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Spectral gaps of Schrödinger operators with periodic

singular potentials
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Abstract. By using quasi–derivatives we develop a Fourier method for study-
ing the spectral gaps of one dimensional Schrödinger operators with periodic
singular potentials v. Our results reveal a close relationship between smooth-
ness of potentials and spectral gap asymptotics under a priori assumption
v ∈ H−1

loc
(R). They extend and strengthen similar results proved in the classi-

cal case v ∈ L2
loc

(R).
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1. Inroduction

We consider the Hill operator

(1.1) Ly = −y′′ + v(x)y, x ∈ I = [0, π],
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with a singular complex–valued π–periodic potential v ∈ H−1
loc (R), i.e.,

(1.2) v(x) = v0 + Q′(x), Q ∈ L2
loc(R), Q(x + π) = Q(x),

with Q having zero mean

(1.3) q(0) =

∫ π

0

Q(x)dx = 0;

then

(1.4) Q(x) =
∑

m∈2Z\{0}
q(m)eimx, ‖Q‖2

L2(I) = ‖q‖2 =
∑

m∈2Z\{0}
|q(m)|2 < ∞,

where q = (q(m))m∈2Z.
Analysis of the Hill or Sturm–Liouville operators, or their multi–dimensional

analogues −∆+v(x) with point (surface) interaction (δ–type) potentials has a long
history. From the early 1960’s (F. Berezin, L. Faddeev, R. Minlos [6, 7, 57]) to
around 2000 the topic has been studied in detail; see books [2, 3] and references
there. For specific potentials see W. N. Everitt and A. Zettl [23, 24] and P. Kurasov
[51].

A more general approach which allows to consider any singular potential (be-
yond δ–functions or Coulomb type) in negative Sobolev spaces has been initiated
by A. Shkalikov and his coauthors Dzh. Bak, M. Nĕıman-zade and A. Savchuk
[5, 62, 63, 69]. It led to the spectral theory of Sturm–Liouville operators with
distribution potentials developed by A. Savchuk and A. Shkalikov [68, 70, 71, 72],
and R. Hryniv and Ya. Mykytyuk [34, 35, 36, 37, 38, 39]).

Another approach to the study of the Sturm–Liouville operators with non–
classical potentials comes from M. Krein [48, 49]. E. Korotyaev (see [45, 46, 47]
and the references therein) uses this approach very successfully but it seems to be
limited to the case of real potentials.

A. Savchuk and A. Shkalikov [71] consider a broad class of boundary conditions
(bc) – see Formula (1.6) in Theorem 1.5 there – in terms of a function y and its
quasi–derivative

u = y′ − Qy.

In particular, the proper form of periodic Per+ and antiperiodic (Per−) bc is

(1.5) Per± : y(π) = ±y(0), u(π) = ±u(0).

If the potential v happens to be an L2-function those bc are identical to the classical
ones (see discussion in [16], Section 6.2).

The Dirichlet Dir bc is more simple:

(1.6) Dir : y(0) = 0, y(π) = 0;

it does not require quasi–derivatives, so it is defined in the same way as for L2–
potentials.

In our analysis of instability zones of the Hill and Dirac operators (see [14]
and the comments there) we follow an approach ([40, 41, 9, 11, 60, 12]) based
on Fourier Method. But in the case of singular potentials it may happen that the
functions

uk = eikx or sin kx, k ∈ Z,
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have their Lbc–images outside L2. Moreover, for some singular potentials v we have
Lbcf 6∈ L2 for any nonzero smooth (say C2−function) f. (For example, choose

v(x) =
∑

r

a(r)δ∗(x − r), r rational, r ∈ I,

with a(r) > 0,
∑

r a(r) = 1 and δ∗(x) =
∑

k∈Z
δ(x − kπ).) This implies, for

any reasonable bc, that the eigenfunctions {uk} of the free operator L0
bc are not

necessarily in the domain of Lbc.
Yet, in [15, 16] we gave a justification of the Fourier method1 for operators

Lbc with H−1–potentials and bc = Per± or Dir. Our results are announced in
[15], and all technical details of justification of the Fourier method are provided
in [16]. In Section 2 we remind our constructions from [16] which is essentially a
general introduction to the present paper. A proper understanding of the boundary
conditions (Per± or Dir) – see (1.5) and the formulas (2.1), (a∗), (b∗) below – and
careful definitions of the corresponding operators and their domains are provided
by using quasi–derivatives. To great extend we follow the approach suggested and
developed by A. Savchuk and A. Shkalikov [69, 71] (see also [70, 72]) and further,
by R. Hryniv and Ya. Mykytyuk [34] and [37, 39].

The Hill–Schrödinger operator L with a singular potential v ∈ H−1 has, for
each n ≥ n0(v) in the disc of center n2 and radius n, one Dirichlet eigenvalue µn

and two (counted with their algebraic multiplicity) periodic (if n is even) or anti–
periodic (if n is odd) eigenvalues λ−

n , λ+
n (see Proposition 4 below, or Theorem 21

in [16]).
Our main goal in the present paper is to study, for singular potentials v ∈ H−1,

the relationship between the smoothness of v and the asymptotic behavior of spectral
gaps γn = |λ+

n − λ−
n | and deviations δn = |µn − (λ+

n + λ−
n )/2|. In the classical case

v ∈ L2 this relationship means, roughly speaking, that the sequences (γn) and (δn)
decay faster if the potential is smoother, and vise versa. Of course, to make this
statement precise one needs to consider appropriate classes of smooth functions and
related classes of sequences.

This phenomenon was discovered by H. Hochstadt [32, 33], who showed for
real–valued potentials v ∈ L2 the following connection between the smoothness
of v and the rate of decay of spectral gaps (or, the lengths of instability zones)
γn = λ+

n − λ−
n : If

(i) v ∈ C∞, i.e., v is infinitely differentiable, then
(ii) γn decreases more rapidly than any power of 1/n.
If a continuous function v is a finite–zone potential, i.e., γn = 0 for all large

enough n, then v ∈ C∞.
In the middle of 70’s (see [53], [54]) the latter statement was extended, namely,

it was shown, for real L2([0, π])–potentials v, that a power decay of spectral gaps
implies infinite differentiability, i.e., the implication (ii) ⇒ (i) holds.

1Maybe it is worth to mention that T. Kappeler and C. Möhr [42] analyze ”periodic and
Dirichlet eigenvalues of Schrödinger operators with singular potential” but they never tell how
these operators (or boundary conditions) are defined on the interval, i.e., in a Hilbert space
L2([0, π]). At some point they jump without any justification or explanation into weighted ℓ2–
sequence spaces (an analog of Sobolev spaces Ha) and consider the same sequence space operators
that appear in the regular case, i.e., if v ∈ L2

per(R). But without formulating which Sturm–Liouville

problem is considered, what are the corresponding boundary conditions, what is the domain of
the operator, etc., it is not possible to pass from a non-defined differential operator to its Fourier
representation.
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E. Trubowitz [76] has used the Gelfand–Levitan [26] trace formula and the
Dubrovin equations [20, 21] to explain, that a real L2([0, π])–potential v(x) =
∑

k∈Z
V (2k) exp(2ikx) is analytic, i.e.,

∃A > 0 : |V (2k)| ≤ Me−A|k|,

if and only if the spectral gaps decay exponentially, i.e.,

∃a > 0 : γn ≤ Ce−a|k|

M. Gasymov [25] showed that if a potential v ∈ L2([0, π]) has the form v(x) =
∑∞

k=0 vk exp(2ikx) then γn = 0 ∀n. Therefore, in general the decay of γn cannot
give any restriction on the smoothness of complex potentials. V. Tkachenko [74, 75]
suggested to bring the deviations δn into consideration. As a further development,
J.-J. Sansuc and V. Tkachenko [67] gave a statement of Hochstadt type: A potential
v ∈ L2([0, π]) belongs to the Sobolev space Hm, m ∈ N if and only if

∑

(

|γn|2 + |δn|2
) (

1 + n2m
)

< ∞.

When talking about general classes of π-periodic smooth functions, we charac-
terize the smoothness by a weight Ω = (Ω(n)), and consider the “Sobolev“ space

(1.7) H(Ω) =

{

v(x) =
∑

k∈Z

vke2ikx,
∑

k∈Z

|vk|2(Ω(k))2 < ∞
}

.

The related sequence space is determined as

(1.8) ℓ2
Ω =

{

ξ = (ξn)∞0 :
∑

n∈N

|ξn|2(Ω(n))2 < ∞
}

.

In this terminology and under a priori assumption v ∈ L2, one may consider the
following general question on the relationship between the potential smoothness and
decay rate of spectral gaps and deviations: Is it true that the following conditions
(A) and (B) are equivalent:

(A) v ∈ H(Ω); (B) γ ∈ ℓ2(Ω) and δ ∈ ℓ2(Ω).

The answer is positive for weights Ω in a broad range of growths from being constant
to growing exponentially – see more detailed discussion and further results in [14],
in particular Theorems 54 and 67.

Let us note that in the classical case v ∈ L2 we have vk → 0 as |k| → ∞, and
γn → 0, δn → 0 as n → ∞. Therefore, if v ∈ L2 then we consider weights which
satisfy the condition

(1.9) inf
n

Ω(n) > 0.

In the case v ∈ H−1 the sequences (vk), (γn), (δn) may not converge to zero,
but vk/k → 0 as |k| → ∞, and γn/n → 0, δn/n → 0 as n → ∞. Therefore, in the
case v ∈ H−1 it is natural to consider weights which satisfy

(1.10) inf
n

n Ω(n) > 0.

The main results of the present paper assert, under a priori assumption v ∈ H−1,
that the conditions (A) and (B) above are equivalent if Ω satisfies (1.10) and some
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other mild restrictions (see for precise formulations Theorem 28 and Theorem 29).
Since the condition (1.9) is more restrictive than (1.10), these results extend and
strengthen our previous results in the classical case v ∈ L2 as well.

Sections 3–7, step by step, lead us to the proofs of Theorems 28 and 29. As
before in the regular case v ∈ L2 ([11], Proposition 4) an important ingredient of
the proof (see in particular Section 7) is the following assertion about the deviations
of Riesz projections Pn − P 0

n of Hill operators (with singular potentials) Lbc and
free operators L0

bc :

(1.11) ‖Pn − P 0
n‖L1→L∞ → 0.

This fact is important not only in the context of Theorem 29 but also for a series of
results on convergence of spectral decompositions, both in the case of Hill operators
with singular potentials and 1D Dirac operators with periodic L2–potentials (see
[17, 18, 19]). The proof and analysis of the statement (1.11) is put aside of the
main text as Appendix, Section 9.

Section 8 gives a few comments (in historical context) on different parts of
the general scheme and its realization. In particular, we remind and extend in
Proposition 38 the observation of J. Meixner and F. W. Schäfke [55, 56] that
the Dirichlet eigenvalues of the Hill–Mathieu operator could be analytic only in
a bounded disc. They gave upper bounds of the radii of these discs (see Satz 8,
Section 1.5 in [55] and p. 87, the last paragraph, in [56]). This is an interesting
topic of its own (see [78]–[82] and [13]). This analysis has been extended to families
of tri–diagonal matrix operators in [1].

2. Preliminaries

It is known (e.g., see [34], Remark 2.3) that every π–periodic potential v ∈
H−1

loc (R) has the form

v = C + Q′, where C = const, Q is π − periodic, Q ∈ L2
loc(R).

Therefore, formally we have

−y′′ + v · y = ℓ(y) := −(y′ − Qy)′ − Q(y′ − Qy) + (C − Q2)y.

So, one may introduce the quasi–derivative u = y′−Qy and replace the distribution
equation −y′′ + vy = 0 by the following system of two linear differential equations
with coefficients in L1

loc(R)

(2.1) y′ = Qy + u, u′ = (C − Q2)y − Qu.

By the Existence–Uniqueness Theorem for systems of linear o.d.e. with L1
loc(R)–

coefficients (e.g., see [4, 61]), the Cauchy initial value problem for the system (2.1)
has, for each pair of numbers (a, b), a unique solution (y, u) such that y(0) =
a, u(0) = b. This makes possible to apply the Floquet theory to the system (2.1),
to define a Lyapunov function, etc.

We define the Schrödinger operator L(v) in the domain

(2.2) D(L(v)) =
{

y ∈ H1(R) : y′ − Qy ∈ L2(R) ∩ W 1
1,loc(R), ℓ(y) ∈ L2(R)

}

,

by

(2.3) L(v)y = ℓ(y) = −(y′ − Qy)′ − Qy′.
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The domain D(L(v)) is dense in L2(R), the operator L(v) is a closed, and its
spectrum could be described in terms of the corresponding Lyapunov function (see
Theorem 4 in [16]).

In the classical case v ∈ L2
loc(R), if v is a real–valued then by the Floquet–

Lyapunov theory (see [22, 50, 52, 83]) the spectrum of L(v) is absolutely contin-
uous and has a band–gap structure, i.e., it is a union of closed intervals separated
by spectral gaps

(−∞, λ0), (λ−
1 , λ+

1 ), (λ−
2 , λ+

2 ), . . . , (λ−
n , λ+

n ), . . . .

The points (λ±
n ) are defined by the spectra of the corresponding Hill operator

considered on the interval [0, π], respectively, with periodic (for even n) and anti–
periodic (for odd n) boundary conditions (bc) :

(a) periodic Per+ : y(π) = y(0), y′(π) = y′(0);
(b) antiperiodic Per− : y(π) = −y(0), y′(π) = −y′(0);
Recently a similar statement was proved in the case of real singular potentials

v ∈ H−1 by R. Hryniv and Ya. Mykytyuk [34].
Following A. Savchuk and A. Shkalikov [69, 71], let us consider (in the case

of singular potentials) periodic and anti–periodic boundary conditions Per± of the
form

(a∗) Per+ : y(π) = y(0), (y′ − Qy) (π) = (y′ − Qy) (0).
(b∗) Per− : y(π) = −y(0), (y′ − Qy) (π) = − (y′ − Qy) (0).
R. Hryniv and Ya. Mykytyuk [34] showed, that the Floquet theory for the

system (2.1) could be used to explain that if the potential v ∈ H−1
loc is real–valued,

then L(v) is a self–adjoint operator having absolutely continuous spectrum with
band–gap structure, and the spectral gaps are determined by the spectra of the
corresponding Hill operators LPer± defined on [0, π] by LPer±(y) = ℓ(y) for y ∈
D(LPer±), where

D(LPer±) =
{

y ∈ H1 : y′ − Qy ∈ W 1
1 ([0, π]), (a∗) or (b∗) holds, ℓ(y) ∈ H0

}

.

(Hereafter the short notations H1 = H1([0, π]), H0 = L2([0, π]) are used.)
We set

H1
Per± =

{

f ∈ H1 : f(π) = ±f(0)
}

, H1
Dir =

{

f ∈ H1 : f(π) = f(0) = 0
}

.

One can easily see that {uk = eikx, k ∈ ΓPer+ = 2Z} is an orthogonal basis in
H1

Per+ , {uk = eikx, k ∈ ΓPer− = 1 + 2Z} is an orthogonal basis in H1
Per− , and

{uk =
√

2 sin kx, k ∈ ΓDir = N} is an orthogonal basis in H1
Dir . From here it

follows, for bc = Per± or Dir, that

H1
bc =

{

f(x) =
∑

k∈Γbc

fkuk(x) : ‖f‖2
H1 =

∑

k∈Γbc

(1 + k2)|fk|2 < ∞
}

.

Now, we are ready to explain the Fourier method for studying the spectra of
the operators LPer± . We set

(2.4) V (k) = ikq(k), k ∈ 2Z,

where q(k) are the Fourier coefficients of Q defined in (1.4).
Let F : H0 → ℓ2(ΓPer±) be the Fourier isomorphism defined by mapping a

function f ∈ H0 to the sequence (fk) of its Fourier coefficients fk = (f, uk), where
{uk, k ∈ ΓPer±} is the corresponding basis introduced above. Let F−1 be the
inverse Fourier isomorphism.
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Consider the operators L+ and L− acting as

L±(z) = (hk(z))k∈ΓP er±
, hk(z) = k2zk +

∑

m∈ΓPer±

V (k − m)zm + Czk,

respectively, in

D(L±) =
{

z ∈ ℓ2(|k|, ΓPer±) : L±(z) ∈ ℓ2(ΓPer±)
}

,

where

ℓ2(|k|, ΓPer±) =

{

z = (zk)k∈ΓP er±
:
∑

k

(1 + |k|2)|zk|2 < ∞
}

.

Proposition 1. (Theorem 11 in [16]) In the above notations, we have

(2.5) D(LPer±) = F−1 (D(L±)) , LPer± = F−1 ◦ L± ◦ F .

Next we study the Hill–Schrödinger operator LDir(v), v = C + Q′, generated
by the differential expression ℓQ(y) when considered with Dirichlet boundary con-
ditions Dir : y(0) = y(π) = 0. We set

LDir(v)y = ℓQ(y), y ∈ D(LDir(v)),

where

D(LDir) =
{

y ∈ H1 : y′ − Qy ∈ W 1
1 ([0, π]), y(0) = y(π) = 0, ℓQ(y) ∈ H0

}

.

Proposition 2. (Theorem 13 in [16]) Suppose v ∈ H−1
loc (R) is π–periodic.

Then:
(a) the domain D(LDir(v)) is dense in H0;
(b) the operator LDir(v) is closed and its conjugate operator is

(LDir(v))
∗

= LDir(v),

so, in particular, if v is real, then the operator LDir(v) is self–adjoint;
(c) the spectrum Sp(LDir(v)) of the operator LDir(v) is discrete, and

Sp(LDir(v)) = {λ ∈ C : y2(π, λ) = 0}.
Let

(2.6) Q(x) =
∑

k∈N

q̃(k)
√

2 sin kx

be the sine Fourier series of Q. We set

(2.7) Ṽ (k) = kq̃(k), k ∈ N.

Let F : H0 → ℓ2(N) be the Fourier isomorphisms that maps a function f ∈ H0

to the sequence (fk)k∈N of its Fourier coefficients fk = (f,
√

2 sin kx), and let F−1

be the inverse Fourier isomorphism.
We set, for each z = (zk) ∈ ℓ2(N),

hk(z) = k2zk +
1√
2

∑

m∈N

(

Ṽ (|k − m|) − Ṽ (k + m)
)

zm + Czk,

and consider the operator Ld defined by

Ld(z) = (hk(z))k∈N

in the domain
D(Ld) =

{

z ∈ ℓ2(|k|, N) : Ld(z) ∈ ℓ2(N)
}

,
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where

ℓ2(|k|, N) =

{

z = (zk)k∈N :
∑

k

|k|2|zk|2 < ∞
}

.

Proposition 3. (Theorem 16 in [16]) In the above notations, we have

(2.8) D(LDir) = F−1 (D(Ld)) , LDir = F−1 ◦ Ld ◦ F .

Let L0 be the free operator, and let V denotes the operator of multiplication
by v. One of the technical difficulties that arises for singular potentials is connected
with the standard perturbation type formulae for the resolvent Rλ = (λ−L0−V )−1.
In the case where v ∈ L2([0, π]) one can represent the resolvent in the form

Rλ = (1−R0
λV )−1R0

λ =

∞
∑

k=0

(R0
λV )kR0

λ or Rλ = R0
λ(1− V R0

λ)−1 =

∞
∑

k=0

R0
λ(V R0

λ)k,

where R0
λ = (1−L0)−1. The simplest conditions that guarantee the convergence of

these series are

‖R0
λV ‖ < 1, respectively, ‖V R0

λ‖ < 1.

Each of these conditions can be easily verified for large enough n if Re λ ∈ [n −
1, n + 1] and |λ− n2| ≥ C(‖v‖L2), which leads to a series of results on the spectra,
zones of instability and spectral decompositions.

The situation is more complicated if v is a singular potential. Then, in general,
there are no good estimates for the norms of R0

λV and V R0
λ. However, one can

write Rλ in the form

Rλ = R0
λ + R0

λV R0
λ + R0

λV R0
λV R0

λ + · · · = K2
λ +

∞
∑

m=1

Kλ(KλV Kλ)mKλ,

provided (Kλ)2 = R0
λ. We define an operator K = Kλ with this property by its

matrix representation

Kjm = (λ − j2)−1/2δjm, j, m ∈ Γbc,

where z1/2 =
√

reiϕ/2 if z = reiϕ, −π ≤ ϕ < π. Then Rλ is well–defined if

‖KλV Kλ : ℓ2(Γbc) → ℓ2(Γbc)‖ < 1.

By proving good estimates from above of the Hilbert–Schmidt norms of the
operators KλV Kλ for bc = Per± or Dir we get the following statements.

Proposition 4. (Theorem 21 in [16]) For each periodic potential v ∈ H−1
loc (R),

the spectrum of the operator Lbc(v) with bc = Per±, Dir is discrete. Moreover, if
bc = Per± then, respectively, for each large enough even number N+ > 0 or odd
number N−, we have

Sp (LPer±) ⊂ RN± ∪
⋃

n∈N±+2N

Dn,

where the rectangle RN = {λ = x + iy : −N < x < N2 + N, |y| < N} contains,
respectively, 2N+ + 1 or 2N− eigenvalues, while each disc Dn = {λ : |λ −
n2| < n/4} contains two eigenvalues ( each eigenvalue is counted with its algebraic
multiplicity).
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If bc = Dir then, for each large enough N ∈ N, we have

Sp (LDir) ⊂ RN ∪
∞
⋃

n=N+1

Dn

and

#(Sp (LDir) ∩ RN ) = N + 1, #(Sp (LDir)) ∩ Dn) = 1, n > N.

This localization theorem, i.e., Proposition 4, says that for each n > N∗ =
max{N+, N−, N} the disc Dn contains exactly one Dirichlet eigenvalue µn and two
periodic (if n is even) or antiperiodic (if n is odd) eigenvalues λ+

n and λ−
n , counted

with their algebraic multiplicity, where either Re λ+
n > Re λ−

n , or Re λ+
n = Re λ−

n

and Im λ+
n ≥ Im λ−

n .
After this observation we define spectral gaps

(2.9) γn = |λ+
n − λ−

n |, n ≥ N∗,

and deviations

(2.10) δn =
∣

∣γn − (λ+
n + λ−

n )/2
∣

∣ , n ≥ N∗.

We characterize “the rate of decay“ of these sequences by saying that they are
elements of an appropriate weight sequence space

ℓ2(Ω) =
{

(xk)k∈N :
∑

|xk|2(Ω(k))2 < ∞
}

.

The condition (1.10) means that ℓ2(Ω) ⊂ ℓ2({n}). Now, with the restriction
(1.10) – which is weaker than (1.9) – we permit the weights to decrease to zero.
For example, the weights Ωβ(n) = n−β, β ∈ (0, 1], satisfy (1.10). Moreover, if
β > 1/2, then the sequence xk = kα, 0 < α < β − 1/2 goes to ∞ as k → ∞ but
(xk) ∈ ℓ2(Ωβ).

By the same token, the “smoothness“ of a potential v with Fourier coefficients
V (2k) given by (2.4) is characterized by saying that v belongs to an appropriate
weight space H(Ω), i.e.,

∑

|V (2k)|2(Ω(k))2 < ∞.

The inclusion H(Ω) ⊂ L2 is equivalent to (1.9) while (1.10) is equivalent to the
inclusion H(Ω) ⊂ H−1.

Let us recall that a sequence of positive numbers, or a weight A = (A(n))n∈Z,
is called sub–multiplicative if

(2.11) A(m + n) ≤ A(m)A(n), m, n ∈ Z.

In this paper we often consider weights of the form

(2.12) a(n) =
A(n)

n
for n 6= 0, a(0) = 1,

where A(n) is sub–multiplicative and even.
Now we are ready to formulate the main result of the present paper (this is

Theorem 28 in Section 7).

Main Theorem. Let L = L0 + v(x) be the Hill–Schrödinger operator with a
π–periodic potential v ∈ H−1

loc (R).
Then, for large enough n > N(v) the operator L has, in a disc of center n2

and radius rn = n/4, exactly two (counted with their algebraic multiplicity) periodic
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(for even n), or antiperiodic (for odd n) eigenvalues λ+
n and λ−

n , and one Dirichlet
eigenvalue µn.

Let

∆n = |λ+
n − λ−

n | +
∣

∣

∣

∣

λ+
n + λ−

n

2
− µn

∣

∣

∣

∣

, n > N(v),

and let Ω = (Ω(m))m∈Z, Ω(m) = ω(m)/m, m 6= 0, where ω is a sub-multiplicative
weight. Then we have

v ∈ H(Ω) ⇒ (∆n) ∈ ℓ2(Ω).

Conversely, in the above notations, if ω = (ω(n))n∈Z is a sub–multiplicative weight
such that

log ω(n)

n
ց 0,

then

(∆n) ∈ ℓ2(Ω) ⇒ v ∈ H(Ω).

If ω is of exponential type, i.e., limn→∞
log ω(n)

n > 0, then

(∆n) ∈ ℓ2(Ω) ⇒ ∃ε > 0 : v ∈ H(eε|n|).

Important tool in the proof of this theorem is the following statement. Let
En be the Riesz invariant subspace corresponding to the (periodic for even n, or
antiperiodic for odd n) eigenvalues of LPer± lying in the disc {z : |z − n2| < n},
and let Pn be the corresponding Riesz projection, i.e.,

Pn =
1

2πi

∫

Cn

(λ − L)−1dλ, Cn := {λ : |λ − n2| = n}.

We denote by P 0
n the Riesz projection that corresponds to the free operator.

In the above notations and under the assumptions of Proposition 4

(2.13) ‖Pn − P 0
n‖L2→L∞ → 0 as n → ∞.

This statement and its stronger version are proven in Section 9, Appendix; see
Proposition 44 and Theorem 45 there.

3. Basic equation

By the localization statement given in Proposition 4, the spectrum of the op-
erator LPer± is discrete, and there exists N∗ such that for each n ≥ N∗ the disc
Dn = {λ : |λ − n2| < n/4} contains exactly two eigenvalues (counted with their
algebraic multiplicity) of LPer+ (for n even), or LPer− (for n odd).

For each n ∈ N, let

E0 = E0
n = Span{e−n = e−inx, en = einx}

be the eigenspace of the free operator L0 = −d2/dx2 corresponding to its eigenvalue
n2 (subject to periodic boundary conditions for even n, and antiperiodic boundary
conditions for odd n). We denote by P 0 = P 0

n the orthogonal projection on E0,
and set Q0 = Q0

n = 1 − P 0
n . Notice that

(3.1) Dn ∩ Sp(Q0L0Q0) = ∅.
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Consider the operator K̃ given by its matrix representation

(3.2) K̃jk =

{

1
(λ−k2)1/2 δjk for k 6= ±n,

0 for k = ±n,

where z1/2 :=
√

reiϕ/2 if z = reiϕ, −π ≤ ϕ < π, and j, k ∈ n + 2Z. One can easily

see that K̃ acts from L2([0, π]) into H1, and from H−1 into L2([0, π]).
We consider also the operator

(3.3) T = T (n; λ) = K̃V K̃.

By the diagram

L2([0, π])
K̃→ H1 V→ H−1 K̃→ L2([0, π])

the operator T acts in L2([0, π]). In view of (2.4), (3.2) and (3.3), the matrix
representation of T is

(3.4) Tjk =

{

V (j−k)
(λ−j2)1/2(λ−k2)1/2 = i(j−k)q(j−k)

(λ−j2)1/2(λ−k2)1/2 if j, k 6= ±n,

0 otherwise

Let us set

(3.5) Hn = {z : (n − 1)2 ≤ Re z ≤ (n + 1)2}
and

(3.6) Em(q) =





∑

|k|≥m

|q(m)|2




1/2

.

Lemma 5. In the above notations, we have

(3.7) ‖T ‖HS ≤ C
(

E√n(q) + ‖q‖/√n
)

, λ ∈ Hn,

where C is an absolute constant.

Proof. In view of (3.4),

(3.8) ‖T ‖2
HS =

∑

j,k 6=±n

(j − k)2|q(j − k)|2
|λ − j2||λ − k2| ,

so we have to estimate from above the sum in (3.8) with λ ∈ Hn.

The operator K̃ is a modification of the operator K defined by

Kjk =
1

(λ − k2)1/2
δjk, j, k ∈ n + 2Z, λ ∈ Hn \ {n2}.

Moreover, for λ 6= n2, we have K̃ = Q0KQ0.
Therefore (compare (3.8) with Formula (128) in [16]), by repeating the proof

of Lemma 19 in [16]) with a few simple changes there one can easily see that (3.7)
holds.

�

Lemma 6. In the above notations, if n ∈ N is large enough and λ ∈ Dn, then
λ is an eigenvalue of the operator L = L0 + V (considered with periodic boundary
conditions if n is even, or antiperiodic boundary conditions if n is odd) if and only
if λ is an eigenvalue of the operator P 0L0P 0 + S, where

(3.9) S = S(λ; n) = P 0V P 0 + P 0V K̃(1 − T )−1K̃V P 0 : E0
n → E0

n.
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Moreover,

(3.10) Lf = λf, f 6= 0 ⇒ (L0 + S)f1 = λf1, f1 = P 0f 6= 0,

(3.11) (L0 + S)f1 = λf1, f1 ∈ E0 ⇒ Lf = λf, f = f1 + K̃(1 − T )−1K̃V f1.

Proof. The equation

(3.12) (λ − L0 − V )f = g

is equivalent to the system of two equations

(3.13) P 0(λ − L0 − V )(f1 + f2) = g1,

(3.14) Q0(λ − L0 − V )(f1 + f2) = g2,

where f1 = P 0f, f2 = Q0f, g1 = P 0g, g2 = Q0g.
Since the operator L0 is self–adjoint, the range Q0(H) of the projection Q0 is

an invariant subspace of L0 also. Therefore,

P 0Q0 = Q0P 0 = 0, P 0L0Q0 = Q0L0P 0 = 0,

so Equations (3.13) and (3.14) may be rewritten as

(3.15) (λ − L0)f1 − P 0V f1 − P 0V f2 = g1,

(3.16) (λ − L0)f2 − Q0V f1 − Q0V f2 = g2.

Since f2 belongs to the range of Q0, it can be written in the form

(3.17) f2 = K̃f̃2.

Next we substitute this expression for f2 into (3.16), and after that act from the

left on the equation by K̃. As a result we get

K̃(λ − L0)K̃f̃2 − K̃Q0V f1 − K̃V K̃f̃2 = K̃g2.

By the definition of K̃, we have the identity

K̃(λ − L0)K̃f̃2 = f̃2.

Therefore, in view of (3.3), the latter equation can be written in the form

(3.18) (1 − T )f̃2 = K̃V f1 + K̃g2.

By Lemma 5 the operator 1 − T is invertible for large enough n. Thus, (3.17) and
(3.18) imply, for large enough n,

(3.19) f2 = K̃(1 − T )−1K̃V f1 + K̃(1 − T )−1K̃g2.

By inserting this expression for f2 into (3.15) we get

(3.20) (λ − P 0L0P 0 − S)f1 = g1 + P 0V K̃(1 − T )−1K̃g2,

where the operator S is given by (3.9).
If λ is an eigenvalue of L and f 6= 0 is a corresponding eigenvector, then (3.12)

holds with g = 0, so g1 = 0, g2 = 0, and (3.20) implies (3.10), i.e., λ is an eigenvalue
of P 0L0P 0 +S and f1 = P 0f is a corresponding eigenvector. Then we have f1 6= 0;
otherwise (3.19) yields f2 = 0, so f = f1 + f2 = 0 which is a contradiction.

Conversely, let λ be an eigenvalue of P 0L0P 0+S, and let f1 be a corresponding
eigenvector. We set

f2 = K̃(1 − T )−1K̃V f1, f = f1 + f2



SCHRÖDINGER OPERATORS WITH SINGULAR POTENTIALS 107

and show that Lf = λf by checking that (3.15) and (3.16) hold with g1 = 0 and
g2 = 0. Then (3.15) coincides with (P 0L0P 0 + S)f1 = 0, so it holds. On the other
hand one can easily verify (3.16) by using that

(1 − T )−1 = 1 + T (1 − T )−1, T = K̃V K̃, (λ − L0)K̃2 = Q0.

This completes the proof.
�

Notice that (3.10) and (3.11) imply the following.

Remark 7. Under the assumptions and notations of Lemma 6, for large enough
n, the operator L has an eigenvalue λ ∈ Dn of geometric multiplicity 2 if and only
if λ is an eigenvalue of P 0L0P 0 + S(λ, n) of geometric multiplicity 2.

Of course, in the proof of Lemma 6 it was enough to consider the equation
(3.12) for g = 0 (and, respectively, to set g1 = 0, g2 = 0 in the following equations).
But we consider the case of arbitrary g in order to explain the following remark
that will be used later.

Remark 8. Under the assumptions and notations of Lemma 6 and its proof,
Equation (3.12), i.e., the system (3.13) and (3.14), implies Equation (3.20).

Let

(

S11 S12

S21 S22

)

be the matrix representation of the two-dimensional operator

S with respect to the basis e1
n := e−n, e2

n := en; then

(3.21) Sij = 〈Sej
n, ei

n〉, i, j ∈ {1, 2}.
Consider the eigenvalue equation for the operator S :

(3.22) det

∣

∣

∣

∣

S11 − z S12

S21 S22 − z

∣

∣

∣

∣

= 0.

This is the basic equation that we use to estimate spectral gaps.
A number λ = n2 + z ∈ Dn is a periodic or anti–periodic eigenvalue of L0 + V

if and only if z is a solution of (3.22).
Next we give explicit formulas for the matrix elements Sij . By Lemma 5, we

have ‖Tn‖ ≤ 1/2 for n ≥ n0(v), so (1 − Tn)−1 =
∑∞

k=1 T k−1
n , and therefore,

S = P 0
nV P 0

n +

∞
∑

k=1

P 0
nV K̃T k−1

n K̃V P 0
n .

By (3.9) and (3.21),

(3.23) Sij =
∞
∑

k=0

Sij
k , where Sij

0 = 〈P 0V P 0ej
n, ei

n〉

and

(3.24) Sij
k = 〈V K̃T k−1

n K̃V ej
n, ei

n〉, k = 1, 2, . . . .

By (3.3), it follows that

V K̃T k−1
n K̃V = (V K̃2)kV.

Therefore, in view of (3.23), (3.24) and (3.2), we have

(3.25) S11
0 = 〈V e1

n, e1
n〉 = V (0) = 0, S22

0 = 〈V e2
n, e2

n〉 = V (0) = 0,
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and for each k = 1, 2, . . . ,

(3.26) S11
k =

∑

j1,...,jk 6=±n

V (−n − j1)V (j1 − j2) · · ·V (jk−1 − jk)V (jk + n)

(n2 − j2
1 + z) · · · (n2 − j2

k + z)
,

(3.27) S22
k =

∑

j1,...,jk 6=±n

V (n − j1)V (j1 − j2) · · ·V (jk−1 − jk)V (jk − n)

(n2 − j2
1 + z) · · · (n2 − j2

k + z)
.

In the same way, we obtain

(3.28) S12
0 = 〈V e2

n, e1
n〉 = V (−2n), S21

0 = 〈V e1
n, e2

n〉 = V (2n),

and, for k = 1, 2, . . . ,

(3.29) S12
k =

∑

j1,...,jk 6=±n

V (−n − j1)V (j1 − j2) · · ·V (jk−1 − jk)V (jk − n)

(n2 − j2
1 + z) · · · (n2 − j2

k + z)

(3.30) S21
k =

∑

j1,...,jk 6=±n

V (n − j1)V (j1 − j2) · · ·V (jk−1 − jk)V (jk + n)

(n2 − j2
1 + z) · · · (n2 − j2

k + z)

The operator S depends on v, n ∈ N and λ (or, z = λ− n2). Of course, the same is
true for its matrix, i.e.,

Sij = Sij(v; n, z), Sij
k = Sij

k (v; n, z).

Lemma 9. (a) For any (complex–valued) potential v

(3.31) S11(v; n, z) = S22(v; n, z).

(b) If v is a real–valued potential, then

(3.32) S12(v; n, z) = S21(v; n, z).

Proof. (a) By (3.26) and (3.27), the change of indices

is = −jk+1−s, s = 1, . . . , k,

proves that S11
k (v;−n, z) = S22

k (v; n, z) for k = 1, 2, . . . . Thus, in view of (3.23),
(3.31) holds.

(b) If v is real-valued, we have for its Fourier coefficients V (−m) = V (m). By
(3.28),

S12
0 (v;−n, z) = V (−2n) = V (2n) = S21

0 (v; n, z).

By (3.29) and (3.30), for each k = 1, 2, . . . , the change of indices

is = jk+1−s, s = 1, . . . , k,

explains that S12
k (−n, z) = S21

k (n, z). Thus, in view of (3.23), (3.32) holds. Lemma 9
is proved.

�

We set, for n > n0(v),

(3.33) αn(v; z) = S11(v; n, z), β+
n (v; z) = S21(v; n, z), β−

n (v; z) = S12(v; n, z).
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4. Estimates of α(v; n, z) and β±(v; n, z)

Let Ω = (Ω(m)) be a weight of the form

(4.1) Ω(m) = ω(m)/m for m 6= 0 Ω(0) = 1,

where ω is a submultiplicative weight. Our main goal in this section is to estimate
the ℓ2(Ω)–norm of the sequence (β±(v; n, z))n>N0

from (3.33) under the assumption
v ∈ H(Ω).

Lemma 10. If r ∈ ℓ2(Z), then

(4.2)
∑

i6=−n

∣

∣

∣

∣

n − i

n + i

∣

∣

∣

∣

2

|r(n − i)|2 ≤ 8n2

(

En(r) +
‖r‖
n

)2

.

Proof. Since |n − i|/|n + i| ≤ 1 for i ≥ 0, and

(4.3)

(

n − i

n + i

)2

=

(

2n

n + i
− 1

)2

≤ 8n2

(n + i)2
+ 2 for i < 0,

the sum in (4.2) does not exceed

∑

i<0,i6=−n

8n2

(n + i)2
|r(n − i)|2 +

∑

i

2|r(n − i)|2 ≤ 8n2 (En(r))2 + 2‖r‖2,

which proves (4.2).
�

Lemma 11. If r ∈ ℓ2(Z) and H(n) = (Hij(n)) , n ∈ N, n > N, are Hilbert–
Schmidt operators such that H∗ := supn>N ‖H(n)‖HS < ∞, then
(4.4)
∑

i,j 6=±n

∣

∣

∣

∣

n − i

n + i

∣

∣

∣

∣

1/2 ∣
∣

∣

∣

n + j

n − j

∣

∣

∣

∣

1/2

|r(n− i)||r(n+ j)||Hij (n)| ≤ Cn‖r‖
(

En(r) +
‖r‖
n

)

H∗,

where C is an absolute constant.

Proof. By the Cauchy inequality, for each n ∈ N with n > N, we have
(4.5)




∑

i,j 6=±n

∣

∣

∣

∣

n − i

n + i

∣

∣

∣

∣

1/2 ∣
∣

∣

∣

n + j

n − j

∣

∣

∣

∣

1/2

|r(n − i)||r(n + j)||Hij(n)|





2

≤ σ(n)‖H(n)‖2
HS ,

where

(4.6) σ(n) =
∑

i,j 6=±n

∣

∣

∣

∣

n − i

n + i

∣

∣

∣

∣

∣

∣

∣

∣

n + j

n − j

∣

∣

∣

∣

|r(n − i)|2|r(n + j)|2.

The index change j = −k yields

σ(n) =





∑

i6=±n

∣

∣

∣

∣

n − i

n + i

∣

∣

∣

∣

|r(n − i)|2




2

.

Now the Cauchy inequality and (4.2) imply

σ(n) ≤ ‖r‖2
∑

i6=±n

∣

∣

∣

∣

n − i

n + i

∣

∣

∣

∣

2

|r(n − i)|2 ≤ Cn2‖r‖2

(

En(r) +
‖r‖
n

)2

.
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By (4.5) and (4.6), the latter estimate proves (4.4). �

Lemma 12. If r ∈ ℓ2(Z) and H(n) = (Hij(n)) , n ∈ N, n > N, are Hilbert–
Schmidt operators such that H∗ := supn>N ‖H(n)‖HS < ∞, then

(4.7)
∑

n>N

1

n2

∑

i,j 6=±n

(

∣

∣

∣

∣

n − i

n + i

∣

∣

∣

∣

1/2 ∣
∣

∣

∣

n + j

n − j

∣

∣

∣

∣

1/2

|r(n − i)||r(n + j)||Hij(n)|
)2

≤ CH2
∗‖r‖2

(

(EN(r))
2

+
‖r‖2

N

)

,

where C is an absolute constant.

Proof. Let Σ denote the sum on the left of (4.7). By (4.5) we have

(4.8) Σ ≤ H2
∗
∑

n>N

1

n2
σ(n),

where σ(n) is given by (4.6).
Changing the summation index by k = −j we get

(4.9) σ(n) =





∑

i6=±n

∣

∣

∣

∣

n − i

n + i

∣

∣

∣

∣

|r(n − i)|2




2

≤ 2σ1(n) + 2σ2(n),

where

(4.10) σ1(n) =





∑

i<0,i6=−n

∣

∣

∣

∣

n − i

n + i

∣

∣

∣

∣

|r(n − i)|2




2

, σ2(n) =





∑

i≥0

· · ·





2

.

By the Cauchy inequality and (4.3), we have

∑

n>N

1

n2
σ1(n) ≤ ‖r‖2





∑

n>N

∑

i<0,i6=−n

8

(n + i)2
|r(n − i)|2 +

∑

n>N

2

n2
‖r‖2



 .

Now, with ν = n − i,

∑

n>N

∑

i<0,i6=−n

8

(n + i)2
|r(n − i)|2 ≤

∑

ν>N

|r(ν)|2
∑

n6=ν/2

8

(2n − ν)2
≤ 8π2

3
(EN (r))

2
,

so it follows that

(4.11)
∑

n>N

1

n2
σ1(n) ≤ ‖r‖2

(

8π2

3
(EN (r))

2
+

2‖r‖2

N

)

.

On the other hand, since |n − i|/|n + i| ≤ 1 for i ≥ 0, we have σ2(n) ≤ ‖r‖4.
Thus,

(4.12)
∑

n>N

1

n2
σ2(n) ≤

∑

n>N

1

n2
‖r‖4 ≤ 1

N
‖r‖4.

Finally, (4.8)–(4.12) imply (4.7), which completes the proof. �

Let us recall that a weight ω is called slowly increasing, if supn
ω(2n)
ω(n) < ∞.
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Lemma 13. Suppose ω = (ω(m))m∈2Z is a slowly increasing weight such that

(4.13) ω(m) ≤ C1|m|1/4, m ∈ 2Z,

r = (r(m))m∈2Z ∈ ℓ2(ω, 2Z), and H(n) = (Hij(n))i,j∈n+2Z
, n ≥ n0, are Hilbert–

Schmidt operators such that H∗ = supn≥n0
‖H(n)‖HS < ∞. Then, for N > n0,

(4.14)
∑

n>N

(ω(2n))2

n2

∑

i,j 6=±n

(

∣

∣

∣

∣

n − i

n + i

∣

∣

∣

∣

1/2 ∣
∣

∣

∣

n + j

n − j

∣

∣

∣

∣

1/2

|r(n − i)||r(n + j)||Hij(n)|
)2

≤ CH2
∗‖r‖4

ω

(

1

(ω(N))2
+

1√
N

)

,

where C = C(ω).

Proof. Let Σ denote the sum on the left of (4.14). By (4.5) we have

(4.15) Σ ≤ H2
∗
∑

n>N

(ω(2n))2

n2
σ(n),

where σ(n) is given by (4.6), so (4.9) holds, i.e.,

σ(n) ≤ 2σ1(n) + 2σ2(n),

with σ1(n) and σ2(n) defined by (4.10).
Consider the sequence r̄ = (r̄(m))m∈2Z defined by

r̄(m) = ω(m)r(m), m ∈ 2Z.

Then r̄ ∈ ℓ2 and ‖r̄‖ = ‖r‖ω.
Taking into account that

r̄(n − i) = ω(n − i)r(n − i) ≥ ω(n)r(n − i) if i < 0,

we estimate from above:

σ1(n) ≤ 1

(ω(n))4





∑

i<0,i6=−n

∣

∣

∣

∣

n − i

n + i

∣

∣

∣

∣

|r̄(n − i)|2




2

≤ 1

(ω(n))4





∑

i<0,i6=−n

∣

∣

∣

∣

n − i

n + i

∣

∣

∣

∣

2

|r̄(n − i)|2


 · ‖r̄‖2

(by the Cauchy inequality).
Since ω is a slowly increasing weight, there is a constant C0 > 0 such that

ω(2n) ≤ C0ω(n) ∀n ∈ N.

Therefore, in view of (4.3), we have

∑

n>N

(ω(2n))2

n2
σ1(n) ≤ ‖r̄‖2

∑

n>N

C2
0

(ω(n))2

∑

i<0,i6=−n

(

8

(n + i)2
+

2

n2

)

|r̄(n − i)|2

≤ C2
0‖r̄‖2

(ω(N))2





∑

n>N

∑

i<0,i6=−n

8

(n + i)2
|r̄(n − i)|2 +

∑

n>N

2

n2

∑

i

|r̄(n − i)|2


 .
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Since we have, with ν = n − i,

∑

n>N

∑

i<0,i6=−n

8

(n + i)2
|r̄(n − i)|2 ≤

∑

ν>N

|r̄(ν)|2
∑

n6=ν/2

8

(2n − ν)2
≤ 8π2

3
(EN (r̄))

2
,

it follows that

(4.16)
∑

n>N

(ω(2n))2

n2
σ1(n) ≤ C2

0‖r̄‖4

(ω(N))2

(

8π2

3
+ 2

)

.

On the other hand, since |n − i|/|n + i| ≤ 1 for i ≥ 0, we have

σ2(n) ≤ ‖r‖4.

Thus, by (4.13),

(4.17)
∑

n>N

(ω(2n))2

n2
σ2(n) ≤

∑

n>N

C2
1 (2n)1/2

n2
‖r‖4 ≤ 2

√
2C2

1

‖r‖4

√
N

.

Now (since ‖r‖ ≤ ‖r̄‖) and ‖r̄‖ = ‖r‖ω) (4.15)–(4.16) imply (4.14), which
completes the proof. �

We set, for each sequence ρ = (ρ(m))m∈2Z such that

(4.18) ρ(0) = 0,
∑

m 6=0

(ρ(m))2/m2 < ∞,

(4.19) Ak(ρ; n) =
∑

j1,...,jk 6=±n

|ρ(n − j1)ρ(j1 − j2) · · · ρ(jk − n)|
|n2 − j2

1 | · · · |n2 − j2
k |

, k, n ∈ N,

(4.20) Bk(ρ;±n) =
∑

j1,...,jk 6=±n

|ρ(±n − j1)ρ(j1 − j2) · · · ρ(jk ± n)|
|n2 − j2

1 | · · · |n2 − j2
k|

, k, n ∈ N,

and

(4.21) A(ρ; n) =

∞
∑

k=1

Ak(ρ; n), B(ρ;±n) =

∞
∑

k=1

Bk(ρ;±n).

By the elementary inequality, for n ≥ 2,

1

|n2 + z − j2| ≤
2

|n2 − j2| , j ∈ n + 2Z, j 6= ±n, |z| ≤ n/2,

(3.26),(3.29), (3.30) and (3.31) imply, for k ∈ N, |z| ≤ n/2, that

(4.22) |S11
k (v; n, z)| = |S22

k (v; n, z)| ≤ Ak(2V ; n),

(4.23) |S12
k (v; n, z)| ≤ Bk(2V ;−n), |S21

k (v; n, z)| ≤ Bk(2V ; n),

where V = (V (m))m∈2Z is the sequence of the Fourier coefficients of the potential
v(x) =

∑

m∈2Z
V (m) exp(imx). Therefore, by (3.23), (3.28), (3.33) and (4.21), we

have

(4.24) |αn(v; z)| ≤ A(2V ; n), |β±
n (v; z) − V (±2n| ≤ B(2V ;±n), |z| < n/2.

In view of (4.19)–(4.21) we have

(4.25) A(ρ, n) = 〈V̂ K̂2V̂ en, en〉 + 〈V̂ K̂T̂ (1 − T̂ )−1K̂V̂ en, en〉,

(4.26) B(ρ,±n) = 〈V̂ K̂2V̂ e∓n, e±n〉 + 〈V̂ K̂T̂ (1 − T̂ )−1K̂V̂ e∓n, e±n〉,
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where V̂ and K̂ denote, respectively, the operators with matrix representations

(4.27) V̂ij = |ρ(i − j)|, K̂ij =

{

1
|n2−j2|1/2 δij if i, j 6= ±n,

0 if i = ±n, or j = ±n,

and

(4.28) T̂ = T̂n = K̂V̂ K̂.

The operator T̂ is a slight modification of the operator T defined by (3.3).
Therefore, one can easily see that we have the same estimate for its Hilbert–Schmidt
norm, namely (compare with (3.3)),

(4.29) ‖T̂‖HS ≤ C

(

E√n(r) +
‖r‖√

n

)

,

where r = (r(m)) is an ℓ2–sequence defined by ρ from (4.18) so that

(4.30) r(0) = 0, r(m) = ρ(m)/m for m 6= 0,

and C is an absolute constant.

Lemma 14. Under the above assumptions and notations, there is n0 = n0(ρ)
such that, for n > n0, we have
(4.31)

A(ρ; n) ≤ Cn

(

E√n(r) +
‖r‖√

n

)

‖r‖, B(ρ;±n) ≤ Cn

(

E√n(r) +
‖r‖√

n

)

‖r‖,

where C is an absolute constant.

Proof. By (4.25),

A(ρ, n) = 〈V̂ K̂2V̂ en, en〉 + 〈V̂ K̂T̂ (1 − T̂ )−1K̂V̂ en, en〉 = Σ1 + Σ2.

In view of (4.19)–(4.21) and (4.30), we have

Σ1 ≤
∑

j 6=±n

|ρ(n − j)ρ(j − n)|
|n2 − j2| ≤

∑

j 6=±n

∣

∣

∣

∣

n − j

n + j

∣

∣

∣

∣

|r(n − j)||r(j − n)|

≤





∑

j 6=±n

∣

∣

∣

∣

n − j

n + j

∣

∣

∣

∣

2

|r(n − j)|2




1/2

· ‖r‖ ≤ Cn

(

E√n(r) +
‖r‖√

n

)

‖r‖

(by the Cauchy inequality and Lemma 10). In an analogous way we get

Σ2 ≤
∑

i,j 6=±n

|ρ(n − i)ρ(j − n)|
|n2 − i2|1/2|n2 − j2|1/2

Hij(n)

=
∑

i,j 6=±n

∣

∣

∣

∣

n − i

n + i

∣

∣

∣

∣

1/2 ∣
∣

∣

∣

n + j

n − j

∣

∣

∣

∣

1/2

|r(n − i)||r(n + j)|Hij(n),

where H(n) = T̂ (1 − T̂ )−1, so Hij ≥ 0. By (4.30), ‖T̂‖ ≤ 1/2 for n > n0, which
implies

‖H(n)‖ ≤ 2‖T̂‖ ≤ 1 for n > n0.

Thus, by Lemma 11, we get

Σ2 ≤ Cn‖r‖
(

En(r) +
‖r‖
n

)

,
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where C is an absolute constant.
The obtained estimates of Σ1 and Σ2 imply the first inequality in (4.31). We

omit the proof of the second inequality there (which gives an upper bound for
B(ρ, n)), because it is practically the same. �

Proposition 15. Let v be a H−1–potential of the form (1.2) with (1.3), (1.4),
and let (2.4) define the sequence of its Fourier coefficients V = (V (m))m∈2Z.

There exists n0(v) such that for n > n0 we have

(4.32) |αn(v; z)|, |β±
n (v; z) − V (±2n)| ≤ Cn

(

E√n(q) +
‖q‖√

n

)

‖q‖ for |z| ≤ n/2,

and moreover,

(4.33)

∣

∣

∣

∣

∂αn(v; z)

∂z

∣

∣

∣

∣

,

∣

∣

∣

∣

∂βn(v; z)

∂z

∣

∣

∣

∣

≤ 2C

(

E√n(q) +
‖q‖√

n

)

‖q‖ for |z| ≤ n/4,

where C is an absolute constant.

Proof. In view of (4.24), (4.32) follows immediately from Lemma 14.
Since αn and β±

n depend analytically on z for |z| ≤ n/2, the Cauchy inequality
for their derivatives proves (4.33). Proposition 15 is proved. �

Lemma 16. Suppose ω = (ω(m))m∈2Z is a weight such that

(4.34) ω(m) = ω1(m)/m, for m 6= 0,

where ω1 = (ω1(m))m∈2Z is a slowly increasing unbounded weight such that

(4.35) ω1(m) ≤ C1|m|1/4, m ∈ 2Z.

If ρ = (ρ(m))m∈2Z ∈ ℓ2(ω, 2Z), ρ(0) = 0, then there exists n0(‖ρ‖ω, ω1) such that

(4.36)
∑

n>N

(ω(2n))2|B(ρ;±n)|2 ≤ C‖ρ‖4
ω

(

1

(ω1(N))2
+

1√
N

)

, N > n0,

where C = C(ω1).

Proof. By changing the summation indices one can easily see that

Bk(ρ;−n) = Bk(ρ̃; n),

where the sequence ρ̃ is defined by ρ̃(j) = ρ(−j), so we have

B(ρ;−n) = B(ρ̃; n).

Thus, it is enough to consider only the case of positive n in (4.36).
Consider the sequences r = (r(m)) and r̄ = (r̄(m)) defined by

(4.37) r(0) = 0, r(m) = ρ(m)/m for m 6= 0, r̄(m) = ω1(m)r(m).

Then we have

r ∈ ℓ2(ω1, 2Z), r̄ ∈ ℓ2(2Z), ‖r̄‖ = ‖r‖ω1
= ‖ρ‖ω.

Since ω1 is a slowly increasing weight, there exists C0 ≥ 1 such that

(4.38) ω1(2m) ≤ C0ω1(m), m ∈ 2Z.

One can easily see that the weight C0ω1(m) is sub–multiplicative. Therefore,

(4.39) ω1(2n) ≤ C0ω1(n − j)ω1(n + j), j ∈ 2Z.
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By (4.26) we have

(4.40) B(ρ; n) = 〈V̂ K̂2V̂ e−n, en〉 + 〈V̂ K̂T̂ (1 − T̂ )−1K̂V̂ e−n, en〉 = Σ3 + Σ4.

By (4.20),(4.21), (4.27) and (4.37)

Σ3 = 〈V̂ K̂2V̂ e−n, en〉 =
∑

j 6=±n

|ρ(n − j)||ρ(j + n)|
|n2 − j2| ≤

∑

j 6=±n

|r(n − j)||r(j + n)|.

Therefore, from (4.37) – (4.39) it follows that
(4.41)

∑

n>N

(ω1(2n))2

n2
|Σ3|2 ≤

∑

n>N

1

n2





∑

j 6=±n

C0|r̄(n − j)||r̄(j + n)|





2

≤ 1

N
C2

0‖r̄‖4.

On the other hand, (4.20),(4.21), (4.28) and (4.37) imply that

Σ4 = 〈V̂ K̂H(n)K̂V̂ e−n, en〉 ≤
∑

i,j 6=±n

|ρ(n − i)||ρ(j + n)|
|n2 − i2|1/2|n2 − j2|1/2

Hij(n)

=
∑

i,j 6=±n

∣

∣

∣

∣

n − i

n + i

∣

∣

∣

∣

1/2 ∣
∣

∣

∣

n + j

n − j

∣

∣

∣

∣

1/2

|r(n − i)||r(n + j)|Hij(n),

where H(n) = T̂ (1 − T̂ )−1. By (4.29) and (4.37) we have

(4.42) ‖T̂‖HS ≤ C

(

E√n(r) +
‖r‖√

n

)

,

which implies, since ω1 is unbounded,

(4.43) ‖T̂‖HS ≤ C

( E√n(r̄)

ω1(
√

n)
+

‖r‖√
n

)

≤ C

(

1

ω1(
√

n)
+

1√
n

)

· ‖ρ‖ω ≤ 1

2

for n > n0(‖ρ‖ω, ω1). Therefore, for n > n0, it follows that

‖H(n)‖HS = ‖T̂ (1 − T̂ )−1‖HS ≤ 2‖T̂‖HS ≤ 1.

Hence, by Lemma 13, we get

(4.44)
∑

n>N

(ω1(2n))2

n2
|Σ4|2 ≤ C‖r̄‖4

(

1

(ω1(N))2
+

1√
N

)

.

Now (4.34), (4.41) and (4.44) imply (4.36), may be with another n0. This completes
the proof. �

In Lemma 16 we assume that the weight ω1 is unbounded, and this assumption
is used to get (4.43). But if ω1 is bounded, say ω1(k) ≡ 1, (4.42) implies ‖T̂‖HS ≤
1/2 for n > n0(r), so we have ‖H(n)‖HS ≤ 1 for n > n0.

Hence, by Lemma 12, we get

(4.45)
∑

n>N

1

n2
|Σ4|2 ≤ C‖r‖2

(

(EN (r))
2

+
‖r‖2

N

)

,

where C is an absolute constant. Since all other estimates in the proof of Lemma 16
hold with r = r̄, we get the following statement.
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Lemma 17. If r = (r(m))m∈2Z ∈ ℓ2(2Z) and ρ = (ρ(m)), ρ(m) = mr(m), then

(4.46)
∑

n>N

1

n2
|B(ρ;±n)|2 ≤ C‖r‖2

(

(EN(r))
2

+
‖r‖2

N

)

,

where C is an absolute constant.

If ω = (ω(m))m∈2Z is a weight, then we set ωρ = (ω(m)ρ(m))m∈2Z.

Lemma 18. In the notations (4.20)–(4.21), if ω is a sub–multiplicative weight
on 2Z, then

(4.47) B(ρ;±n)ω(2n) ≤ B(ωρ;±n).

Proof. In view of (4.21), it is enough to show that

(4.48) Bk(ρ;±n)ω(2n) ≤ Bk(ωρ;±n), k ∈ N.

Since ω is a sub–multiplicative weight, for each k-tuple of indices j1, . . . , jk we have

ω(2n) = ω(−2n) ≤ ω(±n − j1)ω(j1 − j2) · · ·ω(jk−1 − jk)ω(jk ± n).

Thus

ρ(±n − j1)ρ(j1 − j2) · · · ρ(jk ± n)ω(2n) ≤
[ρ(±n − j1)ω(±n − j1)][ρ(j1 − j2)ω(j1 − j2)] · · · [ρ(jk ± n)ω(jk ± n)],

which implies (4.48). This proves Lemma 18.
�

Proposition 19. Suppose Ω = (Ω(k))k∈Z is a weight of the form

(4.49) Ω(k) =
Ω1(k)Ω2(k)

k
, k ∈ Z,

where Ω1 is a slowly increasing weight such that

(4.50) Ω1(k) ≤ C1|k|1/4,

and Ω2 is a sub–multiplicative weight.
If v ∈ H(Ω), then, for large enough N, we have

(4.51)
∑

n>N

(

|β−
n (z) − V (−2n)|2 + |β+

n (z) − V (2n)|2
)

(Ω(n))2

≤ C

(

1

(Ω1(N))2
+

1√
N

)

‖v‖4
Ω, |z| < n/2,

where C = C(Ω1) ≥ 1.

Proof. Consider the weight ω = (ω(m))m∈2Z, where ω(m) = Ω(m/2). Then
we have ω(m) = 2ω1(m)ω2(m)/m, where ω1 is a slowly increasing weight such
that ω1(m) = Ω1(m/2), and ω2 is a sub–multiplicative weight such that ω2(m) =
Ω2(m/2).

Consider also the sequence ρ = (ρ(m))m∈2Z, defined by

ρ(m) = 2 max(|V (−m)|, |V (m)|).
Then we have ρ ∈ ℓ2(ω), and moreover,

(4.52)
1

4
‖ρ‖ω ≤ ‖v‖Ω ≤ ‖ρ‖ω.
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Since ρ(−m) = ρ(m), we have B(ρ;−n) = B(ρ; n), and therefore, by (4.24),

|β−
n (z) − V (−2n)| + |β+

n (z) − V (2n)| ≤ 2B(ρ; n).

Thus, it is enough to estimate
∑

n>N |B(ρ; n)|2(ω(2n))2.
By Lemma 18, we have

B(ρ; n)ω2(2n) ≤ B(ω2ρ; n),

and therefore,

∑

n>N

|B(ρ; n)|2(ω(2n))2 ≤
∑

n>N

|B(ω2ρ; n)|2 (ω1(2n))2

n2
.

In view of (4.36) in Lemma 16 and the identity ‖ω2ρ‖ω1/n = ‖ρ‖, the latter
sum does not exceed

C

(

1

(Ω1(N))2
+

1

N

)

‖ρ‖4
ω,

where C = C(ω1). In view of (4.52), this completes the proof of Proposition 19.
�

5. Estimates for γn.

In this section we give estimates of γn from above and below in terms of
matrix elements (3.21) of operators S in Basic Equation (3.22), i.e., in terms of
αn(v; z), β±

n (v; z) defined in (3.33).
The proofs are essentially the same as in the case of L2–potentials, provided the

necessary a priori estimates of αn(v; z), β±(v; z) and their derivatives are proved
(which is done in Section 4, Proposition 15).

By Proposition 4, if the potential v ∈ H−1
loc (R) is π–periodic, then the operator

LPer± has exactly two eigenvalues λ−
n and λ+

n in the disc Dn = {λ2 + z, |z| < n/4}
(counted with their multiplicity, periodic for even n, or antiperiodic for odd n).

By Lemma 6 and Remark 7, the numbers

(5.1) z−n = λ−
n − n2 and z+

n = λ+
n − n2

are eigenvalues of the operator S defined in (3.9), and therefore, z+
n and z−n are

roots of the basic equation (3.22). Let us rewrite (3.22) in the form

(5.2) (ζn(z))2 = β−
n (z) · β+

n (z),

where

(5.3) ζn(z) = z − αn(v; z).

By Proposition 15, (4.33),

(5.4) sup
[z−

n ,z+
n ]

|∂αn/∂z| ≤ εn, sup
[z−

n ,z+
n ]

|∂β±
n /∂z| ≤ εn,

where [z−n , z+
n ] denotes the segment with end points z−n and z+

n , and

(5.5) εn = 2C

(

E√n(q) +
‖q‖√

n

)

‖q‖ → 0 as n → ∞.

Therefore, in view of (5.3),

|z+
n − z−n | ≤ |ζn(z+

n ) − ζn(z−n )| + |α(z+
n ) − α(z−n )|

≤ |ζn(z+
n ) − ζn(z−n )| + εn · |z+

n − z−n |,
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which yields
(1 − εn)|z+

n − z−n | ≤ |ζn(z+
n ) − ζn(z−n )|.

On the other hand, in view of (5.4), the identity

ζn(z+
n ) − ζn(z−n ) =

∫ z+
n

z−
n

(1 − ∂αn/∂z)dz,

implies
|ζn(z+

n ) − ζn(z−n )| ≤ (1 + εn)|z+
n − z−n |.

Thus, we have the following two–side estimate:

(5.6) (1 − εn)|z+
n − z−n | ≤ |ζn(z+

n ) − ζn(z−n )| ≤ (1 + εn)|z+
n − z−n |.

Lemma 20. In the above notations, for large enough n, we have

(5.7) γn = |λ+
n − λ−

n | ≤ (1 + ηn)(|β−
n (z∗n)| + |β+

n (z∗n)|), z∗n =
λ+

n + λ−
n

2
− n2,

with ηn → 0 as n → ∞.

Proof. By Equation (5.2),

|ζn(z)| ≤ 1

2
(|β−

n (z)| + |β+
n (z)|) for z = z±n .

Thus, by (5.6),

(1 − εn)|z+
n − z−n | ≤ 1

2
(|β−

n (z−n )| + |β−
n (z+

n )| + |β+
n (z−n )| + |β+

n (z+
n )|).

By the estimates for ∂β/∂z given in Proposition 15, (4.33), we have

|β±
n (z±n ) − β±

n (z∗n)| ≤ εn · |z+
n − z−n |/2,

where one may assume that εn is the same as in (5.4) and (5.5). Thus we get

(1 − 2εn)|z+
n − z−n | ≤ |β+

n (z∗n)| + |β−
n (z∗n)|,

which, in view of (5.1), implies (5.7). Lemma 20 is proved. �

5.1. Estimates of γn from below. In the previous Lemma 20 were obtained
estimates of γn from above in terms of |β±

n |. The next statement gives estimates of
γn from below. (This is an analogue of Lemma 49 in [14].)

Lemma 21. In the notations of Lemma 20, there exists a sequence ηn ↓ 0 such
that, for large enough |n|, if γn 6= 0 and β−

n (z+
n ) · β+

n (z+
n ) 6= 0, then

(5.8) γn ≥
(

2
√

tn
1 + tn

− ηn

)

(

|β−
n (z∗n)| + |β+

n (z∗n)|
)

,

where

(5.9) tn = |β+
n (z+

n )|/|β−
n (z+

n )|.
Remark. The crucial role of the ratio tn has been realized in [11], Section

4, in particular Proposition 8 (see the comment (a) at the beginning of Section 7
below). Since 2003 it has become an essential ingredient in the analysis of eigenvalue
pairs λ+, λ− or troikas λ+, λ−, µ in the case of complex–valued potentials (or non–
symmetric potentials in the case of Dirac operators); in the present paper see (7.25)
in Proposition 34 and (7.28) in Lemma 35.

Other authors follow [11], Section 4, as well but – strangely enough – do not
tell that to the reader; see, for example, Lemma 10 in [64].
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Proof. By Proposition 15, (4.33),

(5.10) sup
[z−

n ,z+
n ]

|∂β±
n /∂z| ≤ εn, εn ↓ 0,

where [z−n , z+
n ] denotes the segment determined by z−n and z+

n . Since

β±
n (z) − β±

n (z∗n) =

∫ z∗
n

z

d

dz
(β±

n (z))dz,

(5.10) implies that

|β±
n (z) − β±

n (z∗n)| ≤ εn|z − z∗n| ≤ εn|z+
n − z−n | for z ∈ [z−n , z+

n ].

Thus, for z ∈ [z−n , z+
n ],

(5.11) |β±
n (z∗n)| − εn|z+

n − z−n | ≤ |β±
n (z)| ≤ |β±

n (z∗n)| + εn|z+
n − z−n |

By (5.3) and (5.6), we have

(5.12) (1 − εn)|z+
n − z−n | ≤ |ζ+

n − ζ−n | ≤ (1 + εn)|z+
n − z−n |,

where

ζ+
n = ζn(z+

n ), ζ−n = ζn(z−n ).

On the other hand, by (5.2) (i.e., by the basic equation (3.22)), we have

(ζ+
n )2 = β+

n (z+
n )β−

n (z+
n ), (ζ−n )2 = β+

n (z−n )β−
n (z−n ),

and therefore,

(5.13) (ζ+
n )2 − (ζ−n )2 =

∫ z+
n

z−
n

d

dz
[β+

n (z)β−
n (z)]dz.

By (5.10) and (5.11), we have

sup
[z−

n ,z+
n ]

∣

∣

∣

∣

d

dz
[β+

n (z)β−
n (z)]

∣

∣

∣

∣

≤ εn

(

|β+
n (z∗n)| + |β−

n (z∗n)| + 2εn|z+
n − z−n |

)

.

In view of (5.12) and (5.13), we get

|ζ+
n + ζ−n | · |ζ+

n − ζ−n | ≤ εn

(

|β+
n (z∗n)| + |β−

n (z∗n)| + 2εn|z+
n − z−n |

)

|z+
n − z−n |

≤ εn

(

|β+
n (z∗n)| + |β−

n (z∗n)| + 2εn|z+
n − z−n |

) |ζ+
n − ζ−n |
1 − εn

.

Since εn → 0, we may assume that εn < 1/2. Then, 1/(1 − εn) ≤ 2, and the latter
inequality implies

(5.14) |ζ+
n + ζ−n | ≤ 2εn

(

|β+
n (z∗n)| + |β−

n (z∗n)|
)

+ 2εn|z+
n − z−n |.

By (5.9), we have

(5.15) |ζ+
n | =

√

|β+
n (z+

n )||β−
n (z+

n )| =

√
tn

1 + tn
(|β+

n (z+
n )| + |β−

n (z+
n )|).

Therefore, by (5.11) (since
√

t
1+t ≤ 1/2 for t ≥ 0) we get

(5.16) |ζ+
n | ≥

√
tn

1 + tn
(|β+

n (z∗n)| + |β−
n (z∗n)|) − εn|z+

n − z−n |.

Now, from (5.14)–(5.16) it follows that

|ζ+
n − ζ−n | = |2ζ+

n − (ζ+
n + ζ−n )| ≥ 2|ζ+

n | − |ζ+
n + ζ−n |
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≥
(

2
√

tn
1 + tn

− 2εn

)

(|β+
n (z∗n)| + |β−

n (z∗n)|) − 4εn|z+
n − z−n |.

By (5.12), this leads to

(1 + 5εn)|z+
n − z−n | ≥

(

2
√

tn
1 + tn

− 2εn

)

(|β+
n (z∗n)| + |β−

n (z∗n)|).

Taking into account that (1 + 5ε)−1 ≥ 1 − 5ε and 2
√

tn

1+tn
≤ 1, we obtain

γn = |z+
n − z−n | ≥ (1 − 5εn)

(

2
√

tn
1 + tn

− 2εn

)

(|β+
n (z∗n)| + |β−

n (z∗n)|)

≥
(

2
√

tn
1 + tn

− 7εn

)

(|β+
n (z∗n)| + |β−

n (z∗n)|).

Thus (5.8) holds with ηn = 7εn. Lemma 21 is proved. �

If the potential v is real–valued, then we have the following two–side estimate
of γn.

Theorem 22. Suppose v is a periodic real–valued H−1 potential, L is the cor-
responding self–adjoint Hill–Schrödinger operator and (γn) is the gap sequence of
L. Then there exists a sequence ηn ↓ 0 such that, for n ≥ n0(v),

(5.17) (1 − ηn)
(

|β−
n (z∗n)| + |β+

n (z∗n)|
)

≤ |γn| ≤ (1 + ηn)
(

|β−
n (z∗n)| + |β+

n (z∗n)|
)

This result is known in the case of L2–potentials (see Theorem 8 in [9], or
Theorem 50 in [14]).

Proof. The right inequality in (5.17) has been proved in Lemma 20 for arbi-
trary (complex–valued) potentials.

Since L is self–adjoint, we know, by Part (b) of Lemma 9, that

|β+
n (z+

n )| = |β−
n (z+

n )|.
If |β+

n (z+
n )| = |β−

n (z+
n )| 6= 0 and γn 6= 0, then the left inequality in (5.17) follows

immediately from Lemma 21.
If |β+

n (z+
n )| = |β−

n (z+
n )| = 0 for some n, then λ+

n = λ0 + z+
n is an eigenvalue of

geometric multiplicity 2 of the operator P 0L0P 0 + S(λ+) : E0 → E0. Therefore,
by Remark 7, λ+

n is an eigenvalue of geometric multiplicity 2 of the operator L, so
γn = 0 and z∗n = z+

n . Thus (5.17) holds.
If γn = 0 for some n, then (since L is self–adjoint) λ+

n is an eigenvalue of L of
geometric multiplicity 2. Therefore, by Remark 7, λ+

n is an eigenvalue of geometric
multiplicity 2 of the operator P 0L0P 0 + S(λ+). Then the off–diagonal entries of
the matrix representation S(λ+

n ) are zeros, i.e., we have β+
n (z+

n ) = β−
n (z+

n ) = 0 and
(5.17) becomes trivial because z∗n = z+

n . Theorem 22 is proved. �

Remark. We used to write the Fourier expansion of a potential v in the form
v ∼∑m∈2Z

V (m)eimx. Now, for convenience, we set

(5.18) vk = V (2k), k ∈ Z,

and define, for every weight Ω = (Ω(k))k∈Z,

(5.19) ‖v‖2
Ω =

∑

k∈Z

|vk|2(Ω(k))2.
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The next theorem generalizes a series of results about asymptotic behavior of
γn (see and compare Theorem 41 in [13] in the case of L2-potentials v).

Theorem 23. Suppose L = L0 + v(x), L0 = −d2/dx2, is a periodic Hill–

Schrödinger operator on I = [0, π] with H−1(I)–potential v(x) =
∑

k∈Z

vke2kix. Then,

for n > n0(v), the operator L has in the disc of center n2 and radius n/4 exactly
two (counted with their algebraic multiplicity) periodic (for even n), or anti–periodic
(for odd n) eigenvalues λ+

n and λ−
n . Moreover, for each weight Ω = (Ω(k))k∈Z of

the form

(5.20) Ω(k) = Ω̃(k)/k, k 6= 0,

where Ω̃ is a submultiplicative weight, we have

(5.21)
∑

k∈Z

|vk|2(Ω(k))2 < ∞ ⇒
∑

n>n0(v)

|γn|2(Ω(n))2 < ∞,

where γn = λ+
n − λ−

n . Moreover,

(5.22)
∑

n>n0(v)

|γn|2(Ω(n))2 ≤ C1‖v‖4
Ω + 4‖v‖2

Ω.

where C1 = C1(Ω).

Proof. By Lemma 20, we have, for n > n0(v),

|γn| ≤ 2
(

|β−
n (v; z∗n)| + |β+

n (v; z∗n)|
)

,

where z∗n =
λ−

n +λ+
n

2 − n2.
Therefore, by Proposition 19, considered with Ω1 ≡ 1, we get

(5.23)
∑

n>n0(v)

|γn|2(Ω(n))2 ≤ 4
∑

n>n0(v)

(

|β−
n (v; z∗n)| + |β+

n (v; z∗n)|
)2

(Ω(n))2

≤ 8
∑

n>n0(v)

(

|β−
n (v; z∗n) − v−n| + |β+

n (v; z∗n) − vn)|
)2

(Ω(n))2

+ 2
∑

n>n0(v)

(|v−n| + |vn|)2(Ω(n))2 ≤ 32C‖v‖4
Ω + 4‖v‖2

Ω < ∞

with C = C(Ω), which completes the proof. �

6. Main results for real–valued potentials

In this section we present our main results on the relationship between spectral
gaps rate of decay and potential smoothness for Hill–Schrödinger operators with
real–valued periodic singular potentials. However most of the proofs are carried
out for arbitrary potentials (see formulas (6.1)–(6.5), Lemma 24 and Proposition
26).

In Theorems 9 and 10, and Section 5.2 in [9], and Theorem 54 in [14], it is
proved that the inverse of the implication (5.21) holds for real–valued L2–potentials
v and (log–concave) submultiplicative weights Ω. Now we extend this result to the
case of singular potentials and a wider class of weights.

By Lemma 5, for each periodic potential

v ∈ H−1([0, π]), v(x) =
∑

k∈Z

vke2ikx,
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there exists n0 = n0(v) such that the constructions of Section 3 work for n > n0.
In particular, the numbers β±

n (v; z) are well–defined if n > n0(v) and |z| ≤ n.
We set, for N > n0(v),

(6.1) ΦN (v) =
∑

n>N

(

[β−
n (v; z∗n(v)) − v−n]e−2inx + [β+

n (v; z∗n(v)) − vn]e2inx
)

,

where z∗n(v) =
λ−

n (v)+λ+
n (v)

2 − n2. Consider the mapping

(6.2) AN (v) = v + ΦN (v),

or

(6.3) AN (v) = HN (v) + TN (v),

with a ”head”

(6.4) HN (v) =
∑

n≤N

(

v−ne−2inx + vne2inx
)

and a ”tail”

(6.5) TN(v) =
∑

n>N

(

β−
n (v; z∗n(v))e−2inx + β+

n (v; z∗n(v))e2inx
)

.

As a finite sum, HN (v) is in H(Ω) for any Ω. If v is a real–valued potential in H−1

then we have, by (6.2) and Theorem 22,

(6.6) (γn) ∈ ℓ2(Ω) ⇒ (|β−
n (z∗n)| + |β+

n (z∗n)|) ∈ ℓ2(Ω) ⇒ TN (v) ∈ H(Ω),

and therefore,

(6.7) (γn) ∈ ℓ2(Ω) ⇒ AN (v) ∈ H(Ω),

for every weight Ω.
Thus, the inverse of the implication (5.21) will be proved if we show that

(6.8) AN (v) ∈ H(Ω) ⇒ v ∈ H(Ω).

If v is a real–valued potential, then the operator L = L0 + v is self–adjoint, its
periodic and anti–periodic spectra are real, so the numbers z∗n = 1

2 (λ+
n − λ−

n ) − n2

are real.
Therefore, by (3.33) and Lemma 9 we have

(6.9) β−
n (v; z∗n) = β+

n (v; z∗n).

Thus, in view of (6.1) and (6.2),

(6.10) v is real–valued ⇒ TN(v), ΦN (v), AN (v) are real–valued.

For each weight Ω on Z we denote by BΩ
r the ball of complex–valued potentials

BΩ
r = {v ∈ H(Ω) : ‖v‖Ω ≤ r}.

The following lemma plays a crucial role in the proof of the inverse of (5.21).

Lemma 24. Let Ω1 be a slowly increasing unbounded weight such that

(6.11) Ω1(k) ≤ C1|k|1/4.

Then there exist a sequence of positive numbers (rN )N∈N, rN ր ∞, and N∗ =

N∗(Ω1) ∈ N such that the mapping ΦN is well defined on the ball BΩ1

3rN
for N > N∗.
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Moreover, if Ω = (Ω(k))k∈Z is a weight of the form

(6.12) Ω(k) =
Ω1(k)Ω2(k)

k
, k ∈ Z,

where Ω2 is a sub–multiplicative weight, then the mapping ΦN : BΩ
3rN

→ H(Ω) is
well defined for N > N∗ and has the following properties:

(6.13) ‖ΦN (v1) − ΦN (v2)‖Ω ≤ 1

2
‖v1 − v2‖Ω for v1, v2 ∈ BΩ

rN
,

(6.14)
1

2
‖v1 − v2‖Ω ≤ ‖AN (v1) − AN (v2)‖Ω ≤ 3

2
‖v1 − v2‖Ω for v1, v2 ∈ BΩ

rN
,

(6.15) AN

(

BΩ
rN

)

⊃ BΩ
rN /2.

Proof. By Proposition 4, for each H−1 periodic potential v there exists N∗ =
N∗(v) such that, for n > N∗, the operator L = L0 + v has two (counted according
to their algebraic multiplicity, periodic for even n, and antiperiodic for odd n )
eigenvalues λ−

n (v) and λ+
n (v) in the disk Dn = {z : |z − n2| < n/4}. On the other

hand, in view of Lemma 5, if N∗ is large enough then all constructions of Section
3 hold.

Moreover, one can choose N∗ depending only on the weight Ω and ‖v‖ω1
, where

ω1(k) = Ω(k)/k, k 6= 0.
Indeed, by the proof of Theorem 21 and Lemma 19, (5.30) in [16], and by the

proof of Lemma 5, (3.7), it is enough to choose N∗ so that

(6.16) κn(v) := C
(

E√n(q) + ‖q‖/√n
)

≤ 1/2 for n ≥ N∗,

where q = (q(m)) is defined in (1.4) and C is an absolute constant. So,

(6.17) ‖v‖2
ω1

=
∑

(

|q(−k)|2 + |q(k)|2
)

(Ω1(k))2,

and therefore, since Ω1(k) is monotone increasing and Ω1(k) ≥ 1,

(6.18) ‖q‖ ≤ ‖q‖Ω1
= ‖v‖ω1

and

(6.19) E2
m(q) =

∑

|k|≥m

|q(k)|2 ≤ 1

(Ω1(m))2

∑

|k|≥m

|q(k)|2(Ω1(k))2 ≤ ‖v‖2
ω1

(Ω1(m))2
.

By (6.16)–(6.19),

(6.20) κn(v) ≤ C

( ‖v‖ω1

Ω1(
√

n)
+

‖v‖ω1√
n

)

.

Therefore, with

(6.21) rN =

(

1

Ω1(
√

N)
+

1√
N

)−1/4

and a proper choice of N∗ = N∗(Ω1, ‖v‖ω1
), we have for n ≥ N ≥ N∗

(6.22) κn(v) ≤ C

(

1

Ω1(
√

N)
+

1√
N

)1/2

≤ 1

4
if ‖v‖ω1

≤ 3rN .
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But ‖v‖ω1
≤ ‖v‖Ω, so β±

n (v, z), n ≥ N, are well defined if ‖v‖ω1
≤ 3rN and

|z| ≤ n/4, we have the inequality (4.51) in Proposition 19, which guarantees that

(6.23) ‖ΦN(v)‖2
Ω ≤ C(Ω1)

(

1

Ω1(
√

N)
+

1√
N

)

‖v‖4
Ω, v ∈ BΩ

3rN
⊂ Bω1

3rN
,

where C(Ω1) ≥ 1.
To explain (6.13), i.e., to show that ΦN is a contractive mapping with a co-

efficient 1/2, we estimate its derivative. Fix v1 and w such that ‖v1‖Ω ≤ rN and
‖w‖Ω = 1. The H(Ω)–valued function ϕ(t) = ΦN (v1 + tw) is analytic in the disc
|t| ≤ 2rN . Let

(6.24) bN =

[

C(Ω1)

(

1

Ω1(
√

N)
+

1√
N

)]1/2

.

Then, in view of (6.23), we have

(6.25) ‖ΦN (v)‖Ω ≤ bN‖v‖2
Ω ≤ bN · 9r2

N , v ∈ BΩ
3rN

.

The Cauchy inequality and (6.21) imply

(6.26) sup
|t|≤rN

‖ d

dt
ΦN(v1 + tw)‖Ω ≤ 1

rN
9bNr2

N = 9bNrN

≤ 9
√

C(Ω1)

(

1

Ω1(
√

N)
+

1√
N

)1/4

≤ 1

2

for N ≥ N∗ if N∗ is chosen large enough.
Therefore, if v1, v2 ∈ BΩ

rN
and ‖v1 − v2‖Ω ≤ rN , then we obtain with w =

(v1 − v2)/‖v1 − v2‖Ω

‖ΦN(v1) − ΦN (v2)‖Ω ≤ sup
|t|≤rN

‖ d

dt
ΦN (v1 + tw)‖Ω · ‖v1 − v2‖Ω ≤ 1

2
‖v1 − v2‖Ω.

If ‖v1 − v2‖Ω > rN , then (6.26) implies

‖ΦN (v1) − ΦN (v1)‖Ω ≤ ‖ΦN (v1)‖Ω + ‖ΦN (v1)‖Ω ≤ 2bNr2
N ≤ 1

2
rN ≤ 1

2
‖v1 − v2‖Ω.

Of course, in view of (6.2), (6.13) implies (6.14).
Finally, a standard argument shows that (6.13)–(6.14) imply (6.15). Namely,

for each u ∈ BΩ
rN /2 the mapping

(6.27) v → u − ΦN (v)

takes the ball BΩ
rN

into itself because (in view of Φ(0) = 0)

(6.28) ‖u − ΦN (v)‖Ω ≤ ‖u‖Ω + ‖ΦN (v) − ΦN (0)‖Ω ≤ 1

2
rN +

1

2
rN = rN .

Thus, with (6.13), by the contraction mapping principle the (nonlinear) operator
(6.27) has a unique fixed point v∗ ∈ BΩ

rN
, i.e., v∗ = u − ΦN (v∗), or AN (v∗) = u.

This completes the proof of Lemma 24. �

Remark 25. Lemma 24 is formulated and proved for spaces of complex–valued
periodic potentials v ∈ H−1. In view of Part (b) of Lemma 9 and (3.31), the
formulas (6.1)–(6.10) show immediately that this lemma holds for spaces of real–
valued potentials as well.
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Proposition 26. Let Ω1 be a slowly increasing unbounded weight such that

(6.29) Ω1(k) ≤ C1|k|1/4, k ∈ Z,

and let the weight ω1 be defined by ω1(k) = Ω1(k)/k for k > 0. Suppose Ω =
(Ω(k))k∈Z is a weight of the form

(6.30) Ω(k) =
Ω1(k)Ω2(k)

k
, k ∈ Z,

where Ω2 is a sub–multiplicative weight.
(a) If

(6.31)
log Ω2(n)

n
ց 0 as n → ∞,

then, for v ∈ H(ω1),

(6.32) ∃N AN (v) ∈ H(Ω) ⇒ v ∈ H(Ω).

(b) If Ω2 is a sub–multiplicative weight of exponential type, then

(6.33) ∃N AN (v) ∈ H(Ω) ⇒ ∃ε > 0 : v ∈ H(eε|n|).

Proof. (a) If (6.31) holds, then (see Lemma 47 in [14] – this observation
comes from [64], Lemma 9) for each ε > 0 the weight

(6.34) Ωε
2(m) = min

(

eε|m|, Ω2(m)
)

is sub–multiplicative, and obviously for large enough |m| we have Ωε
2(m) = Ω2(m).

Let Ωε be a weight given by

Ωε(k) =
Ω1(k)Ωε

2(k)

k
, k 6= 0;

then it follows H(Ωε) = H(Ω).
Next we use the constructions and notations of Lemma 24. If v ∈ H(ω1), then

‖v‖ω1
< rN/8

for large enough N > N∗(Ω1, ‖v‖ω1
). We choose N so that (6.32) holds and set

w := AN (v) = v + ΦN (v).

Then, by (6.13) (with Ω2 ≡ 1 in (6.12)), we have

‖ΦN(v)‖ω1
≤ 1

2
‖v‖ω1

≤ rN

16
,

and therefore,

(6.35) ‖w‖ω1
= ‖AN (v)‖ω1

≤ ‖v‖ω1
+ ‖ΦN (v)‖ω1

≤ rN

4
.

There exists ε > 0 such that ‖w‖Ωε ≤ rN/2. Indeed, let w(x) =
∑

k∈Z
wk exp(2ikx);

choose N1 ∈ N so that

(6.36)
∑

|k|>N1

|wk|2(Ω(k))2 <
r2
N

16
.

After that, choose ε > 0 so that eεN1 ≤
√

2. Then we have

(6.37) Ωε
2(m) ≤

√
2 ω1(m) for |m| ≤ N1.
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Now (6.35)–(6.37) imply

‖w‖2
Ωε ≤

∑

|k|≤N1

2|wk|2(ω1(m))2 +
∑

|k|>N1

|wk|2(Ω(k))2 ≤ 2‖w‖2
ω1

+
r2
N

16
≤ r2

N

8
+

r2
N

16
,

and therefore, ‖w‖Ωε < rN/2.
By (6.15) in Lemma 24, there exists ṽ ∈ BΩε

rN
⊂ Bω1

rN
such that

AN (ṽ) = w = AN (v).

On the other hand, by Lemma 24, the restriction of AN on the ball Bω1
rN

is injective.
Thus

v = ṽ ∈ H(Ωε) = H(Ω).

(b) If Ω2 is a sub–multiplicative weight of exponential type, i.e.,

lim
n→∞

log Ω2(n)

n
> 0,

then, for small enough ε > 0,

Ωε
2(m) = min

(

eε|m|, Ω2(m)
)

≡ eε|m|, Ωε(m) =
Ω1(m)

m
eε|m|.

Thus, the same argument as in (a) shows that v ∈ H(Ωε) ⊂ H(e(ε/2)|m|), which
completes the proof of Proposition 26. �

Proposition 27. Suppose Ω = (Ω(m))m∈Z is a weight of the form

(6.38) Ω(m) =
ω(m)

m
, m 6= 0.

(a) If ω a sub–multiplicative weight such that

(6.39)
log ω(n)

n
ց 0 as n → ∞,

then

(6.40) ∃N : AN (v) ∈ ℓ2(N, Ω) ⇒ v ∈ H(Ω).

(b) If ω is a sub–multiplicative weight of exponential type, i.e.,

(6.41) lim
n→∞

log ω(n)

n
> 0,

then

(6.42) ∃N : AN (v) ∈ ℓ2(N, Ω) ⇒ ∃ε > 0 : v ∈ H(eε|m|).

Proof. Let w := AN (v), and let
∑

m∈Z
wme2imx be the Fourier series of w.

If w = AN (v) ∈ H(Ω), then (|wm|)m∈Z ∈ ℓ2(Ω). Consider the sequence x =
(xn)n∈N given by

xn =

(

1

n2
|v−n|2 +

1

n2
|vn|2 + (|w−n|2 + |wn|2)(Ω(n))2

)1/2

.

Since x ∈ ℓ2(N), there exists a slowly increasing unbounded weight Ω1 such that
x ∈ ℓ2(N, Ω1) (see Lemma 48 in [14]). We may assume without loss of generality
that

Ω1(n) ≤ C1|n|1/4

(otherwise, we may replace Ω1 with (Ω1)
1/a, where a is a suitable constant).
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By the choice of Ω1 we have AN (v) ∈ H(Ω1Ω) and v ∈ H(ω1), where the
weight ω1 is given by ω1(m) = Ω1(m)/m, m > 0. Now, since H(Ω1Ω) ⊂ H(Ω),
Proposition 27 follows from Proposition 26. �

Now we are ready to complete our analysis in the case of real–valued potentials
v ∈ H−1.

Theorem 28. Let L = L0 + v(x) be the Hill–Schrödinger operator with a
periodic real–valued potential v ∈ H−1

loc (R), v(x + π) = v(x), and let γ = (γn) be its
gap sequence. If Ω = (Ω(m))m∈Z is a weight of the form

(6.43) Ω(m) =
ω(m)

m
, m 6= 0,

where ω a sub–multiplicative weight such that

(6.44)
log ω(n)

n
ց 0 as n → ∞,

then

(6.45) γ ∈ ℓ2(N, Ω) ⇒ v ∈ H(Ω).

If ω is a sub–multiplicative weight of exponential type, i.e.,

(6.46) lim
n→∞

log ω(n)

n
> 0,

then there exists ε > 0 such that

(6.47) γ ∈ ℓ2(N, Ω) ⇒ v ∈ H(eε|m|).

Proof. In view of Theorem 22,

(γn)n>N ∈ ℓ2(Ω) ⇒ ∃N : AN (v) ∈ H(Ω).

Therefore, Theorem 28 follows from Proposition 27. �

7. Complex–valued H−1–potentials

In this section we extend Theorem 28 – with proper adjustments – to the case
of complex–valued H−1 potentials.

In [11] we did similar ”extension” of our results [9] for real L2–potentials.
We followed the general scheme of [40, 41, 9] but added two important technical
ingredients.

(a) (elementary observation): A 2×2 matrix

(

a K
k a

)

has two linearly indepen-

dent eigenvectors u1 and u2 if kK 6= 0. With the normalization kK = 1 and |k| ≤ 1
(otherwise the coordinates in C2 could be interchanged) the angle α = α(u1, u2)

between the eigenvectors u1 =

(

1
k

)

and u2 =

(

1
−k

)

is equal to

arccos
1 − |k|2
1 + |k|2 = arcsin

2k

1 + |k|2 ,

so α ∼ 2|k| if |k| << 1.
(b) (hard analysis) The Riesz projections Pn, P 0

n on En and E0
n, respectively,

are close in the following sense

(7.1) ‖Pn − P 0
n‖L2→L2 ≤ κn := ‖Pn − P 0

n‖L2→L∞ → 0.
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Remark. In the case of L2 potentials

(7.2) κn ≤ C‖v‖
n

, n ≥ n∗

See Proposition 4 in [11] or Proposition 11 in [14]. Close estimates may be found
in [77, 8, 73].

Even for v ∈ H−b, b ∈ [0, 1), the inequalities (7.1) can be proven with

(7.3) κn ≤ C(b)
‖v|H−b‖

n1−b
, n ≥ n∗,

i.e., these estimates are uniform on the balls in H−b, b ∈ [0, 1).
If v ∈ L1 then

(7.4) κn ≤ C‖v‖L1

log n

n
.

This is proven, although not explicitly claimed, in [77, 8, 73].
In the case of Dirac operators (see [60], Proposition 8.1 and Corollary 8.6, and

[14], Proposition 19, formula (1.165)), estimates like (7.1) do not hold on the balls
in L2–space of potentials. But for individual potentials or on compacts in L2 an
analogue of (7.1) holds with

(7.5) κn ≤ C‖v‖
(‖v‖√

n
+ E|n|/2(w)

)

, n ≥ n∗,

where w is an ℓ2–sequence.
In Appendix, we give estimates of ‖P −P 0

n‖L2→L∞ or even of ‖P −P 0
n‖L1→L∞

in the case of Hill–Schrödinger operators with complex–valued π–periodic H−1–
potentials, subject to Per± or Dirichlet boundary conditions. See Proposition 44,
Theorem 45 and the inequality (9.84) in Section 9, Appendix.

These facts make possible to preserve the basic structure of the proof in the
case of L2 potentials: we just need to use Proposition 44, or (9.84). Keeping this
in mind we omit details of the proofs (see [14], Section 4) but reproduce the steps
and the core statements leading to the proof of the main result.

Theorem 29. Let L = L0 + v(x) be the Hill–Schrödinger operator with a π–
periodic potential v ∈ H−1

loc (R). Then, for n > N(v), the operator L has in the disc
of center n2 and radius rn = n/4 one Dirichlet eigenvalue µn and two (counted
with their algebraic multiplicity) periodic (for even n), or antiperiodic (for odd n)
eigenvalues λ+

n and λ−
n .

Let

(7.6) ∆n = |λ+
n − λ−

n | + |λ+
n − µn|, n > N(v);

then, for each weight Ω = (Ω(m))m∈Z of the form

Ω(m) = ω(m)/m, m 6= 0,

where ω is a sub-multiplicative weight, we have

(7.7) v ∈ H(Ω) ⇒ (∆n) ∈ ℓ2(Ω).

Conversely, if ω = (ω(m))m∈Z is a sub–multiplicative weight such that

(7.8)
log ω(n)

n
ց 0 as n → ∞,
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then

(7.9) (∆n) ∈ ℓ2(Ω) ⇒ v ∈ H(Ω).

If ω is a sub–multiplicative weight of exponential type, i.e.,

(7.10) lim
n→∞

log ω(n)

n
> 0

then

(7.11) (∆n) ∈ ℓ2(Ω) ⇒ ∃ε > 0 : v ∈ H(eε|m|).

Proof. By Proposition 4, for n > N(v), the operator L has in the disc of center
n2 and radius rn = n/4 one Dirichlet eigenvalue µn and two (counted with their
algebraic multiplicity) periodic (for even n), or antiperiodic (for odd n) eigenvalues
λ+

n and λ−
n .

Let E = En and E0 = E0
n denote the corresponding 2–dimensional invariant

subspace of L and the free operator L0 (subject to periodic or antiperiodic bc),
and let P = Pn and P 0 = P 0

n denote the Cauchy–Riesz projections on En and
E0

n, respectively. In what follows, we fix an n ∈ N and consider the corresponding
objects like E = En, P = Pn etc, suppressing n in the notations. The subspace
E0 = E0

n has the following standard basis of eigenvectors of L0 (corresponding to
the eigenvalue n2):

(7.12) e1(x) = e−inx, e2(x) = einx, n ∈ N.

If the restriction of L on E has two distinct eigenvalues, we denote them by λ+

and λ−, where λ+ is the eigenvalue which real part is larger, or which imaginary
part is larger if the real parts are equal, and set γ = λ+ − λ−. 3mm

Step 1 (analogue of Lemma 59 in [14]).

Lemma 30. In the above notations, for large enough n, there exists a pair of
vectors f, ϕ ∈ E = En such that

(a) ‖f‖ = 1, ‖ϕ‖ = 1, 〈f, ϕ〉 = 0;
(b) Lf = λ+f ;
(c) Lϕ = λ+ϕ − γϕ + ξf.

Moreover, with ϕ0 = P 0ϕ, we have

(7.13) |ξ| ≤ 4|γ| + 2‖
(

z+ − S(λ+)
)

ϕ0‖
and

(7.14) ‖
(

z+ − S(λ+)
)

ϕ0‖ ≤ 2(|ξ| + |γ|),
where z+ = λ+ − n2 and S(λ+) : E0 → E0 is the operator (3.9) constructed in
Lemma 6.

Proof is given in [14], Lemma 59. However, there in all inequalities on pp.
735–736 after (4.9) till the lines 9–10, p. 736 we need to use (9.84) to guarantee
that κn → 0.

Step 2. In what follows we use Lemma 30 and its notations. Let f, ϕ ∈ E be
the orthonormal pair of vectors constructed in Lemma 30, and let f0

1 , f0
2 and ϕ0

1, ϕ
0
1

be the coordinates of f0 = P 0f and ϕ0 = P 0ϕ with respect to the basis {e1, e2},
i.e.,

(7.15) f0(x) = f0
1 e1(x) + f0

2 e2(x), ϕ0(x) = ϕ0
1e

1(x) + ϕ0
2e

2(x).
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Then Lf = λ+f and, by Lemma 6, the vector f0 = P 0f is an eigenvector of
the operator L0 + S(λ+) : E0 → E0 with eigenvalue λ+. This leads to

(7.16)

(

ζ+ B−

B+ ζ+

)(

f0
1

f0
2

)

=

(

ζ+f0
1 + B−f0

2

B+f0
1 + ζ+f0

2

)

=

(

0
0

)

, (ζ+)2 = B+B−,

where

(

ζ+ B−

B+ ζ+

)

is the matrix representation of the operator z+ − S(λ+), so, in

view of (3.22) and (3.33),

(7.17) ζ+ = z+ − αn(z+), B± = β±
n (z+), z+ = λ+ − n2.

Lemma 31. In the above notations, for large enough n,

(7.18)
1

2

(

|B+| + |B−|
)

≤ ‖
(

z+ − S(λ+)
)

ϕ0‖ ≤
(

|B+| + |B−|
)

Proof is really given in [14], Lemma 60. However, there in inequalities (4.21),
(4.22) and between we need to use (9.84) to guarantee that κ ≡ κn ≤ 1/2 for
n ≥ n(v).

Step 3. Upper bounds for deviations |µ − λ+|.
Now we construct a Dirichlet function G ∈ E = En and use it to estimate

|µ − λ+| in terms of |B−| and |B+|.
Let g be a unit Dirichlet eigenvector that corresponds to µ, i.e.,

(7.19) Ldirg = µg, ‖g‖ = 1,

and let Pdir be the Cauchy–Riesz projection on the corresponding one–dimensional
eigenspace.

Lemma 32. Under the assumptions of Lemma 30,
(a) there is a vector G ∈ E = En of the form

(7.20) G = af + bϕ, ‖G‖2 = |a|2 + |b|2 = 1,

such that

(7.21) G(0) = 0, G(π) = 0,

i.e., G is in the domain of Ldir.
(b) Moreover, we have

(7.22) τ(µ − λ+) = bξ〈Pdirf, g〉 − bγ〈Pdirϕ, g〉,
where τ = τn,

(7.23) 1/2 ≤ |τ | ≤ 2.

Proof repeats the proof of Lemma 61 (its Hill–Schrödinger part) in [14] but on
pp. 739–740 in inequalities (4.33–39) and (4.40–42) again we use (9.84) to guarantee
that κn → 0.

Steps 1–3 lead us to the following

Proposition 33. Under the above assumptions and notations, for large enough
n, we have

(7.24) |µ − λ+| ≤ 18|γ|+ 8
(

|B+| + |B−|
)
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Proof is given in [14], Proposition 62, where it is explained how the statements
of steps 1–3 imply the inequality (7.24).

Step 4.

Proposition 34. For large enough n, if

(7.25)
1

4
|B−| ≤ |B+| ≤ 4|B−|,

then

(7.26) |β−
n (z∗n)| + |β+

n (z∗n)| ≤ 2|γn|,

where B± = β±
n (z+) and z∗n =

λ+
n +λ−

n

2 − n2 in the case of simple eigenvalues,

z∗n = λ+
n − n2 otherwise.

Proof. If (7.25) holds, then either B+ = B− = 0, or B+B− 6= 0. If we
have B+ = 0 and B− = 0, then λ+ is an eigenvalue of geometric multiplicity 2
of the operator P 0L0P 0 + S(λ+). That may happen, by Remark 7, if and only if
λ+ is an eigenvalue of geometric multiplicity 2 of the operator L also. But then
γn = 0, z∗n = z+

n , and therefore, (7.26) holds.
If B+B− 6= 0 and γn 6= 0, then the claim follows from Lemma 21 because (7.25)

implies t = |B+|/|B−| ∈ [1/4, 4], and therefore, 2
√

t/(1 + t) ≥ 4/5.
Finally, let us consider the case, where B+B− 6= 0 but γn = 0. By Lemma 6,

if z ∈ D = {w : |w| < n/4}, then the point λ = n2 + z is an eigenvalue of L if and
only if z is a root of the basic equation

h(z) := (ζ(z))2 − β+(z)β−(z) = 0, ζ(z) = z − α(z).

Therefore, if γn = 0, then z+ = λ+ − n2 is the only root of the equation h(z) = 0
on the disc D.

Moreover, the root z+ is of multiplicity 2. Indeed, consider the two equations
z2 = 0 and h(z) = 0 on the disk D. In view of Proposition 15, the maximum values
of |αn(z)| and |β±

n (z)| on the circle ∂D = {z : |z| = n/4} do not exceed nεn, where
εn → 0 as n → ∞. Since

h(z) − z2 = −2αz + α2 − β+β−,

we have

sup
∂D

|h(z) − z2| ≤ sup
∂D

(2|z||α| + |α2| + |β+β−|) ≤
(n

4

)2

ηn,

where ηn = 8εn(1 + 4εn) → 0.
Therefore, for large enough n, we have

sup
∂D

|h(z) − z2| < sup
∂D

|z2|,

so the Rouche Theorem implies that z+ is a double root of the equation h(z) = 0.
Thus, the derivative of h vanishes at z+, i.e.,

2ζ(z+) ·
(

1 − dα

dz
(z+)

)

=
dβ+

dz
(z+) · β−(z+) + β+(z+) · dβ−

dz
(z+).

By Proposition 15, formula (4.33), we have, for large enough n,
∣

∣

∣

∣

dα

dz
(z+)

∣

∣

∣

∣

≤ 1

5
,

∣

∣

∣

∣

dβ±

dz
(z+)

∣

∣

∣

∣

≤ 1

5
.
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Therefore, by the triangle inequality, we get

2|ζ+|(1 − 1/5) ≤ 1

5
(|B+| + |B−|),

where |ζ+| = |ζ(z+)| =
√

|B+B−|. Thus, the latter inequality implies, in view of
(7.25),

8 ≤
√

|B+/B−| +
√

|B−/B+| ≤ 4,

which is impossible. This completes the proof. �

Step 5. Next we consider the case that is complementary to (7.25), i.e.,

(7.27) (a) 4|B+| < |B−| or (b) 4|B−| < |B+|.
We begin with the following technical statement (which is an analogue of Lemma 9
in [11]).

Lemma 35. If n is large enough and (7.27) holds, then

(7.28)
1

4
≤ |f(0)|

|ϕ(0)| ≤ 4.

Proof is essentially given in [14], pp. 743–744, but again to justify the analogs
of the inequalities (4.49) to (4.56) and between in [14], we use Proposition 44 (or
Theorem 45) to claim that κn → 0.

Step 6.

Proposition 36. If (7.27) holds, then we have, for large enough n,

(7.29) |B+| + |B−| ≤ 36|γ| + 144|µ− λ+|.
Proof with the same disclaimer as above is given in [14], pp. 744–745.

Step 7.

Theorem 37. Let L = L0 + v(x) be the Hill–Schrödinger operator with a π–
periodic potential v ∈ H−1

loc (R). For large enough n, if λ+
n , λ−

n is the n-th couple of
periodic (for even n) or antiperiodic (for odd n) eigenvalues of L, γn = λ+

n − λ−
n ,

and µn is the n-th Dirichlet eigenvalue of L, then

(7.30)
1

72

(

|β−
n (z∗n)| + |β+

n (z∗n)|
)

≤ |γn| + |µn − λ+
n | ≤ 58

(

|β−
n (z∗n)| + |β+

n (z∗n)|
)

.

Proof. By Proposition 4 (localization of spectra) and Proposition 15,

sup
[z−

n ,z+
n ]

|∂αn/∂z| ≤ εn, sup
[z−

n ,z+
n ]

|∂β±
n /∂z| ≤ εn, εn ↓ 0,

where [z−n , z+
n ] denotes the segment with end points z−n and z+

n . Therefore, since
|z+

n − z∗n| ≤ |γn| = |z+
n − z−n |, we have

|β±
n (z+

n ) − β±
n (z∗n)| ≤ εn · |γn|.

By the triangle inequality, it follows, for large enough n, that

(7.31) |B±| − 1

2
|γn| ≤ |β±

n (z∗n)| ≤ |B±| + 1

2
|γn|,

where B± = β±
n (z+

n ).
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In view of (7.31), Propositions 34 and 36 imply the left inequality in (7.30).
On the other hand, Lemma 20 yields that, for large enough n,

|γn| ≤ 2
(

|β−
n (z∗n)| + |β+

n (z∗n)|
)

.

Therefore, Proposition 33 and the inequality (7.31) imply the right inequality in
(7.30). Theorem 37 is proved. �

Step 8. Let N be so large that Theorem 37 holds for n ≥ N, and let Ω =
(Ω(m))m∈Z be a weight of the form

Ω(m) = ω(m)/m, m 6= 0,

where ω is a sub-multiplicative weight. By the right inequality in (7.30), Theorem
37, we have, for n > N,

∆n = |γn| + |µn − λ+
n | ≤ 58

(

|β−
n (z∗n)| + |β+

n (z∗n)|
)

≤ 58
(

|v−n| + |vn| + |β−
n (z∗n) − v−n| + |β+

n (z∗n) − vn|
)

.

Therefore, in view of (4.51) in Proposition 19, or more precisely as in its spec-
ification (5.23), we obtain

∑

n>N

∆2
n(Ω(n))2 ≤ C

∑

n>N

(|v−n|2 + |vn|2)(Ω(n))2 + C(‖v‖4
Ω + ‖v‖2

Ω) < ∞,

which proves (7.7).
Conversely, suppose (∆n)n≥N ∈ ℓ2(Ω) with Ω(m) = ω(m)/m, m 6= 0, where

ω is a sub–multiplicative weight having the property (7.8) (or, respectively, (7.10)).
Then, by the left inequality in (7.30), Theorem 37, we have

(∆n)n≥N ∈ ℓ2(Ω) ⇒
(

|β−
n (z∗n)| + |β+

n (z∗n)|
)

n≥N
∈ ℓ2(Ω).

This yields, in view of the definition of the mapping AN (see (6.2)–(6.5)), that
AN (v) ∈ H(Ω) because, for n > N, the numbers β±

n (z∗n) are, respectively, the ±n-
th Fourier coefficients of AN (v). Now, by Proposition 27, we get v ∈ H(Ω) (or,
respectively, v ∈ H(eε|m|)), which completes the proof of Theorem 29. �

8. Comments

1. In his preprint [64] J. Pöschel presented results of [40, 41, 9, 10, 11] and
made attempts to improve the technical exposition and to ease some assumptions,
for example on weight sequences Ω. But its starting point (at least in the case
of complex–valued L2–potentials) is the family of “alternate gap lengths” which
would mimic the properties of Dirichlet eigenvalues. He mentions that Sansuc and
Tkachenko (presumably in [67]) considered the quantities δn = µn − τn, where µn

are the Dirichlet eigenvalues and τn = (λ+
n +λ−

n )/2 are the midpoints of the spectral
gaps, and then claims: ”More generally, one may consider a family of continuously
differentiable alternate gap lengths δn : H0 → C, characterized by the properties
that

– δn vanishes whenever λ+
n = λ−

n has also geometric multiplicity 2, and
– there are real numbers ξn such that its gradient satisfy

dδn = tn + O(1/n), tn = cos 2πn(x + ξn),

uniformly on bounded subsets of H0. That is,

‖dqδn − tn‖0 ≤ Cq(‖q‖0)/n



134 PLAMEN DJAKOV AND BORIS MITYAGIN

with Cδ depending only on ‖q‖0 := ‖q‖H0“.
(In [64], line 10 on page 3, H0 is defined as the L2–space of complex–valued func-
tions on [0, π].)

But such entire functions δn do not exist. (It means that many constructions of
[64] manipulate with an empty set.) This was well understood by J. Meixner and
F. W. Schäfke in the early 1950’s. They explained [55, 56] that the n–th Dirichlet
eigenvalue En(z) of the Mathieu operator

L(z)y = −y′′ + z cos 2x y, y(0) = y(π) = 0, En(0)2,

has a finite radius of analyticity.
This phenomenon is very important in understanding and construction of an-

alytic functions used in the papers [40, 41, 9, 10, 11]
Now, for completeness of our analysis and presentation, we give a proof of the

following statement which is a generalization of the Meixner-Schäfke result ([55],
Thm 8, Section 1.5).

Proposition 38. Let

(8.1) v(x) =

∞
∑

k=1

vk

√
2 cos 2kx,

where (vk) is a real sequence such that

(8.2)
∑

k

|vk| = σ < ∞

and

(8.3) kvk → 0 as k → ∞.

Then the n–th Dirichlet eigenvalue En(z) of the operator

L(z)y = −y′′ + zv(x)y, y(0) = y(π) = 0, En(0)2

is analytic in a neighborhood of z = 0, and the radius of convergence Rn of its
Taylor series about z = 0 satisfies, for large enough n,

(8.4) Rn ≤ Cn2, C =
32

√
2σ

‖v‖2
.

Proof. It is well known (see [44], Sections 7.2 and 7.3) that the function En(z)
is analytic in a neighborhood of 0.

Let

(8.5) En(z) = n2 +

∞
∑

1

ak(z)zk

be its Taylor series expansion about z = 0, and let Rn be the radius of convergence
of (8.5).

Proof by the Meixner–Schäfke scheme has two independent (to some extent)
parts:

(A) the estimates from above of the Taylor coefficient a2(n) of En(z), or, more
generally, ak(n), k ≥ 3, in terms of the radius Rn;

(B) the estimates from below of a2(n), or, more generally, ak(n), k ≥ 3.
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Part A. Under the condition (8.2) the potential v is a bounded (continuous)
function, so the multiplier operator V : f → vf is bounded in L2([0, π]) and

(8.6) ‖V ‖ ≤ σ.

Let us assume that En(z) is well defined analytic function of z in a disc Dr =
{z : |z| ≤ r}. Then we have, with f ∈ Dom(L) depending on z,

(8.7) (L0 + zV )f = En(z)f, ‖f‖ = 1,

and therefore,

(8.8) En(z) = 〈L0f, f〉 + z〈V f, f〉.
Since the operator L0 is self–adjoint, we have

(8.9) Im En(z) = Im (z〈V f, f〉).
From (8.6) and (8.9) it follows that

(8.10)
∣

∣Im (En(z) − n2)
∣

∣ = |Im En(z)| ≤ σr.

Since En(0)2, in view of (8.10) we have

1

2π

∫ 2π

0

∣

∣Re (En(reit) − n2)
∣

∣

2
dt =

1

2π

∫ 2π

0

∣

∣Im (En(reit) − n2)
∣

∣

2
dt ≤ σ2r2,

which implies, by the Cauchy inequality,

(8.11)
1

2π

∫ 2π

0

∣

∣En(reit) − n2
∣

∣ dt ≤
(

1

2π

∫ 2π

0

∣

∣En(reit) − n2
∣

∣

2
dt

)1/2

≤
√

2σr.

Therefore, the Cauchy formula yields

|a2(n)| =

∣

∣

∣

∣

1

2πi

∫

∂Dr

En(z) − n2

z3
dz

∣

∣

∣

∣

≤ 1

2πr2

∫ 2π

0

∣

∣(En(reit) − n2)
∣

∣ dt ≤
√

2σ

r
.

Since this inequality holds for every r < Rn, we get

(8.12) |a2(n)| ≤
√

2σ

Rn
,

so whenever a2(n) 6= 0 it implies that Rn is finite and

(8.13) Rn ≤
√

2σ

|a2(n)| .

Remark. Of course, an analogue of (8.13) could be derived for any k > 2. The
Cauchy formula and (8.11) imply, for each r < Rn,

|ak(n)| =

∣

∣

∣

∣

1

2πi

∫

∂Dr

En(z) − n2

zk+1
dz

∣

∣

∣

∣

≤ 1

2πrk

∫ 2π

0

∣

∣(En(reit) − n2)
∣

∣ dt ≤
√

2σ

rk−1
,

so

(8.14) Rn ≤
( √

2σ

|ak(n)|

)1/(k−1)

if ak(n) 6= 0.

Part B. To make the inequality (8.13) meaningful as a tool to evaluate Rn

we need to estimate |a2(n)| from below. Let us follow the Raleigh–Schrödinger
procedure.
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It is well known (e.g., see [44], Section 7.3, in particular (7.3.3)) that there
exists an analytic family of eigenvectors

(8.15) ϕ(z) = ϕ0 + zϕ1 + z2ϕ2 + · · · , |z| < ρ << 1,

with

(8.16) ϕ0 =
√

2 sin nx.

Therefore, by (8.5),
(8.17)
(L0 + zV )(ϕ0 + zϕ1 + z2ϕ2 + · · · ) = (a0 + a1z + a2z

2 + · · · )(ϕ0 + zϕ1 + z2ϕ2 + · · · ),
so we have

(8.18) L0ϕ0 = a0ϕ0, a0 = n2,

(8.19) L0ϕ1 + V ϕ0 = a0ϕ1 + a1ϕ0,

(8.20) L0ϕ2 + V ϕ1 = a0ϕ2 + a1ϕ1 + a2ϕ0.

Let us notice that if g ∈ Dom(L0) = Dom(L0 + zV ), then we have

(8.21) 〈(L0 − a0)g, ϕ0〉 = 〈g, (L0 − a0)ϕ0〉 = 0.

Therefore, taking the scalar product of both sides of (8.19) with ϕ0, we get
(8.22)

a1 = 〈V ϕ0, ϕ0〉 =
1

π

∫ π

0

v(x)2 sin2 nxdx =
1

π

∫ π

0

v(x)(1 − cos 2nx)dx = − vn√
2
.

We rewrite (8.19) as

(8.23) (a0 − L0)ϕ1 = (V − a1)ϕ0;

this implies

(8.24) ϕ1 = b1ϕ0 + R̂(a0)(V − a1)ϕ0,

where b1 is an unknown constant and

(8.25) R̂(a0)(sin kx) =

{

0, k,
1

n2−k2 sin kx, k 6= n.

The next step will give us the value of a2(n). In view of (8.21), a multiplication of
both sides of (8.20) by ϕ0 leads to

(8.26) a2(n) = 〈(V − a1)ϕ1, ϕ0〉.
The first term b1ϕ0 in (8.24) is not known but (8.22) yields

〈(V − a1)b1ϕ0, ϕ0〉 = b1〈(V − a1)ϕ0, ϕ0〉 = 0.

Therefore,

(8.27) a2 = 〈(V − a1)R̂(a0)(V − a1)ϕ0, ϕ0〉 =
∑

k 6=n

1

n2 − k2
(gk)2,

where gk are the Fourier coefficients of the function g = (V − a1)ϕ0, i.e.,

gk =
1

π

∫ π

0

g(x)
√

2 sin kxdx, k ∈ N.
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By (8.1),

(8.28) V ϕ0 =
∑

k

vk

√
2 cos 2kx

√
2 sin nx =

∑

k

vk (sin(n + 2k)x + sin(n − 2k)x) .

Therefore, by (8.22), if n is even, n = 2m, we have

(8.29) (V − a1)ϕ0 =
1√
2

∑

p∈N\{m}
(v|p−m| − vp+m)

√
2 sin 2px,

and if n is odd, n = 2m − 1,

(8.30) (V − a1)ϕ0 =
1√
2

∑

p∈N\{m}
(v|p−m| − vp+m−1)

√
2 sin(2p − 1)x.

Now (8.27) implies

(8.31) a2(n) =
1

8

∑

p∈N\{m}

1

m2 − p2
(v|p−m| − vp+m)2, n = 2m,

and

(8.32) a2(n) =
1

8

∑

p∈N\{m}

1

(m − p)(m + p − 1)
(v|p−m| − vp+m−1)

2, n = 2m − 1.

Of course, these formulas could be useful for different purposes, so let us state the
following.

Proposition 39. Assume that the potential v(x) =
∑

k vk cos 2kx is continu-
ous on [0, π]. Then the operator L = −d2/dx2 + zV subject to Dirichlet boundary
conditions has, for |z| < ρ, simple eigenvalues En(z) which are analytic functions,
where ρ > 0 does not depend of n. Moreover

(8.33) En(0) = n2, E′(0) = −vn/
√

2, E′′(0) = a2(n)/2,

where a2(n) is given by (8.31) and (8.32).

Now we use (8.31) and (8.32) to estimate |a2(n)| from below. We present details
for the case of even n = 2m only. For odd n technical details are the same.

Analysis of quadratic forms given by the sums in (8.31) and (8.32) could give
many examples of potentials (sequences (vk)) with specific properties. To prove
our main Proposition 38 we will use the following.

Lemma 40. Let (vk), k ∈ N, be a real ℓ2-sequence such that, for sufficiently
large k,

(8.34) |vk| ≤ δ/k, 0 < δ ≤ ‖v‖/15.

Then we have, for sufficiently large n,

(8.35) |a2(n)| ≥ ‖v‖2

32n2
.

Proof. Consider the case n = 2m. By (8.31), with k = |m − p|, we have

(8.36) 8a2(n) =

m−1
∑

k=1

1

k(2m − k)
(vk − v2m−k)2 −

∞
∑

k=1

1

k(2m + k)
(vk − v2m+k)2.
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Therefore,

∞
∑

k=m

1

k(2m + k)
(vk − v2m+k)2 ≤ 1

3m2

∞
∑

k=m

(2|vk|2 + 2|v2m+k|2) ≤
4

3m2
(Em(v))2,

where

Em(v) :=

( ∞
∑

k=m+1

|vk|2
)1/2

→ 0 m → ∞.

On the other hand,

m−1
∑

k=1

1

k(2m − k)
(vk − v2m−k)2 −

m−1
∑

k=1

1

k(2m + k)
(vk − v2m+k)2 =

5
∑

j=1

Aj ,

where

A1 =

m−1
∑

k=1

1

k

(

1

2m − k
− 1

2m + k

)

(vk)2 =

m−1
∑

k=1

2

(2m − k)(2m + k)
(vk)2

≥ 2

3m2

m−1
∑

k=1

(vk)2 ≥ 2

3m2

(

‖v‖2 − (Em(v))2
)

;

|A2| =

∣

∣

∣

∣

∣

m−1
∑

k=1

1

k(2m − k)
(−2vkv2m−k)

∣

∣

∣

∣

∣

≤ 2δ

m2

m−1
∑

k=1

|vk|
k

≤ 3‖v‖δ
m2

by (8.34), and
∑ |vk|/k ≤ (

∑ |vk|2)1/2(
∑

1/k2)1/2 ≤ ‖v‖ · π√
6
≤ 3

2‖v‖;

|A3| =

∣

∣

∣

∣

∣

m−1
∑

k=1

1

k(2m + k)
(2vkv2m+k)

∣

∣

∣

∣

∣

≤ 2δ

4m2

m−1
∑

k=1

|vk|
k

≤ 3‖v‖δ
4m2

by the same argument as above;

A4 =

m−1
∑

k=1

1

k(2m − k)
(v2m−k)2 ≤ δ

m2

m−1
∑

k=1

|v2m−k|
k

≤ δ

m2
· Em(v) · π√

6

by (8.34) and the Cauchy inequality, as in the estimate of A2;

|A5| =

∣

∣

∣

∣

∣

−
m−1
∑

k=1

1

k(2m + k)
(v2m+k)2

∣

∣

∣

∣

∣

≤ 1

4m2

m−1
∑

k=1

|v2m+k|
k

≤ δ

4m2
· Em(v) · π√

6

by the same argument as above.
Since Em(v) → 0 as m → ∞, (8.36), (8.34) and the above inequalities imply,

for large enough m,

8a2(2m) ≥ 1

m2

(

1

2
‖v‖2 − 15‖v‖δ

4m2

)

≥ ‖v‖2

4m2
.

This completes the proof of (8.35). �



SCHRÖDINGER OPERATORS WITH SINGULAR POTENTIALS 139

Now we can complete the proof of Proposition 38. In view of (8.3), the condition
(8.34) holds for large enough k. Therefore, the inequalities (8.13) and (8.35) hold,
so

Rn ≤
√

2σ

|a2(n)| ≤ Cn2, C =
32

√
2σ

‖v‖2
.

�

2. More comments. In this subsection we will make a few comments on applica-
tions of the Banach–Cacciopoli contraction principle (see Section 6) to complement
the references in [14], Section 3.5.

In an unpublished 2000 manuscript [58] B. Mityagin used the Banach–Cacciopoli
contraction principle to prove density of (complex–valued) finite–zone potentials of
Hill operators in H(Ω)–spaces when Ω is a submultiplicative weight (see Theorem
69 in [14] for a precise statement). His analysis dealt with “tails“ (6.5); the “head“
was not important but the choice of sufficiently large N to guarantee that HN is
contractive has been.

Following the same scheme, P. Djakov and B. Mityagin (see announcement in
[59]), and independently (but with extra conditions on L2-potentials) B. Grebert
and T. Kappeler [31], proved density of finite–zone potentials of 1D Dirac operator
(see for an accurate statement [14], Theorem 70). In particular, B. Grebert and T.
Kappeler write in [31] (their paper appeared in January 2003 issue of Asymptotic
Analysis):

“To prove Theorem 1.1 ... we follow the approach used in [58]: as a set–up
we take the Fourier block decomposition introduced first for the Hill operator in
[40, 41] and used out subsequently for the Zaharov–Shabat operators in [29, 30].
Unlike in [58] where a contraction mapping argument was used to obtain the density
results for the Hill operator, we get a short proof of Theorem 1.1 by applying the
inverse function theorem in a straightforward way. As in [58], the main feature
of the present proof is that it does not involve any results from the inverse spectral
theory.“ (This is a word–by–word quote from [31] but we changed its reference
numbers to fit the reference list of the present paper.)

According to his 2004 preprint [64] J. Pöschel spent a few months in 2003/04
in University of Zürich and had long discussions with T. Kappeler. In [64] he
combined “tails“ and “heads “ into the operator AN = HN + TN ∈ (6.3). Of
course, this does not change the analytic core of the proofs, i.e., the necessity of
inequalities which guarantee that TN , or AN are contractive, or – B. Grebert and
T. Kappeler [31] and J. Pöschel [64] believe that this is a simplification – a version
of Implicit Function Theorem could be used instead. T. Kappeler and J. Pöschel
[43] claim in 2008 that to use Implicit Function Theorem in the context of spectral
gaps was “new functional analytic approach“ invented by J. Pöschel. We will not
argue with this opinion but mention which elements in [64] we have found really
useful for application of the Banach–Cacciopoli contraction principle. Firstly, let
us mention the following statement2.

2One of the authors (B.M.) thanks Professor Petr Zabreiko (Belorussian State University,
Minsk, Belarus), who reminded him lovely discussions and wonderful atmosphere in the led by
Mark Krasnoselski seminar on non–linear functional analysis and differential equations in Voronezh
State University, Voronezh, Russia, in 1962–1967.
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Trick 41. (folklore of the 1950’s) Let X1 ⊂ X0 be two Banach spaces with
norms ‖x‖0 ≤ ‖x‖1. Suppose F is an operator acting in both spaces, F : Xj →
Xj, j = 0, 1, so that

(8.37) ‖F (x) − F (y)‖j ≤ 1

2
‖x − y‖j, x, y ∈ Xj , j = 0, 1.

If a ∈ X0 and

(8.38) c = a + F (a) ∈ X1,

then a ∈ X1.

Proof. By (8.37), the operator y → c−F (y) is a contraction in X1. Therefore,
by the Banach–Cacciopoli contraction principle, it has a fixed point p ∈ X1, i.e.,

(8.39) p = c − F (p).

By (8.38) and (8.39),

a − p = F (p) − F (a).

On the other hand, by (8.37) with j = 0,

‖a − p‖0 ≤ 1

2
‖a− p‖0,

which yields a = p, so a ∈ X1. �

We have explained this trick in the case when the operator is defined on the
entire spaces Xj , j = 0, 1. Of course, as usually, the Banach–Cacciopoli contraction
principle is used in Lemma 24 when the operator acts on balls. We follow J.
Pöschel [64], when we introduce the weight (6.34) and apply Trick 41. But this
“soft“ analysis does not help to avoid “hard analysis“ of proving that the operators
involved are contractive – by 2003, i.e., prior to either [31] or [64], it has been done
in [41, 9, 11] for Hill operators with L2 complex–valued potentials. No surprise,
neither [64], no [65] make any claims about 1D periodic Dirac operators (see “hard
analysis“ in [12] and [14]) or Hill operators with H−1–potentials – the latter case
is analyzed and done in the present paper.

3. In Introduction – see (1.7),(1.8) – ”Sobolev” spaces of functions or weighted
sequence spaces are defined by weights Ω. In this paper we consider weights of the
form

(8.40) Ω(m) =
ω(m)

m
for m 6= 0, Ω(0) = 1,

where ω(m) is a sub–multiplicative weight such that log(ω(n))/n is monotone de-
creasing as n → ∞.

Of course, classical examples of such weights are

(8.41) Ω(m) = |m|a, a ≥ −1,

(8.42) Ω(m) = |m|s exp(c|m|b), 0 < b < 1,

which give us Sobolev spaces Ha or Gevrey spaces G(b; s, c) correspondingly.
More generally, if ϕ(x), x ≥ 0, is a concave function such that ϕ(0) = 0, then

the weight

(8.43) ω(m) = exp(ϕ|m|), m ∈ Z,
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is sub–multiplicative, log(ω(n))/n is monotone decreasing as n → ∞, so we can
consider the corresponding Sobolev space H(Ω) with Ω(m) = ω(m)/m, m 6= 0. In
this general setting a weight Ω could be chosen ”to oscillate” so that the space
H(Ω) does not contain all C∞ (or even Gevrey) functions and at the same time
H(Ω) is not contained in Ha for every a > −1.

Let us make this remark more formal and precise.

Lemma 42. Let the functions a(x), b(x) ∈ C2([0,∞)) satisfy the following con-
ditions:

(i) a(0) = b(0) = 0, a(x) < b(x) for x > 0, b(x) − a(x) → ∞ as x → ∞;
(ii) a′(x), b′(x) > 0, a′(x), b′(x) → 0 as x → ∞;
(iii) a′′(x), b′′(x) < 0, x ≥ 0.

Then, there is a concave function g(x) and a sequence ck ↑ ∞ such that

(8.44) a(x) ≤ g(x) ≤ b(x)

and

(8.45) g(c2k−1) = b(c2k−1), g(c2k) = a(c2k), k = 1, 2, . . . .

Proof. We construct inductively ck and g(x) so that (8.45) holds and g(x) is
linear on the interval [c2k−1, c2k+1], k ≥ 1.

Choose c1 > 0 large enough to guarantee that

(8.46) a′(x), b′(x) ≤ 1/2 for x ≥ c1

and

(8.47) b(x) − a(x) ≥ 1 for x ≥ c1.

We set g(x) = b(x) for 0 ≤ x ≤ c1, and

(8.48) m1 = inf{m : g(c1) + m(x − c1) ≥ a(x) for x ≥ c1}.
Concavity of a(x) and the initial condition

g(c1) = b(c1) > a(c1)

guarantee that m1 is well–defined by (8.48) and there are uniquely determined
points c2, c3 such that

m1(c2 − c1) + g(c1) = a(c2), m1(c3 − c1) + g(c1) = b(c3).

Therefore, with g(x) = m1(x− c1)+ g(c1) for x ∈ [c1, c3] the condition (8.45) holds
for k = 1.

We continue by induction. Assuming that c1, . . . , c2p−1 and g(x), x ≤ c2p−1,
are constructed, we set

mp = inf{m : g(c2p−1) + m(x − c2p−1) ≥ a(x) for x ≥ c2p−1}.
Then there are uniquely determined points c2p, c2p+1 such that

mp(c2p − c2p−1) + g(c2p−1) = a(c2p), mp(c2p+1 − c2p−1) + g(c2p−1) = b(c2p+1).

Therefore, with g(x) = mp(x−c2p−1)+g(c2p−1) for x ∈ [c2p−1, c2p+1] the condition
(8.45) holds for k = p.

Since a(c2p) ≥ b(c2p−1), (8.46) and (8.47) imply

1 ≤ b(c2p) − a(c2p) ≤ b(c2p+1) − b(c2p−1) ≤ (c2p+1 − c2p−1)/2.

Therefore, c2p+1 − c2p−1 ≥ 2, so ck → ∞.
�
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Let a(x), b(x), g(x) be the functions from Lemma 42. We are going to define
weight sequences using the values of a(x), b(x), g(x) at integer points. Let

nk = [ck], so nk ≤ ck < nk + 1,

where (ck) is the sequence constructed in the proof of Lemma 42. By its construc-
tion, in view of (8.46), the function g(x) is piecewise linear for x ≥ c1 with positive
slopes mp ≤ 1/2. Therefore, the Mean Value Theorem implies

(8.49) b(nk) − g(nk) ≥ b(ck) − a(ck) − 1/2 for even k

and

(8.50) g(nk) − a(nk) ≥ b(ck) − a(ck) − 1/2 for odd k.

Consider the weights

A(m) =
1

|m|e
a(|m|), B(m) =

1

|m|e
b(|m|), G(m) =

1

|m|e
g(|m|), m 6= 0.

By (i) in Lemma 42, b(x) − a(x) → ∞ as x → ∞. Therefore, (8.49) and (8.50)
imply

(8.51) sup
n

B(n)

G(n)
≥ sup

k

B(n2k)

G(n2k)
= ∞, sup

n

G(n)

A(n)
≥ sup

k

G(n2k−1)

A(n2k−1)
= ∞.

We have A(m) ≤ G(m) ≤ B(m), so in view of (8.51),

(8.52) H(B) & H(G) & H(A).

Lemma 43. In the notations of Lemma 42, suppose f(x) ∈ C2([0,∞)) is a
function which satisfies (ii) and (iii) and

(8.53) a(x) ≤ f(x) ≤ b(x), x ≥ 0,

(8.54) f(x) − a(x) → ∞, b(x) − f(x) → ∞ as x → ∞.

Let F be the corresponding the weight sequence F (m) = |m|−1 exp f(|m|) for m 6=
0, F (0) = 1. Then

(8.55) H(B) ⊂ H(F ) ⊂ H(A)

and

(8.56) H(B) & H(G) & H(A),

but

(8.57) H(F ) 6⊂ H(G) and H(G) 6⊂ H(F ).

Proof. Inequalities (8.53) and (8.44) imply the inclusions (8.55), and (8.56)
is explained in (8.52). The same argument proves (8.57) because (8.54) implies

sup
n

G(n)

F (n)
≥ sup

k

G(n2k−1)

F (n2k−1)
≥ sup

k
exp[−1/2 + b(c2k−1) − f(c2k−1)] = ∞

and, in a similar way, supn F (n)/G(n) = ∞. �
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Lemmas 42 and 43 give a variety of options to construct weights with prescribed
imbedding properties of related Sobolev spaces.

Example 1. For −1 < α < β, let

a(x) = (α + 1) log(x + e), b(x) = (β + 1) log(x + e),

and let g(x), G be the corresponding function from Lemma 42 and the weight
sequence G(m) = |m|−1 exp g(|m|) for m 6= 0, G(0) = 1. Then Hβ ⊂ H(G) ⊂ Hα

but we have Hγ 6⊂ H(G) and H(G) 6⊂ Hγ for any γ ∈ (α, β).
Example 2. Let

a(x) = log log(x + e), b(x) = x/ log(x + e),

and let g(x), G be the corresponding function from Lemma 42 and the weight
sequence G(m) = |m|−1 exp g(|m|) for m 6= 0, G(0) = 1.

Then, for any weight Ω in (8.41) with a > −1 or in (8.42), we have H(Ω) 6⊂
H(G) and H(G) 6⊂ H(Ω). At the same time H(G) ⊂ H−1 and all analytic functions
are in H(G).

9. Appendix:Deviations of Riesz projections of Hill operators with

singular potentials

In this Appendix we show that the deviations Pn − P 0
n of Riesz projections

Pn =
1

2πi

∫

Cn

(z − L)−1dz, Cn = {|z − n2| = n},

of Hill operators Ly = −y′′ + v(x)y, x ∈ [0, π], with zero and H−1 periodic po-
tentials go to zero as n → ∞ even if we consider Pn − P 0

n as operators from L1 to
L∞. This implies that all Lp-norms are uniformly equivalent on the Riesz subspaces
Ran Pn (see Theorem 51).

9.1. Preliminaries. Now, in the case of singular potentials, we want to com-
pare the Riesz projections Pn of the operator Lbc, defined for large enough n by
the formula

(9.1) Pn =
1

2πi

∫

Cn

(z − Lbc)
−1dz, Cn = {|z − n2| = n},

with the corresponding Riesz projections P 0
n of the free operator L0

bc (although
E0

n = Ran(P 0
n) maybe have no common nonzero vectors with the domain of Lbc).

The main result is Theorem 45 (see Subsection 2 below), which claims that

(9.2) τ̃n = ‖Pn − P 0
n‖L1→L∞ → 0 as n → ∞.

This implies a sort of quantum chaos, namely all Lp–norms on the Riesz sub-
spaces En = RanPn, for bc = Per± or Dir, are uniformly equivalent (see Theo-
rem 51 in Section 9.5).

In our analysis (see [14]) of the relationship between smoothness of a potential
v and the rate of decay of spectral gaps and spectral triangles a statement similar
to (9.2)

(9.3) τn = ‖Pn − P 0
n‖L2→L∞ → 0 as n → ∞.

was crucial when we used the deviations of Dirichlet eigenvalues from periodic or
anti–periodic eigenvalues to estimate the Fourier coefficients of the potentials v. But
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if v ∈ L2 it was ”easy” (see [11], Section 3, Proposition 4, or [14], Proposition 11).
Moreover, those are strong estimates: for n ≥ N(‖v‖L2)

(9.4) τn ≤ C

n
‖v‖L2,

where C is an absolute constant. Therefore, in (9.4) only the L2–norm is important,
so τn ≤ CR/n holds for every v in an L2–ball of radius R.

In a more general context, the estimates of sequences (9.2) and (9.3) are re-
lated to convergence (or equiconvergence) of spectral decompositions

∑

Pnf in Lp

(or
∑

(Pn − P 0
n)f is L∞) under different assumptions on potentials v and func-

tions f. For Schrödinger operators, their ”spectral decompositions” and structure
of projection families see a fundamental paper [27].

Just for comparison let us mention the same type of question in the case of 1D
periodic Dirac operators

MF = i

(

1 0
0 −1

)

dF

dx
+ V F, 0 ≤ x ≤ π,

where V =

(

0 p
q 0

)

, p and q are L2–functions, and F =

(

f1

f2

)

.

The boundary conditions under consideration are Per± and Dir, where

Per± : F (π) = ±F (0), Dir : f1(0) = f2(0), f1(π) = f2(π).

Then (see [60] or [14], Section 1.1)

E0
n =

{(

ae−inx

beinx

)

: a, b ∈ C

}

, n ∈ Z,

where n is even if bc = Per+ and n is odd if bc = Per−, and

E0
n = {c sinnx, c ∈ C}, n ∈ N

if bc = Dir. Then for

Qn =
1

2πi

∫

Cn

(λ − L)−1dλ, Cn = {λ : |λ − n| = 1/4},

we have
ρn(V ) := ‖Qn − Q0

n‖L2→L∞ → 0 as n → ∞;

moreover, for any compact set K ⊂ L2 and V ∈ K, i.e., p, q ∈ K one can construct
a sequence εn(K) → 0 such that ρn(V ) ≤ εn(K), V ∈ K. This has been proven in
[60], Proposition 8.1 and Corollary 8.6; see Proposition 19 in [14] as well.

Of course, the norms τn in (9.3) are larger than the norms of these operators
in L2

tn = ‖Pn − P 0
n‖L2→L2 ≤ τn

and better (smaller) estimates for tn are possible. For example, A. Savchuk and
A. Shkalikov proved ([71], Sect.2.4) that

∑

t2n < ∞. This implies (by Bari–Markus
theorem – see [28], Ch.6, Sect.5.3, Theorem 5.2) that the spectral decompositions

f = fN +
∑

n>N

Pnf

converge unconditionally. For Dirac operators the Bari–Markus condition is
∑

n∈Z,|n|>N

‖Qn − Q0
n‖2 < ∞.
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This fact (together with the completeness and minimality of the system of Riesz
subspaces Ran Qn) imply unconditional convergence of the spectral decompositions.
This has been proved in [59, 60] under the assumption that the potential V is in
the Sobolev space Hα, α > 1/2 (see [60], Theorem 8.8 for more precise statement).
Further results on convergence of spectral expansions for Dirac operators will be
given in our forthcoming papers [18, 19].

The proof of Theorem 45, or the estimates of norms (9.2), are based on the
perturbation theory, which gives the representation

(9.5) Pn − P 0
n =

1

2πi

∫

Cn

(

R(λ) − R0(λ)
)

dλ,

where R(λ) = (λ − Lbc)
−1 and R0(λ) are the resolvents of Lbc and of the free

operator L0
bc, respectively. Often – and certainly in the above mentioned examples

where v ∈ L2 – one can get reasonable estimates for the norms ‖R(λ)−R0(λ)‖ on
the contour Cn, and then by integration for ‖Pn − P 0

n‖. But now, with v ∈ H−1,
we succeed to get good estimates for the norms ‖Pn − P 0

n‖ after having integrated
term by term the series representation

(9.6) R − R0 = R0V R0 + R0V R0V R0 + · · · .

This integration kills or makes more manageable many terms, maybe in their matrix
representation. Only then we go to the norm estimates. Technical details of this
procedure (Subsection 9.3) is the core of the proof of Theorem 45.

9.2. Main result on the deviations Pn − P 0
n . By Proposition 4 (i.e., our

Theorem 21 in [16] about spectra localization), the operator LPer± has, for large
enough n, exactly two eigenvalues (counted with their algebraic multiplicity) inside
the disc of radius n about n2 (periodic for even n or antiperiodic for odd n). The
operator LDir has one eigenvalue in these discs for all large enough n.

Let En be the corresponding Riesz invariant subspace, and let Pn be the cor-
responding Riesz projection, i.e.,

Pn =
1

2πi

∫

Cn

(λ − L)−1dλ,

where Cn = {λ : |λ−n2|}. We denote by P 0
n the Riesz projection that corresponds

to the free operator.

Proposition 44. In the above notations, for boundary conditions bc = Per±

or Dir,

(9.7) ‖Pn − P 0
n‖L2→L∞ → 0 as n → ∞.

As a matter of fact we will prove a stronger statement.

Theorem 45. In the above notations, for boundary conditions bc = Per± or
Dir,

(9.8) ‖Pn − P 0
n‖L1→L∞ → 0 as n → ∞.

Proof. We give a complete proof for bc = Per±. If bc = Dir the proof is
the same, and only minor changes are necessary due to the fact that in this case
the orthonormal system of eigenfunctions of L0 is {

√
2 sin nx, n ∈ N} (while it is

{exp(imx), m ∈ 2Z} for bc = Per+, and {exp(imx), m ∈ 1 + 2Z} for bc = Per−).
So, roughly speaking, the only difference is that when working with bc = Per± the
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summation indexes in our formulas below run, respectively, in 2Z and 1+2Z, while
for bc = Dir the summation indexes have to run in N. Therefore, we consider in
detail only bc = Per±, and provide some formulas for the case bc = Dir.

Let

(9.9) Bkm(n) := 〈(Pn − P 0
n)em, ek〉.

We are going to prove that

(9.10)
∑

k,m

|Bkm(n)| → 0 as n → ∞.

Of course, the convergence of the series in (9.10) means that the operator with the
matrix Bkm(n) acts from ℓ∞ into ℓ1.

The Fourier coefficients of an L1-function form an ℓ∞-sequence. On the other
hand,

(9.11) D = sup
x,n

|en(x)| < ∞.

Therefore, the operators Pn − P 0
n act from L1 into L∞ (even into C) and

(9.12) ‖Pn − P 0
n‖L1→L∞ ≤ D2

∑

k,m

|Bkm(n)|.

Indeed, if ‖f‖L1 = 1 and f =
∑

fmem, then |fm| ≤ D and

(Pn − P 0
n)f =

∑

k

(

∑

m

Bkmfm

)

ek.

Taking into account (9.11), we get

‖(Pn − P 0
n)f‖L∞ ≤ D

∑

k

∣

∣

∣

∣

∣

∑

m

Bkmfm

∣

∣

∣

∣

∣

≤ D2
∑

k

∑

m

|Bkm|,

which proves (9.12).
In [16], Section 5, we gave a detailed analysis of the representation

Rλ − R0
λ =

∞
∑

s=0

Kλ(KλV Kλ)s+1Kλ,

where Kλ =
√

R0
λ – see [16], (5.13-14) and what follows there. By (9.5),

Pn − P 0
n =

1

2πi

∫

Cn

∞
∑

s=0

Kλ(KλV Kλ)s+1Kλdλ.

if the series on the right converges. Thus

(9.13) 〈(Pn − P 0
n)em, ek〉 =

∞
∑

s=0

1

2πi

∫

Cn

〈Kλ(KλV Kλ)s+1Kλem, ek〉dλ,

so we have

(9.14)
∑

k,m

|〈(Pn − P 0
n)em, ek〉| ≤

∞
∑

s=0

A(n, s),
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where

(9.15) A(n, s) =
∑

k,m

∣

∣

∣

∣

1

2πi

∫

Cn

〈Kλ(KλV Kλ)s+1Kλem, ek〉dλ

∣

∣

∣

∣

.

By the matrix representation of the operators Kλ and V (see more details in
[16], (5.15-22)) it follows that

(9.16) 〈Kλ(KλV Kλ)Kλem, ek〉 =
V (k − m)

(λ − k2)(λ − m2)
, k, m ∈ n + 2Z,

for bc = Per±, and
(9.17)

〈Kλ(KλV Kλ)Kλem, ek〉 =
|k − m|q̃(|k − m|) − (k + m)q̃(k + m)√

2(λ − k2)(λ − m2)
, k, m ∈ N,

for bc = Dir. Let us remind that q̃(m) are the sine Fourier coefficients of the
function Q(x), i.e.,

Q(x) =
∞
∑

m=1

q̃(m)
√

2 sin mx.

The matrix representations of Kλ(KλV Kλ)Kλ in (9.16) and (9.14) are the ”building
blocks” for the matrices of the products of the form Kλ(KλV Kλ)sKλ that we have
to estimate below. For convenience, we set

(9.18) V (m) = mw(m), w ∈ ℓ2(2Z), r(m) = max(|w(m)|, |w(−m)|)
if bc = Per±, and

(9.19) q̃(0) = 0, r(m) = q̃(|m|), m ∈ Z.

if bc = Dir. We use the notations (9.18) in the estimates related to bc = Per±

below, and if one would use in a similar way (9.19) in the Dirichlet case, then the
corresponding computations becomes practically identical (the only difference will
be that in the Dirichlet case the summation will run over Z).

Let us calculate the first term on the right–hand side of (9.13) (i.e., the term
coming for s = 0). We have

(9.20)
1

2πi

∫

Cn

V (k − m)

(λ − k2)(λ − m2)
dλ =











V (k∓n)
(n2−k2) m = ±n, k 6= ±n,
V (±n−m)
(n2−m2) k = ±n, m 6= ±n,

0 otherwise.

Thus

A(n, 0) =
∑

k,m

∣

∣

∣

∣

1

2πi

∫

Cn

〈Kλ(KλV Kλ)Kλem, ek〉
∣

∣

∣

∣

=
∑

k 6=±n

|V (k − n)|
|n2 − k2| +

∑

k 6=±n

|V (k + n)|
|n2 − k2| +

∑

m 6=±n

|V (−n + m)|
|n2 − m2| +

∑

m 6=±n

|V (n − m)|
|n2 − m2| .

By the Cauchy inequality, we estimate the first sum on the right–hand side:

(9.21)
∑

k 6=±n

|V (k − n)|
|n2 − k2| =

∑

k 6=±n

|k − n||w(k − n)|
|n2 − k2|

≤
∑

k 6=−n

r(k − n)

|n + k| ≤
∑

k>0

· · · +
∑

k≤0,k 6=−n

· · ·
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≤
(

∑

k>0

1

|n + k|2

)1/2

· ‖r‖ +





∑

k≤0,k 6=−n

1

|n + k|2





1/2



∑

k≤0

(r(n − k))2





1/2

≤ ‖r‖√
n

+ En(r).

Since each of the other three sums could be estimated in the same way, we get

(9.22) A(n, 0) ≤
∑

k,m

∣

∣

∣

∣

1

2πi

∫

Cn

〈Kλ(KλV Kλ)Kλem, ek〉dλ

∣

∣

∣

∣

≤ 4‖r‖√
n

+ 4En(r).

Next we estimate A(n, s), s ≥ 1. By the matrix representation of Kλ and V –
see (9.16) – we have

(9.23) 〈Kλ(KλV Kλ)s+1Kλem, ek〉 =
Σ(λ; s, k, m)

(λ − k2)(λ − m2)

where

(9.24) Σ(λ; s, k, m) =
∑

j1,...,js

V (k − j1)V (j1 − j2) · · ·V (js−1 − js)V (js − m)

(λ − j2
1 )(λ − j2

2) · · · (λ − j2
s )

,

k, m, j1, . . . , js ∈ n + 2Z. For convenience, we set also

(9.25) Σ(λ; 0, k, m) = V (k − m).

In view of (9.15), we have

(9.26) A(n, s) =
∑

k,m

∣

∣

∣

∣

1

2πi

∫

Cn

Σ(λ; s, k, m)

(λ − k2)(λ − m2)
dλ

∣

∣

∣

∣

.

Let us consider the following sub–sums of sum Σ(λ; s, k, m) defined in (9.24):

(9.27) Σ0(λ; s, k, m) =
∑

j1,...,js 6=±n

· · · for s ≥ 1, Σ0(λ; 0, k, m) := V (k − m);

(9.28) Σ1(λ; s, k, m) =
∑

∃ one jν=±n

· · · for s ≥ 1;

(9.29) Σ∗(λ; s, k, m) =
∑

∃jν=±n

· · · , Σ∗∗(λ; s, k, m) =
∑

∃jν ,jµ=±n

· · · , s ≥ 2

(i.e., Σ0 is the sub–sum of the sum Σ in (9.24) over those indices j1, . . . , js that
are different from ±n, in Σ1 exactly one summation index is equal to ±n, in Σ∗

at least one summation index is equal to ±n, and in Σ∗∗ at least two summation
indices are equal to ±n). Notice that

Σ(λ; s, k, m) = Σ0(λ; s, k, m) + Σ∗(λ; s, k, m), s ≥ 1,

and

Σ(λ; s, k, m) = Σ0(λ; s, k, m) + Σ1(λ; s, k, m) + Σ∗∗(λ; s, k, m), s ≥ 2.

In these notations we have

(9.30)
∑

m,k 6=±n

∣

∣

∣

∣

1

2πi

∫

Cn

Σ0(λ; s, k, m)

(λ − k2)(λ − m2)
dλ

∣

∣

∣

∣

= 0
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because, for m, k 6= ±n, the integrand is an analytic function of λ in the disc
{λ : |λ − n2| ≤ n/4}.

Therefore, A(n, s) could be estimated as follows:

(9.31) A(n, 1) ≤
5
∑

i=1

Ai(n, 1),

and

(9.32) A(n, s) ≤
7
∑

i=1

Ai(n, s), s ≥ 2,

where

(9.33) A1(n, s) =
∑

k,m=±n

n · sup
λ∈Cn

∣

∣

∣

∣

Σ(λ; s, k, m)

(λ − k2)(λ − m2)

∣

∣

∣

∣

,

(9.34) A2(n, s) =
∑

k=±n,m 6=±n

n · sup
λ∈Cn

∣

∣

∣

∣

Σ0(λ; s, k, m)

(λ − k2)(λ − m2)

∣

∣

∣

∣

,

(9.35) A3(n, s) =
∑

k=±n,m 6=±n

n · sup
λ∈Cn

∣

∣

∣

∣

Σ∗(λ; s, k, m)

(λ − k2)(λ − m2)

∣

∣

∣

∣

,

(9.36) A4(n, s) =
∑

k 6=±n,m=±n

n · sup
λ∈Cn

∣

∣

∣

∣

Σ0(λ; s, k, m)

(λ − k2)(λ − m2)

∣

∣

∣

∣

,

(9.37) A5(n, s) =
∑

k 6=±n,m=±n

n · sup
λ∈Cn

∣

∣

∣

∣

Σ∗(λ; s, k, m)

(λ − k2)(λ − m2)

∣

∣

∣

∣

,

(9.38) A6(n, s) =
∑

k,m 6=±n

n · sup
λ∈Cn

∣

∣

∣

∣

Σ1(λ; s, k, m)

(λ − k2)(λ − m2)

∣

∣

∣

∣

,

(9.39) A7(n, s) =
∑

k,m 6=±n

n · sup
λ∈Cn

∣

∣

∣

∣

Σ∗∗(λ; s, k, m)

(λ − k2)(λ − m2)

∣

∣

∣

∣

.

First we estimate A1(n, s). By (9.16) and [16], Lemma 19 (inequalities (5.30),(5.31)),

(9.40) sup
λ∈Cn

‖Kλ‖ =
2√
n

, sup
λ∈Cn

‖KλV Kλ‖ ≤ ρn := C

(‖r‖√
n

+ E√n(r)

)

,

where r = (r(m)) is defined by the relations (9.18) and C is an absolute constant.

Lemma 46. In the above notations

(9.41) sup
λ∈Cn

∣

∣

∣

∣

Σ(λ; s, k, m)

(λ − k2)(λ − m2)

∣

∣

∣

∣

≤ 1

n
ρs+1

n .

Proof. Indeed, in view of (9.24) and (9.40), we have
∣

∣

∣

∣

Σ(λ; s, k, m)

(λ − k2)(λ − m2)

∣

∣

∣

∣

= | Kλ(KλV Kλ)s+1Kλek, em〉|

≤ ‖Kλ(KλV Kλ)s+1Kλ‖ ≤ ‖Kλ‖ · ‖KλV Kλ‖s+1 · ‖Kλ‖ ≤ 1

n
ρs+1

n ,

which proves (9.41). �
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Now we estimate A1(n, s). By (9.41),

(9.42) A1(n, s) =
∑

m,k=±n

n · sup
λ∈Cn

∣

∣

∣

∣

Σ(λ; s, k, m)

(λ − k2)(λ − m2)

∣

∣

∣

∣

≤ 4ρs+1
n .

To estimate A2(n, s), we consider Σ0(λ; s, k, m) for k = ±n. From the elemen-
tary inequality

(9.43)
1

|λ − j2| ≤
2

|n2 − j2| for λ ∈ Cn, j ∈ n + 2Z, j 6= ±n,

it follows, for m 6= ±n,

(9.44) sup
λ∈Cn

∣

∣

∣

∣

Σ0(λ; s,±n, m)

(λ − n2)(λ − m2)

∣

∣

∣

∣

≤ 1

n
· 2s+1×

×
∑

j1,...,js 6=±n

|V (±n − j1)V (j1 − j2) · · ·V (js−1 − js)V (js − m)|
|n2 − j2

1 ||n2 − j2
2 | · · · |n2 − j2

s ||n2 − m2| .

Thus, taking the sum of both sides of (9.44) over m 6= ±n, we get

(9.45) A2(n, s) ≤ 2s+1 [L(s + 1, n) + L(s + 1,−n)] ,

where

(9.46) L(p, d) :=
∑

i1,...,ip 6=±n

|V (d − i1)|
|n2 − i21|

· |V (i1 − i2)|
|n2 − i22|

· · · |V (ip−1 − ip)|
|n2 − i2p|

.

The roles of k and m in A2(n, s) and A4(n, s) are symmetric, so A4(n, s) could
be estimated in an analogous way. Indeed, for k 6= ±n, we have

(9.47) sup
λ∈Cn

∣

∣

∣

∣

Σ0(λ; s, k,±n)

(λ − k2)(λ − n2)

∣

∣

∣

∣

≤ 1

n
· 2s+1×

×
∑

j1,...,js 6=±n

|V (k − j1)V (j1 − j2) · · ·V (js−1 − js)V (js −±n)|
|n2 − k2||n2 − j2

1 ||n2 − j2
2 | · · · |n2 − j2

s |
.

Thus, taking the sum of both sides of (9.47) over k 6= ±n, we get

(9.48) A4(n, s) ≤ 2s+1 [R(s + 1, n) + R(s + 1,−n)] ,

where

(9.49) R(p, d) :=
∑

i1,...,ip 6=±n

|V (i1 − i2)|
|n2 − i21|

· · · |V (ip−1 − ip)|
|n2 − i2p−1|

· |V (ip − d)|
|n2 − i2p|

.

Below (see Lemma 47 and its proof in Subsection 9.3) we estimate the sums
L(p,±n) and R(p,±n). But now we are going to show that Ai(n, s), i = 3, 5, 6, 7,
could be estimated in terms of L and R from (9.46), (9.49) as well.

To estimate A6(n, s) we write the expression Σ1(λ;s,k,m)
(λ−k2)(λ−m2) in the form

s
∑

ν=1

∑

d=±n

1

λ − k2
Σ0(λ; ν − 1, k, d)

1

λ − n2
Σ0(λ; s − ν, d, m)

1

λ − m2

By (9.43), the absolute values of the terms of this double sum do not exceed:
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(a) for ν = 1

2s+1 · |V (k −±n)|
|n2 − k2| · 1

n
·

∑

i1,...,is−1 6=±n

|V (±n − i1)||V (i1 − i2)| · · · |V (is−1 − m)|
|n2 − i21| · · · |n2 − i2s−1||n2 − m2| .

(b) for ν = s

2s+1 ·





∑

i1,...,is−1 6=±n

|V (k − i1)||V (i1 − i2)| · · · |V (is−1 −±n)|
|n2 − k2||n2 − i21||n2 − i22| · · · |n2 − i2s−1|



 · 1

n
· |V (±n − m)|

|n2 − m2|

(c) for 1 < ν < s

2s+1 ·





∑

i1,...,iν−1 6=±n

|V (k − i1)||V (i1 − i2)| · · · |V (iν−1 −±n)|
|n2 − k2||n2 − i21||n2 − i22| · · · |n2 − i2ν−1|



 · 1

n

×
∑

i1,...,is−ν 6=±n

|V (±n − i1)||V (i1 − i2)| · · · |V (is−ν − m)|
|n2 − i21| · · · |n2 − i2s−ν ||n2 − m2| .

Therefore, taking the sum over m, k 6= ±n, we get

(9.50) A6(n, s) ≤ 2s+1 ·
s
∑

ν=1

∑

d=±n

R(ν, d) · L(s + 1 − ν, d).

One could estimate A3(n, s), A5(n, s) and A7(n, s) in an analogous way. We
will write the core formulas but omit some details.

To estimate A3(n, s), we use the identity

Σ(λ; s, k,±n)

(λ − k2)(λ − n2)
=

s
∑

ν=1

∑

d=±n

1

λ − k2
Σ0(λ; ν − 1, k, d)

1

λ − n2

Σ(λ; s − ν, d,±n)

λ − n2
.

In view of (9.41), (9.43) and (9.49), from here it follows that

(9.51) A3(n, s) ≤ 2s+1 ·
s
∑

ν=1

∑

d=±n

R(ν, d) · ρs−ν+1
n .

We estimate A5(n, s) by using the identity

Σ(λ; s,±n, m)

(λ − n2)(λ − m2)
=

s
∑

ν=1

∑

d=±n

1

λ − n2
Σ(λ; ν − 1,±n, d)

1

λ − n2

Σ0(λ; s − ν, d, m)

λ − m2
.

In view of (9.41), (9.43) and (9.46), from here it follows that

(9.52) A5(n, s) ≤ 2s+1 ·
s
∑

ν=1

∑

d=±n

ρν
n · L(s − ν + 1, d).

Finally, to estimate A7(n, s) we use the identity

Σ(λ; s, k, m)

(λ − k2)(λ − m2)
=

s
∑

1≤ν<µ≤s

∑

d1,d2=±n

1

λ − k2
Σ0(λ; ν − 1, k, d1)×

× 1

λ − n2
Σ(λ; µ − ν − 1, d1, d2)

1

λ − n2
Σ0(λ; s − µ, d2, m)

1

λ − m2
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In view of (9.41), (9.43), (9.46) and (9.49), from here it follows that

(9.53) A7(n, s) ≤ 2s ·
∑

1≤ν<µ≤s

∑

d1,d2=±n

R(ν, d1) · ρµ−ν
n · L(s − µ + 1, d2).

Next we estimate L(p,±n) and R(p,±n). Changing the indices in (9.49) by

jν = −ip+1−ν, 1 ≤ ν ≤ p,

we get

(9.54) R(p, d) = L(p,−d).

Therefore, it is enough to estimate only L(p,±n).

Lemma 47. In the above notations, there exists a sequence of positive numbers
εn → 0 such that, for large enough n,

(9.55) L(s,±n) ≤ (εn)s, ∀ s ∈ N.

The proof of this lemma is technical. It is given in detail in Subsection 9.3.
Then in Subsection 9.4 we complete the proof of Theorem 45. With (9.54) and
(9.55), in Subsection 9.4 we will use Lemma 47 in the following form.

Corollary 48. In the above notations, there exists a sequence of positive
numbers εn → 0 such that, for large enough n,

(9.56) max{L(s,±n), R(s,±n)} ≤ (εn)s, ∀ s ∈ N.

9.3. Technical inequalities and their proofs. We follow the notations
from Subsection 9.2. Now we prove Lemma 47.

Proof. First we show that

(9.57) L(s,±n) ≤ σ(n, s), s ≥ 1,

where

(9.58) σ(n, 1) =
∑

j1 6=±n

r(n + j1)

|n2 − j2
1 |

,

for s ≥ 2
(9.59)

σ(n, s) :=
∑

j1,...,js 6=±n

(

1

|n − j1|
+

1

|n + j2|

)

· · ·
(

1

|n − js−1|
+

1

|n + js|

)

1

|n − js|

× r(n + j1)r(j1 + j2) · · · r(js−1 + js),

and the sequence r = (r(m)) is defined by (9.18).
For s = 1 we have, with i1 = −j1,

L(1, n) =
∑

j1 6=±n

|V (n − j1)|
|n2 − j2

1 |
=
∑

i1 6=±n

|V (n + i1)|
|n2 − i21|

=
∑

i1 6=±n

|w(n + i1)|
|n − i1|

≤
∑

i1 6=±n

r(n + i1)

|n − i1|
(where (9.18) is used). In an analogous way we get

L(1,−n) =
∑

j1 6=±n

|V (−n − j1)|
|n2 − j2

1 |
=
∑

i1 6=±n

|w(−n − i1)|
|n − i1|

≤
∑

i1 6=±n

r(n + i1)

|n − i1|
,
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so, (9.57) holds for s = 1.
Let s ≥ 2. Changing the indices of summation in (9.46) (considered with p = s

and d) by jν = (−1)νiν , we get

L(s, n) =
∑

j1,...,js 6=±n

|V (n + j1)|
|n2 − j2

1 |
|V (−j1 − j2)|

|n2 − j2
1 |

· · · |V [(−1)s−1(js−1 + js)]|
|j2

s − n2|

=
∑

j1,...,js 6=±n

|n + j1||j2 + j1| · · · |js + js−1|
|j2

1 − n2||j2
2 − n2| · · · |j2

s − n2| |w(n + j1) · · ·w[(−1)s−1(js−1 + js)]|

≤
∑

j1,...,js 6=±n

|j2 + j1| · · · |js + js−1|
|n − j1||n2 − j2

2 | · · · |n2 − j2
s |

r(n + j1)r(j1 + j2) · · · r(js−1 + js).

By the identity
i + k

(n − i)(n + k)
=

1

n − i
− 1

n + k
,

we get that the latter sum does not exceed

∑

j1,...,js 6=±n

∣

∣

∣

∣

1

n − j1
− 1

n + j2

∣

∣

∣

∣

· · ·
∣

∣

∣

∣

1

n − js−1
− 1

n + js

∣

∣

∣

∣

1

|n − js|
× r(n + j1)r(j1 + j2) · · · r(js−1 + js) ≤ σ(n, s).

Changing the indices of summation in (9.46) (considered with p = s and d =
−n) by jν = (−1)ν+1iν , one can show that L(s,−n) ≤ σ(n, s). Since the proof is
the same we omit the details. This completes the proof of (9.57).

In view of (9.57), Lemma 47 will be proved if we show that there exists a
sequence of positive numbers εn → 0 such that, for large enough n,

(9.60) σ(n, s) ≤ (εn)s, ∀ s ∈ N.

In order to prove (9.60) we need the following statements.

Lemma 49. Let r = (r(k)) ∈ ℓ2(2Z), r(k) ≥ 0, and let

(9.61) σ1(n, s; m) =
∑

j1,...,js 6=n

r(m + j1)

|n − j1|
r(j1 + j2)

|n − j2|
· · · r(js−1 + js)

|n − js|
, n, s ∈ N,

where m, j1, . . . , js ∈ n + 2Z. Then, with

(9.62) ρ̃n := En(r) + 2‖r‖/√n,

we have, for n ≥ 4,

(9.63) σ1(n, 1; m) ≤
{

ρ̃n if |m − n| ≤ n/2,

‖r‖ for arbitrary m ∈ n + 2Z,

(9.64) σ1(n, 2p; m) ≤ (2‖r‖ρ̃n)p, σ1(n, 2p + 1; m) ≤ ‖r‖ · (2‖r‖ρ̃n)p.

Proof. Let us recall that
∞
∑

k=1

1

k2
= π2/6,

∞
∑

k+1

1

k2
<

∞
∑

k+1

(

1

k − 1
− 1

k

)

=
1

n
.

Therefore, one can easily see that
∑

i∈2Z,i6=0

1

i2
= π2/12 < 1,

∑

i∈2Z,|i|>n/2

1

i2
< 4/n, n ≥ 4.
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By the Cauchy inequality,

σ1(n, 1; m) =
∑

j1 6=n

r(m + j1)

|n − j1|
≤





∑

j1 6=±n

|n − j1|−2





1/2

· ‖r‖ ≤ ‖r‖,

which proves the second case in (9.63).
If |m−n| ≤ n/2 then we have n/2 ≤ m ≤ 3n/2. Let us write σ1(n, 1; m) in the

form

σ1(n, 1; m) =
∑

0<|j1−n|≤n/2

r(m + j1)

|n − j1|
+

∑

|j1−n|>n/2

r(m + j1)

|n − j1|

and apply the Cauchy inequality to each of the above sums. In the first sum
n/2 ≤ j ≤ 3n/2, so j + m ≥ n, and therefore, we get

σ1(n, 1; m) ≤





∑

i≥n

|r(i)|2




1/2

· 1 + ‖r‖ ·





∑

|n−j1|>n/2

|j1 − n|−2





1/2

.

Thus

σ1(n, 1; m) ≤ En(r) +
2‖r‖√

n
= ρ̃n if |n − m| ≤ n/2.

This completes the proof of (9.63).
Next we estimate σ1(n, 2; m). We have

σ1(n, 2; m) =
∑

j1 6=n

r(m + j1)

|n − j1|
∑

j2 6=n

r(j1 + j2)

|n − j2|

=
∑

0<|j1−n|≤n/2

r(m + j1)

|n − j1|
· σ1(n, 1; j1) +

∑

|j1−n|>n/2

r(m + j1)

|n − j1|
· σ1(n, 1; j1)

By the Cauchy inequality and (9.63), we get

∑

0<|j1−n|≤n/2

r(m + j1)

|n − j1|
σ1(n, 1; j1) ≤ ‖r‖ · sup

0<|j1−n|≤n/2

σ1(n, 1; j1) ≤ ‖r‖ρ̃n,

and
∑

|j1−n|>n/2

r(m + j1)

|n − j1|
σ1(n, 1; j1) ≤

∑

|j1−n|>n/2

r(m + j1)

|n − j1|
· ‖r‖ ≤ 2‖r‖√

n
· ‖r‖.

Thus, in view of (9.62), we have

(9.65) σ1(n, 2; m) ≤ 2‖r‖ · ρ̃n.

On the other hand, for every s ∈ N, we have

σ1(n, s + 2; m) =
∑

j1,...,js 6=n

r(m + j1)

|n − j1|
· · · r(js−1 + js)

|n − js|

×
∑

js+1,js+2 6=n

r(js + js+1)

|n − js+1|
r(js+1 + js+2)

|n − js+2|
= σ1(n, s; m) · sup

js

σ1(n, 2; js).

Thus, by (9.65),

(9.66) σ1(n, s + 2; m) ≤ σ1(n, s; m) · 2‖r‖ρ̃n.
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Now it is easy to see, by induction in p, that (9.63), (9.65) and (9.66) imply (9.64).
�

Lemma 50. Let r = (r(k)) ∈ ℓ2(2Z) be the sequence defined by (9.18), and let

(9.67) σ2(n, s; m) =
∑

j1,...,js 6=n

r(m + j1)
r(j1 + j2)

|n + j2|
· · · r(js−2 + js−1)

|n + js−1|
r(js−1 + js)

|n2 − j2
s |

,

where n ∈ N, s ≥ 2 and m, j1, . . . , js ∈ n + 2Z. Then we have

(9.68) σ2(n, 2; m) ≤ ‖r‖2 · 2 log 6n

n

and

(9.69) σ2(n, s; m) ≤ ‖r‖2 · 2 log 6n

n
· sup

k
σ1(n, s − 2; k), s ≥ 3.

Proof. We have

(9.70) σ2(n, 2, m) =
∑

j2 6=±n

1

|n2 − j2
2 |
∑

j1 6=±n

r(m + j1)r(j1 + j2).

By the Cauchy inequality, the sum over j1 6= ±n does not exceed ‖r‖2. Let us notice
that

(9.71)
∑

j 6=±n

1

n2 − j2
=

2

n

2n
∑

1

1

k
− 1

2n2
<

2 log 6n

n
.

Therefore, (9.70) and (9.71) imply (9.68).
If s ≥ 3 then the sum σ2(n, s; m) can be written as a product of three sums:

∑

js 6=±n

1

|n2 − j2
s |

∑

j2,...,js−1 6=±n

r(j2 + j3)

|n + j2|
· · · r(js−1 + js)

|n + js−1|
∑

j1 6=±n

r(m + j1)r(j1 + j2).

Changing the sign of all indices, one can easily see that the middle sum (over
j2, . . . , js−1) equals σ1(n; s − 2, js). Thus, we have

σ2(n, s; m) ≤
∑

js 6=±n

1

|n2 − j2
s |

σ1(n; s − 2, js) · sup
j2

∑

j1 6=±n

r(m + j1)r(j1 + j2).

By the Cauchy inequality, the sum over j1 6= ±n does not exceed ‖r‖2.
Therefore, by (9.71), we get (9.69). �

Proof of Lemma 47. We set

(9.72) εn = M ·
[

(

2 log 6n

n

)1/4

+ (ρ̃n)1/2

]

,

where M = 4(1 + ‖r‖) is chosen so that for large enough n

(9.73) sup
m

σ1(n, 2p, m) ≤ (εn/2)2p, sup
m

σ1(n, 2p + 1, m) ≤ ‖r‖(εn/2)2p.

Then, for large enough n, we have

(9.74) sup
m

σ2(n, s, m) ≤ 1

M
(εn/2)s+1.
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Indeed, by the choice of M, we have

(9.75) ‖r‖2 · 2 log 6n

n
≤ ‖r‖2(εn/M)4 ≤ 1

M2
(εn/2)4.

Since εn → 0, there is n0 such that εn < 1 for n ≥ n0. Therefore, if n ≥ n0, then
(9.68) and (9.75) yields (9.74) for s = 2. If s = 2p with p > 1, then (9.69), (9.75)
and (9.73) imply, for n ≥ n0,

sup
m

σ2(n, 2p, m) ≤ 1

M2
(εn/2)4 · (εn/2)2p−2 ≤ 1

M
(εn/2)2p+1.

In an analogous way, for n ≥ n0, we get

sup
m

σ2(n, 2p + 1, m) ≤ 1

M2
(εn/2)4 · ‖r‖(εn/2)2(p−1) ≤ 1

M
(εn/2)2p+2,

which completes the proof of (9.74).
Next we estimate σ(n, s) by induction in s. By (9.63), we have for n ≥ n0,

(9.76) σ(n, 1) =
∑

j1 6=±n

r(n − j1)

|n − j1|
= σ1(n, 1; n) ≤ ρ̃n ≤ (εn/2)2 ≤ εn.

For s = 2 we get, in view of (9.73) and (9.73):

(9.77) σ(n, 2) =
∑

j1,j2 6=±n

(

1

|n − j1|
+

1

|n + j2|

)

1

|n − j2|
r(n + j1)r(j1 + j2)

≤
∑

j1,j2 6=±n

r(n + j1)r(j1 + j2)

|n − j1||n − j2|
+

∑

j1,j2 6=±n

1

|n + j2|
· 1

|n − j2|
r(n + j1)r(j1 + j2)

= σ1(n, 2, n) + σ2(n, 2, n) ≤ (εn/2)2 + (εn/2)2 ≤ (εn)2.

Next we estimate σ(n, s), s ≥ 2, Recall that σ(n, s) is the sum of terms of the
form

Π(j1, . . . , js)r(n + j1)r(j1 + j2) · · · r(js−1 + js),

where
(9.78)

Π(j1, . . . , js) =

(

1

|n − j1|
+

1

|n + j2|

)

· · ·
(

1

|n − js−1|
+

1

|n + js|

)

1

|n − js|
.

By opening the parentheses we get

(9.79) Π(j1, . . . , js) =
∑

δ1,...,δs−1=±1

(

s−1
∏

ν=1

1

|n + δνjν+δ̃ν
|

)

1

|n − js|
, δ̃ν =

1 + δν

2
.

Therefore,

(9.80) σ(n, s) =
∑

δ1,...,δs−1=±1

σ̃(δ1, . . . , δs−1),

where
(9.81)

σ̃(δ1, . . . , δs−1) =
∑

j1,...,js 6=±n

(

s−1
∏

ν=1

1

|n + δνjν+δ̃ν
|

)

1

|n − js|
r(n + j1) · · · r(js−1 + js).
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In view of (9.55), (9.57) and (9.80), Lemma 47 will be proved if we show that

(9.82) σ̃(δ1, . . . , δs−1) ≤ (εn/2)s, s ≥ 2.

We prove (9.82) by induction in s.
If s = 2 then

σ̃(−1) = σ1(n, 2, n) ≤ (εn/2)2,

and
σ̃(+1) = σ2(n, 2, n) ≤ (εn/2)2.

If s = 3 then there are four cases:

σ̃(−1,−1) = σ1(n, 3, n) ≤ (εn/2)3; σ̃(+1, +1) = σ2(n, 3, n) ≤ (εn/2)3;

σ̃(−1, +1) =
∑

j1 6=±n

r(n + j1)

|n − j1|
∑

j2,j3 6=±n

r(j1 + j2)

|n + j3|
r(j2 + j3)

|n − j3|

=
∑

j1 6=±n

r(n + j1)

|n − j1|
σ2(n, 2, j1)

≤ σ1(n, 1, n) · sup
m

σ2(n, 2, m) ≤ ‖r‖ 1

K
(εn/2)3 ≤ (εn/2)3;

σ̃(+1,−1) =
∑

j1,j2 6=±n

r(n + j1)r(j1 + j2)

|n2 − j2
2 |

∑

j3 6=±n

r(j2 + j3)

|n − j3|

≤ σ2(n, 2, n) · sup
m

σ1(n, 1, m) ≤ 1

K
(εn/2)3‖r‖ ≤ (εn/2)3.

Next we prove that if (9.82) hold for some s, then it holds for s+2. Indeed, let
us consider the following cases:

(i) δs = δs+1 = −1; then we have

σ̃(δ1, . . . , δs−1,−1,−1) =
∑

j1,...,js 6=±n

(

s−1
∏

ν=1

1

|n + δνjν+δ̃ν
|

)

1

|n − js|

× r(n + j1)r(j1 + j2) · · · r(js−1 + js)
∑

js+1,js+2 6=±n

r(js + js+1)

|n − js+1|
r(js+1 + js+2)

|n − js+2|

=
∑

j1,...,js 6=±n

(

s−1
∏

ν=1

1

|n + δνjν+δ̃ν
|

)

1

|n − js|
r(n + j1) · · · r(js−1 + js)σ1(n, 2, js)

≤ σ̃(δ1, . . . , δs−1) · sup
m

σ1(n, 2, m) ≤ (εn/2)s · (εn/2)2 = (εn/2)s+2.

(ii) δs = −1, δs+1 = +1; then we have

σ̃(δ1, . . . , δs−1,−1, +1) =
∑

j1,...,js 6=±n

(

s−1
∏

ν=1

1

|n + δνjν+δ̃ν
|

)

1

|n − js|

× r(n + j1)r(j1 + j2) · · · r(js−1 + js)
∑

js+1,js+2 6=±n

r(js + js+1)r(js+1 + js+2)

|n2 − j2
s+2|

≤ σ̃(δ1, . . . , δs−1) · sup
m

σ2(n, 2, m) ≤ (εn/2)s · (εn/2)2 = (εn/2)s+2.

(iii) δs = δs+1 = +1; then, if δ1 = · · · = δs−1 = +1, we have

σ̃(δ1, . . . , δs+1) = σ2(n, s + 2, n) ≤ (εn/2)s+2.
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Otherwise, let µ < s be the largest index such that δµ = −1. Then we have

σ̃(δ1, . . . , δs−1, +1, +1) =
∑

j1,...,jµ 6=±n

(

µ−1
∏

ν=1

1

|n + δνjν+δ̃ν
|

)

1

|n − jµ|

× r(n + j1)r(j1 + j2) · · · r(jµ−1 + jµ)σ2(n, s + 2 − µ, jµ)

≤ σ̃(δ1, . . . , δµ−1) · sup
m

σ2(n, s + 2 − µ, jµ) ≤ (εn/2)µ · (εn/2)s+2−µ = (εn/2)s+2.

(iv) δs = +1, δs+1 = −1; then, if δ1 = · · · = δs−1 = +1, we have

σ̃(δ1, . . . , δs+1,−1) = σ̃(+1, . . . , +1,−1,−1) =

=
∑

j1,...,js+1 6=±n

(

s
∏

ν=1

1

|n + jν+1|

)

1

|n − js+1|
r(n + j1) · · · r(js + js+1)σ1(n, 1, js+1)

≤ σ2(n, s + 1, n) · sup
m

σ1(n, 1, m) ≤ 1

K
(εn/2)s+2 · ‖r‖ ≤ (εn/2)s+2.

Otherwise, let µ < s be the largest index such that δµ = −1, 1 ≤ µ < n. Then
we have

σ̃(δ1, . . . , δs−1, +1,−1) =
∑

j1,...,jµ 6=±n

(

µ−1
∏

ν=1

1

|n + δνjν+δ̃ν
|

)

1

|n − jµ|

×
∑

jµ+1,...,js+1 6=±n

r(jµ + jµ+1)

|n + jµ+2|
· · · r(js−1 + js)

|n + js+1|
r(js + js+1)

|n − js+1|
∑

js+2 6=±n

r(js+1 + js+2)

|n − js+2|

≤ σ̃(δ1, . . . , δµ−1) · sup
m

σ2(n, s + 1 − µ, m) · sup
k

σ1(n, 1, k)

≤ (εn/2)µ · 1

K
(εn/2)s+2−µ‖r‖ ≤ (εn/2)s+2.

Hence (9.82) holds for s ≥ 2.
Now (9.57), (9.80) and (9.82) imply (9.55), which completes the proof of Lemma

47. �

Now we are ready to accomplish the proof of Theorem 45.

9.4. Proof of the main theorem on the deviations ‖Pn − P 0
n‖L1→L∞ .

We need – because we want to use (9.14) – to give estimates of A(n, s) from (9.15),
or (9.26). By (9.31) and (9.32), we reduce such estimates to analysis of quantities
Aj(n, s), j = 1, . . . , 7.

With ρn ∈ (9.40) and εn ∈ (9.72), we set

(9.83) κn = max{ρn, εn}.
Then, by Lemma 47 (and Corollary 48), i.e., by the inequality (9.56), we have (in
view of (9.42),(9.45),(9.48) and (9.50)–(9.53)) the following estimates for Aj :

A1 ≤ 4κs+1
n , Aj ≤ 2s+1 · 2κs+1

n , j = 2, 4;

Aj ≤ 2s+1
s
∑

ν=1

(

2κν
n · κs−ν+1

n

)

= s2s+2κs+1
n , j = 3, 5;
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A6 ≤ 2s+1
s
∑

ν=1

(

κν
n · κs−ν+1

n

)

= s2s+1κs+1
n ;

A7 ≤ 2s
∑

1≤ν+µ≤s

(

4κν
n · κµ−ν · κs−µ+1

n

)

= s(s − 1)2s+1κs+1
n .

In view of (9.22), (9.72) and (9.32), these inequalities imply

A(n, s) ≤ (2 + s)2(2κn)s+1.

Therefore, the right–hand side of (9.14) does not exceed
∞
∑

s=0

A(n, s) ≤ (4κn)

∞
∑

s=0

(s + 1)(s + 2)(2κn)s =
8κn

(1 − 2κn)3
.

Therefore, if κn < 1/4 (which holds for n ≥ N∗ with a proper choice of N∗), then
∑∞

s=0 A(n, s) ≤ 64κn. Thus, by (9.14) and the notations (9.9),

(9.84) ‖Pn − P 0
n‖L1→L∞ ≤

∑

k,m

|Bkm(n)| ≤ 64κn, n ≥ N∗,

where κn ∈ (9.83).
This completes the proof of Theorem 45. Of course, Proposition 44 follows

because ‖T ‖L2→L∞ ≤ ‖T ‖L1→L∞ for any well defined operator T. �

9.5. Miscellaneous. As we have already noticed many times, Theorem 45
(or Proposition 44) is an essential step in the proof of our main result Theorem 29
(see an announcement in [15], Theorem 9, or [16], Theorem 23) about the relation-
ship between the rate of decay of spectral gap sequences (and deviations) and the
smoothness of the potentials v under the a priori assumption that v is a singular
potential, i.e., that v ∈ H−1

Per. But Theorem 45 is important outside this context as
well. Now we will mention one very important corollary.

Theorem 51. In the above notations, the Lp-norms, 1 ≤ p ≤ ∞, on Riesz
subspaces EN = Ran SN , and En = Ran Pn, n ≥ N, are uniformly equivalent;
more precisely,

(9.85) ‖f‖∞ ≤ 3‖f‖1, ∀f ∈ En, n ≥ N∗(v),

and

(9.86) ‖f‖1 ≤ ‖f‖∞ ≤ C(N)‖f‖1, ∀f ∈ EN ,

where

(9.87) C(N) ≤ 50N log N.

Proof. By (9.8), if N is large enough,

(9.88) ‖Pn − P 0
n‖L1→L∞ ≤ 1

2
, n ≥ N.

If we are more careful when using (9.83),(9.84), (9.40) and (9.72), we may claim
(9.88) for N such that

(9.89) 29(1 + ‖r‖)
(

E√N (r) +
2

N1/4

(

‖r‖1/2 + (log 6N)1/4
)

)

≤ 1

2
.

If f ∈ En, n ≥ N, we have

(9.90) f = Pnf = (Pn − P 0
n)f + P 0

nf,
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where, for bc = Per±

(9.91) P 0
nf = fneinx + f−ne−inx, fk =

1

π

∫ π

0

f(x)e−ikxdx,

and, for bc = Dir,

(9.92) P 0
nf = 2gn sin nx, gn =

1

π

∫ π

0

f(x) sin nxdx.

In either case ‖Pnf‖∞ ≤ 2‖f‖1, and therefore, if ‖f‖1 ≤ 1 we have

(9.93) ‖f‖∞ ≤ ‖(Pn − P 0
n)f‖∞ + ‖P 0

nf‖∞ ≤ 1/2 + 2 ≤ 3.

This proves (9.85).
Recall that the projection

(9.94) SN =
1

2πi

∫

∂RN

(z − Lbc)
−1dz,

where, as in (5.40), [16],

(9.95) RN =
{

z ∈ C : −N < Rez < N2 + N, |Imz| < N
}

,

is finite–dimensional (see [16], (5.54), (5.56), (5.57) for dimSN ). Now we follow
the inequalities proven in [16] to explain (9.86) and (9.87). Lemma 20, inequality
(5.41) in [16], states that
(9.96)

sup{‖KλV Kλ‖HS : λ 6∈ RN , Reλ ≤ N2 − N} ≤ C

(

(log N)1/2

N1/4
‖q‖ + E4

√
N (q)

)

.

But by (9.94)

(9.97) SN − S0
N =

1

2πi

∫

Γ

Kλ

∞
∑

m=1

(KλV Kλ)mKλdλ,

where we can choose Γ to be the boundary ∂Π of the rectangle

(9.98) Π(H) = {z ∈ C : −H ≤ Re z ≤ N2 + N, |Im z| ≤ H}, H ≥ N.

Then by (9.96) and (9.97) the norm of the sum in the integrand can be estimated
by

(9.99)

∥

∥

∥

∥

∥

∞
∑

1

∥

∥

∥

∥

∥

2→2

≤
∞
∑

1

‖KλV Kλ‖m
HS ≤ 1, ∀λ ∈ ∂Π(H)

if (compare with (9.89)) N ≥ N∗(q) and N∗ = N∗(q) is chosen to guarantee that

(9.100) “the right side in (9.96)“ ≤ 1/2 for N ≥ N∗.

The additional factor Kλ is a multiplier operator defined by the sequence K̃ =
{1/

√
λ − k2}, so its norms ‖Kλ : L1 → L2‖ and ‖Kλ : L2 → L∞‖ are estimated

by 2κ̃, where

(9.101) κ̃ = ‖K̃λ : ℓ∞ → ℓ2‖ = ‖K̃λ : ℓ2 → ℓ1‖ =
∑

k

1

|λ − k2| .

Therefore, by (9.99) and (9.101),

(9.102) α(λ) := ‖Kλ

( ∞
∑

1

(KλV Kλ)m

)

Kλ : L1 → L∞‖ ≤
∑

k

4

|λ − k2| .
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By Lemma 18(a) in [16] (or, Lemma 79(a) in [14])

(9.103)
∑

k

1

|n2 − k2| + b
≤ C1

log b√
b

if n ∈ N, b ≥ 2.

(In what follows Cj , j = 1, 2, . . . are absolute constants; C1 ≤ 12.) These inequal-
ities are used to estimate the norm α(λ) on the boundary ∂Π(H) = ∪Ik(H), k =
1, 2, 3, 4, where

I1(H) = {z : Re z = −H, |Im z| ≤ H}
I2(H) = {z : −H ≤ Re z ≤ N2 + N, Im z = H}

I3(H) = {z : Re z = N2 + N, |Im z| ≤ H}
I2(H) = {z : −H ≤ Re z ≤ N2 + N, Im z = −H}

Then we get
∫

I1

α(λ)|dλ| ≤ C2
log H√

H
· H,

∫

Ik

α(λ)|dλ| ≤ C3
log H√

H
· N2, k = 2, 4.

∫

I3

α(λ)|dλ| ≤ C4

∫ H

0

log(N + y)√
N + y

dy ≤ C5

√
H log H.

If we put H = N2 and sum up these inequalities we get by (9.97)

(9.104) ‖SN − S0
N‖L1→L∞ ≤ C6N log N,

where C6 is an absolute constant ≤ 600.
Now, as in (9.90) and (9.91), let us notice that for g ∈ EN

(9.105) g = SNg = (SN − S0
N )g + S0

Ng,

where

(9.106) S0
Ng =

∑

|k|≤N

gkeikx, k even for bc = Per+, odd for bc = Per−,

and

(9.107) S0
Ng = 2

∑

|k|≤N

g̃k sin kx, bc = Dir,

where

(9.108) gk =
1

π

∫ π

0

g(x)eikxdx, g̃k =
1

π

∫ π

0

g(x) sin kxdx.

In either case

(9.109) ‖S0
Ng‖∞ ≤ 2N‖g‖1.

Therefore, by (9.104) and (9.109), if ‖f‖1 ≤ 1 we have

(9.110) ‖f‖∞ ≤ C6N log N + 2N ≤ C7N log N, N ≥ N∗ ∈ (9.100).

�
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Verlag, 1954.
[56] J. Meixner, F. W. Schäfke and G. Wolf, Mathieu Functions and Spheroidal Functions and

their Mathematical Foundations, Lecture Notes in Math. 837, Springer Verlag, 1980.
[57] R. A. Minlos and L. D. Faddeev, On the point interaction for a three-particle system in

quantum mechanics, Dokl. Akad. Nauk SSSR 141 (1961), 1335–1338 (Russian); translated as
Soviet Physics Dokl. 6 (1962), 1072–1074.

[58] B. Mityagin, Manuscript, 2000.
[59] B. Mityagin, Convergence of expansions in eigenfunctions of the Dirac operator. (Russian)

Dokl. Akad. Nauk 393 (2003), no. 4, 456–459.
[60] B. Mityagin, Spectral expansions of one-dimensional periodic Dirac operators. Dyn. Partial

Differ. Equ. 1 (2004), 125–191.

[61] M. A. Naimark, Linear differential operators, Moscow, 1969.
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