Solving Global Optimization Problems using MANGO*

Akin Giinay, FigenOztoprak, S.llker Birbil2, and Pinar Yolurh

! Bogazici Universityjstanbul, Turkey
aki n. gunay@oun. edu. tr, pinar.yol um@oun. edu.tr
2 Qabanci University'stanbul, Turkey,
figen@u. sabanci uni v. edu, si birbil @abanci univ. edu

Abstract. Traditional approaches for solving global optimizationlgems gen-
erally rely on a single algorithm. The algorithm may be hgbor applied in
parallel. Contrary to traditional approaches, this papepgpses to form teams
of algorithms to tackle global optimization problems. Eatfporithm is embod-
ied and ran by a software agent. Agents exist in a multiaggstes and com-
municate over our proposed MultiAgent ENvironment for Glb®ptimization
(MANGO). Through communication and cooperation, the ag@umplement
each other in tasks that they cannot do on their own. Thisrpgiges a formal
description of MANGO and outlines design principles for eleping agents to
execute on MANGO. Our case study shows the effectivenessittifagent teams
in solving global optimization problems.

1 Introduction

Many powerful algorithms for solving global optimizatiomgblems exist P]. Some
of the algorithms propose a single, unigue technique toesalproblem, while others
propose manually-integrated, hybrid approaches. In bagles, algorithms can be run
independently or in parallel. Many such approaches havie then advantages over
others. Depending on context, one algorithm can defeatr®ihefinding a solution.
One intuitive perspective is to enable these algorithmgitt & teams so that they can
complement each other in tasks they cannot do well on their. @epending on the
context, one algorithm can help the other algorithm (efgone gets stuck in a local
optimum) to continue operations successfully [3-5].

(Software) Agents are autonomous computations that cazepertheir environ-
ment, reason, and act accordingly [1]. Agents are most sien they exist in a mul-
tiagent system so that they can interoperate with othertagkrieroperation requires
agents to speak a common language to coordinate theirtaigind to cooperate if
they see fit. Autonomy of the agents implies that agent canstbow and with whom
they want to interact. These properties of multiagent systeake it an ideal candidate
to realize teams of algorithms. While multiagent systemeHeeen used in many areas,
their use in solving global optimization problems, as wedss here, is new.

* This research has been partially supported by the ScieatiticTechnological Research Coun-
cil of Turkey by a CAREER Award under grant 106M472. A prelimiy version of this paper
appeared at AAMAS OPTMAS Workshop 2008.

Our proposed software environmentis MANGO, which providiesnecessary util-
ities to develop agents that can participate in a multiaggstem to solve global op-
timization problems. MANGO enables agents to find each atmerugh a directory
system. MANGO contains an extendible protocol for agent®tamunicate with each
other. The protocol messages are related to solving prablsmech as exchanging cur-
rent best points, signaling areas already explored by stfaed so on. Hence, agents
can find others and cooperate with them on their own. As atresgént teams are
formed and exploited to solve global optimization problems

There are three main contributions of this paper: (i) We saniwe MANGO, our
proposed environment for developing multiagent systemissihlve global optimization
problems cooperatively. (i) We provide design principlesdeveloping an agent that
can participate in a multiagent environment for solvingbglboptimization problems.
(iif) We develop a case study in which agents are developliéalifimg the above design
principles and show how they can actually solve a given dloptimization problem.

The rest of this paper is organized as follows: Section 2axpIMANGO in de-
tail, concentrating on the architecture, services, andsagng. Section 3 identifies the
design principles for developing a MANGO agent. Section vettsps a case study to
show how MANGO agents can cooperate to solve global optiizgroblems. Fi-
nally, Section 5 gives our conclusions and future reseates.

2 MANGO Framework

MANGO is a multiagent global optimization framework. It mplemented in Java and
uses Java Messaging Service (JMS) technology. The aim of GIANE to provide a
development and experiment environment for global opttiin research. Because
of this, contrary to conventional multiagent developmeni®nments, the agents that
can be developed using MANGO are targeted for solving gloptinization problems.
Concepts that are crucial for global optimization such abl@m definitions, problem
solutions, and so on are first class entities in MANGO. In #& of this section we
explain the MANGO environment and working principles ofdtamponents in detail.

2.1 Architecture Overview

We present the architecture of the MANGO environment in Fédu The fundamental
entity of the MANGO architecture is the agent. Every tasklsas solving global op-
timization problems, visualization of results and adntiaisve tasks in the MANGO
environment is performed by agents.

An agent is implemented as a regular Java executable theMBEGO API in or-
der to work in the MANGO environment. Agents communicatetiyh JMS, however
MANGO API hides details of the IMS communication by provglite own commu-
nication methods in order to simplify development proc8&NGO uses the service
concept of the service oriented architecture (SOA) [1]his tmanner agents may pro-
vide services to other agents. For instance, in a typical Id&Nenvironment one agent
may provide a service to solve global optimization probleisiag a specific algorithm
whereas another agent might provide a visualization sendgcgraphically represent

the results of the optimization algorithm. A third agent htigise these two services
in combination to solve its global optimization problem awodvisualize the results.
MANGO environment itself provides a directory agent for mgament and service
discovery purposes.

MANGO Environment Agent 1

Agent Code

MANGO API

Directory Agent Ll

Directory Agent Code

MANGO AP

r'y

> IMS Provider Agentn

Agent Code

MANGO API

Fig. 1. MANGO Architecture

2.2 Directory Service

In MANGO environment a directory agent is a special agenhwiministrative and
managerial capabilities and each MANGO environment has dirextory agent. It
keeps track of all other agents and their services. Usirgitfiormation it also acts
as a service matchmaker and provides service discovericedovother agents in the
environment. It is also responsible for low level manadgasks such as maintenance
of communication resources.

2.3 MANGO API

The MANGO API is a fully extendible API that provides all nssary facilities for
the developers to implement their own agents for the MANG@renment. Figure 2
shows the basic components of the MANGO API. There are foun filararies of
classes as thagent templates, protocol, optimization and service. Agent templates li-
brary provides a set of basic agents with communicationlzéifi@s. Developers can
implement their own agents through extending these agemlétes without consider-
ing details such as messaging. Classes in the protocotyibre the predefined set of
protocols and related messages for agent communicati@selprotocols are further
divided into two libraries as system and optimization peoldibraries. System proto-
cols are mainly used by the agents to communicate with tieetdiry agent for resource
management and service discovery purposes. On the othéolpéimization protocols

are used between the agents to solve these problems in atiopeClasses under the
optimization library provide facilities for global optimation. These include common
problem and solution definitions that allow interchangelobgl optimization problem
knowledge between agents and utility classes used in tlodsios and problem defi-
nitions. The classes in service library provide supportafing agent services, both for
administration and optimization.

Agent Templates Protocol Optmization Service

JMS Communication System Optimization Problem Utilities System Optimization

Fig. 2. MANGO API

2.4 Protocols and Messages

MANGO environment provides a set of extendable protocolsdordinate commu-
nication between agents. Each protocol specifies a set cfagedypes as classes to
specify the content to be exchanged by the agents duringxé®iton of the proto-
col. We divide the protocols into two categories as systethagiimization protocols.
System protocols are mainly used between individual agemdshe MANGO environ-
ment. Some examples of system protocols are agent-registrcol executed when a
new agent joins to the environment, service-registerquatexecuted when an agent
starts to provide a new service, and service-discoveryepobexecuted when an agent
searches for a new service. On the other hand optimizatiateteprotocols provide
simple message exchange blocks that can be combined in twrdealize complex
high-level cooperative optimization strategies expldiireSection 4. Some examples
of optimization protocols are solution-request protoc@@ited when an agent requests
the solution of a specific problem from another agent anaifrequest protocol ex-
ecuted when an agent informs another agent not to searclciicpegion in a given
search space, and explore-request protocol executed whagemt requests another
agent to explore a certain area.

2.5 Agent Lifecycle

The lifecycle of an agent starts by registering itself todirectory agent. While regis-
tering the new agent to the MANGO environment, the direcéagnt creates necessary
communication facilities for the new agent. After the réigison process the new agent
is ready to act in the MANGO environment. In general an agantct in three different
ways after this point. First, it can use services provideodther agents in the environ-
ment to perform its own tasks. Second, it can provide sesvicether agents. Third,
it can do both in parallel. When the agent decides to usecEnfiom other agents, it
queries the directory agent for the available servicesofding to the results of this
query it communicates with the agents that provide the requservice. On the other

hand, if the agent decides to provide its own service to aggent, it must register the
service to the directory agent in order to inform other agabbut its service. An agent
can use any number of services provided by other agents gianyof its lifecycle.
Similarly, an agent can provide any number of services anthidoat any point of its
lifecycle. The lifecycle of an agent ends when the agentgisters all of its services
and also itself from the directory agent.

3 Developing a MANGO Agent

When a MANGO agent is being designed, there are three dagisimts that need to
be considered.

Optimization Algorithm: The first point is the agent’s main algorithm for attacking
the global optimization problem. This algorithm may be angwn or newly-developed
algorithm for solving a global optimization problem. Theeagdesigner decides on this
algorithm and implements it in the agent.

Outgoing MessagesThe second component is related to when and with whom the
agent is going to communicate during its execution. The camioation is necessary
for various reasons, but most importantly for coordinatibimat is, it is beneficial for an
agent to position itself correctly in the environment. Tisagenerally two agents may
not want to be searching the same area since probably if #agls two different areas
they may find a solution faster.

— Needed Services: The questions of when and with whom to caorivane are strictly
related to the optimization algorithm that the agent is gisifithe agent’s own al-
gorithm cannot handle certain tasks, the agent would ndext®tservices to han-
dle these. For example, if the agent’s optimization algponicannot perform local
search well, the agent may find it useful to find other agerds ¢hn offer local
search service. As explained before, whether an agent diees$tos service can be
found out by querying the directory agent that keeps tratk@services associated
with each agent. After finding out the agents that offer thegise, the agent may
contact one of them to receive the service. Alternativetyagent that can do local
search well may be interested in finding out new areas to Beaen it finishes
its local search. Hence, it may be interested in finding atigait can suggest new
areas to search.

— Played Roles: An agent may decide to take a leader role in tiigagent system
and influence the others by suggesting areas to explorerainrdéfom. The choice
of taking this role is up to the agent, but is also affectedieygarticular algorithm
the agentis executing. That is, some algorithms can idepdifential “good” areas
quickly and thus it is reasonable for the agent to take tHesaod to inform others
about the potential of these areas.

Incoming MessagesThe third decision pointis related to if and how the agenbisg
to handle incoming messages. One naive approach is to abmayeer or follow the in-
coming messages. For example, if an agent receives an expkssage, it can always
jump to the areas that is being suggested for explorationw®enever it is prompted
for the best solution it has found, it can return its curresgtbsolution. However, the

following play an important role in how the incoming messagean be handled intelli-
gently.

— Exploration State: The exploration state corresponds te Wwell the agent has
explored the environment. This is important in answeringgjions, since an agent
may prefer not to answer question if it has not explored thérenment well or
conversely prefer not to follow orders (such as refrain ragss) if it has explored
the environment carefully. For example, in the beginninghef execution, when
the agent did not have enough time to search properly, it reaidd not to answer
incoming messages related to the best solutions it has feimzk its solution may
not be representative.

— Agent Sending the Message: Over the course of exaction et agay model other
agents based on the types of messages they are sending.ddagesl model, an
agent may decide how and if it is going to handle a messageexXanple, if an
agent sends frequent explore messages to a second ageetdeng agent may
mark the sender agent as a “spammer” and decide to ignoreagesssoming from
that agent.

4 A Case Study

In this section, we provide an illustrative system that hesrbestablished to solve a
global optimization problem with three cooperative agémtg ANGO.
Motivations for the example: The strategies in this example are motivated by two
challenges in global optimization. An important issue timatkes very well-known ef-
ficient local optimization methods useless for global ojtation problems is that the
objective function may have multiple local minima. A locgltimization method finds
one of them, which may or may not be the global one, dependinth@ initial point
from where it has started its search. A first idea to overcdrizeproblem to a certain
degree is starting local search from several initial poiBist the obvious drawback
of this straightforward approach is that many searches mdyup in the same local
minimum point, i.e., the same local minimum may be rediscedéor several times.
Position of the global minimum is another issue. When thédalloninimum lies
at the bottom of a large basin, i.e., the attraction regibis, rielatively easier to find it
out since an initial point is near to that large attractiogioa with a higher probability.
A situation at least as hard as a narrow attraction regionniareow attraction region
placed within the attraction region of another local minimun this case, there is a
significant risk of ending up at the more attractive local imimm point even when we
start very close to the global minimum. If we escape from #rgdr attraction region
not to rediscover it, then we may never approach to the glolr@imum and waste our
efforts in irrelevant faraway parts of the search space.
The problem: We select a two-dimensional problem for our illustratioheTproblem
is produced by the GKLS generator [2]. It has 20 local minimd finding the global
minimum is quite hard in the sense that it has a relativelyllsatizaction region and it
is located within the attraction region of another local imiam (see Figure 3).
The agents:The three agents we run in this example are all local optitiizaagents
[?]. We name the three agentsBBGS, TR, andPTR. The BFGSAgent applies BFGS

160

140

120

100

(a) Mesh plot of the objective function (b) Contours of the objective function

Fig. 3. The problem

quasi-Newton algorithm: a line search method which pragreby taking steps through
directions that provide decrease in the objective functalne, so it calculates a direc-
tion vector and a step size at each iteration. TRAgent appligust region method. It
generates a model function which is a quadratic approxanddti the original objective
function. It accepts that the model function is a good apipnaxion within atrust re-
gion, a A-radius ball, and it minimizes the model function in thatiogg It updates the
model function and the trust region radius at each iterati@mally, PTRAgent applies
a perturbed trust region method: It applies a trust regigarithm like TRAgent. But it
works more sensitive, i.e., the maximum radius value altbisesmall. Also, it follows
a perturbed direction in some iterations to increase thaahaf finding an unvisited
minimum point. That is, the iterates are not moved along trexton as in the regular
trust region method; instead, the trust region directiatissorted randomly.
Cooperation strategies:The cooperation strategies applied by three agents aee illu
trated in Figure 4. They follow three basic ideas to imprdwartperformance:

— penalize approaching to already discovered local minink&3d8)

— do not enter regions searched by others (TR)

— conduct a more sensitive search in the region searched mthire agents, so that
a possible global optimum near a local one is not missed (PTR)

In this context, the cooperation procedures applied by egemt are summarized
as follows:

— BFGSAgent
ListenMessage: If an INFORM_SOLUTION message is received, then add the
received point:,. to thepenalized list so that approaching te, increases the
objective function.
SendMessage: If converged to a pointy, starting from a point;, then send
the ball with center:; and radiug|x; — x| to both TRAgent and PTRAgent
as a REFRAINREGION message.

Do not approach to
O the received points

O

-
o B TRAgent
BFGSAgent o
S e}
.
’
- O
Do not enter the
received regions
PTRAgent
. . o
- -~ refrain region o o
—® solution point Conduct a detailed
search in the

received regions

Fig. 4. The cooperation strategies

— TRAgent

ListenMessage: If a REFRAIN_.REGION message is received, then add the
received region to theefrained list so that if case of entrance to that region
leave the ongoing search and start a new search from somaemgraint in the
solution space.

SendMessage: If converged to a point s, then send it to BFGSAgent as an
INFORM_SOLUTION message. If the radius of the last trust regiomlis
then send the ball with center; and radiuskA; to PTRAgent as a RE-
FRAIN_REGION messagé; > 1.

Fig. 5. The penalizing strategy applied by BFGSAgent

— PTRAgent

ListenMessage If a REFRAIN_.REGION message is received, then it is added
to theexplore list so that it is going to be searched for a minimum other than
the center of that region.

SendMessage If converged to a point:¢, then send it to BFGSAgent as an
INFORM_SOLUTION message.

Observations: We next illustrate how those strategies work on the abovetioresd
problem with 20 minima. In Figure 5, the search paths of BFG&# has been marked
with x. The points marked by are the minima that have been already discovered by
other agents and sentto BFGSAgent. The consecutive ssarchéucted by BFGSAgent
are numbered. As the figure points out, the search is disgedra approach to the pre-
viously converged points, either by BFGSAgent or by the odgents.

In Figure 6, we illustrate the second idea. The search pé&tfhRAgent are marked
with + signs, the circles are the trust regions. The paths are meuila¢ their starting
points. During its second run, TRAgent has entered to thairefegion sent by the
BFGSAgent at its forth step. Thus, it has left the second pathat point and started
a new search from another point so that it has spent its dffiodiscovering another
local minimum (at the end of the third path).

Fig. 6. The leaving strategy applied by TRAgent

Finally, in Figure7, we can see the steps of PTRAgent marked &igns. It has
started a new search in the refrain region sent by BFGSAgdnth has provided
finding the global minimum point.

Fig. 7. The research strategy applied by PTRAgent

5 Conclusions

We have introduced a new multi-agent environment for glamimization. The pro-
posed environment provides a flexible mechanism that carsée 10 design new co-
operation strategies among different global optimizatitgorithms. We have demon-
strated on an illustrative example that the design of déffikcooperation strategies can
significantly enhance the performance of individual altporis. In the future, we in-
tend to focus on different strategies and demonstrate pleeiormances with empirical
results.

References

1. Singh, M.P., Huhns, M.N.: Service-Oriented Computingmantics, Processes, Agents.
John Wiley & Sons, Chichester, UK (2005)

2. M. Gaviano, D. E. Kvasov, D.L., Sergeyev, Y.D.: Algoritl@R9: Software for generation of
classes of test functions with known local and global minforaglobal optimization. ACM
Transactions on Mathematical Softw@%4) (2003) 469-480

3. Talukdar, S., Baerentzen, L., Gove, A., Souza, P.D.: Alsanous teams: Cooperation
schemes for autonomous agents. Journal of Heuriéfi)g1998) 295-321

4. Tyner, K., Westerberg, A.: Multiperiod design of azetoopeperation systems i: An agent
based approach. Computers and Chemical Engine261ig001) 1267-1284

5. Siirola, D., S.Hauan, Westerberg, A.: Toward agentthgeecess systems engineering:
Proposed framework and application to non-convex optitiiea Computers and Chemical
Engineering27 (2003) 18011811

6. Yokoo, M. ve Ishida, T.: Search algorithms for agents. IWe&iss, ed.: Multiagent Systems:
A Modern Approach to Distributed Artificial Intelligence h& MIT Press (1990)

7. Modi, P., Shena, W., Tambe, M., Yokoo, M.: Adopt: asyncaas distributed constraint
optimization with quality guarantees. Artificial Intelégcel61(2005) 149-180

10.
11.

12.

13.

14.

Lau, H.C., Wang, H.: A multi-agent approach for solvingimjization problems involving
expensive resources. In: ACM Symposium on Applied Comput{2005)

Ahluwalia, A., Modiano, E.: On the complexity and distribd construction of energy-
efficient broadcast trees in wireless ad-hoc networks. IEEBsactions on Wireless Com-
munications4(5) (2005) 21362147

Rabbat, M., Nowak, R.: Distributed optimization in sensetworks. In: IPSN’04. (2004)
Colorni, A., Dorigo, M., Maniezzo, V.: Distributed optization by ant colonies. In: Pro-
ceedings of European Conference on Artificial Life. (199344142

J. Kennedy, R.: Particle swarm optimization. In: Prodegs of IEEE International Confer-
ence on Neural Networks. Volume 4. (1995) 1942—-1948

Birbil, S., Fang, S.C.: An electromagnetism-like metbia for global optimization. Journal
of Global Optimizatior25(3) (2003) 263-282

Tsui, K., Liu, J.: Evolutionary diffusion optimizatippart i:description of the algorithm. In:
Proceedings of Congr. Evolutionary Computation (CEC)0@0.284—-1290

