

toring the surveillance area. Type I and Type II sensors are

bearing-only sensors located far away from the surveillance

region, providing one-dimensional measurements. Type I

sensor measures horizontal position and velocity, whereas

Type II does the same for the vertical dimension. Type III

sensor provides near-field measurements of 2D positions.
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Figure 3: Sample tracking results with N = 5. (a) Type

I, II, & III sensors, high SNR. (b) Type I & II sensors, low

SNR.

We include false alarms and missed detections, the proba-

bilities of which are set to be 0.05. Measurements are cor-

rupted by additive Gaussian noise. Initial kinematic states

are generated randomly, and subsequent states are generated

according to the dynamic model mentioned above.

4.2 Tracking Performance and Complexity

In Figure 3(a), we show a sample tracking result (we

use N=5 in N -scan, and a KL threshold of 0.1). This is

only one example out of the 100 runs we have generated.

In all of them, there are 5 targets, 3 sensors (one of each

type), duration is 50 time frames, and SNR is high. Black

curves indicate the true target trajectories, and markers of

each color show the estimated target position through the

mean of each particle. Uncertainty in these estimates is also

shown through one-standard-deviation ellipses, which are

too small to visually observe in this plot. Weights of the

particles are encoded through the density of the colors. We

observe that our approach produces very good tracking ac-

curacy in many runs of this scenario. Figure 3(b) presents
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Figure 4: Mean-squared tracking error as a function of N

and the KL threshold in a low-SNR scenario with Type I &

II sensors.

a more challenging scenario: we use only Type I & II sen-

sors and we add measurement noise with a variance of 100,

hence this is a low-SNR scenario. In this case, we natu-

rally observe some degradation as compared to the result

in Figure 3(a), however we still achieve what appears to be

satisfactory tracking accuracy. Figure 4 shows the overall

mean-squared tracking error for this challenging scenario as

the length of the N -scan window, and the KL threshold are

varied. As expected, we achieve better performance as N

is increased, and the KL threshold is decreased. Of course,

this benefit should come with the price of more computa-

tions. Based on this observation, we next explore the com-

putational complexity as a function of N . In Figure 5 we

show the relationship between running time and N , for a

five-target scenario involving all three type of sensors.2 We

conclude that by using adaptive KD-tree clustering as the

hypothesis reduction method, while maintaining acceptable

tracking accuracy, the message-passing algorithm achieves

almost linear complexity with respect to the duration of the

tracking window in this particular scenario.

4.3 Handling Delayed Information

We now present two examples demonstrating that our ap-

proach can incorporate delayed information in a seamless

fashion thanks to its ability to use long tracking windows

together with its forward-backward message passing struc-

ture.

In Figure 6, we compare our message-passing algorithm

with N = 15 and N = 3, in a scenario in which obser-

vations from t = 8 to t = 15 arrive late at t = 19. If

the tracking window is small (N = 3 as in (a)) then when

late data arrive, the tracker is not able to incorporate those

late data as the tracking window has already moved passed

the range with late data. As a result, the tracker confuses

2Similar results are obtained for the case of Type I & II sensors.
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Figure 5: Running time as a function of N for a 5-target,

high-SNR scenario with all three types of sensors, aver-

aged over 100 runs. Error bars indicate the one-standard-

deviation region. To contrast the complexity of our approach

with that of a hypothetical MHT tracker, we also show an

exponential curve.

the two targets, and exhibits large estimation uncertainty

in the late data interval. If the tracking window is long

enough (N = 15 as in (b)), then to incorporate the late data

when they arrive, the tracker just needs to conduct a reg-

ular backward-forward message-passing within its tracking

window, resulting in much better tracking performance.

In Figure 7, we show an example of track-stitching, us-

ing our message-passing N -Scan algorithm with N = 30 .

In this scenario with 50 time frames, observations are miss-

ing for time points from t = 5 to t = 25. When we use

a short tracking window of N = 3, the tracker cannot as-

sociate the tracks before and after the missing data region,

resulting in the two ghost tracks in Figure 7(a). On the other

hand, when we use a longer tracking window with N = 30,

spanning across the period of missing data, then the tracker

can associate the tracks before and after missing data, and

”stitch” the tracks together as shown in Figure 7(b).

5 Discussion

We have presented a framework to solve the multi-target

tracking (MTT) problem based on graphical model repre-

sentations of the probabilistic structure of the MTT problem

and message passing algorithms arising from such represen-

tations. The graphical model structure and associated infer-

ence algorithms offer enormous flexibility to overcome sev-

eral limitations faced by existing MTT algorithms. In partic-

ular this formalism localizes the combinatorially explosive

nature of MTT problems in a very different place, namely

in the messages passed in the algorithm, both forward and

backward in time. This opens up the possibility of very dif-

ferent approximation algorithms based not on pruning or

eliminating data association hypotheses but rather on ap-
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Figure 6: Late data arrival example, with all three types of

sensors. Observations from t = 8 to t = 15 arrive late at

t = 19. (a) N = 3, resulting in inaccurate and uncertain

tracking. (b) N = 15, recovering the target tracks for the

interval of late data arrival.

proximation of likelihood messages. We have seen through

experiments that our approach to adaptively managing these

approximations can lead to complexity that grows almost

only linearly with the length of the tracking time interval in

some scenerios, allowing much longer intervals to be con-

sidered. This facilitates one of several potential advantages

of our approach, namely the stitching of tracks over consid-

erable time intervals when only occasional target discrim-

inating information becomes available. Moreover, the na-

ture of our graphical models makes the incorporation of out-

of-sequence data seamless, requiring literally no changes

to algorithmic structure. In addition, this message-passing

structure automatically produces smoothed target estimates,

something that can be of considerable value in many appli-

cations other than real-time tracking.

This is only a first introduction of this framework and
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Figure 7: Track stitching example, using Type I & II sen-

sors. Observations are missing from t = 5 to t = 25. (a)

N = 3, resulting in ghost tracks. (b) N = 30, achieving

track stitching.

considerably more testing and considerations of complex-

ities not included here must be undertaken. A more detailed

computational complexity analysis covering a wider range

of scenarios is already underway. Although we may not

get linear complexity in the tracking interval in more com-

plicated scenarios than the ones considered here, we still

expect to get a low-order polynomial complexity, beating

the exponential complexity of MHT-based trackers. In or-

der to focus on the key novelties of this new formalism, we

have stripped away some aspects that will need to be in-

cluded in the future. For example, we have assumed linear-

Gaussian target and measurement models (so that all of our

probabilistic quantities are Gaussian sums). As our method

intrinsically involves particle-like representations for mes-

sages, the incorporation of nonlinear dynamics and mea-

surements is readily accommodated. In addition, as men-

tioned previously, we focus here on what is known as the

track maintenance problem, and extensions to include track

initiation and termination need to be developed in the future.

We have presented one particular way to perform approxi-

mate inference in mixture models. Another approach to this

problem would be to use nonparametric belief propagation

(NBP) [7], which, in order to manage the size of messages

being passed on the graph, employs a sampling technique

to approximate them. When one uses a sampling-based ap-

proach for inference, managing the number of samples for

complexity control is an interesting issue. If this can be

done effectively, it would perform a similar function to our

clustering-based message approximation approach. In this

paper we have focused on the dynamic aspect of the track-

ing problem, and have assumed that the static data associ-

ation problem (i.e., computing the association probabilities

at each time instant) is tractable. An extension of the work

presented in this paper would be to combine our dynamic

tracking framework, with advanced (distributed) static data

association techniques. Developing these and the other ex-

tensions not mentioned here due to space limitations offer

considerable promise for new, high-performance MTT al-

gorithms with many attractive characteristics.
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