
Realizing Arbitrary-Precision Modular Multiplication with a Fixed-Precision
Multiplier Datapath∗

Johann Großschädl
University of Luxembourg

johann.groszschaedl@uni.lu

Erkay Savaş
Sabanci University, Turkey
erkays@sabanciuniv.edu

Kazim Yumbul
Gebze Institute of Technology

kyumbul@gyte.edu.tr

Abstract

Within the context of cryptographic hardware, the term
scalability refers to the ability to process operands of any
size, regardless of the precision of the underlying datapath
or registers. In this paper we present a simple yet effective
technique for increasing the scalability of a fixed-precision
Montgomery multiplier. Our idea is to extend the datapath
of a Montgomery multiplier in such a way that it can also
perform an ordinary multiplication of two n-bit operands
(without modular reduction), yielding a 2n-bit result. This
conventional (n×n→ 2n)-bit multiplication is then used as
a “sub-routine” to realize arbitrary-precision Montgomery
multiplication according to standard software algorithms
such as Coarsely Integrated Operand Scanning (CIOS). We
show that performing a 2n-bit modular multiplication on
an n-bit multiplier can be done in 5n clock cycles, whereby
we assume that the n-bit modular multiplication takes n
cycles. Extending a Montgomery multiplier for this extra
functionality requires just some minor modifications of the
datapath and entails a slight increase in silicon area.

1. Introduction

Tenca and Koç [18] define an arithmetic unit as scalable
if the unit can be reused or replicated in order to gen-
erate long-precision results independently of the datapath
precision for which the unit was originally designed. For
instance, a modular multiplier originally dimensioned for
a precision of 1024 bits should also allow one to perform
modular arithmetic on 2048-bit operands without the need
to re-design the multiplier. Scalability is a highly desirable
feature of cryptographic hardware as different applications
generally require different levels of security.

The simplest way to implement a multiplier in hardware
is by means of a serial/parallel architecture in which one
∗The research described in this paper was supported by the Scientific

and Technological Research Council of Turkey (TUBITAK) under project
number 105E089 (TUBITAK Career Award).

of the operands is processed serially (e.g. bit by bit), while
the other operand is processed fully parallel. In each step, a
partial product is added to a running sum and then the sum
is shifted by one bit in order to align it for the next partial
product. Modular reduction can be easily integrated into the
multiplication steps by subtracting (or adding) a multiple
of the modulus so that either the most or least significant
bit(s) of the sum becomes zero. A bit-serial Montgomery
multiplier determines the multiple of the modulus M to
be subtracted by inspecting the least significant bit of the
running sum [5]. Algorithm 1 describes the basic principle
of Montgomery multiplication for a number representation
radix of 2 [8]. High-radix Montgomery multiplication can
be realized in a similar way [2].

Algorithm 1. Montgomery multiplication (radix-2 version)
Input: n-bit modulus M = (mn−1, . . . ,m1,m0)2 with m0 = 1 (i.e.

M is an odd number), two operands A = (an−1, . . . ,a1,a0)2
and B = (bn−1, . . . ,b1,b0)2 with 0≤ A,B < M.

Output: Montgomery product Z = A ·B ·2−n mod M.
1: Z← 0
2: for i from 0 to n−1 do
3: Z← Z +A ·bi { addition of partial product A ·bi }
4: Z← Z +M · z0 { addition of M · z0 (z0 is the LSB of Z) }
5: Z← Z/2 {1-bit right-shift of Z (z0 = 0 before the shift) }
6: end for
7: if Z ≥M then Z← Z−M end if
8: return Z

Bit-serial Montgomery multipliers are simple to design
and implement, but suffer from serious limitations in terms
of scalability. A modular multiplier with a fixed-precision
datapath (e.g. a bit-serial/parallel Montgomery multiplier)
does not scale beyond a certain limit (e.g. 1024 bits), which
means that the modular multiplier has to be re-designed
when the need for dealing with operands of higher precision
arises. Poor scalability is even more problematic from the
security perspective. Fundamental advances in cryptanaly-
sis could, hypothetically speaking, make 1024-bit RSA keys
substantially less secure than expected today. In such case

1



the key-size needs to be extended (e.g. from 1024 to 2048
bits), which is only possible when the crypto hardware is
flexible enough to process the longer operands.

1.1. Related Work

Previous attempts to improve the scalability of modular
multipliers can be broadly divided into two categories. The
first approach utilizes advanced algorithmic techniques to
virtually “stretch” the bit-length of a modular multiplier
[15, 6, 3], while the second approach realizes scalability in
hardware on basis of special multiplier architectures able
to process operands of arbitrary size [18, 1, 19]. Paillier’s
[15] technique to overcome the scalability constraints of a
conventional n-bit modular multiplier falls into the former
category. Taking advantage of a Residue Number System
(RNS), Pailler presented an algorithm that accomplishes a
2n-bit modular multiplication by performing exactly nine
n-bit modular multiplications (or only six if one of the two
operands and the modulus are given in advance). Another
method for performing a 2n-bit modular multiplication via
n-bit arithmetic was introduced by Fischer and Seifert in
[6]. Their method requires a minimal modification of the
hardware so that the modular multiplier actually performs
an Euclidean multiplication, i.e. an arithmetic operation re-
turning not only the remainder A ·B mod N, but also the
integer quotient A ·B div N. Fischer and Seifert describe
two algorithms for performing a 2n-bit modular multiplica-
tion, whereby the more efficient one requires six Euclidean
multiplications of n-bit precision each. This result was then
further improved using a specific (i.e. modulus-dependent)
representation of the operands [3].

Scalable cryptographic systems can be implemented in a
completely different way by taking advantage of dedicated
hardware architectures into which scalability is built in by
design and not just added as an afterthought. The scalable
modular multiplier architecture by Tenca and Koç serves
as a good example for this approach [18]. Their design is
based on a special word-level algorithm for Montgomery
multiplication and utilizes an array of word-size processing
elements (PEs) organized in a pipeline. The architecture is
highly scalable because a fixed-area multiplier can handle
operands of any size. Moreover, the word-size of the PE as
well as total the number of pipeline stages can be selected
according to the desired trade-off between area and per-
formance. However, such a high degree of scalability does
not come for free, but implies increased complexity in the
design and an area overhead due to extra control logic and
registers, especially when compared to a standard bit-serial
Montgomery multiplier. Scalable Montgomery multipliers
based on the concept of systolic arrays can be realized in
a similar way, see e.g. [20, 1]. Radix-4 designs of scalable
Montgomery multipliers were presented in [19] and [17].

1.2. Our Approach

We present the architecture of a simple modular multi-
plier that comprises a fixed-precision datapath, but never-
theless allows one to perform modular multiplications on
operands exceeding the size of the datapath. Our approach
aims to find a trade-off between the simplicity of a bit-serial
architecture and the perfect scalability of Tenca and Koç’s
multiplier design. The architecture we devised is basically
a bit-serial Montgomery multiplier with some additional
functionality to perform a multiplication without reduction
operation. Our multiplier consists of two n-bit carry-save
adders (CSAs) and a set of n-bit registers to accommodate
the operands. It is able to execute an (n× n)-bit modular
multiplication in n clock cycles, whereas the conventional
(n× n)-bit multiplication (yielding a 2n-bit product) takes
n/2 cycles. A modular multiplication on n-bit operands is
carried out as shown in Algorithm 1: the first CSA is used
to add a partial product A ·bi, while the second CSA serves
to reduce the intermediate sum Z by addition of a multiple
of the modulus. However, when the length of the operands
exceeds n bits, the modular multiplication is performed via
a sequence of conventional (n× n)-bit multiplications ac-
cording to software algorithms such as Coarsely Integrated
Operand Scanning [7, 11]. When executing a conventional
multiplication (without reduction), both CSAs are used to
add partial products; therefore the 2n-bit result is available
after n/2 cycles. A complete 2n-bit modular multiplication
requires ten conventional (n×n)-bit multiplications, which
take some 5n clock cycles on our n-bit multiplier.

2. Long Integer Modular Arithmetic

Modular exponentiation is the core operation of various
public-key cryptosystems, including RSA, DSA, and Diffie-
Hellman. There exist a number of different algorithms for
computing a modular exponentiation, but in the end they all
require to carry out a sequence of modular multiplications
and modular squarings. The main challenge when imple-
menting public-key cryptosystems is the mismatch between
the length of the operands and the wordsize of today’s
processors. Typical operand lengths for public-key systems
based on the integer factorization problem (e.g. RSA) or the
discrete logarithm problem (e.g. DSA or Diffie-Hellman)
range from 1024 to 4096 bits, which means that they exceed
the wordsize of current-generation processors by one or two
orders of magnitude. Another crucial implementation issue
is the algorithm for performing a modular reduction. Most
practical implementations use either Barrett’s algorithm or
the well-known Montgomery reduction method [12] since
they allow one to avoid costly divisions in the reduction
operation. Both techniques are suitable for implementation
in hardware and software.

2



In the following, we briefly summarize the basic con-
cepts of Montgomery’s reduction method. Let M be an odd
modulus of length n bits, i.e. 2n−1 ≤M ≤ 2n−1, and let
A and B denote two unsigned integers within the range
of [0,M−1]. Furthermore, let us assume that the product
P = A ·B is 2n bits long. Montgomery’s technique is based
on the simple fact that we can freely add multiples of M to
the product P without changing the value of P modulo M. A
straightforward implementation of Montgomery reduction
performs shift and add operations as follows: One inspects
the least significant bit p0 of the product P and adds the
modulus M to P if p0 = 1. This addition converts P into an
even number if it was odd before1, but does not change the
value of P mod M. Now we can shift P one bit to the right
without destroying any information. Repeating these steps
n times leads to a result that is at most n+1 bits long and
congruent to P mod M (see [12] for more details). A final
subtraction of M brings the result into the desired range
of [0,M−1]. However, Montgomery’s algorithm computes
P ·2−n mod M instead of the actual residue P mod M; the
factor 2−n is due to the n right shifts carried out during a
Montgomery reduction.

In most practical implementations of Montgomery’s al-
gorithm, the modular reduction is interleaved with a multi-
plication or squaring, instead of performing it as a separate
operation thereafter. An interleaving of multiplication and
reduction steps, as shown in Algorithm 1, is more economic
in the use of memory resources since doing the reduction
after completion of the multiplication would necessitate to
temporarily store the 2n-bit product P = A ·B. References
[5] and [7] describe several techniques for computing the
Montgomery product A ·B · 2−n mod M by combining the
multiplication of A by B and the reduction modulo M into a
single operation:

MonPro(A,B) = A ·B ·2−n mod M (1)

The Montgomery product carries the factor 2−n, which is
referred to as Montgomery radix [8]. Some simple pre- and
post-calculations are necessary to deal with this factor. The
pre-calculation transfers the operands A, B into a special
representation, the so-called M-residue [8] or Montgomery
image representation (see [12] and [7] for a more detailed
treatment of this operand conversion).

2.1. Montgomery Multiplication in Hardware

The main issue one has to deal with when designing a
modular multiplier for public-key cryptography is the size
of the operands (typically ≥ 1024 bits for RSA). Hardware
implementations can efficiently cope with operands of such

1The moduli used in cryptographic applications are either primes or
products of primes, which means that M is generally an odd number.

size by providing registers and/or datapaths of appropriate
precision. When classifying hardware architectures for long
integer Montgomery multiplication, two basic approaches
can be identified. The first approach is based on a bit- or
digit-serial multiplier datapath where one of the operands
is scheduled bit by bit (or digit by digit), while the other
operand is scheduled fully parallel. A second approach for
performing Montgomery multiplication is to employ one or
more word-level multipliers and accomplish the long integer
arithmetic by means of conventional (w×w)-bit multipli-
cations according to software-oriented algorithms such as
Coarsely Integrated Operand Scanning [7]. The selection
of the wordsize w enables different trade-offs between area
and performance; typical values for w are 16 and 32 [16].

Bit-serial or digit-serial architecture: A conventional bit-
serial Montgomery modular multiplier can be implemented
as illustrated in Algorithm 1. Given a modulus length of n
bits, a bit-serial multiplier requires exactly n clock cycles
to accomplish a Montgomery multiplication (excluding a
possible final subtraction). Both the multiplier datapath and
the registers for storing the operands and the result have a
precision of n bits. An n-bit multiplier can also be used for
operands of smaller size (e.g. k < n bits) by right-aligning
all operands in the registers and returning the result after
k cycles. On the other hand, it is generally not possible to
use this n-bit multiplier for larger operands, which means
that the bit-serial architecture is only scalable up to a certain
limit, namely the precision it has been designed for.

Word-level architecture: A word-level architecture con-
sists of one or several “small” integer multipliers that are
able to accomplish a (w×w)-bit multiplication, whereby w
refers to the word-size of the architecture. In general, the
word-size is much smaller than the operand length; typical
values for w are 16, 32, or 64 bits [11, 13, 16]. Due to the
mismatch between operand length and word-size, an n-bit
Montgomery multiplication can not be directly executed on
a “small” w-bit multiplier. Hence, the long operands are
processed in w-bit words according to software algorithms
such as Coarsely Integrated Operand Scanning [7]. Besides
the multiplier, a word-level architecture also comprises a
set of registers for storing operands and results, as well as a
state machine for control. Word-level architectures have the
advantage that the size w of the multiplier is naturally “de-
coupled” from the operand length n, which facilitates the
implementation of a scalable architecture for Montgomery
multiplication (see [16, 17] for exemplary designs).

2.2. Montgomery Multiplication in Software

All software implementations of Montgomery multipli-
cation have in common that they store the long operands in
arrays of w-bit words, with w referring to the processor’s

3



wordsize. Algorithms for multiple-precision arithmetic op-
erate on the single-recision words in these arrays using the
instructions provided by the processor. A common software
algorithm for Montgomery multiplication is the Coarsely
Integrated Operand Scanning (CIOS) method, which can be
efficiently implemented in many programming languages
including C and Java. The CIOS method has a nested loop
structure with a relatively simple inner loop, each iteration
of which performs a single-precision multiplication (i.e. a
(w×w)-bit multiply instruction) and four single-precision
additions [7]. Executing an (n× n)-bit CIOS Montgomery
multiplication on a w-bit processor requires performing a
total of 2k2 + k single-precision multiplications (k denotes
the number of w-bit words an n-bit long operand consists
of, i.e. k = dn/we). An in-depth description and analysis
of the CIOS method can be found in [7].

3. Scalable Bit-Serial Montgomery Multiplier

As noted in Section 1.2, our scalable multiplier is a bit-
serial Montgomery multiplier with the ability of perform-
ing not just modular multiplications, but also conventional
multiplications without modular reduction. Figure 1 shows
the multiplier datapath, which essentially consists of two
carry-save adders (CSAs) and two basic shift-registers. In
each clock cycle, the CSAs add a partial product and a
multiple of the modulus to a running sum. However, both
CSAs add partial products when the multiplier performs
a conventional multiplication without reduction. The main
advantage of CSAs is that they avoid carry propagation by
using a redundant representation, the so-called carry-save
form, which makes the multiplier’s critical path delay rela-
tively independent of the precision of its datapath. Besides
the CSAs, the datapath also contains two registers, RS and
RC, in which the sum and carry vector of the running sum
are held. A modular multiplication can be executed in this
datapath in a similar way as shown Algorithm 1; the main
difference is that we get the result in carry-save form. The
result can be converted from carry-save to standard binary
form with help of the d-bit Adder in Figure 1, which is
simply a carry-propagation adder. Typical values for the
width d of this adder are 8, 16, and 32 bits.

The CSAs and shift-registers shown in Figure 1 have a
length of n + d bits, whereby n refers to the operand-size
the multiplier is dimensioned for. Modular multiplications
with operands of up to n bits can be directly performed in
the datapath; modular multiplications with longer operands
(i.e. operands exceeding n bits) must be realized through a
sequence of conventional multiplications. Even though our
architecture does not pose any restrictions on n and d, the
implementation gets easier when n is a multiple of d. We
use a datapath of (n + d)-bit precision (instead of a more
intuitive n-bit datapath) because this “extended” precision

(n+d)-bit Carry-Save Adder

(n+d)-bit Carry-Save Adder

(n+d)-bit Shift-Register RS

d
-b

it
A

d
d
e
r

2
-b

it
A

d
d
e
r

>>mode

Prod

(n+d)-bit Shift-Register RC

mode

A

2A

b
i

b
i+1

q

M

d

d

d

2

2

Figure 1. Datapath of our bit-serial multiplier

allows one to avoid the final subtraction of the modulus in
the Montgomery multiplication (line 7 of Algorithm 1), as
described in [21]. The registers RS and RC are supposed to
be able to carry out d-bit right shift operations.

3.1. Execution of a Montgomery Multiplication

The multiplier datapath shown in Figure 1 supports two
modes of operation; in the first mode it is able to perform
a modular multiplication, whereas the second mode allows
for performing an ordinary multiplication. When operating
in the former mode, the datapath is similar to that of the
Four-to-Two CSA architecture from [10] and executes a
Montgomery multiplication according to Algorithm 1. The
upper CSA adds a partial product of the form A · bi to a
running sum given in carry-save representation. This partial
product can be easily generated via a logical AND of each
bit of the multiplicand A and the multiplier-bit bi, an oper-
ation that requires just an array of AND gates. The second
CSA adds q ·M (i.e. a multiple of the modulus M) to the
output of the first CSA. Since q is either 0 or 1 when using
the binary (i.e. radix-2) version of Montgomery’s reduction
technique, the generation of q ·M is simply a matter of log-
ical AND operations [5]. The sum and carry output of the
second CSA are buffered in the RS, RC register pair for one
cycle and then fed back to the first (i.e. upper) CSA. This
feedback path is implemented in such a way that the sum
and carry vector are shifted right by one position to align
them properly for the addition of the next partial product.

After n clock cycles, when all partial products have been
added, the result is available in the RS, RC register pair in
carry-save representation. Using the d-bit carry-propagation
adder (CPA), the result can be converted to standard binary
form in (n+d)/d cycles, following the approach described
in [10]. In each clock cycle, a d-bit word of the sum and
carry vector is shifted out from the RS, RC registers, starting

4



with the least significant word. The words are added up by
the CPA, and the resulting d-bit sum is shifted back into
register RS. A straightforward implementation of bit-serial
Montgomery multiplication according to Algorithm 1 often
requires a final subtraction of M to ensure that the result is
completely reduced. However, this final subtraction can be
avoided by modifying Algorithm 1 such that it computes
A ·B ·2−(n+2) mod M instead of the standard Montgomery
product A ·B ·2−n mod M. This implies an increase in the
number of loop iterations from n to n + 2 and necessitates
a slightly longer multiplier datapath, but allows one to use
an incompletely reduced result in the range [0,2M−1] as
input for the next modular multiplication (see [1, 22] for a
more detailed description).

A datapath with a precision of n+d bits also eliminates
the need of performing final subtractions, but simplifies the
implementation compared to an (n+2)-bit datapath. The
execution time of a Montgomery multiplication producing
A ·B ·2−(n+d) mod M as result is n + d +(n + d)/d cycles
(including conversion to binary form). For example, when
n = 1024 and d = 32, we get an execution time of 1,089
cycles, the vast majority of which is used for the addition
of partial products. The time spent on redundant-to-binary
conversion is almost negligible for typical values of n and
d, i.e. an n-bit Montgomery multiplication requires roughly
n clock cycles.

When using the radix-2 (i.e. bit-serial) version of Mont-
gomery multiplication shown in Algorithm 1, the multiple
of M being added in line 4 is determined by the LSB of the
running sum Z after addition of the partial product A ·bi. In
our multiplier, Z is given in carry-save form; therefore, the
bit q in Figure 1 is nothing else than the logical XOR of the
LSB of the sum and carry vector representing Z. The gener-
ation of q ·M lies on the critical path of a typical bit-serial
Montgomery multiplier, but this delay can be reduced via
some slight modifications of the datapath, such as the ones
described in [4] and [5].

3.2. Execution of a Conventional Multiplication

An ordinary multiplication (without reduction) is carried
out in a very similar way as the Montgomery multiplication
described before, except that both CSAs are used to add
partial products. In each clock cycle, the first (i.e. upper)
CSA adds the partial product A ·bi (which is generated as
explained in Section 3.1) to a running sum given in carry-
save representation, whereas the second CSA adds a partial
product of the form 2A ·bi+1. The factor of 2 in the second
partial product, which is necessary since bit bi+1 has twice
the weight of bi, is realized in terms of a “hard-wired” left
shift by one position. After the second CSA, the sum and
carry vector are buffered for one cycle in the registers RS
and RC, and then fed back to the first CSA. However, the

Implementation Time Basic operation

Paillier [15] 9n Modular multiplication
Fischer and Seifert [6] 6n Euclidean multiplication
Our scalable multiplier 5n Standard multiplication

Table 1. Timings of double-size mod. mult.

feedback path includes a 2-bit right-shift operation (instead
of the 1-bit right-shift that is carried out when executing a
modular multiplication) in order to align the sum and carry
vector for the addition of the next partial product. The two
LSBs in the registers RS and RC constitute a part of the
final result (i.e. the 2n-bit product A ·B); they are summed
up by the 2-bit Adder shown in Figure 1 and shifted into a
register2. After all n partial products have been added, the
lower half (i.e. the n LSBs) of the 2n-bit product A ·B is
available in said register in binary representation, whereas
the upper n-bit half is stored in the RS, RC register pair in
carry-save form. The conversion from carry-save to binary
form can be accomplished with help of the d-bit adder as
described in the previous subsection3

A multiplication of two n-bit operands using a bit-serial
multiplier requires the generation and addition of n partial
products. Our multiplier processes two partial products per
clock cycle; consequently, an n-bit multiplication takes n/2
clock cycles. The conversion of the upper n-bit half of the
product from carry-save into binary representation requires
(n+d)/d cycles, which results in n/2+(n+d)/d cycles
altogether. However, as mentioned in Section 3.1, the time
needed for redundant-to-binary is almost negligible, thus
the execution time of an n-bit multiplication is roughly n/2
clock cycles. A “double-size” Montgomery multiplication
(i.e. a 2n-bit Montgomery multiplication performed on an
n-bit multiplier) consists of ten n-bit multiplications when
using the CIOS method as explained in Section 2.2, which
amounts to 5n clock cycles when ignoring other operations
such as n-bit additions or operand transfers. However, since
n-bit additions require just a fraction of the execution time
of n-bit multiplications, they are often ignored in high-level
performance evaluations (as is the case with most previous
work, e.g. [3, 6]). Also the cost of operand transfers can be
ignored if the multiplier provides some local storage or is
equipped with a fast interface to the system’s RAM [9].

Table 1 compares the execution time for a double-size
modular multiplication of our multiplier with the execution
times of [6, 15] as described in Section 1.1 (n refers to the
execution time of a “normal-size” modular multiplication).

2Note that Figure 1 does not show the registers holding the operands
A and B, as well as the register in which the modulus M is stored when the
multiplier executes a Montgomery multiplication. However, this register is
not needed when a conventional multiplication is performed; thus it can be
used to store the lower part of the 2n-bit product A ·B.

3The last addition of low-half bits in the 2-bit Adder may generate a
“carry-out,” which must be considered in the addition of the higher part.

5



4. Conclusions

We presented a new approach to overcome the operand-
length restrictions of a conventional bit-serial architecture
for Montgomery multiplication. The bit-serial multiplier we
propose is able to perform Montgomery multiplications as
well as ordinary multiplications without modular reduction
operation. When dimensioned for a precision of n bits, our
multiplier executes a Montgomery modular multiplication
with operands of length (at most) n bits “directly” in circa
n clock cycles. A double-length (i.e. 2n-bit) Montgomery
multiplication can be performed through a sequence of ten
ordinary n-bit multiplications, which takes about 5n cycles
altogether (i.e. roughly the five-fold execution time of an
n-bit Montgomery multiplication). In both execution modi
(i.e. Montgomery multiplication and ordinary multiplica-
tion), the CSAs and register infrastructure of our bit-serial
architecture are utilized in an optimal way. Therefore, the
extra hardware cost in relation to a conventional bit-serial
Montgomery multiplier is very low.

References

[1] L. Batina and G. Muurling. Montgomery in practice: How to
do it more efficiently in hardware. In Topics in Cryptology
— CT-RSA 2002, vol. 2271 of LNCS, pp. 40–52. Springer
Verlag, 2002.

[2] T. Blum and C. Paar. High-radix Montgomery modular ex-
ponentiation on reconfigurable hardware. IEEE Transac-
tions on Computers, 50(7):759–764, July 2001.

[3] B. Chevallier-Mames, M. Joye, and P. Paillier. Faster dou-
ble-size modular multiplication from Euclidean multipli-
ers. In Cryptographic Hardware and Embedded Systems —
CHES 2003, vol. 2779 of LNCS, pp. 214–227. Springer Ver-
lag, 2003.

[4] A. Cilardo, A. Mazzeo, L. Romano, and G. Saggese. Carry-
save Montgomery modular exponentiation on reconfigurable
hardware. In Proceedings of the 7th Conference on Design,
Automation and Test in Europe (DATE 2004), Designers’ Fo-
rum, pp. 206–211. IEEE Computer Society Press, 2004.

[5] A. Daly and W. Marnane. Efficient architectures for im-
plementing Montgomery modular multiplication and RSA
modular exponentiation on reconfigurable logic. In Proceed-
ings of the 10th ACM Symposium on Field Programmable
Gate Arrays (FPGA 2002), pp. 40–49. ACM Press, 2002.

[6] W. Fischer and J.-P. Seifert. Increasing the bitlength of a
crypto-coprocessor. In Cryptographic Hardware and Em-
bedded Systems — CHES 2002, vol. 2523 of LNCS, pp. 71–
81. Springer Verlag, 2002.

[7] Ç. K. Koç, T. Acar, and B. S. Kaliski. Analyzing and com-
paring Montgomery multiplication algorithms. IEEE Micro,
16(3):26–33, June 1996.

[8] Ç. K. Koç and C. D. Walter. Montgomery arithmetic. In
Encyclopedia of Cryptography and Security, pp. 394–398.
Springer Verlag, 2005.

[9] M. Koschuch et al. Hardware/software co-design of elliptic
curve cryptography on an 8051 microcontroller. In Crypto-
graphic Hardware and Embedded Systems — CHES 2006,
vol. 4249 of LNCS, pp. 430–444. Springer Verlag, 2006.

[10] C. McIvor, M. McLoone, J. V. McCanny, A. Daly, and
W. Marnane. Fast Montgomery modular multiplication and
RSA cryptographic processor architectures. In Conference
Record of the 37th Asilomar Conference on Signals, Systems,
and Computers, vol. 1, pp. 379–384. IEEE, 2003.

[11] C. McIvor, M. McLoone, and J. V. McCanny. FPGA Mont-
gomery multiplier architectures – A comparison. In Pro-
ceedings of the 12th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM 2004),
pp. 279–282. IEEE Computer Society Press, 2004.

[12] P. L. Montgomery. Modular multiplication without trial divi-
sion. Mathematics of Computation, 44(170):519–521, Apr.
1985.

[13] K. Mukaida, M. Takenaka, N. Torii, and S. Masui. Design
of high-speed and area-efficient Montgomery modular mul-
tiplier for RSA algorithm. In Digest of Technical Papers
of the 18th Symposium on VLSI Circuits, pp. 320–323. IEEE,
2004.

[14] H. Orup. Simplifying quotient determination in high-radix
modular multiplication. In Proceedings of the 12th IEEE
Symposium on Computer Arithmetic (ARITH ’95), pp. 70–
77. IEEE Computer Society Press, 1995.

[15] P. Paillier. Low-cost double-size modular exponentiation or
how to stretch your cryptoprocessor. In Public Key Cryptog-
raphy — PKC ’99, vol. 1560 of LNCS, pp. 223–234. Sprin-
ger Verlag, 1999.

[16] A. Satoh and K. Takano. A scalable dual-field elliptic curve
cryptographic processor. IEEE Transactions on Computers,
52(4):449–460, Apr. 2003.

[17] H.-K. Son and S.-G. Oh. Design and implementation of scal-
able low-power Montgomery multiplier. In Proceedings of
the 22nd IEEE International Conference on Computer De-
sign (ICCD 2004), pp. 524–531. IEEE Computer Society
Press, 2004.

[18] A. F. Tenca and Ç. K. Koç. A scalable architecture for Mont-
gomery multiplication. In Cryptographic Hardware and Em-
bedded Systems, vol. 1717 of LNCS, pp. 94–108. Springer
Verlag, 1999.

[19] A. F. Tenca and L. A. Tawalbeh. An efficient and scal-
able radix-4 modular multiplier design using recoding tech-
niques. In Conference Record of the 37th Asilomar Confer-
ence on Signals, Systems, and Computers, vol. 2, pp. 1445–
1450. IEEE, 2003.

[20] E. Trichina and A. Tiountchik. Scalable algorithm for Mont-
gomery multiplication and its implementation on the coarse-
grain reconfigurable chip. In Topics in Cryptology — CT-
RSA 2001, vol. 2020 of LNCS, pp. 235–249. Springer Ver-
lag, 2001.

[21] C. D. Walter. Systolic modular multiplication. IEEE Trans-
actions on Computers, 42(3):376–378, Mar. 1993.

[22] C. D. Walter. Montgomery exponentiation needs no final
subtractions. Electronics Letters, 38(21):1831–1832, Oct.
1999.

6


