
Scanning from heating: 3D shape
estimation of transparent objects from

local surface heating

Gonen Eren12, Olivier Aubreton1, Fabrice Meriaudeau1, L.A. Sanchez
Secades1, David Fofi1, A. Teoman Naskali2, Frederic Truchetet1 and

Aytul Ercil2

1University of Burgundy, Le2i Laboratory CNRS UMR 5158, 12 rue de la Fonderie, 71200, Le
Creusot, France

2Sabanci University, VPA Laboratory, Orhanli-Tuzla, 34956, Istanbul, Turkey

goneneren@su.sabanciuniv.edu

Abstract: Today, with quality becoming increasingly important, each
product requires three-dimensional in-line quality control. On the other
hand, the 3D reconstruction of transparent objects is a very difficult problem
in computer vision due to transparency and specularity of the surface.
This paper proposes a new method, called Scanning From Heating (SFH),
to determine the surface shape of transparent objects using laser surface
heating and thermal imaging. Furthermore, the application to transparent
glass is discussed and results on different surface shapes are presented.
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1. Introduction

Many practical tasks in industry, such as automatic inspection or robot vision, often require
scanning of three-dimensional shapes with non-contact techniques. However, transparent ob-
jects, such as those made of glass, still pose difficulties for classical scanning techniques.

The reconstruction of surface geometry for transparent objects is complicated by the fact
that light is transmitted through, refracted and in some cases reflected off the surface. Tracking
refracted scene features might be difficult due to severe magnification or minification of the
background pattern. Additionally, if the object is not completely transparent, absorption might
change the intensity of the observed features, complicating feature tracking. In the case of
reflections, when changing the view point, features appear to move on the surface, no surface
feature can be observed directly, and the law of reflection has to be taken into account [1].

Researchers have proposed different approaches to deal with transparent objects. Hata et al.
have developed a shape from distortion technique to recover the surface shape of a glass object
[2]. They used a structured light setup to project stripe patterns into the object and analyzed
distorted patterns, using a genetic algorithm to recover the surface shape. Ben-Ezra and Nayar
estimated the parameterized surface shape of transparent objects using structure from motion
[3]. Additionally Agarwal et al. presented an extension using optical flow formulations for com-
plex background patterns or irregular transparent objects [4]. Kutulakos and Steger investigated
several applications of direct ray measurement and proposed a practical algorithm to recon-
struct two interface refractive light interactions using a three-viewpoint setup and measuring
the exitant ray directions [5]. Miyazaki et al. have developed a method to determine surface
orientations of transparent objects based on polarization degrees in visible and in infrared wave-
lengths [6, 7]. These approaches can deal relatively well with different sub-classes of objects.
However, the algorithms are still very specific and not generally applicable. Furthermore, many
techniques require considerable acquisition effort and careful calibration [1].

In this paper, we present a new approach allowing a 3D reconstruction of a given transpar-
ent object. The method is based on local surface heating and thermal imaging. The surface of
the object is heated with a laser source. A thermal image is acquired, and pixel coordinates of
the heated point are calculated. Knowing the internal and external parameters of the acquisi-
tion system, the world coordinates are obtained. This process is repeated for several points by
moving the object to recover the surface shape of the transparent object. This method is called
Scanning From Heating (SFH).

This paper is organized as follows. Section 2 presents the method and its application to
transparent glass objects. In Section 3, we describe the experimental results, and finally, Section
4 concludes the paper.

2. Scanning From Heating (SFH)

There are a variety of techniques, including laser scanners, structured light and time-of-flight,
for acquiring 3D models of objects. A good review of 3D model acquisition techniques can be
found in [8]. However, most of these methods are designed to obtain the shape of opaque sur-
faces and are based on analysis of the diffuse (body) reflection component of an objects surface.
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These techniques cannot extract models of transparent objects; such objects have only specular
(surface) reflection and refraction. Figure 1 illustrates this fact and presents a transparent glass
bottle and its reconstruction by a Minolta VI-910 Non Contact 3D Digitizer. The object cannot
be properly reconstructed due to reflections and refractions of the projected laser line.

The following section presents SFH, a new approach to recover the 3D surface shape of
transparent objects, and discusses the application of the method to glass.

(a) (b)

Fig. 1. (a) Transparent glass bottle. (b) 3D reconstruction by Minolta VI-910 Non Contact
3D Digitizer.

2.1. Description of the method

Thermal images have enjoyed a variety of applications in computer vision. Bertozzi et al. used
thermal images and a stereo vision-based algorithm for 3D pedestrian detection [9]. Maldague
proposed a method for defect detection by heating the surface and recording a time sequence of
thermal images (called thermograms) to observe the temperature decay of the inspected surface
[10]. Pelletier et al. also used thermal images to estimate a shape and proposed a 2D approach
for shape extraction using a distant uniform heat source [11]. SFH is a new method for 3D
shape estimation based on local surface heating by a laser source and observation of it by a
thermal camera. The 3D information is obtained using a classical triangulation technique with
the difference that the two-dimensional sensor observes the light emitted by a heat spot in place
of the light diffused by an enlighted surface.

Figure 2 illustrates the method. The transparent object is placed on a moving platform. The
laser heat source and the thermal camera are fixed and their 3D world coordinates are known.
When the laser fires, the surface of the object is heated at a point. The coordinates of the center
of the observed spot, corresponding to the thermal emission of the heated zone, are measured
in the camera coordinate system.

We assume the following:

• The object surface is opaque to a laser heating source, and laser energy is absorbed by
the surface without penetrating into the object.

• Once the surface is heated, the emission of thermal radiation is omnidirectional, so that
it can be observed by the thermal camera.

P1 is the heated point at the surface of the object at Position 1, and (X1,Y1,Z1) are its world
coordinates. The projection of P1 on the camera plane is called Pc1, and its coordinates (Xc1,Yc1)
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Fig. 2. Scanning From Heating method.

are in the camera coordinate system (Oc,Xc,Yc). P2 is the heated point at Position 2, and
(X2,Y2,Z2) are its world coordinates. The projection of P2 on the camera plane is called Pc2, and
its coordinates are (Xc2,Yc2). The variation of height between P1 and P2, ΔZ can be obtained by
triangulation using a pinhole camera model [12]:

ΔZ = |Z2 −Z1| = k.
√

(Xc2 −Xc1)2 +(Yc2 −Yc1)2 (1)

where k is a constant depending on the intrinsic and extrinsic parameters of the acquisition
system. The value of k can be determined by an initial calibration, which consists of determining
the camera coordinates of at least two points of a known object. The surface heating process is
repeated for several positions of the moving platform, and for each position the 3D coordinates
are calculated.

2.2. Application to Glass

Glass is the most commonly used transparent material, and it has many applications in different
industries, such as the automotive industry, construction and packaging. Today, with quality be-
coming increasingly important, each product requires three-dimensional in-line quality control.
On the other hand, the difficulties of measuring the surface geometry of transparent materials
with actual 3D scanners is a real issue for industrial vision. This section reviews transparency
and emissivity of glass and discusses the application of SFH.

2.2.1. Transparency

Transparency of glass is a fact related to optical transmission defined by Beer Lamberts law:

I
I0

= exp(−αx) (2)

I0 is the intensity of the entering beam into a volume of glass with a depth x, I is the intensity
of the emergent beam, and α is the absorption coefficient, which is defined by:
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α =
4π
λ

K(λ ) (3)

with K(λ ) being the absorption index and λ being the wavelength [13]. Figure 3 presents
the evolution of the absorption index of glass depending on the wavelength. Absorptions are
located in the UV domain and infrared domain of the spectrum.

Fig. 3. Evolution of the absorption index of glass depending on the wavelength [13].

Figure 4 illustrates the transmission of light as a percentage in the infrared domain of most
commonly used glasses. For each type, there is a wavelength such that the transmission is close
to 0%. This wavelength is called the infrared cut-off, and it depends on the composition of the
glass [14]. At a wavelength higher than 10μm, the glasses presented in Fig. 4 can be considered
as opaque objects. Figure 5 illustrates this fact and shows an image of a SiO2 glass bottle, placed
in front of an infrared illumination and observed with a long wave infrared camera sensitive to
8− 13μm. The object does not transmit the light coming from the source and appears to be
opaque.

Fig. 4. Transmission of light as a percentage in the infrared domain of commonly used
glasses [14].

2.2.2. Emissivity

All substances continuously emit electromagnetic radiation because of the molecular and
atomic agitation associated with their internal energy, which is proportional to the material
temperature. Emissivity specifies how well a real body radiates energy compared to an ideal
body, called a blackbody. A blackbody is considered a perfect absorber and emitter in each di-
rection at every wavelength. For the SFH method to work properly, the emission of the thermal
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(a) (b)

Fig. 5. (a) Transparent glass bottle in front of an infrared heat source. (b) Image taken with
a long wave infrared camera sensitive to 8−13μm.

radiation of the heated object should be omnidirectional. If not, only the parts of the surface
with an angle to the camera, where the emissivity is high, can be observed and reconstructed.
Unfortunately, unlike the intensity from a blackbody ib, the intensity emitted from a real body
i depends on direction. The emissivity of a real surface dA of temperature TA per unit time in
wavelength interval dλ and within the solid angle (θ ,ϕ) is given by [15]:

ε(λ ,θ ,ϕ,TA) =
i(λ ,θ ,ϕ,TA)
ib(λ ,θ ,ϕ,TA)

(4)

Figure 6 illustrates the angular emissivity of a dielectric sphere like glass. The radiation
approaches a lambertian source. Consequently, the SFH method can be applied to glass objects
with negligible losses.

Fig. 6. Emissivity of a dielectric sphere [16].

2.2.3. Conclusion

To conclude, the emissivity of glass approaches an omnidirectional source, and the SFH method
can be applied to glass. For transparent glass objects, a laser heat source working at a wave-
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length higher than 10μm is suitable. The object surface is then opaque to the laser heating
source, and the laser cannot penetrate into the object, causing only a local surface heating. We
propose to use a CO2 laser at 10.6μm.

3. Implementation

3.1. Experimental Setup

(a) (b)

Fig. 7. (a) XY positioning system. (b) CO2 laser and IR camera, fixed on the positioning
system.

Figure 7 shows the experimental setup. A Synrad 48 Series 10W CO2 Laser at 10.6μm is
used as the heating source. Thermal images are acquired with a Flir A320G LWIR Camera
sensible to 8− 13μm. The power of the laser is controlled by a Synrad UC2000 Laser Power
Controller. The laser and the thermal camera are placed on a moving platform, and the object is
fixed. The XY positioning system is programmable to scan a given area in predefined steps in
X and Y, with a precision of 50μm. Additionally, the laser is set to fire continuously as it moves
over the object, making it possible to acquire thermal images without stopping and to recover
3D points at the maximum speed of the camera (50fps).

3.2. Predetermination of the Laser Power

Reconstruction in the SFH method is based on detecting the heated point at the surface of the
object. In reality, the laser beam has a given radius (1.5mm for the experimental setup), and
detection is complicated by the fact that the laser irradiation is observed as a surface heating
zone and not a point. Additionally, the prediction of the laser power, to bring the surface of the
object to a given temperature, is crucial to obtain a detectable heat zone without damaging the
surface. To predict the laser power and the heat distribution of the laser irradiation zone, we
apply a mathematical model proposed by Jiao et al. for a glass plate heated axisymmetrically
by a CO2 laser [Fig. 8] [17].

For a laser beam traveling in direction x at a constant velocity v, we consider the laser power
to have a Gaussian distribution as in Eq. (5). We treat the CO2 laser beam as a surface heating
source, so the impulse function δ (z) is applied in Eq. (5).

I(x,y,z, t) =
P0

πr2 exp

(
− (x− vt)2 + y2

r2

)
δ (z) (5)

where P0 and r are the power and the radius of the CO2 laser beam, respectively.
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Fig. 8. Heating model.

Figure 9 presents the prediction of the model to heat a glass plate with an ambient tempera-
ture of 20◦C to 80◦C. The CO2 laser has a focus of 1.5mm (half width), and the movement
speed of the system is set to 10mm/second. The model predicts the laser power as 3W. The
experimental results obtained with the same configuration and a 3W laser are also shown in
Fig. 9.

Fig. 9. Experimental results compared to the heating model.

The experimental results fit the model reasonably. The surface temperature increases rapidly
when the glass enters the heating region. The temperature reaches its peak at a position at
the center of laser irradiation, where the highest laser intensity is imposed. Then it decreases
sharply due to a high rate of cooling by radiation, air convection and conduction into the glass.
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3.2.1. Detection of the laser irradiation

After Section 3.2, the temperature reaches its peak at the center of laser irradiation Pc. On the
thermal image, Pc corresponds to the point with the highest intensity. As thermal images are low
resolution (320x240 pixels) and noisy, to obtain the pixel coordinates of Pc, we first smooth the
image with a Gaussian filter of 11x11 pixel size and σ = 2.36. Then, at each point, the input
image is approximated by a quadratic polynomial in x and y, and subsequently, we examine the
polynomial for local maxima [Fig. 10]. Once the maxima is determined, we recover the world
coordinates of the surface point using Eq. (1). We repeat the operation for each thermal image,
for different positions of the moving platform, to obtain surface reconstruction of the object.

Fig. 10. Result of Gaussian filter and maxima detection on the thermal image.

3.3. Results

The following paragraphs present the results obtained from the experimental setup. In order to
validate the efficiency and to determine the accuracy, we first apply the method to a glass plate.
Then, we scan a glass window used in the automotive industry to evaluate the performance
on real objects. Finally, to see the possibilities of extension to other materials, we present the
application of the method on a transparent plastic bottle.

3.3.1. Transparent glass plate

Figure 11 illustrates the results obtained on a 10x5cm glass plate from 65 points. The distance
between the camera and the plane is set to 50cm. The histogram of the deviation between the
results and a perfect plane is also presented. The average deviation is 150μm. This deviation is
quite significant and permits us to validate the efficiency of the method.

3.3.2. Automotive window glass

Figure 12 illustrates a glass window used in the automotive industry and its reconstruction by
a probe scanner. Additionally, we present the comparison to the reconstruction by the SFH
method. The density of reconstruction obtained by the probe scanner (200 points) is much
smaller than the reconstruction obtained by SFH measurement (6000 points). The interpolation
of the point cloud obtained with the probe scanner increases the estimated error. The average
deviation between the two reconstructions is 360μm.

3.3.3. Application to plastic

It is also possible to apply the SFH method to different transparent materials. Figure 13 illus-
trates 3D reconstruction of a plastic bottle by the SFH method and compares the result to the
3D reconstruction obtained by a Minolta VI-910 Non Contact 3D Digitizer of the same bottle,
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(a) (b)

Fig. 11. (a) Reconstruction of a glass plate by the SFH method. (b) Histogram of the devi-
ation between the results and a perfect plane.

(a) (b)

(c) (d)

Fig. 12. (a) Glass window used in the automotive industry. (b) Reconstruction of the glass
window by a probe scanner. (c) Reconstruction of the glass window by a probe scanner,
partially compared to the reconstruction by SFH method. (d) Histogram of the difference
between two reconstructions.

(C) 2009 OSA 6 July 2009 / Vol. 17,  No. 14 / OPTICS EXPRESS  11466
#107643 - $15.00 USD Received 18 Feb 2009; revised 10 May 2009; accepted 10 May 2009; published 24 Jun 2009



powdered on the surface. The results fit reasonably well, and the average deviation is 200μm.
Differences between the two models are mostly located on the borders of the scanning region
and are probably due to calibration errors in both reconstruction systems.

(a) (b)

(c) (d)

(e) (f)

Fig. 13. (a) Transparent plastic bottle. (b) Reconstruction obtained by the SFH method.
(c) Powdered plastic bottle. (d) Reconstruction of powdered bottle obtained by a Minolta
VI-910 Non Contact 3D Digitizer. (e) Histogram of the difference between the two recon-
struction. (f) 3D representation of the difference between the two reconstructions.

4. Conclusion

The 3D reconstruction of transparent objects is a very difficult problem in computer vision due
to transparency and specularity of the surface. Classical methods based on triangulation in the
visible domain are not efficient.

This paper proposes a new method, called Scanning From Heating (SFH), to determine the
surface shape of transparent objects using laser surface heating and thermal imaging. When
the object is opaque to the laser source, the surface is heated at the impact zone. The laser
irradiation is observed with an infrared camera, and 3D coordinates of the surface at that point
are computed using triangulation and the initial calibration of the system. Furthermore, we
discussed the implementation and presented results on different surface shapes.

The results obtained on glass objects are promising. While we have studied only the applica-
tion to transparent glass, the results show that extension to other transparent materials, such as
plastic, is possible.
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Future work includes the design of an experimental system that can project a specific pattern
(line, grid, matrix of points, etc.) to improve the 3D point acquisition speed. We will also study
the application to different materials (effects on the reconstruction, laser type and power), and
finally, we envisage an industrial prototype.
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