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ABSTRACT

Regularization based image reconstruction algorithms have successfully been applied to the synthetic aper-
ture radar (SAR) imaging problem. Such algorithms assume that the mathematical model of the imaging
system is perfectly known. However, in practice, it is very common to encounter various types of model
errors. One predominant example is phase errors which appear either due to inexact measurement of the
location of the SAR sensing platform, or due to effects of propagation through atmospheric turbulence. We
propose a nonquadratic regularization-based framework for joint image formation and model error correc-
tion. This framework leads to an iterative algorithm, which cycles through steps of image formation and
model parameter estimation. This approach offers advantages over autofocus techniques that involve post-
processing of a conventionally formed image. We present results on synthetic scenes, as well as the Air Force
Research Labarotory (AFRL) Backhoe data set, demonstrating the effectiveness of the proposed approach.
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1. INTRODUCTION

A significant part of the remote sensing applications involve the Synthetic Aperture Radar (SAR) imaging.In
SAR imaging, model uncertainties cause undesired artifacts in the formed imagery. For SAR imaging one of
the most important model uncertainties is due to demodulation time errors. Demodulation time is the time
required for the signal transmitted by the SAR sensor to propogate from the SAR platform to the field and
back. The reasons for demodulation time errors are the uncertainties in the measurement of the distance
between the SAR platform and the field or random delays in the signal due to propagation in atmospheric
turbulence. Demodulation time errors appear in the frequency domain SAR data as phase errors. In the
reconstructed images the effect of phase errors is seen in the cross range direction. While low frequency
phase errors result in a blurring of the SAR image, high frequency phase errors cause a loss of contrast in
the reconstructed image [1]. There are many algorithms which are called autofocus techniques developed
to remove the phase error effects in SAR images [2-7]. Mostly they are based on post-processing of the
image, reconstructed by conventional imaging, e.g. polar format algorithm. One of the most well known
techniques known as Phase gradient autofocus (PGA) estimates phase errors using the data obtained by
isolating many single defocused targets via center-shifting and windowing operations [2]. There are also
many autofocus techniques which optimize different sharpness metrics of the defocused image intensity [3-5].
These techniques have been shown to give good results. However, in the case of incomplete data or sparse
aperture, conventional imaging does not perform well. Therefore, in such cases, when the SAR data include
phase errors it may not be so effective to estimate phase errors from the image produced by conventional
imaging. On the other hand regularization based image reconstruction techniques have succesfully been
applied to SAR imaging [8]. They effectively deal with the noisy SAR data even in cases where the data are
incomplete. Additionally, they produce feature enhanced images by using prior information regarding the
nature of the features of interest. Compared to conventional imaging they produce images with increased
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resolution, reduced sidelobes and reduced speckle. Motivated by such advantages of regularization based
image reconstruction techniques, we propose a nonquadratic regularization based framework for joint image
formation and phase error correction. A cost function depending on both image and phase error is minimized
by an iterative algorithm. In the first step of every iteration an estimate of the field is found. Given the
field estimate, in the second step the phase error for that iteration is estimated and used to update the
model matrix. We present results on a synthetic scene, as well as the Slicy data [9], and the Air Force
Research Labarotory (AFRL) Backhoe data set [10]. The results show that the proposed method can deal
with structured as well as random phase errors.

2. SAR IMAGE MODEL

SAR is an imaging radar. It is generally mounted on an airplane or satellite. On its flight path the SAR
sensor transmits regularly a signal to the field and then receives the reflected signals from the field. Let us
focus on spotlight-mode SAR and consider a chirp signal transmitted at every aperture position

s(t) = Re
{
exp[j(ω0t + αt2)]

}
(1)

where ω0 is the center frequency and 2α is the so called chirp-rate. The received signal qθ(t) is the convolution
of the transmitted chirp signal with the projection pθ(u) of the field at that observation angle.

qθ(t) = Re

{∫
pθ(u) exp[j[ω0(t − τ0 − τ(u)) + α(t − τ0 − τ(u))2]]du

}
(2)

If we let the distance from the SAR platform to the center of the field be R and the distance from the
SAR platform to a scatterer along the range be R+u then the delay for the returned signal can be defined
as τ0 + τ(u) where τ0 = 2R

c and τ(u) = 2u
c . The SAR data used for imaging is obtained after some pre-

processing of the returned signal. To perform it, first, the returned signal is multiplied with the quadrature
and in-phase components of the signal returned from the patch center, that are shown in (3), and then the
result is filtered with a low-pass filter.

cI(t) = cos(ω(t − τ0) + α(t − τ0)
2) (3)

cQ(t) = −sin(ω(t − τ0) + α(t − τ0)
2)

If the spatial frequncy variable U is defined as

U =
2

c
(ω0 + 2α(t − τ0)) (4)

the signal rθ(t) , obtained after the low-pass filtering, can be written as in (5), [1].

Z(U) = rθ(t) =

∫
pθ(u)e−juUdu (5)

rθ(t) is the one dimensional Fourier transform of the projection pθ(u) for that observation angle. Based on
the projection-slice theorem [11] known from the CT (Computerized Tomography), rθ(t) is a band-limited
slice taken from the 2D frequency data at the observation angle θ. Based on this observation, we can write
the relation between the field and the SAR data as follows:

rθ(t) =

∫ ∫

x2+y2≤L2

f(x, y)exp{−jU(x cos θ + y sin θ)}dxdy (6)

Here, we observe that all of the returned signals constitute a patch from the two dimensional Fourier trans-
form of the corresponding field. This expression can be written in a compact form as rθ(t) = (Cθf(x, y))(t).
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The corresponding discrete model is as follows [8].




rθ1

rθ2

rθM




=




Cθ1

Cθ2

CθM




f (7)

where rθm is the vector of observed samples, Cθm is discretized approximation to the continous observation
kernel Cθm and f is a vector representing the unknown sampled reflectivity image. If we consider that there
is also measurement noise, the observation model becomes

g = Cf + v (8)

where v stands for measurement noise which is assumed to be white Gaussian noise and g is the noisy ob-
servation. After expressing the SAR imaging system in this form, regularization based image reconstruction
can be used for imaging.

3. PHASE ERRORS

All of the expressions so far were based on the assumption that there is no uncertainty or error in the imaging
model, i.e. it was assumed that the model matrix C is known exactly. However, in many situations, this
assumption is not valid and there are some errors in the model. One particular type of error we consider here
is phase errors. Phase errors appear when the so called demodulation time which is the time required for
the transmitted signal to travel from the SAR platform to the field and back cannot be determined exactly.
In this case, during preprocessing, the received signals are multiplied with

cos(ω(t − τ0 + ε) + α(t − τ0 + ε)2) (9)

−sin(ω(t − τ0 + ε) + α(t − τ0 + ε)2)

instead of the expressions in (3). Here, ε is the demodulation time error. It occurs when the distance between
the SAR platform and the field cannot be measured exactly or in the case of random delays in the signal
due to propagation in atmospheric turbulence. The demodulation time error results in phase errors in the
SAR data obtained after preprocessing of the received signal. After some approximations, the relationship
between the erroneous and error-free phase histories is obtained as in (10) [1].

Zε(U) = ej εc

2
UZ(U) (10)

If we substitute the expression in (4) into (10) we find

Zε(U) = ejεω0ejε(2α(t−τ0))Z(U) (11)

The value of (2α(t − τ0)) is generally very small as compared to ω0, so if it is neglected, we obtain

Zε(U) = ejφZ(U) (12)

where φ = εω0 is the phase error and it is different for every aperture position which means that it affects
the reconstructed image along the cross-range. Depending on the structure of the phase error across the
synthetic aperture it can cause blurring or loss of contrast in the image.
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4. REGULARIZATION BASED IMAGE RECONSTRUCTION

Regularization based image reconstruction techniques produce feature enhanced images. It is achieved by
incorporating a prior information of the field to the image formation problem. There are many specific cases
of regularization based image reconstruction. Here we consider one of them which provides reconstructions
with good energy concentration. It is performed by solving the following optimization problem

f̂ = arg min
f

‖g − Cf‖
2
2 + λ ‖f‖

k
k (13)

where λ is the regularization parameter. This type of regularization is usually preferred when the scene is
sparse since it produces point-enhanced images. For k=2 the expression in (13) is Tikhonov regularization
and the estimate of f can be found in closed form. If k < 2 the problem is solved iteratively. However, for
point-enhanced imaging it has been shown that lk −norm constraints where k < 2 result in higher resolution
spectral estimates compared to l2 − norm case. Moreover, smaller value of k implies less penalty on large
pixel values as compared to larger k [8].

5. PROPOSED METHOD

The effectiveness of regularization based image reconstruction techniques for SAR image formation has been
shown. Compared to conventional imaging (polar format algorithm) they offer a number of advantages. In
conventional imaging the image is formed by interpolating the SAR data from the polar grid to a rectangular
grid and then taking its 2D inverse Fourier transform. Images formed by conventional imaging usually suffer
from speckle and sidelobe artifacts. Furthermore the resolution of the images is limited by the SAR system
bandwidth. However we know that regularization based image formation techniques can deal with these
problems. Therefore we propose a method which removes phase errors, while using regularization based
image reconstruction for image formation. This approach offers advantages also in scenarios such as sparse
aperture imaging. Due to the reasons explained in the previous section we used l1 − norm regularization.
The proposed algorithm is an iterative algorithm, which cycles through steps of image formation and phase
error estimation and compensation. It is based on the minimization of the following cost function, with
respect to φ and f using coordinate descent technique.

J(f, φ) = ‖g − C(φ)f‖
2
2 + λ ‖f‖1 (14)

In the first step of every iteration the cost function J(f, φ) is minimized with respect to f.

f̂ (n+1) = arg min
f

J(f, φ(n)) ⇒ arg min
f

∥∥∥g − C(φ(n))f
∥∥∥

2

2
+ λ ‖f‖1 (15)

where n denotes the iteration number. To avoid problems due to nondifferentiability of the l1 −norm at the
origin, a smooth approximation shown in (16) is used [8].

‖f‖1 ≈
K∑

i=1

(|fi|
2

+ β)1/2 (16)

where β is a nonnegative small constant. In each iteration, the field estimate is obtained as

f̂ (n+1) =
(
C(φ̂(n))HC(φ̂(n)) + λW (f̂ (n))

)−1

C(φ̂(n))Hg (17)

where W (f̂ (n)) is a diagonal matrix as given in (18)

W (f̂ (n)) = diag




1

(
∣∣∣f̂ (n)

i

∣∣∣
2

+ β)1/2

..................
1

(
∣∣∣f̂ (n)

K

∣∣∣
2

+ β)1/2


 (18)
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Note that C(φ(n)) denotes the model matrix corresponding to the phase error obtained in the n-th iteration.
For the first iteration φ(0) = 0. Given the field estimate, in the second step, the phase error for the current
iteration is estimated for every aperture position by solving the following optimization problem

∆̂φ
(n+1)

m = arg min
∆φm

J(f̂ (n+1),∆φm) ⇒ ∆̂φ
(n+1)

m = arg min
∆φm

∥∥∥gm − exp (j∆φm)Cm(φ̂(n)
m )f̂ (n+1)

∥∥∥
2

2
(19)

for m = 1, 2, ....,M

where ∆̂φ
(n+1)

m denotes the incremental phase error estimate for the m-th aperture position in the iteration
(n+1). In (19), gm and C(φm) stand for the part belonging to the m-th aperture position of the SAR data
and the model matrix, respectively. The overall phase error estimate for the m-th aperture position is the
addition of the incremental phase error estimates found in each iteration for the m-th aperture position. The
optimization problem in (19) can be solved in closed form for every aperture position. After evaluating the
norm expression in (19) and rearranging it, we end up with the following.

∆̂φ
(n+1)

m = arg min
∆φm

(gH
mgm − 2

√
R2 + I2 cos[∆φm + arctan(

−I

R
)] + f̂HCm(φ̂(n)

m )HCm(φ̂(n)
m )f̂) (20)

where

R = Re{f̂HCm(φ̂(n)
m )Hgm} I = Im{f̂HCm(φ̂(n)

m )Hgm} (21)

We know that negative cosine has its minimum at zero and integer multiples of 2π, so if we set argument of
the cosine to zero, we find the phase error estimate as given in (22) for the corresponding aperture position.

∆̂φ
(n+1)

m = − arctan(
−I

R
) (22)

Using the incremental phase error estimate, the overall phase error and the model matrix are updated as
follows:

φ̂(n+1)
m = ∆̂φ

(n+1)

m + φ̂(n)
m (23)

Cm(φ̂(n+1)
m ) = exp (j∆̂φ

(n+1)

m )Cm(φ̂(n)
m ) (24)

We increase n and turn back to the optimization problem in (15) for the field estimate in the next iteration.
All of these steps are repeated until the ratio

∥∥∥f̂ (n+1) − f̂ (n)
∥∥∥

2

2
/
∥∥∥f̂ (n)

∥∥∥
2

2
(25)

is less than a pre-determined threshold.

6. EXPERIMENTAL RESULTS

The proposed method is applied to a synthetic scene and also to the Backhoe dataset. For the synthetic
example, we generate a 32x32 sparse scene shown in Figure 1(a). To generate synthetic SAR data we
construct a SAR system model with the parameters given in Table 1. Based on this SAR observation model,
SAR returns from the synthetic scene are produced and white Gaussian noise is added so that SNR is 30dB.
We have performed experiments for four different types of phase errors. For the case of no phase errors, the
reconstruction with conventional imaging is shown in Figure 1(b). Results by conventional imaging and by
the proposed method for different types of phase errors are shown in Figure 2. Conventionally reconstructed
images suffer from degradation due to phase errors. The results show the effectiveness of the proposed
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Figure 1. (a) The original scene (b) Conventionally reconstructed image when there is no phase error.

(a)

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

Aperture Position

P
ha

se
 E

rr
or

 in
 r

ad
.

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

(b)

0 5 10 15 20 25 30 35
−6

−4

−2

0

2

4

6

Aperture Position

P
ha

se
 E

rr
or

 in
 r

ad
.

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

(c)

0 5 10 15 20 25 30 35
−8

−6

−4

−2

0

2

4

6

Aperture Position

P
ha

se
 E

rr
or

 in
 r

ad
.

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

(d)

0 5 10 15 20 25 30 35
−2

−1.5

−1

−0.5

0

0.5

1

1.5

Aperture Position

P
ha

se
 E

rr
or

 in
 r

ad
.

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

Figure 2. Left- Phase error, Middle- Images reconstructed with conventional imaging, Left- Images reconstructed with
the proposed method. (a) Results for quadratic phase error (b) Results for an 8th order polynomial phase error (c)
Results for a 10th order polynomial phase error (d) Results for a phase error uniformly distributed in [−π/2, π/2] .
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Table 1. SAR System Parameters

carrier frequency (ω0) 2π x 1010 rad/s

chirp rate (2α) 2π x 1012 rad/s2

pulse duration (Tp) 4x10−4sec.

angular range (∆θ) 2.3o

method. As seen in Figure 2, it is not possible to visually distinguish the images formed by the proposed
method from the original scene.

In addition to the synthetic scene, we present some results on the Slicy data. Figure 3 shows the images
formed by conventional imaging and point-enhanced imaging when there is no phase error. The images are
reconstructed using data from an angular range of 10 degrees and a bandwidth of 1GHz. In Figure 4, the
results for four different phase errors are presented for the case when there are phase errors. The results
show that the phase error removal is performed effectively.
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Figure 3. (a) Conventional imaging of Slicy data without any phase errors (b) Point-enhanced imaging of Slicy data
without any phase errors.

Another dataset on which we present results is the Backhoe dataset. To deal with the wide-angle
observation in the Backhoe dataset, we incorporate the subaperture-based composite imaging approach
of [12] into our framework. For a random phase error uniformly distributed in [−π/2, π/2], the results
for the bandwidths 2 GHz., 1 GHz. and 500 MHz. are shown in Figure 5. In Figure 5(a) and 5(b) the
conventional imaging and point enhanced imaging results are presented respectively, for the case of no phase
error. Here it is seen that point enhanced imaging produce images with higher resolution compared to
conventional imaging. Figure 5(c) shows the images corrupted with phase error and Figure 5(d) shows the
images reconstructed by the proposed method. As seen in the results, for all of three bandwidths, phase
errors are estimated and corrected successfully.

7. CONCLUSION

We proposed a nonquadratic regularization based technique for joint SAR image formation and phase error
correction. It is an iterative algorithm, which cycles through steps of image formation and model parameter
estimation. Considering the sparsity of the scene, l1 − norm regularization is used for a point-enhanced
high resolution imaging. The method corrects the phase errors during the image formation process while
it provides images with enhanced features. The presented results on a synthetic scene, as well as the Slicy
data and the Backhoe data set, show the effectiveness of the proposed approach. In future work, we want
to extend our current method in a number of ways. Our current formulation does not include any prior
information about the phase errors and may suffer from some ambiguity in phase. To deal with that, the
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Figure 4. Left- Phase error, Middle- Images reconstructed with conventional imaging, Left- Images reconstructed
using the proposed method. (a) Results for quadratic phase error (b) Results for a 10th order polynomial phase
error (c) Results for a phase error uniformly distributed in [−π/2, π/2] (d) (c) Results for a phase error uniformly
distributed in [−π, π].
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(d)

Figure 5. Results for data with various bandwidths: Left-2 GHz., Middle-1 GHz., Right-500 MHz., a) Conventional
composite images when there is no phase error b) Point-enhanced composite images when there is no phase error
c) Conventional composite images when there is phase error d) Images reconstructed by the proposed method when
there is phase error.
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method can be extended by incorparating a prior knowledge of the phase error into the optimization problem.
Moreover, the current framework can be modified for other type of model errors in SAR.
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8. M. Çetin and W. C. Karl, ”Feature-enhanced synthetic aperture radar image formation based on non-
quadratic regularization,” IEEE Trans. Image Processing 10, pp. 623-631, Apr. 2001.

9. ”Air Force Research Laboratory, Model Based Vision Laboratory, Sensor Data Management System
MSTAR Web Page: http://www.mbvlab.wpafb.af.mil/public/sdms/datasets/mstar/.”

10. ”Backhoe Data Sample & Visual-D Challenge Problem available through the Air Force Research Lab-
oratory Sensor Data Management System Web Page: https://www.sdms.afrl.af.mil/main.htm.”

11. Kak A. C. ve Slaney M., ”Principles of computerized tomographic imaging,” IEEE Press, New York,
1988.
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