
A HIGH PERFORMANCE HARDWARE ARCHITECTURE FOR AN SAD REUSE BASED
HIERARCHICAL MOTION ESTIMATION ALGORITHM FOR H.264 VIDEO CODING

Sinan Yalcin, Hasan F. Ates, Ilker Hamzaoglu

Faculty of Engineering and Natural Sciences, Sabanci University,
 34956, Tuzla, Istanbul, Turkey

 syalcin@su.sabanciuniv.edu,{hasanates, hamzaoglu}@sabanciuniv.edu

ABSTRACT

In this paper, we present a high performance and low cost
hardware architecture for real-time implementation of an
SAD reuse based hierarchical motion estimation algorithm
for H.264 / MPEG4 Part 10 video coding. This hardware is
designed to be used as part of a complete H.264 video
coding system for portable applications. The proposed
architecture is implemented in Verilog HDL. The Verilog
RTL code is verified to work at 68 MHz in a Xilinx Virtex
II FPGA. The FPGA implementation can process 27 VGA
frames (640x480) or 82 CIF frames (352x288) per second.

1. INTRODUCTION

Video compression systems are used in many commercial
products, from consumer electronic devices such as digital
camcorders, cellular phones to video teleconferencing
systems. These applications make the video compression
hardware devices an inevitable part of many commercial
products. To improve the performance of the existing
applications and to enable the applicability of video
compression to new real-time applications, recently, a new
international standard for video compression is developed.
This new standard, offering significantly better video
compression efficiency than previous video compression
standards, is developed with the collobaration of ITU and
ISO standardization organizations. Hence it is called with
two different names, H.264 and MPEG4 Part 10.
 The video compression efficiency achieved in H.264
standard is not a result of any single feature but rather a
combination of a number of encoding tools. As it is shown
in the top-level block diagram of an H.264 Encoder in
Figure 1, one of these tools is the variable block size motion
estimation used in the baseline profile of H.264 standard [1,
2, 3]. Motion estimation is the most computationally
demanding part of the encoders implementing the previous
video compression standards. Variable block size motion
estimation achieves better coding results than the fixed
block size motion estimation used in the previous video
compression standards. However, the amount of
computation required by variable block size motion
estimation is even more than the amount required by fixed

Fig. 1. H.264 Encoder Block Diagram

block size motion estimation. Therefore, this coding gain
comes with an increase in encoding complexity which
makes it an exciting challenge to have a real-time
implementation of motion estimation for H.264 video
coding.
 In this paper, we present a high performance and low
cost hardware architecture for real-time implementation of
an SAD reuse based hierarchical motion estimation
algorithm for H.264 / MPEG4 Part 10 video coding. This
hardware is designed to be used as part of a complete H.264
video coding system for portable applications. The
proposed architecture is implemented in Verilog HDL. The
Verilog RTL code is verified to work at 68 MHz in a Xilinx
Virtex II FPGA. The FPGA implementation can process 27
VGA frames (640x480) or 82 CIF frames (352x288) per
second.
 A hardware architecture for real-time implementation of
a variable block size motion estimation algorithm for H.264
video coding is presented in [4]. This hardware achieves
higher performance than our hardware design at the
expense of a much higher hardware cost. Our hardware
design is a more cost-effective solution for portable
applications. They use 256 processing elements in their
datapath as opposed to 36 processing elements in our
datapath.
 The rest of the paper is organized as follows. Section II
explains the hierarchical motion estimation algorithm.
Section III describes the proposed architecture in detail.
The implementation results are given in Section IV. Finally,
Section V presents the conclusions.

2. SAD REUSE BASED HIERARCHICAL MOTION
ESTIMATION ALGORITHM

The amount of computation required by full-search method
(FSM) is not practical for real-time implementation even
for fixed block size motion estimation (ME). Variable block
size ME allows dividing a 16x16 Macroblock (MB) into
different size partitions and using a different motion vector
(MV) for each partition. A 16x16 MB can be divided into
two 8x16 or two 16x8 or four 8x8 partitions. Each 8x8
partition can further be partitioned into two 4x8, two 8x4 or
four 4x4 partitions. A variable block size ME algorithm,
therefore, has to find the best MVs for all partitions of the
MB; ([1 MV for 16x16 MB] + [2 MVs for 16x8 partitions]
+ [2 MVs for 8x16 partitions] + [4 MVs for 8x8 partitions]
+ [8 MVs for 8x4 partitions] + [8 MVs for 4x8 partitions] +
[16 MVs for 4x4 partitions] = 41 MVs). The best partition
for the MB is determined by the Mode Decision algorithm
based on these 41 MVs. Therefore, efficient algorithms are
needed to reduce the computational cost for variable block
size ME [5, 6].
 In this paper, we propose to use an SAD reuse based
hierarchical ME algorithm similar to the algorithm
presented in [6]. The simulation results show that even
though this algorithm has a much lower computational cost
than FSM, it provides almost as good coding efficiency as
FSM.

Fig. 2. Hierarchical Motion Estimation Algorithm

 The algorithm is illustrated in Figure 2. It consists of the
following four steps:

1 A 3-level pyramid is constructed using averages of
the MB pixels. A 4x4 block at level l2 corresponds to
the 16x16 MB in level l0.

2 A MV, , is predicted for the 16x16MB in level l0
by performing full search for the 4x4 block in level l2
within a search range of [-R/4, R/4] ([-R, R] is the
search range of the FSM).

2l
p

3 The MV prediction is refined by performing full
search for the 8x8 block at the location pointed by the

motion vector in level l1 within a search range of

[-R/4, R/4]. The refined MV prediction is .
2

2 lp

1lp
4 The MVs for the 16x16 MB and for all of its

partitions are determined by performing full search
based on minimizing the Lagrangian cost () for
all the partitions at both the location pointed by the
motion vector and location (0,0) in level l0
within a limited search range of ([-R/4, R/4]). The
Lagrangian cost is computed using the following
equations:

)(dJ

1
2 lp

)()(SAD)(
mxnB medM R pddd −+= λJ

 ∑
==

++−=
nm

yx
yx dydxryxc

,

1,1
B |),(),(|)(SAD

mxn
d

where is a partition of size mxn, (m,n) ∈
{(4,4), (4,8), (8,4), (8,8), (16,8), (8,16), (16,16)},

 is the MV, c and r are current and

reference frames respectively, λM is the Lagrange
multiplier for ME, is the MV prediction used
by H.264 video coding standard during the coding
process, and

mxnB

),(yx dd=d

medp

)(medR pd − specifies the bitrate spent
for coding MV difference information.

 The refined MV prediction in level l1 constitutes a good
initial prediction for the 16x16 MB and for all of its
partitions in level l0 when scaled by 2. Therefore,
hierarchical motion vector prediction, is used as a MV
prediction for the 16x16 MB and for all of its partitions.
However, in some cases, is inaccurate for small
partitions such as 4x4, using (0,0) vector as an additional
MV prediction helps to alleviate this problem.

1
2 lp

1
2 lp

 The full search for a 16x16 MB and for all of its
partitions performed in level l0 require computing the Sum
of Absolute Differences (SADs) for all MVs within the
search range for all partitions. However, since the full
search for a 16x16 MB and for all of its partitions are
performed starting at the same location in level l0 (location
pointed by the motion vector or location (0,0)) within
the same size search range ([-R/4, R/4]), SADs computed
for 4x4 partitions can be reused to compute the SADs for
larger partitions, e.g. 8x8, 16x16. In other words, for a
given MV , SAD of can be decomposed
into the SADs of its 4x4 partitions:

1
2 lp

),(yx dd=d mxnB

∑∑
−=
−=

=
=

++−=
lk

ly
kx

yx

nm

l
k

dydxryxc
4,4

34
,34

4/,4/

1
,1

B |),(),(|)(SAD
mxn

d

 Since all summations on the right are evaluated at the
same MV , computing requires

computing the SADs of all its 4x4 partitions for MV d and
adding them up. This SAD reuse technique decreases the
total number of computations significantly.

d)(SAD
mxnB d

 The SAD reuse based hierarchical ME algorithm is
integrated into the Joint Model (JM) Reference Software
Version 7.4 [7]. The updated software is then used to
simulate the hierarchical ME algorithm for R=16 using
video sequences carphone (QCIF), foreman (CIF), mobile
(SIF) and flowergarden (SIF) at 30fps. All frames except
the first one are coded as P-frames. One reference frame is
allowed. The CAVLC entropy coder is used, with
quantization parameter values QP = 24, 28, 32, 36. For
comparison to FSM, average PSNR loss in dB and
percentage change in bitrate are reported in Table 1. In
addition, at equal bitrates, PSNR loss is observed to be less
than 0.2 dB for all the tested sequences. These results
confirm that even though our algorithm has a much lower
computational cost than FSM, it provides almost as good
coding efficiency as FSM.

Table 1. Performance Comparison with FSM

 δPSNR (dB) δbitrate (%)
carphone (QCIF) -0.04 +0.76

foreman (CIF) -0.04 +3.11
mobile (SIF) -0.02 +0.39

flowergarden(SIF) -0.02 +0.73

3. PROPOSED HARDWARE ARCHITECTURE

In this section, we will explain the proposed hardware
architecture for real-time implementation of the SAD reuse
based hierarchical motion estimation algorithm described in
section 2. The proposed hardware implements the algorithm
for the case where R=16 and therefore the search ranges
used in all 3 levels l0, l1 and l2 are [-4, 4]. The search
window for a [-4, 4] search range contains 9x9 = 81 search
locations; 2*4+1 = 9 rows and 2*4+1 = 9 search locations
in each row.
 The current MB (16x16 pixels) and search window
(64x64 pixels) are stored in block RAMs in the FPGA. The
proposed hardware first constructs a 3-level pyramid by
using the averaging datapath shown in Figure 3. The
datapath is used to generate the current block and search
window values in levels l1 and l2 by calculating the average
of the corresponding pixels in the current MB and search
range in level l0. Each averaging unit calculates the average
of 4 pixels in level l0. The resulting values are stored in
registers and they are used to perform full search for the
8x8 block in level l1 within a search range of [-4, 4]. The
averaging unit A5 calculates the average of the results
produced by A1-A4 which corresponds to the average of 16

Fig. 3. Averaging Datapath

pixels in level l0. The resulting values are stored in registers
and they are used to perform full search for the 4x4 block in
level l2 within a search range of [-4, 4]. The averaging
process takes 640 clock cycles.
 The proposed hardware then performs both the
hierarchical MV prediction in levels l2 and l1, and motion
estimation with SAD reuse in level l0 using the datapath
shown in Figure 4. The datapath uses 36 PEs divided into
four separate groups. Each group has an array of 9 PEs.
The architecture of a PE and the organization of PEs in a
group are shown in Figure 5. As we will explain in this
section, the reason for using 36 PEs divided into four
separate groups is to have an efficient real-time
implementation of the motion estimation with SAD reuse in
level l0. The hierarchical MV prediction in levels l2 and l1
are implemented by utilizing the hardware resources used
for the motion estimation with SAD reuse in level l0.
 The datapath is first used for the hierarchical MV
prediction in level l2 by performing full search for the 4x4
block in level l2 within a search range of [-4, 4]. All 36 PEs
in the datapath are used to perform the full search as
follows. Each PE is used to calculate the SAD value for one
search location in the search window. Since there are 9
search locations in one row of the search window, a PE
group is used to calculate the SAD values for the search
locations in one row of the search window. After each PE
group finishes calculating the SAD values for the search
locations in one row of the search window, it starts
calculating the SAD values in another row of the search
window. Therefore, each PE group together with a
multiplexer and comparator is used to find the minimum
SAD in two rows of the search window. All 4 PE groups
are, therefore, utilized to find the motion vector with
the minimum SAD in the search window. This process
takes 42 clock cycles.

2l
p

 The datapath is then used for the hierarchical MV
refinement in level l1 by performing full search for the 8x8
block at the location pointed by the motion vector in

2
2 lp

Fig. 4. Hierarchical Motion Estimation Datapath

Fig. 5. Processing Element Group

level l1 within a search range of [-4, 4]. Since there are four
4x4 partitions (a, b, c, and d) of the 8x8 block and there are
9 search locations in one row of the search window, each
PE group is used to calculate the SAD values for a 4x4
partition for the search locations in one row of the search
window. Each PE in a group calculates the SAD value for
its 4x4 partition for one search location in one row of the
search window. PE groups 0, 1, 2, and 3 are used for
partitions a, b, c, and d respectively. After each PE group
finishes calculating the SAD values for its 4x4 partition for
the search locations in the current row of the search
window, it starts calculating the SAD values for its 4x4
partition in the next row of the search window. After the
corresponding processing elements in each PE group, e.g.
processing element 0 in each PE group, calculate the SAD
value for a search location for its 4x4 partition, the 4x8SAD
and 8x8SAD adders in the datapath are used to calculate the
SAD value for that search location for the 8x8 partition.
The multiplexer and comparator at the outputs of the
8x8SAD adders are used to find the minimum SAD for the
8x8 partition and the corresponding motion vector in
the search window. This process takes 156 clock cycles.

1lp

 The datapath is finally used for the motion estimation
with SAD reuse in level l0. It is used to perform full search
based on minimizing the Lagrangian cost for the 16x16
current MB and for all of its partitions at both the location
pointed by the motion vector and location (0,0) within
a search range of [-4, 4] to determine the 41 best motion
vectors for all partitions of the MB. The datapath is
designed to use the SAD reuse technique for performing
full search for a 16x16 MB and for all of its partitions
within a search range of [-4, 4]. Each PE group in the
datapath together with a multiplexer and comparator is used
to perform full search for a 4x4 partition of the 16x16 MB
within a search range of [-4, 4]. Since there are 9 search
locations in one row of the search window, 9 PEs are
grouped together to calculate the SAD values for a 4x4
partition for the search locations in one row of the search
window. Each processing element in a group calculates the
SAD value for a 4x4 partition for one search location in one
row of the search window.

1
2 lp

Fig. 6. Data Flow for Processing Elements PE0-PE17

Fig. 7. Search Window Overlap of Two Neighboring 4x4

Partitions

 As it is shown in Figure 6, in order to reduce the
number of current block and search window register ports
and number of accesses to these registers, each PE in a
group starts calculating its SAD value one cycle later than
the previous PE in that group so that PEs can reuse the
current block value accessed by the first PE in the group
and several PEs can use the same search window value in
the same cycle. Since PE0 starts working in cycle 0, it
finishes calculating its first SAD in cycle 15. The last PE in
that group, PE8, finishes calculating its SAD in cycle 8 +
15 = 23. After each PE finishes calculating an SAD value
for a 4x4 partition in the current row of the search window,
it starts calculating an SAD value for the same 4x4 partition
in the next row of the search window. Since there are 9
rows in the search window, the minimum SAD for a 4x4
partition and the corresponding motion vector is found in 8
+ 9x16 = 152 cycles.
 Since the full search for a 16x16 MB and for all of its
partitions are performed starting at the same location in
level l0 (location pointed by the motion vector or
location (0,0)) within the same size search range ([-4, 4]),

the search windows of two neighboring 4x4 partitions (a, b)
of the MB overlap as shown in Figure 7. The search
window regions s1, s2 and s3 are used for partition a, and
the search window regions s2, s3 and s4 are used for
partition b. Therefore, the search window regions s2 and s3
are shared by both a and b partitions. In order to exploit this
to reduce the number of search window register ports (from
3+3=6 to 4) and the number of accesses to search window
registers, the full search for partitions a and b are performed
simultaneously by using PE group 0 for partition a and PE
group 1 for partition b. As it is shown in Figure 6, the
processing elements in PE group 1 starts calculating their
SADs 4 cycles later than the corresponding processing
elements in PE group 0 so that several PEs in group 0 and
group 1 can use the same search window value (in regions
s2 or s3) in the same cycle. Therefore, the minimum SAD
for partition b and the corresponding motion vector is found
in 4+152=156 cycles.

1
2 lp

 As the PE groups 0 and 1 perform the full search for
partitions a and b, PE groups 2 and 3 perform the full
search for partitions c and d simultaneously based on the
same data flow shown in Figure 6. Therefore, the minimum
SADs for 4x4 partitions a, b, c and d and the corresponding
motion vectors are found in 156 cycles.
 After the corresponding processing elements in each PE
group, e.g. processing element 0 in each PE group,
calculate the SAD value for a search location for its 4x4
partition, the 4x8SAD, 8x4SAD and 8x8SAD adders in the
datapath are used to calculate the SAD values for that
search location for the 4x8 (a+b and c+d), 8x4 (a+c and
b+d), and 8x8 (a+b+c+d) partitions by reusing the SAD
values of the 4x4 partitions. In other words, as the full

search for 4x4 partitions a, b, c, and d are performed, the
full search for two 4x8 (a+b and c+d), two 8x4 (a+c and
b+d), and one 8x8 (a+b+c+d) partition are also performed
in parallel by using the 4x8SAD, 8x4SAD and 8x8SAD
adders and the multiplexers and comparators at their
outputs in the datapath. Therefore, by using the SAD reuse
technique, the minimum SADs for two 4x8, two 8x4 and
one 8x8 partition and the corresponding motion vectors are
found as well in the same 156 cycles.
 After the full search for the first four 4x4 partitions are
performed, the four PE groups are used to perform the full
search for the next four 4x4 partitions of the MB. Again, by
using the SAD reuse technique, the full search for the
corresponding two 4x8, two 8x4, and one 8x8 partition are
performed in parallel. Since there are four 8x8 partitions in
a MB, this process is repeated 4 times. Therefore, full
search for all 4x4, 4x8, 8x4 and 8x8 partitions are
performed in 4*156 = 624 clock cycles.
 As the full search for 8x8 partitions are performed, the
full search for 8x16, 16x8 and 16x16 partitions are also
performed in parallel by using the 8x16SAD, 16x8SAD and
16x16SAD registers, adders, multiplexers and comparators
in the datapath. Therefore, by using the SAD reuse
technique, the minimum SADs for 8x16, 16x8 and 16x16
partitions and the corresponding motion vectors are found
as well in the same 624 clock cycles.
 After the full search for the 16x16 current MB and for
all of its partitions at the location pointed by the motion
vector within a search range of [-4, 4] are performed,
the full search for the same MB and for all of its partitions
are performed at location (0, 0) within a search range of [-
4, 4] by using the same datapath with the same data flow.
This process takes 624 clock cycles as well. Therefore, the
41 best motion vectors for all partitions of a MB are
determined in 640 (averaging) + 42 (level l2) + 156 (level
l1) + 2*624 (level l0) = 2086 clock cycles.

1
2 lp

4. IMPLEMENTATION RESULTS

The proposed architecture is implemented in Verilog HDL.
The implementation is verified with RTL simulations
using Mentor Graphics ModelSim SE. The Verilog RTL is
then synthesized to a 2V8000ff1152 Xilinx Virtex II
FPGA with speed grade 5 using Mentor Graphics
Leonardo Spectrum. The resulting netlist is placed and
routed to the same FPGA using Xilinx ISE Series 5.2i.
 The FPGA implementation is verified to work at 68
MHz under worst-case PVT conditions with post place and
route simulations. The FPGA implementation can process
a VGA frame in 36.8 msec. (1200 MB * 2086 clock cycles
per MB * 14.7 ns clock cycle = 36.8 msec) Therefore, it
can process 1000/36.8 = 27 VGA frames (640x480) per
second. The FPGA implementation can process a CIF

frame in 12.2 msec. (396 MB * 2086 clock cycles per MB
* 14.7 ns clock cycle = 12.2 msec) Therefore, it can
process 1000/12.2 = 82 CIF frames (352x288) per second.
 The FPGA implementation including input, output and
internal RAMs and register files uses the following FPGA
resources; 14505 Function Generators, 7253 CLB Slices,
5227 Dffs/Latches, 13 Block RAMs, and 7 Block
Multipliers (used for calculating λM * R), i.e. %15.5 of
Function Generators, %15.5 of CLB Slices, %5.4 of
Dffs/Latches, %7.7 of Block RAMs, and %4.1 of Block
Multipliers.

5. CONCLUSION

In this paper, we presented a high performance and low cost
hardware architecture for real-time implementation of an
SAD reuse based hierarchical motion estimation algorithm
for H.264 / MPEG4 Part 10 video coding. This hardware is
designed to be used as part of a complete H.264 video
coding system for portable applications. The proposed
architecture is implemented in Verilog HDL. The Verilog
RTL code is verified to work at 68 MHz in a Xilinx Virtex
II FPGA. The FPGA implementation can process 27 VGA
frames (640x480) or 82 CIF frames (352x288) per second.

6. REFERENCES

1 T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra,
“Overview of the H.264/AVC Video Coding Standard”,
IEEE Trans. on Circuits and Systems for Video Technology,
vol. 13, no. 7, pp. 560–576, July 2003

2 I. G. Richardson, H.264 and MPEG-4 Video Compression,
Wiley, 2003

3 Joint Video Team (JVT) of ITU-T VCEG and ISO/IEC
MPEG, Draft ITU-T Recommendation and Final Draft
International Standard of Joint Video Specification, ITU-T
Rec. H.264 and ISO/IEC 14496-10 AVC, May 2003

4 Yu-Wen Huang, Tu-Chih Wang, Bing-Yu Hsieh, and Liang-
Gee Chen, “Hardware Architecture Design for Variable
Block Size Motion Estimation in MPEG-4 AVC/JVT/ITU-T
H.264”, Proc. IEEE ISCAS, May 2003

5 H. C. Tourapis and A.M. Tourapis, “Fast motion estimation
within the H.264 codec,” Proc. IEEE Int. Conf. Multimedia
and Expo, vol. 3, pp. 517–20, July 2003

6 H. F. Ates and Y. Altunbasak, “SAD Reuse in Hierarchical
Motion Estimation for the H.264 Encoder”, Proc. IEEE Int.
Conf. on Acoustics, Speech and Signal Processing, March
2005

7 Joint Video Team (JVT) of ITU-T VCEG and ISO/IEC
MPEG, Joint Model (JM) Reference Software Version 7.4,
http://iphome.hhi.de/suehring/tml

