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ABSTRACT 

MHC (Major Histocompatibility Complex) is a key player 

in the immune response of an organism. It is important to be 

able to predict which antigenic peptides will bind to a spe-

cific MHC allele and which will not, creating possibilities 

for controlling immune response and for the applications of 

immunotherapy. However a problem encountered in the 

computational binding prediction methods for MHC class I 

is the presence of bulges and loops in the peptides, changing 

the total length. Most machine learning methods in use to-

day require the sequences to be of same length to success-

fully mine the binding motifs. We propose the use of time-

based data mining methods in motif mining to be able to 

mine motifs position-independently. Also, the information 

for both binding and non-binding peptides are used on the 

contrary to the other methods which only rely on binding 

peptides. The prediction results are between 70-80% for the 

tested alleles. 

1. INTRODUCTION 

MHC (Major Histocompatibility Complex) is a large gene 

family with an important part of the immune system, auto-

immunity and reproduction. MHC molecules take role in 

destruction of pathogens and diseased cells by showing self 

and non-self antigen peptides on their surface and coordinat-

ing the T-cells which identify these peptides. The T-Cells 

recognize the infected cell upon binding to the antigenic pep-

tide-MHC complex and trigger the immune response to for-

eign bodies by a cascade of events. Since they have a key 

role in immune response, MHCs are critical in many dis-

eases, and they can be used for controlling specific processes 

by creating peptides to bind to specific MHC alleles. This 

binding affinity to specific peptides may be exploited for 

creating peptide vaccines, suppressing specific alleles in or-

gan transplants, and many other possible areas in immuno-

therapy.  

Although the peptide lengths for MHC class I proteins is 

usually only 8-10 aminoacids long, they show great variance 

within their composition. The peptide binding groove in the 

MHC molecules binds peptides with high promiscuity; it is 

estimated that each HLA (human leukocyte antigen system) 

class I protein can bind between 1000 and 10,000 peptides. 

Thus it is difficult to find specific motifs for experimental 

studies, and the large number of possible structures makes it 

infeasible to find them by experiments alone. Computational 

determination of binding specificity of a given peptide to 

specific alleles is an important problem in bioinformatics. 

Although many methods have been proposed, still the accu-

racy is not near what can be expected for such short motifs. 

The most state of art prediction servers can predict alleles 

with 75-95% accuracy for easy classes to 50-65% for hard 

classes [1, 2]. This area is still open to research.  

These methods usually depend on 2 to 3 specific anchors that 

it checks for, and if these critical aminoacids are found, it 

scores the remaining aminoacids. The difficult classes of 

peptides show bulges and loops in their structure, changing 

the length of the peptide from the optimal length of 9. These 

bulges shift the binding points of the peptide, and thus make 

the position specific motif finding and scoring methods, 

which show acceptable accuracy in easy classes, unusable. 

We aim to include a novel method for extracting the motifs 

that are varied due to the bulges that can be used on difficult 

sets. Our proposed method is to apply sequence mining do-

main of data mining for ordered episodes, which was previ-

ously untried. These temporal mining algorithms are usually 

used in intrusion detection and other future prediction meth-

ods, which try to capture the patterns which occur in an order 

but not necessarily consecutively. These partial periodic pat-

tern mining methods could help tackle the problem of shifted 

binding position in position specific methods. 

2. BACKGROUND 

Computational methods for prediction of the binding affinity 

of a peptide to an MHC allele are based on three main artifi-

cial learning systems, namely statistical, structural and neural 

methods [3-5].  

Statistical methods extract the statistical properties of differ-

ent class values and use classification algorithms on these 

properties. Structural methods mine the common structural 

motifs and properties within the same class and/or the differ-

ences in different classes. Neural methods such as artificial 

neural networks are based on a network structure in which 

the connected units (neurons) are activated according to the 

input signals propagating through the network [6]. Artificial 

neural networks can capture very complex relationships, can 

tolerate outliers and erroneous data and deal with non-linear 

relationships [3, 6, 7]. Due to their adaptive nature, they can 

fit to very complex relationships. However, they require 



more data than other methods to accurately learn the large 

number of parameters the nodes have.  

Sequence similarity of a new peptide to the known bind-

ers/non-binders using alignment methods [8], is one of the 

simplest, but least accurate methods. In the binding groove of 

the MHC alleles, specific positions affect the binding affinity 

more than the others, thus the independent scoring of 

matches and mismatches in different positions, as well as the 

lack of substantial penalty for not having specific aminoacids 

in key positions makes it non-suitable for MHC prediction. 

To overcome these, methods using binding motifs are devel-

oped [9]. These motifs describe aminoacids occurring in a 

specific position that commonly bind to a specific MHC al-

lele, to create a weighted scoring systems in which specific 

residues at key positions are given favorable scores to bind, 

as well as negative scores for penalizing residues disrupting 

the binding process [10-14]. Although the exact accuracy 

changes from method to method, binding motifs can be very 

accurate depending on the variety of the binders to a specific 

MHC allele. 

Another sequence similarity method is the quantitative matri-

ces which use position weight matrices (PWM). Each col-

umn is a specific position of the finite length motifs and each 

row is a specific residue. The matrix is filled from the prob-

abilities of seeing a specific residue in a specific position in 

the training data, and the binding probability of a new pep-

tide is found by scoring its residues [15, 16]. Although it can 

find weaker patterns than the binding motif methods, over-

training is common. Also, the independent contribution of 

each position to the score can cause some amount of misclas-

sification [17]. 

Similar to ANN in principle, Hidden Markov models (HMM) 

are finite state models which carry the statistical information 

about the training peptides. They carry the probabilistic state 

transition information for shifting between different probabil-

ity distributions of residues for specific states [18]. HMMs 

can find strong motifs easily, and are better suited to motifs 

of arbitrary length, in contrary to other methods requiring a 

fixed-length sequence. 

Apart from the sequential information, structural information 

can also be used. One example to the structural methods is 

the molecular modelling. Molecular modelling uses the 3-D 

structure of the MHC molecules to predict the binding energy 

of a peptide by the protein-peptide interactions. Threading 

[19], ab initio methods and molecular dynamics can give 

very accurate results, and also help in the understanding of 

the given processes. However, they require much more com-

putational power, and the number of peptides with known 3-

D structure is relatively low, although computational predic-

tion methods can help even in the lack of any training se-

quence. Also, these methods can be extended to use structural 

alignment and structural motif mining algorithms on the 3-D 

data to find structural binding motifs. 

Thus, various methods are employed for MHC binding pep-

tide prediction, some combinations of others [20]. However, 

for many methods a length constraint of 9 is forced due to the 

majority of MHC Class I peptides being 9 aminoacids long, 

although 8-10-11 long binding peptides can also be present 

due to the presence of only few allele bound aminoacids. 

Other aminoacids may form a fold, giving rise to peptides of 

length different than 9, shifting the positions of the aminoac-

ids in the anchor locations. This difference causes the posi-

tion-specific scoring matrices or other position-dependent 

methods to fail, for both learning from and the predic-

tion/generation of shorter and longer peptides. Newer meth-

ods use results of the sampling of random insertions for 

elongation and deletions for shortening, meant for fitting the 

peptide into the 9-length window, thus the 9 limitation is still 

present in the core. ANN, quantitative matrices, most binding 

motif miners and methods relying on sequence information 

requires the peptides to be in the same length, with appropri-

ate peptides aligned to be in the same location. However 

since the actual peptide data can change between 8-11, and 

sometimes even reaching more than 20 aminoacids long, 

these methods require pre-processing and complex alignment 

of the data to get reasonable results. However, this pre-

processing may not be always feasible or give good results 

on the training set. For this reason, we propose a method 

which does not require the peptides to be of same length and 

the anchor positions to be specific, using partial periodic pat-

tern mining. This allows the mining of motifs that have loops 

and insertions between the anchor positions. Another novel 

part is the use of both binding and non-binding motif infor-

mation concurrently. 

3. METHODS 

3.1. Motif Mining 
The motif mining algorithm is based on the apriori algorithm 

that is used in frequent itemset discovery. Apriori algorithm 

uses the principle that all subsets of a frequent itemset must 

also be frequent. Accordingly, it has a bottom-up approach 

where the shorter frequent itemsets are extended to create 

longer candidates, which are then filtered by frequency of 

occurrence [21-23]. This iterative extension process contin-

ues until no frequent itemsets of a length can be found. The 

ratio of the sequences containing the rule to all of the se-

quences is called the support of the rule, and the ratio of the 

sequences containing the extended rule to the parent rule is 

called the confidence. 

Our motif mining method is similar to temporal event mining 

in time-related databases. In general, the partial periodic pat-

tern mining algorithms for time series data will try to find 

frequently co-occurring events, or causality relationships 

between them. In the domain of protein motifs, the aminoac-

ids become the “events”, and the causality/future prediction 

aspects become the motifs that are sought [24]. 

In the approach, each sequence is taken as a separate time 

series, with many parallel events occurring at the same time, 

although each event is related with only the sequence it is 

found on. In these time series, if an event happens frequently 

after another event occurs, within a given time window, it is 

considered an episode of events, a motif. To exploit the apri-

ori principle for performance, the motifs are started from 

length 1. A longer motif including a specific aminoacid will 

have support less than or equal to the support of that amino-

acid, and if an aminoacid is not frequent, any motif that in-

cludes that aminoacid will, therefore will not be frequent. 



Due to this, only some combinations of rules are tried to in-

crease performance.  

First the frequent itemsets of size 1, F(1), are found, which in 

our case are the aminoacids. The first step is straightforward, 

only the aminoacid counts at different positions within the 

sequences are counted, and if their frequency (support of the 

rule) is below the given threshold, they are filtered out. Then 

the candidate set of size 2, C(2) is created from the aminoac-

ids by F(1)  F(1), which is filtered according to the mini-

mum support and confidence values given, creating F(2). 

Thus, iteratively F(n) is created from filtering of C(n)=F(n-

1)F(1). Notice that we always add F(1) in the extension 

step, this is due to the fact F(n) for n>1 can be created from 

F(1) in n steps. Adding F(2), F(3) along F(1) in extension 

step may seem as to increase the performance, however since 

the peptides that bind to MHC-I are very short, our motifs are 

predominantly at most 3 or 4 aminoacids long. Thus, they 

will create longer rules which are not frequent, increasing the 

number of candidate set and affecting the performance nega-

tively.  

The actual apriori algorithm is more complex due to the in-

tractable nature of great number of transactions, however in 

our case there are only 20 possible items (aminoacids) with 

about few thousands of transactions (sequences) at most, thus 

are not necessary. Also it is modified to allow for ordered 

sequences unlike the shopping basket subset approach. For 

making the sequence mining robust, a specific window is 

defined as being between at least (minimum space) away and 

at most (maximum space) away. If the aminoacids co-occur 

within this window by a specific order, at least (minimum 

support x sequence count) times, then it is considered fre-

quent.  

In the motif mining context, the frequent rules are not asso-

ciation rules as in a shopping basket analysis, they have a 

time value which is used for relations such as “be-

fore”/”after” (“simultaneously” is not used in protein motifs 

since at each time point, that is a specific position in the se-

quence, only one aminoacid can occur). Then the episodes 

become, “if A occurs in a given position, B will likely to oc-

cur within n to m positions after A with probability of p and 

confidence of c”. There are two parameters, the slack length 

(s), which is the length after an event within which we do not 

look for a rule, and the window size (w), in which the conse-

quent event may occur. Thus, n=s+1 and m=s+w-1 in the 

above definition, and the rule is given as AB (p, c) for pa-

rameters (s, w). The rule may also consist of 3 or longer 

events, such as ABC. 

While experimenting, we used window size of 3 and slack 

length of 0 to 8, which produced different rulesets. For s=0, 

the rules that consist of consecutive/nearby aminoacids are 

mined whereas for larger values of s, the motifs consisting of 

aminoacids at separate ends of the peptide are found. Since 

the anchor positions of MHC motifs may be different, differ-

ent slack lengths are needed to mine them all. 

 

 

3.2. Prediction 
Once the rules are mined, these rules are used in the predic-

tion and scoring process. Before prediction, rules from both 

the binding and non-binding sequences are mined separately. 

During classification of an unknown peptide, the peptide is 

scored independently by both of the binding and non-binding 

rules. The simplest classification method is the direct com-

parison of the scores for binding/non-binding. To calculate 

the scores, the support values of the rules that occur in the 

given peptide are summed for both classes. However, the 

binding and non-binding datasets are usually not balanced 

due to the very low count of non-binding peptides. For ex-

ample, the allele HLA-A0201, one of the most studied al-

leles, has 1390 binding sequences but only 60 non-binding 

sequences. Most alleles are less than even 60, with some 

having only 0-5 non-binding peptides. Due to these low non-

binding counts, many rules exceed the minimum support 

threshold. While mining rules from HLA-A0201 with a 

minimum support of 0.1 (value used in the experiments), a 

rule need to be present in 139 positive peptides to be in-

cluded, whereas it only needs to occur 6 times in negative 

class. Due to this imbalance, the rule count for negative class 

is substantially higher. If we are to sum the support values, 

the addition of non-binding rules usually results in higher 

nonbinding values for both classes. To overcome this prob-

lem, different minimum support values can be used, or the 

highest ranking N rules may be taken. However, these cause 

the loss of information, thus we tried balancing the sums of 

all of the rules. Sum of both classes are equalized to some 

value. Hence, for two rules with the same support value, one 

that is found in the dataset with the lower count of rules has a 

higher score, considering that rule is much important for that 

class separation than the other. However, in the normalization 

of the sum of the rules, the sum of the both classes needn’t be 

equal, for a training dataset an optimal multiplier for both 

binding and nonbinding may be found that separates the 

scores with the greatest threshold. We added an optimization 

step for the weights for positive and negative classes and also 

the best cut-off value to use as a threshold for class separa-

tion. 

4. RESULTS 

4.1. Data Set 
The dataset used is MHCBN from Raghava et al. [25]. The 

total database consists of 25860 peptides, 20717 binders and 

4022 non-binders. The alleles HLA-A0201, HLA-A2 and 

HLA-DR2 are used in testing. The binding affinity values of 

high/medium/low are combined to create the binder dataset 

and the rest are taken as non-binder for a binary value. The 

actual affinity values are not used in the mining/scoring 

process. 

 

4.1. Experiments 
As we said, the binding and non-binding datasets are not 

balanced, and according to Sales et al., unbalanced datasets 

reduce the accuracy dramatically. However, resampling the 

non-binding peptides or undersampling the binding peptides 

does not increase the accuracy and sometimes decrease it as 

well [26]. To overcome this problem, we used the binding 

peptides to generate non-binding samples. While the patterns 

for non-binding can be mined by looking at what occurs in  



DataSet 
Accuracy Sensitivity Specificity Precision 

Avg Max Min Avg Max Min Avg Max Min Avg Max Min 

HLA-A0201 
(1390 Pos, 60 Neg) 

Train 0.806 0.838 0.757 0.808 0.843 0.754 0.756 0.854 0.646 0.987 0.992 0.984 

Test 0.794 0.852 0.762 0.802 0.860 0.773 0.620 0.917 0.333 0.980 0.995 0.964 

HLA-A0201 +  
100 Synthetic Neg 

Train 0.807 0.876 0.712 0.808 0.890 0.708 0.771 0.854 0.708 0.988 0.992 0.978 

Test 0.795 0.883 0.728 0.804 0.914 0.720 0.607 0.917 0.417 0.979 0.995 0.962 

HLA-A2 
(682 Pos, 222 Neg) 

Train 0.720 0.751 0.684 0.714 0.772 0.655 0.739 0.853 0.684 0.897 0.919 0.883 

Test 0.747 0.808 0.676 0.809 0.891 0.715 0.556 0.733 0.378 0.849 0.888 0.803 

HLA-DR2 
(407 Pos, 174 Neg) 

Train 0.681 0.716 0.601 0.662 0.754 0.517 0.726 0.871 0.597 0.852 0.904 0.816 

Test 0.620 0.692 0.513 0.549 0.646 0.354 0.784 0.943 0.629 0.859 0.954 0.797 

Table 1: The results for the prediction of 3 MHC class I alleles, with 80% training, 20% testing set separation repeated 

for 25 times.

non-binding sequences, they can also be mined by looking at 

what does not happen in the binding peptides. Since the bind-

ing peptide count is high, the distribution of the aminoacids 

on a specific position was found and a new sequence was 

generated with aminoacids inversely proportional to the ones 

found in the binding sequence. Thus, for example, if none or 

very few of the peptides binding allele HLA-A0201 have      

{ D, E, R, K } in position 3, then it is likely that these amino-

acids are negatively affecting the binding affinity of the pep-

tide [11]. Since it is possible that the non-peptides are not 

varied enough to capture this pattern, newly generated non-

binder sequences can help in this process. However care 

must be taken to not suppress the actual non-binding se-

quences since there is no guarantee that the generated se-

quences actually have patterns that help in the classification. 

A higher support threshold may reduce the possible random 

patterns. In our experiments, the synthetic dataset increased 

the accuracy slightly in some cases, but decreased it more 

significantly for some datasets, thus their effect should be 

controlled. 

For testing, 3 alleles, HLA-A0201, HLA-A2 and HLA-DR2 

are used based on the availability of sufficient binder/non-

binder data and importance in the literature. For HLA-

A0201, the ratio of positive to negative class was about 23 to 

1, to balance this ratio to more acceptable levels without un-

der-representing the actual non-binder data, an additional of 

100 synthetic non-binder peptides were created to compare 

the effects with and without these synthetic peptides. Each 

allele is tested by dividing the data into 80% training 20% 

testing sets randomly, a total of 25 times for an allele. The 

average, maximum and minimum results for the 4 datasets, 

with both training and testing set accuracies can be found in 

Table 1. 

It can be seen that the predictions have acceptable accuracy 

values of 70 to 80%. Note that the specificity is about 5-10% 

lower than accuracy (high false positive rate) in HLA-

A0201. On the contrary, for HLA-DR2 the specificity is ~5-

10% higher than accuracy. For HLA-A0201, the false posi-

tive rate is the result of low non-binding count. If we look at 

the peptides that are classified as binding, when in fact non-

binding, they carry very strong binding patterns, such as the 

L{L-I-V} pattern in anchor positions of HLA-A0201. 

These aminoacids in the 2-9 positions are accepted by the 

literature as good binders. The peptides that are classified as 

false positives carry these patterns and other strong patterns. 

It is obvious that they carry another part that suppresses the 

affinity of the binding motif to the MHC allele. While the 

method marks some peptides with good positive scores as 

non-binding due to the presence of a non-binding signal, it 

cannot catch them all, possibly due to the lower count of the 

negative dataset. However an important point to consider is 

that the non-binding accuracies given do not reflect the 

whole domain of the non-binders, since the dataset has an 

experimental bias. The sequences tested and marked as non-

binding are either poly-alanine sequences or known binding 

sequences, on which mutations are carried out repeatedly to 

find the binding position and rules. If a binding peptide be-

comes non-binding (or a poly-A peptide becomes binding) 

after introducing a mutation into a specific site, that amino-

acid in that position will be deemed important. But this data, 

in training can cause artificial patterns to be found. The pre-

diction method will accurately find non-binders that do not 

carry the binding patterns as well, which are under-

represented in this dataset, showing a lower negative predic-

tion accuracy than the actual value. 

Poly-A peptides can also affect the accuracy. Since sequences 

consisting of 6-7 alanine residues are very common, these 

can cause the artificial pattern of (AA), (AAA) and 

similar to be found. The problems caused by this are rela-

tively less important, because both the binders and non-

binders carry this pattern, thus making it inconclusive for 

classification. However if these poly-A peptides are under- or 

over-represented in one dataset, it will start to affect the accu-

racy. Filtering these sequences, as some other methods do, 

may also help. 

5. CONCLUSION 

We developed a method that uses sequential pattern mining 

schemes for finding the most probable binding motif, with 

position- independent information that can be applied to the 

peptides of arbitrary length to accommodate for the se-

quences with insertions and loops between the anchor posi-

tions. The frequent partial periodic rules that can explain 

most of the peptides are mined from the training set using 

different windows for position-independent episodes. For the 

same allele, the non-binding peptide information is also used 

for mining motifs for non-binding, since the mined episodes 

may contain arbitrary episodes that are not related to the 

binding affinity. Also, some additional peptides in the non-



binding aminoacid positions may cause a previously binding 

peptide to become non-binding. Thus, we mined frequent 

rules for both binding and non-binding peptides, and use the 

exclusive set of the two for scoring the peptides. The pep-

tides are scored according to the support and confidence of 

the frequent episodes they contain. From this study, position 

independent motifs mined with representing the aminoacid 

sequence as time series data proved to be usable for predic-

tion of the binding peptides to MHC class I proteins. Al-

though the accuracy of the algorithm is not state-of-the-art, it 

is acceptable and near the methods in use today. The pattern 

mining method can be improved upon to include some posi-

tion dependency as anchor points or windows, and by the 

addition of rule merging/splitting for better class separation.  

The area most open to improvement is the scoring and pre-

diction step; while the rules mined are quite representative of 

the classes, the current scoring system is very basic and is 

prone to make errors. The prediction process can be changed 

to include better scoring system, rule cascading and weight-

ing to differentiate between strict and more relaxed rules, and 

statistical methods to select rules with which the peptide is 

scored, to improve the statistical significance of the given 

prediction. The rules may also be created such to estimate the 

binding affinity of the peptide, instead of a binary bind-

ing/non-binding decision. This will both improve the learn-

ing step, which will give more weight to the peptides with 

high affinity, and the classification step, giving more infor-

mation about the stability of bonds in the MHC. 

An area worth exploring are the generation of the synthetic 

non-binder peptides which can increase the real-world 

screening accuracy by creating more representative se-

quences. Novel methods as well as known methods in the 

literature may be explored and optimized for this motif min-

ing algorithm.  
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