3D ball skinning using PDEs for generation of smooth tubular surfaces

Unal, Gozde and Slabaugh, Greg and Whited, Brian and Rossignac, Jarek and Fang, Tong (2009) 3D ball skinning using PDEs for generation of smooth tubular surfaces. (Accepted/In Press)

WarningThere is a more recent version of this item available.

PDF (This is a RoMEO green publisher - Author can archive pre-print (ie pre-refereeing)) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader


We present an approach to compute a smooth, interpolating skin of an ordered set of 3D balls. By construction, the skin is constrained to be C1 continuous, and for each ball, it is tangent to the ball along a circle of contact. Using an energy formulation, we derive differential equations that are designed to minimize the skin’s surface area, mean curvature, or convex combination of both. Given an initial skin, we update the skin’s parametric representation using the differential equations until convergence occurs. We demonstrate the method’s usefulness in generating interpolating skins of balls of different sizes and in various configurations.

Item Type:Article
Subjects:Q Science > QA Mathematics > QA075 Electronic computers. Computer science
ID Code:12997
Deposited By:Gözde Ünal
Deposited On:02 Dec 2009 12:53
Last Modified:22 Jul 2019 15:16

Available Versions of this Item

Repository Staff Only: item control page