title   
  

An efficient message passing algorithm for multi-target tracking

Chen, Zhexu (Michael) and Chen, Lei and Çetin, Müjdat and Willsky, Alan S. (2009) An efficient message passing algorithm for multi-target tracking. In: 12th International Conference on Information Fusion, 2009 (FUSION '09), Seattle, WA, USA

[img]
Preview
PDF (This is a RoMEO green publisher -- author can archive publisher's version/PDF) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
2173Kb

Abstract

We propose a new approach for multi-sensor multi-target tracking by constructing statistical models on graphs with continuous-valued nodes for target states and discrete-valued nodes for data association hypotheses. These graphical representations lead to message-passing algorithms for the fusion of data across time, sensor, and target that are radically different than algorithms such as those found in state-of-the-art multiple hypothesis tracking (MHT) algorithms. Important differences include: (a) our message-passing algorithms explicitly compute different probabilities and estimates than MHT algorithms; (b) our algorithms propagate information from future data about past hypotheses via messages backward in time (rather than doing this via extending track hypothesis trees forward in time); and (c) the combinatorial complexity of the problem is manifested in a different way, one in which particle-like, approximated, messages are propagated forward and backward in time (rather than hypotheses being enumerated and truncated over time). A side benefit of this structure is that it automatically provides smoothed target trajectories using future data. A major advantage is the potential for low-order polynomial (and linear in some cases) dependency on the length of the tracking interval N, in contrast with the exponential complexity in N for so-called N-scan algorithms. We provide experimental results that support this potential. As a result, we can afford to use longer tracking intervals, allowing us to incorporate out-of-sequence data seamlessly and to conduct track-stitching when future data provide evidence that disambiguates tracks well into the past.

Item Type:Papers in Conference Proceedings
Uncontrolled Keywords:Multi-target tracking; data association; graphical models; message passing; multi-hypothesis tracking; smoothing
Subjects:T Technology > TK Electrical engineering. Electronics Nuclear engineering
ID Code:13319
Deposited By:Müjdat Çetin
Deposited On:04 Dec 2009 16:01
Last Modified:04 Dec 2009 16:11

Repository Staff Only: item control page