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We address frequency-dependent quantum transport through mesoscopic conductors in the semi-
classical limit. By generalizing the trajectory-based semiclassical theory of dc quantum transport to
the ac case, we derive the average screened conductance as well as ac weak-localization corrections
for chaotic conductors. Thereby we confirm respective random matrix results and generalize them
by accounting for Ehrenfest time effects. We consider the case of a cavity connected through many
leads to a macroscopic circuit which contains ac-sources. In addition to the reservoir the cavity
itself is capacitively coupled to a gate. By incorporating tunnel barriers between cavity and leads
we obtain results for arbitrary tunnel rates. Finally, based on our findings we investigate the effect of
dephasing on the charge relaxation resistance of a mesoscopic capacitor in the linear low-frequency

regime.
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I. INTRODUCTION

In contrast to dc-transport experiments, the applied
external frequency w of an ac-driven mesoscopic struc-
ture provides a new energy scale iw that permits one to
access further properties of these systems, including their
intrinsic charge distribution and dynamics.

The interest in the ac-reponse of mesoscopic conduc-
tors goes back to the work of Pieper and Price! on the
dynamic conductance of a mesoscopic Aharonov-Bohm
ring. This pioneering work was followed by several exper-
iments ranging from photon-assisted transport to quan-
tum shot noise?:3:4:2:6.7 . More recently, the ac-regime has
been experimentally reinvestigated achieving the mea-
surement of the in and out of phase parts of the ac-
conductance® and the realization of a high-frequency sin-
gle electron source?. Moreover, the recent rise of interest
in the full counting statistics of charge transfer has led
to a reexamination of the frequency noise spectral®i1:12,
This experimental progress has since triggered renewed
theoretical interest in time dependent mesoscopic trans-

portﬁ 214,15,16,17

One way to tackle the ac-transport problem is to start
from linear response theory for a given potential distri-
bution of the samplet®12:20 This involves the difficulty
that, in principle, the potential distribution and more
precisely its link to the screening is unknown. Another
approach consists of deriving the ac-response to an ex-
ternal perturbation that only enters into quantities de-
scribing the reservoirs. Such approachs were initiated
by Pastawski2! within a non-equilibruium Green func-
tion based generalized Landauer-Biittiker formalism, and
then the scattering matrix formalism of a time-dependent
system was developed by Biittiker et al.22:22. Since the
energy is in general no longer conserved for an ac-bias,
the formalism is based on the concept of a scattering ma-
trix that depends on two energy arguments®* or equiv-
alently on two times2®. Fortunately, when the inverse
frequency is small compared to the time to escape the

cavity, the ac-transport can be expressed in terms of the
derivative of the scattering matrix with respect to en-
ergy2%. In this article we start from the time dependent
scattering matrix formalism and limit our investigations
to open, classically chaotic ballistic conductors in the low-
frequency regime??.

For ac-transport we calculate the average correlator of
scattering matrices S(E) at different energies E. For this
we need to know the joint distribution of the matrix el-
ements Sop;;; at different values of the energy or other
parameters. (We label the reservoirs connected to the
conductor by a greek index and the mode number by a
latin index.) To our knowledge a general solution to this
problem does not yet exist for chaotic systems. How-
ever, in the limit of a large number of channels, the first
moments of the distribution Sas.:;(E)S! ;. (E') were de-

afBsig
rived using both semiclassical methods2®:22 and various
random matrix theory (RMT) based methods?2:39:31:32,
Although the ac-transport properties of ballistic chaotic
systems seem to be well described by the RMT of trans-
port22, we develop a semiclassical approach for three rea-
sons: First, this allows us to confirm the random matrix
prediction by using a complementary trajectory-based
semiclassical method. Second, the energy dependence
in the random matrix formalism was introduced by re-
sorting to artificial models such as the "stub model"22.
While being powerful, this treatment is far from micro-
scopic or natural. The third and strongest reason is to go
beyond the RMT treatment and investigate the crossover
to the classical limit. Similarly as for the static case
RMT is not applicable in this regime. As first noticed by
Aleiner and Larkin?2, ballistic transport is characterized
by a new time scale, known as the Ehrenfest time 72432,
that controls the appearance of interference effects. The
Ehrenfest time corresponds to the time during which a
localized wavepacket spreads to a classical length scale.
Typically, in open chaotic systems two such lengths are
relevant, the system size L and the lead width W. We
can thus define an Ehrenfest time associated with each
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one2®:37 the closed-cavity Ehrenfest time,

T = A" In[L/ A, (1)
and the open-cavity Ehrenfest time,

P = A" In[W?/ApL], (2)

where ) is the classical Lyapunov exponent of the cavity.

Although the success of the semiclassical method
(beyond the so-called diagonal approximation, see be-
low) to describe quantitatively universal and mnon
universal dc-transport properties is now clearly es-
tablished3®:39:40,41,42,43,44,45,46,47,48.49 * the correspond-
ing semiclassical understanding of frequency dependent
transport is far less developed. Based on an earlier
semiclassical evaluation of matrix element sum rules by
Wilkinson®® and a semiclassical theory of linear response
functions®!, a semiclassical approach to the frequency-
dependent conductivity within the Kubo-formalism led
to an expression of the ac-(magneto-) conductivity o(w)
in terms of a trace formula for classical periodic orbits®2
Closely related to this evaluation of o(w) is the problem
of frequency-dependent (infrared-) absorptionin ballistic
mesoscopic cavities which has been treated semiclassi-
cally in Ref. m] Peaks in the absorption could be as-
signed to resonance effects when the external frequency
w corresponds to the inverse periods of fundamental pe-
riodic orbits in the cavity. Ref. [33] contains a first,
o-model based approach to weak localization effects in
the ac-Kubo conductivity, where the findings were inter-
preted in a quasiclassical trajectory picture (beyond the
diagonal approximation). We note also that the semi-
classical treatment of the product of scattering matrices
S(E) at different energies, has been investigated in dif-
ferent context such as the Ericson fluctuations! and the
time delay?®, however without considering the Ehrenfest
time dependence.

The outline of this article is as follows: In Section [II
we introduce our model to treat the system of interest
namely a quantum dot under ac bias, and recall some ba-
sic results about conservation laws in presence of a time
dependent field. In Sect. [TIl we present the method used
to treat screening, which is based on a self-consistent ap-
proach developed by Biittiker et al.22. The admittance,
i.e. the ac-conductance, is then calculated semiclassically
for the particular case of strong coupling to the leads
(transparent contact) in Sect.[[V] where we illustrate our
result by treating the time dependence of a pulsed cavity.
We generalize the method to cope with arbitrary tunnel
rates in Sect. [Vl and finally we use our general results
to investigate dephasing effects on the charge relaxation
resistance of a mesoscopic capacitor in Sect. [Vl

II. THE MODEL

We consider a ballistic quantum dot, i.e. a two-
dimensional chaotic cavity coupled to M electron reser-
voirs via M leads. Each lead o has a width W, and
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Figure 1: Two dimensional chaotic cavity with M leads and
one gate 0. Each lead o has a width W, and is coupled to
a reservoir at potential Uq(w) and current J,(w). Each tun-
nel barrier is characterized by the set of transmission prob-
abilities I'a = {T'a,1, -+ ,a,n,}. The gate and the sam-
ple are capacitively coupled, which leads to a gate current
Jo(w) = —iwCUp(w) — U(w)].

is coupled to the cavity through a tunnel barrier (see
Fig.[). In addition to the treatment of Ref. [43] we as-
sign a particular tunnel probability to each lead mode.
The tunnel barrier is thus characterized by a set of trans-
mission probabilities, 'y, = {Tq.1,--+ , TN, }, with Ny
the maximum mode number of lead «. The chaotic dot is
additionally capacitively coupled to a gate connected to
a reservoir at voltage Up(w), from which a current Jo(w)
flows. This capacitive coupling with the gate is taken
into account via a geometrical capacitance 022:32:53

We further require that the size of the contact is much
smaller than the system size L, but still semiclassically
large, 1 <« N, < L/Ap. This requirement ensures that
the particle spend enough time inside the cavity to expe-
rience the chaotic dynamics.

As usual for such mesoscopic structures we need to dis-
tinguish between quantum and classical time scales. On
the quantum side we have already introduced the Ehren-
fest times (5", 75)) in Egs. (@2)), while another time scale
is the Heisenberg time 7y, the time to resolve the mean
level spacing of the system. On the classical side the time
of flight 7+ between two consecutive bounces at the sys-
tem cavity wall is relevant. In most ballistic systems or
billiards we have 77 ~ A\~!. Another relevant time scale
is the ballistic ergodic time 7o which determines how
long it takes for an electron to visit most of the available
phase space. However, as we deal with transport proper-
ties, a further important time scale is the dwell time 1,
the average time spent in the cavity before reaching the
contact, we have p/7erg > 1. The related escape rate
therefore satisfies

(3)

H'MQZ

~w Ry

For small openings which we consider here, we have
A > 1.



The ac-transport properties of such a mesoscopic sys-
tem are characterized by the dimensionless admittance

Gap(w)/Go = G5 01a(w)/0Us(w),  (4)

with Gy = dse?/h, where d; = 1 or 2 in the absence
or presence of spin degeneracy. In this study we limit
ourselves to the coefficients gos(w) with a, 5 =1,--- | M
where the coefficients denoting the gate are determined
by current conservation and the freedom to choose the
zero point of energy?2,

M M
Y Gas@) =Y gap(w) =0. (5)
a=0 £=0

We note that Eq. (@) is a straightforward consequence
of the underlying gauge invariance. Owing to the con-
servation of charge, the total electric current fulfills the
continuity equation

Jap(w) =

Idp

ot =0, (©)

V.ip+ =
where p is the charge density and j, the particle current
density. For dc-transport, the charge density is time in-
dependent and so we have V- j, = 0. Thus the sum of all
currents that enter into the dot is always zero. Moreover
the current properties must remain unchanged under a si-
multaneous global shift of the voltages of the reservoirs.
These conditions imply the well know unitarity of the
scattering matrix24

Z Bw

For ac-transport, the product of scattering matrices

at different energies no longer obey a similar prop-
erty3453:56,57 § ¢

2 Sass

indeed this inequality expresses the fact that, due to the
possible temporary pile up of charge in the cavity, the
particle current density no longer satisfies V - j, = 0.
However one can instead use the Poisson equation

Ot'y;ik(E) = 557;jk- (7)

E') # pvijn; (8)

a'v;ik(

where D = —¢,V ¢ with ¢ the electric potential, to define
the total electric current density which satisfies V-j =0,
as a sum of a particle and a displacement current:

j=jp+—. 10
In order to find j one needs to know the electrical field
D. In general its calculation is not a trivial task because
the intrinsic many-body aspect of the problem makes the

treatment of the Poisson equation (@) tricky, especially

if it is necessary to treat the particle and displacement
current on the same footing.

In this work we shall adopt the approach of Ref. ] to
simplify the problem. In this approach the environment
is reduced to a single gate, the Coulomb interaction is
described by a geometrical capacitance C, and the two
currents are treated on different footing; the particle cur-
rent is calculated quantum mechanically via the scatter-
ing approach, while the displacement current is treated
classically via the electrostatic law (Eqgs. (@@)). This sim-
plification will permit us below to re-express the Poisson
equation (@) to obtain the simplest gauge invariant the-
ory that takes care of the screening. We emphasize that
even though our model could be thought of as oversim-
plified it has the advantage of being able to probe the
effects due to the long range Coulomb interaction. In-
deed, for non-interacting particles it is possible to treat
the dot and the gate via two sets of uncorrelated conti-
nuity equations. The Coulomb interaction removes this
possibility, and we need to consider the gate and dot as
a whole system.

III. EXPRESSION FOR THE ADMITTANCE

The method to compute the admittance proceeds in
two steps®®: First the direct response (particle current)
to the change of the external potential is calculated un-
der the assumption that the internal potential U(w) of
the sample is fixed. This leads to the definition of the
unscreened admittance gy 5(w). Second, a self-consistent
procedure based on the gauge invariance (current con-
servation and freedom to choose the zero of voltages) is
used to obtain the screened admittance gog(w).

The unscreened admittance reads?2

st = [apEZ ) - IE+ ) "

oo (s ) s (5]

where f(E) stands for the Fermi distribution, S, is the
N, x N scattering matrix from lead 3 to lead «, and 1,
is an N, X N, identity matrix. Under the assumption
that U(w) is spatially uniform, the screened admittance
gap(w) is straightforward to obtalnu. For sake of com-
pleteness we present here only the outline of the method
and refer to Ref. [26] for more details.
On the one hand the current reponse at contact « is

= Go Z Jap(w

where ¢!,(w) is the unknown internal reponse of the
mesoscopic conductor generated by the fluctuating po-
tential U(w). On the other hand the current induced at
the gate is

(@) + gao(@U(w)| . (12)

Jo(w) = —iwC[Up(w) — U(w)]. (13)



Gauge invariance permits a shift of —U(w) and provides
an expression for the unknown internal response,

gaO Z gaﬁ (14)

Then current conservation, Zi\f[:l Jo(w) + Jo(w) = 0,

yields the result of the screened admittance?2,

S gt @) XN gk s w)
wC/Go — S50 S8y gl <w>(
15

In the self-consistent approach used to obtain Eq. (I3,
the only electron-electron interaction term that has been
considered is the capacitive charging energy of the cavity.
This implies that we should consider a sufficiently large
quantum dot®®. We note that, using a 1/N-expansion,
the self-consistent approach above was recently formally
confirmed in Ref. [59]. Moreover, Eq. (I3) can be gener-
alized to non-equilibrium problems, using Keldysh non-
equilibrium Green functions®.

In the next sections we present the semiclassical evalu-
ation of Eq. () in the zero temperature limit (including
finite temperature is straightforward). For reasons of pre-
sentation we first give the semiclassical derivation for the
transparent case in Sect. [Vl and then we explore the
general case in Sect. [Vl In Sect.[VI we present an appli-
cation of the screened result for tunnel coupling, when we
compute the relaxation resistance of a mesoscopic chaotic
capacitor.

gaﬁ(w) = ggﬁ(w) +

IV. SEMICLASSICAL THEORY FOR THE
ADMITTANCE

A. Semiclassical approximation

We first consider the multi-terminal case assuming
transparent barriers, i.e. I'y; = 1, V(a,4). In the limit
kT — 0 the unscreened admittance, Eq. (1), reduces
to

hw hw
050 = Naoa—Tr [Sap(Br + 1218, (B— )|
(16)
Semiclassically, the matrix elements for scattering pro-
cesses from mode i in lead 8 to mode j in lead o read22:%1

hw
Sapji(Br £ =) = (17)

/di[] / ZA et Sw(m,mo;EFiﬁ’T“’),

where |) is the transverse wave function of the i-th mode.
Here the ¢ (or x) integral is over the cross section of the
Bth (or ath) lead. At this point S,p is given by a sum
over classical trajectories, labelled by ~. The classical

{Jlz) (o)
(27ih) (2mih)t/2

paths v connect Xo = (0, ps,) (on a cross section of
lead ) to X = (x,p,) (on a cross section of lead «).
Each path gives a contribution oscillating with action
Sy (including Maslov indices) evaluated at the energy
Ep + hw/2 and weighted by the the complex amplitude
A,. This reduces to the square root of an inverse element

of the stability matrix®?, i.e. A, = |(dps,/dz), 2.

We insert Eq. ([I1) 1nt0 Eq. ([I8) and obtain double
sums over paths v, 7' and lead modes |i), |j). The sum
over the channel indices is then performed with the semi-
N, N
i1 (woli)(ilxg) = (xh — o),

classical approximation?2

and yields
050 (©) = Nubas = = o, /dxz Ay osienen,
(18)
Here,
hw hw
0S(Er,w) = Sy(wo, 23 Ep + =) = Sy (wo, 23 Er — ).
(19)

As we are interested in the limit hw < Ey, we can expand
0S(Fr,w) around Er. The dimensionless ac-conductance
is then given by

A Az
U (w) = Nobag = — [dzo [d it s 2
925() ~ Nabas /B/Z 2 (@)
iw
S ).
where 0S(Er) = S,(xo,x; Er) — Sy/(z0,2; Ep) and t,

(ty) is the total duration of the path v (7). Eq. 20) is
the starting point of our further investigations.

X exp [7—255(&:) +

B. Drude Admittance

We are interested in quantities arising from averaging
over variations in the energy or cavity shapes. For most
sets of paths, the phase given by the linearized action dif-
ference S (Er) will oscillate widely with these variations,
so their contributions will average out. In the semiclas-
sical limit, the dominant contribution to Eq. (20Q) is the
diagonal one, v = ~/, which leads to t, = t/, §S(Er) =0
and gives

=N, 5aﬁ—/dx0 /d;vz |2ﬁh Wty (21)

In the following we proceed along the lines of Ref. [42].
The key point is the replacement of the semiclassical am-
plitudes by their corresponding classical probabilities. To
this end we use a classical sum rule valid under ergodic

assumptions®?,

Z |A |2ei‘*’tw ”
dBodf e pp cos(00) P(X, Xo: t)[ - - ]x, -

[l

u,D
gaﬁ (

Ty = (22)
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Figure 2: A semiclassical contribution to weak localization
for a system with strong (transparent) coupling to the leads.
The two paths follow each other closely everywhere except
at the encounter, where one path (dashed line) crosses itself
at an angle ¢, while the other one (full line) does not (going
the opposite way around the loop). The cross-hatched area
denotes the region where two segments of the solid paths are
paired (within W, ~ Wz ~ W of each other)

In Eq. 22)), pr cos(fp) is the initial momentum along the
injection lead and P(X,Xy;t) the classical probability
density to go from an initial phase space point Xy =
(z0,00) at the boundary between the system and the lead
to the corresponding point X = (z, ). The average of P
over an ensemble or over energy gives a smooth function
that reads

cos(0)
27’]3 Za 1 W

with the escape rate ;" given in Eq. ().
Using Egs. 1), (22) and ([23), we recover the Drude

admittance
NoNg 1
24
N (1 - inD) ’ (24)

(P(X,Xq;t)) = et/ (23)

Naéaﬁ -

D
935 (w) =

where N = Zi\f{:l N,

C. Weak localization for transmission, reflection
and coherent backscattering

1. Weak localization

The leading-order weak-localization correction to the
conductance was identified in Refs. [33/39] as those aris-
ing from trajectories that are exponentially close almost
everywhere except in the vicinity of an encounter. An
example of such a trajectory pair for chaotic ballistic
systems is shown in Fig. At the encounter, separat-
ing the ‘loop’ from the ‘legs’, one of the trajectories (7')
intersects itself, while the other one () avoids the cross-
ing. Thus, they travel along the loop they form in op-
posite directions. In the semiclassical limit, only pairs
of trajectories with a small crossing angle € contribute
significantly to weak localization. In this case, each tra-
jectory remains correlated for some time on both sides

of the encounter. In other words, the smallness of € re-
quires two minimal times: T(e) to form a loop, and
Tw(e) in order for the legs to separate before escaping
into different leads. The encounter introduces a typical
length scale dr; that corresponds to the perpendicular
distance between the two paths in the vicinity of the
encounter. In the case of hyperbolic dynamics, we get
dr) = vpe/(2)\) ~ Le. Hence, the typical minimal time
is given by Ty(e) = A~ 'In[(¢/dr1)?], with £ = {L, W}
that we can approximate as

To(e) ~ A 'n[e™?],
Tw(e) ~ A 'ln[e 2(W/L)?].

The presence of the external driving does not change
this picture. Each weak-localization contribution accu-
mulates a phase difference given by the linearized action
§S(Er) ~ 0Srs = Ere?/A32. Following the same lines
as for the derivation of the Drude contribution, though
the sum over paths is now restricted to paths with an
encounter, the sum rule (22) still applies, provided the
probability P(X, Xq;t) is restricted to paths which cross
themselves. To ensure this we write

(25a)
(25Db)

R

P(X,Xo;t) :/ngdep(X,Rg;t—fz)
c
X P(RQ,Rl;tQ —tl)P(Rl,Xo;tl), (26)

where the integration is performed over the energy sur-
face C. Here, we use R; = (v, ¢;), ¢; € [—m, | for phase
space points inside the cavity, while X lies on the lead
surface as before.

We then restrict the probabilities inside the integral
to trajectories which cross themselves at phase space
positions Ry with the first (or second) visit of the
crossing occurring at time t; (or t2). We can write
dRy = visinedt;dtade and set Ry = (rq1,¢1 £¢€). Then
the weak-localization correction is given by

g w / a4, / defe [e9555/") (P(Xo, e, )
(27)
with,
F(Xo,€,w) (28)

t— Tw/2 to—T1,
2’UF sme/ / dtz/ dtq
TL+Tw JTu+Tw /2 JTw/2

XpFCOSH()/ dY/dep(X,Rz;f—tg)
R e
XP(RQ,Rl;fz—fl)P(Rl,Xo;tl)eth.

Under our approximation ¢, ~ t, = t, the intro-
duction of the driving frequency leads to performing a
Fourier transform of the survival probability, and we ob-
tain

(vpTD)?pr sin e cos g N,
(F(Xo,6,w)) = pr W (29)
><exp[ T,/ o] exp [iw(
(1 —dwm)3




with Q the cavity area. Inserting Eq. (29) into Eq. 27),
the ¢ integral is dominated by small angle (¢ < 1)
contributions, allowing for the approximation sine ~ ¢
and pushing the upper limit to infinity. This yields
an Euler Gamma function times an exponential term

e~ Th /D giw(TE +75") (with 75° and 7 given by Eqs. (D)

that reads, to leading order in (A TD) Y

2iw

oo E by
/0 de 2 Re {exp{ ;;: H L7 (1=2iwm) <¥)

h 7761 iw (TS +71oF . 1
_ 7T2 e .,-gﬂL (47 )(1 _ 2ZWTD)+O |:_:| )
MVETD ™
(30)

Performing the X integral and using Ng = (7h) "' prWp
and N = (hrp)~tmQ, the weak-localization correction to
the unscreened admittance is

NaNs et /m, (1= 2iwmD) (T8 +75")
N2 (1 —iwmp)3

1
Gap (W) = -(31)
We note that due to the absence of unitarity of the un-
screened admittance we need to explicitly evaluate all the

elements of g;;(w). The weak-localization contribution

to reflection r%*(w) is derived in the same manner as

ggg’l (w), replacing however the factor N3/N by N,/N.
We then obtain

u,wl Na 2 ,7-01/7.[) (1 — QiWTD) eiw(TEl+Tgp)
ao (w) v e ' — 3
(1 —iwm)
(32)

N

However as in the dc-case there is another leading-
order contribution to the reflection, the so-called coherent
backscattering. This differs from weak localization as
the path segments that hit the lead are correlated. This
mechanism should be treated separately when computing
the Ehrenfest time dependence, which is the object of the
next paragraph.

r

2. Coherent backscattering

Though the correlation between two paths does not
influence the treatment of the external frequency, it in-
duces an action difference dS(Er) = 6Sebs = —(poL +
mArg, )ro. where the perpendicular difference in po-
sition and momentum are 79, = (29 — x)cosfy and
poL = —pr(0 — 6p). As for weak localization, we can

NoNg

identify two timescales, Tﬁ, 2Tw, associated with the
time for paths to spread to L, W, respectively. However
unlike for weak localization we deﬁne these timescales
as times measured from the lead rather than from the
encounter. Thus we have

Ty(ro1,poL) =~ < In[(mA)/|por +mAroL]], (33)

2
—1
A
with ¢ = {L, W}4T. Replacing the integral over X, by
an integral over (roi,por) and using pgcosfpdXy =
dpgrdrg., the coherent-backscattering contribution
reads

ras? (w) = (Wh)il/dPOLdTOL%e [eﬁs“bskFCbs(Xo,w)%

" (34)
with

(FP(Xo,w)) = / dt/dXP (X, Xo; t)e'!

e (TLf TW)/TDeszL

- W 1 — iwm ' (35)

As in the dc-case we perform a change of variables
Dol = porL + mArgL. Then we push the py; integral
limit to infinity and evaluate the r¢, integral over Wi,.
This result,

(1-2iwTp) 1

/oo ~ hsin(ﬁOLWa/h) ﬁQJ_ ATD W\ *»
dpoL —
o Dol mAL L
TC] - C. O
= rhe T e ETE) 4 O ()71, (36)

together with Eq. ([B3) and Eq. (34) yields

iw(TCl—i-TOp)
Na e—‘r]f:l/TD e BB

u,cbs _ _
" () N (1 —iwm)’

(676

(37)

Surprisingly the coherent-backscattering contribution
thus has exactly the same exponential dependence on
mor and 7g as the other weak-localization contributions.
While in the dc-case this property is a consequence of
current conservation, this fact is not obvious in the ac-
case.

At this point we can summarize our results for the
unscreened admittance. From Eqs. (24 BI B2 [B37),

<92g(w)> can be written as

<ggﬁ(w)> = 6aﬁNo¢ - N(l — iLUTD)

First we note that in the limit of zero Ehrenfest time

Tcl . c
N, exp [—%} exp [zw(TEl + Tgp)} Ns(1 — 2iwr)
N(1 — iwm)

N(1—iwmp)? 5a6) +O(NTY). (38)

we recover the RMT result for the unscreened admit-



tance of Brouwer and Biittiker22. Concerning the Ehren-
fest time dependence of the admittance, we note that the
result is consistent with the absorption study performed
in Ref. [64]. As for the dc-case we find the absence of
the Ehrenfest time 7p° in the term exp[—7g/7p] which
derives from the classical correlation between the paths
that constitute the encounter. The physical origin of the
term exp [iw(7g 4+ 75")] comes from the fact that both
trajectories that contribute to weak localization and co-
herent backscattering involve an encounter that has a
minimal duration of (1& + 75") (Leg part and loop part
of the encounter, see Fig. ). The presence of this mini-
mal duration, 27§ = 78 + 747, is in accordance with the
Ehrenfest time shift prediction of the quantum correction
to the survival probability®® and the photofragmentation
statistics®®. We return to the Ehrenfest time dependence
in Sect. [VEl

We can also consider the effect of a magnetic flux on the
mesoscopic admittance. A weak magnetic field has little
effect on the classical dynamics but generates a phase
difference between two trajectories that travel in opposite
directions around a weak-localization generating closed
loop. This phase difference is ®/®g, where @ is the flux
quantum, and ® is proportional to the flux through the
directed area enclosed by the loop. To incorporate this in

cl

N, N

T

{9ap(w)) = dapNa —

the previous semiclassical treatment we must introduce a
factor exp[i®/®g] into F in Eq. (Z9) and F°" in Eq. (33)).
The calculation gives a Lorentzian shape?2:22:42 for the
®-dependence of the quantum correction to the average
admittance,

w,wl/cbs
w,0
u,wl/cbs(w7 (I)) o gaﬁ ( )

9o = 3 -
A 1+ A292 (1¢/mp — iwTt) !

(39)

Here A% = a2, with « a system dependent parameter of
order unity, €2 the cavity area and 7¢ is the time of flight
between two consecutive bounces at the cavity wall.

D. The screened admittance

Following the self-consistent approach, the screened
admittance is straightforwardly obtained when we sub-
stitute Eq. (3]) into Eq. (I8) and expand the result to
leading order in N—'. This simple substitution is justi-
fied, because the typical fluctuations of the unscreened
admittance are of order N~2. The screened admittance
then reads

N(1 —iwT)

where 77! = 7! + NG/C is the charge relaxation time

or quantum RC time. Eq. {Q) is the first intermediate
result from which we can draw some general conclusions.
At zero Ehrenfest time we recover the two-terminal result
of Brouwer and Biittiker in Ref. [32]. The comparison be-
tween the screened (Eq. (@0)) and unscreened (Eq. (B8])
admittance shows that the screening amounts to the re-
placement of the dwell time 7 by the RC time 7 every-
where up to the prefactor of the third term. Only for the
weak localization and the coherent-backscattering contri-
butions does the dwell time dependence survive. Though
the relevant time scale for the classical admittance is the
charge relaxation time 7, the quantum corrections are
characterized by the dwell time 7. It is important to
remember that 7p is a characteristic time scale of the
non-interacting system. Its relevance here has its origin
in the fact that weak localization is due to the interfer-
ence of electronic waves, which is unimportant for charge
accumulation in the system. The absence of the RC time
7 at leading order in w is thus quite natural. We recall
that, as constructed in the framework of the model, the
admittance matrix Eq. (@0) is current conserving if the
gate is included. The elements of the admittance related
to the gate are obtained via the sum rule (Bl). Neverthe-

Naexp [~25 | exp [iw(rs + 7)) /v,y (1 - 2107)
N(l — iWTD)

less, if we impose this above sum rule to the unscreened
result we also obtain a conserved current, and this situ-
ation corresponds to a cavity which has infinite capaci-
tance to the gate. In the reverse limit of zero capacitance
we reach the charge neutral regime that corresponds to
putting 7 = 0 in Eq. (@0). Upon performing that, we
recover the charge-neutral limit obtained by Aleiner and
Larkin in Refs. [3367] which for the conventional weak-
localization contribution reads

cl
 N.Nj P {—:—‘I’; + iw(t + T5P)

wl,‘r:O(w)
N? (1 —iwTp)

9o

(41)

We note that for the particular geometry of a capacitor
(only one lead and one gate), since Eq. ([@Q) is valid for
any capacitive coupling, we can obtain the effect of the
Ehrenfest time scale on the interference correction to the
admittance of a mesoscopic capacitor. This was not pos-
sible within the charge-neutral limit approach of Aleiner
and Larkin, since the interference corrections considered
here are absent in that case.

Here one important remark is due. In both, Eq. (@0Q)
and Eq. () the admittance involves an oscillatory be-
havior as a function of the Ehrenfest time, which should



in principle be more easily accessible experimentally. In-
deed, we see here in our quest for the Ehrenfest time
physics a clear advantage in investigating weak localiza-
tion in the ac-regime. In the static case, the ratio 75 /m
is the only relevant and tunable parameter for the dc
weak-localization correction. Consequently, the range of
experimental investigation is considerably reduced by the
logarithmic dependence of g on the system size. For
the dynamical weak localization the frequency depen-
dence w combined with the capacitive coupling C pro-
vides more freedom in probing tg-behavior. However,
although the wrg Ehrenfest time dependence was pre-
dicted in Ref. [33] (in which some possible experimental
verification was forecasted in a magnetocondutance ex-
periment or in an optical backscattering experiment), we
are not aware of any experimental verification of the ex-
istence of such an oscillation. To date there exist only
two experiments devoted to exploring the 75 signature:
The shot noise experiment by Oberholzer et al.®® and
the weak localization experiment in an antidot lattice by
Yevtushenko et al.82. Both experiments were performed
in the static case.

E. Pulsed cavities

In this section we comment on the Ehrenfest time de-
pendence of the admittance and its link to that of the
survival probability$2:86. To this end we consider the par-
ticular case of a pulsed cavity®?, i.e. the application of a
pulse U, (t) = and(t) to one of the contacts . The re-
sponse current at contact  to such a pulse will be propor-
tional to the frequency integral over the ac-conductance,

alt) = 57 [dogtte)exp(—iwt). (42
This problem was previously addressed in Ref. M] where
the connection between the RMT calculation of the ad-
mittance and RMT results for the quantum and the clas-
sical survival probability™®™! were discussed. More pre-
cisely, in Refs. m]ﬂ] a difference between the quantum
and the classical survival probability was predicted for
times of order t* = \/7Tp7. The conclusion of Ref. [57]
was two-fold: first, based on the weak-localization cor-
rection, a deviation of the unscreened admittance at t*
was confirmed, while secondly the screened system was
shown not to exhibit such a t*-dependence.

Based on our semiclassical results ([B840) we are able
to confirm this dependence. For the unscreened admit-
tance, the weak-localization and coherent-backscattering
contribution, dgg 5 (t) = gZBWI( )+gZBCbS( ), yields a com-
plicated time-dependence and reads on a log scale

NTD " - t— TEp
In [NQNQ 6gaﬁ(t)} = p (43)

dap 1 [t—2rg t— 275
In |28 = (L2 (o .
+n[ NQ+N< = )( 27

Here we recall that 275 = 75 + 757, At zero Ehrenfest
time, 75 = 0, we see as in Ref. [57] that while the initial
time dependence is determined by mp (first term of rhs of
Eq.[@#3)), for times larger than t* the t>-term in the log
will be important. We therefore find a deviation from
the classical exponential behavior.

This conclusion still holds at finite Ehrenfest time, up
to the inclusion of a time shift 275 as predicted in the
recent semiclassical derivation®® of the survival probabil-
ity.

The treatment of the screened case is more demanding
due to the presence of the RC time 7. However since the
pole linked to the dwell time 1p is only simple, it is clear
that even at incomplete screening, there is no term pro-
portional to t2. This is in accordance with the absence of
deviations for the interacting admittance. However, the
Ehrenfest time dependence will be equivalent to the un-
screened one, leading to a time shift . Only for complete
screening (7 = 0) it is possible to obtain a simple result,
which reads on a log scale

ln[]\]]\f]\? 5o ()}:- _

V. MULTI-TERMINAL SYSTEM WITH
TUNNEL BARRIER

The calculation of the admittance with tunnel barriers
follows the trajectory based method recently developed
by Whitney42 for the dc-case. We recall here the three
main changes in the theory with respect to the trans-
parent case. For more details on the inclusion of tunnel
barriers we refer to Ref. [45].

At first, in the presence of tunnel barriers the com-
plex amplitude A in Eq. (I7) is extended to include the
tunneling probabilities reading®

1 N‘Y /1 -/
Ay = Citgitay [ re )77 (45)
B3

where Cy = |(dpg,/dx),] is the rate of change of the ini-
tial momentum p,, for the exit position = of v, N (5, 5")
is the number of times that v is reflected back into the
system from the tunnel barrier on lead 5" and the trans-
mission and refection amplitudes at the lead 3 satisfy
ltsil> = (1 — |rs,i?) = s, We note that without any
loss of generality, we associated in Eq. ([@3]) the momen-
tum p,, (or p,) with the channel i (or j).

At this point the replacement of the semiclassical am-
plitudes by their corresponding classical probabilities still
holds, though the tunneling probabilities are included.
As an example the probability to go from a phase point
X (here we associate the channel ¢ to the momentum
pr cos bp) on lead [ to an arbitrary point on lead « sim-
ply satisfies (for o # ),

rd
/ dt/dX (X, Xo; ) = Pile’

)



Figure 3: A failed coherent-backscattering contribution to ac-
conductance, g. Cbs(cu). It involves paths which return close
but anti- parallel to themselves at lead «, but are reflected off
the tunnel-barrier, remaining in the cavity to finally escape
via lead 8. The cross-hatched area denotes the region where
the two solid paths are paired (within W, ~ W of each other).

where we let I‘S) = Z;Vfl s, and define N =3 T

More importantly, the introduction of a tunnel barrier
induces three changes: (i) The dwell time (single path
survival time) becomes

TDl =Ty i Z I‘(l = TH (47)

because a typical path may hit a lead but be reflected
off the tunnel barrier (remaining in the cavity) numerous
times before tunneling and escaping.

(ii) The paired-paths survival time for paths closer
than the lead width is no longer equal to the dwell time
instead it is given by

s =ty (2r -1®)

= it (2NN (48)

where I'Y) = Zi]ial I'2 ; and we define N=Y, r'?. This
is because a second path following a path which has not
escaped will hit the same tunnel barrier, and thus may
escape even though the first path did not. Compare this
with a system without tunnel barriers: there a path has
not escaped because it has not touched the leads; thus a
second path following the first one has no possibility to
escape.

(iii) The coherent backscattering peak contributes to
transmission as well as reflection. The positive contri-
bution to the transmission competes with the usual neg-
ative weak-localization contribution to transmission, see
also Fig

For the calculation of the Drude conductance, only
change (i) above is required, yielding

rr®

N 1— iLUTDl

9P (w) = TP8s — (49)

When calculating the conventional weak-localization
contribution we need changes (i) and (ii) above. Since
the classical paths considered stay close to itself for a
time Ty (e)/2 on either side of the encounter we must
use the paired-paths survival time, o, for these parts of
the path. Elsewhere the escape time is given by the single
path survival time, 7p;. With these new ingredients we
find that the conventional weak-localization contribution
becomes

PO (2 - %) — 2w

u,wl
gaﬁ (w) = N2 - €

O piw(TE +75")
(1 —dwm1)?

)

(50)
with ©,, = 727 /mp2 + (78 — 757) /1. The exponential
suppression exp(—0,,) related to the classical correla-
tion is simply the probability that the path segments
survive a time 75" as a pair (75 /2 on either side of
the crossing) and survive an additional time (7g — 757)
unpaired (to complete a loop of length 7<!). Similarly
as for the transparent case, the exponential dependence
expliw (g + o)) indicates that the minimal duration of
a weak localization trajectory is 7 —|—

However as realized by Whltney thls is not the to-
tal weak-localization contribution to conductance, be-
cause of failed coherent-backscattering g“°PS(w) that
contributes to conductance (change (iii) above). We re-
call that this involves a path which returns close but
anti-parallel to itself at lead «, but is then reflected off
the tunnel-barrier on lead «, remaining in the cavity un-
til it eventually escapes through lead 5. An example of
such a trajectory is shown in Fig. Bl We can calculate
the backscattering contribution as before but using s,
when the paths are within W, of each other, and 1
elsewhere. This result is then multiplied by the proba-
bility that the path reflects off lead o and then escapes
through lead § and weighted by the dynamical factor
(1 — iwmp1)~! due to the diagonal transmission from «
to O i.e. the leg part of Fig Bl In addition to the co-
herent backscattering expression for r*P$(w) this gives
a contribution to the admittance of the form

- F(2) (1) I‘(l) 5 ‘ o op
g (W) = (1 — iwTp1)? N2 e O e TETTED (51a)

1’\(2) _ 1'\231) F(1)

u,cbs2 jw(rE 4 roP
g (W) = (1 —iwmp1)? N2 e O e ETTED (51h)
o T o iiirciisop
rgng(W) ] % N e~ Oe i (TEHTE"), (51c)
— 1WTD1

where we recall that T\ = Ef\]:"l 2.
Using Egs. (@9 B0 BT), the unscreened admittance in
the presence of tunnel barriers reads
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N2 (1 —iwp1) (1 — iwp1)?

As a check of the formula (52]), we can easily recover
the previous Eq. (B8] for the unscreened admittance ob-
tained for transparent barriers and also the tunnel dc-

Fgl)r(gl) e~ O eiw(TE +75") (2 — N/N — 2w

(52)
(2) /(1) (2) /(1) 2
Lo'/lo 4T, /Ty =2 T N o A Lo (v
— M ) 8 )-
(1 —iwm1) r{ Fg

conductance?®.

After the substitution of Eq. (62) into Eq. (I5) the
screened admittance in presence of tunnel barriers reads

(53)

r®

1—\((11)1—\(1)
N — 1§, _ "B
<g 5((.«)» @ B N(l — in)
(T eOrseiwtri e (5 - RN~ giwr  T/TE +T(/T)) 2
N2 (1 —iwmp1) (1 —iwT)? (1 —iwT)
where the quantum RC time reads now 77! = 7511 +

NGy/C. We emphasize that from Eq. (B3) it is possi-
ble to derive all the results presented in this paper and
therefore this equation is the central result of this paper.

In the second line of Eq. (B3], the second contribu-
tion in the brackets represents the correction due to the
presence of the failed coherent backscattering. Impor-
tantly, Eq. (B3] includes both, the limit of infinite capac-
itance C' and the transparent case. In the charge neu-
trality limit (7 = 0) the presence of the tunnel barriers
does not drastically alter the conclusion drawn for the
transparent case. Indeed, for the weak-localization cor-
rection, in addition to the expected substitution N, N
by F((ll), N, we observe only a renormalisation by a factor

(/08 + 1§ /0 — N/N). Thus Eq. @I) becomes

(54)
Fg)F(ﬁl) 67@"1“3 eiw(TIS:l"‘T]gp)
NQ

gug W) =
Y
RTOR
More importantly, one of the main effects of the tunnel
barrier in the dc-case was the suppression of the weak-
localization correction®>?2 for opaque barriers. This
suppression results from the competition between two
purely quantum effects, interference and tunneling. The
corresponding semiclassical treatment?® shows that the
cancellation is due to an exact compensation between
the weak-localization correction and the failed coher-
ent backscattering. It is interesting that this conclu-
sion cannot be generalized to ac-transport. Since the

frequency dependence of the weak-localization correction
differs from the one of the failed coherent backscattering

(1 — inDl)

—1
_ @@%ﬁ) + 0 (N ),

the compensation cannot occur. Dynamical weak local-
ization is thus more robust against the presence of tunnel
barriers. We note, however, that for 7 = 0 we recover the
cancellation of the weak-localization correction with tun-
nel probabilities, see Eq. (&4).

VI. CHARGE RELAXATION RESISTANCE OF

A MESOSCOPIC CHAOTIC CAPACITOR

To illustrate and apply the general results derived
above, we consider here the mesoscopic equivalent of a
classical RC circuit?2. A quantum coherent capacitor has
been recently investigated experimentally by Gabelli et
al.8 using a two-dimensional electron gas. The quantum
capacitor is composed of a macroscopic metallic electrode
on top of a lateral quantum dot defining the second elec-
trode. The role of the resistance is played by a quan-
tum point contact that connects the quantum dot to a
reservoir. The experiment was performed in the coherent
regime at high magnetic field in the one edge state limit.
Measuring the real and imaginary part of the admittance
of such a circuit, Ref. |§] confirmed the predicted?? uni-
versal value of the quantized charge relaxation resistance
of a single channel cavity, which is equal to half a resis-
tance quantum h/2e?.

Based on this experimental realization we propose here
to investigate the opposite regime of large channel num-
bers at zero magnetic field. This regime is not character-
ized by the universal value of the preceding fully quantum
one, however it should be experimentally accessible. If
we assume that the quantum dot is chaotic we can map
this system to the one-terminal geometry of the more



general set-up considered in the previous section. The
transparency of the quantum point contact is replaced
by the transmission probability of the tunnel barrier I';.
To simplify the result we assume in the following that the
N channels of the capacitor have the same tunnel rate,
ie. T'y; =T (¥i), the dwell time of the capacitor is thus
™D — TH/(NF).

In a quantum coherent capacitor, there is obviously no
dc-current, but we can address ac-transport via the ad-
mittance G(w)?:33. At low temperatures it is character-
ized by an electrochemical capacitance C), and a charge
relaxation resistance R,

G(w) = —iwC)y, + wQCﬁRq +0(W?). (55)

In contrast to their classical counterparts, C, and R,
strongly depend on the local density inside the sample™
They are thus sensitive to the phase coherent dynamics
of the electrons inside the sample and thus subject to
dephasing.

(w), Zo(w)
‘ Gate

Up(w), Zg(w) = 0
Dephasing Lead

Uy (), I1(w)
Lead 1

Figure 4: Schematic picture of the mesoscopic capacitor with
the dephasing lead (see text). The chaotic cavity has an extra
lead (lead ¢), whose voltage is chosen to render the net current
zero, which leads to dephasing without a loss of particles.
Since each channel has the same tunnel rate I'1; = I" and
I'y.i = I'y, Vi, the dwell time of the capacitor is 7p o< (NIT')™*
and the dephasing time reads 74 o< (NgI'y) "

To model the loss of coherence of electrons inside the
cavity we appeal to the so-called voltage/dephasing probe
model™, which consists of adding another lead ¢, (see
Fig. @) to our cavity and tuning the potential of this
probe in such a way that the net current is zero. Conse-
quently any electron that enters this lead is immediately
replaced by another one with an unrelated phase lead-
ing to incoherence without loss of particles. While such
an approach has recently been used for the mesoscopic
capacitor in the one channel limit!4, here we investigate
similar effects of the dephasing in the limit of large chan-
nel numbers™ where our semiclassical method is fully
justified.

The admittance can be written as

—iwCx(w)

G = ey

B g%(éd)g;fl(W)) . (57)

946 (w)
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The unscreened admittance elements are given in
Eq. (52). The survival times mp1 and mpo of this two-lead
geometry are related to the real dwell time 7 of our
capacitor and to the dephasing time 74 = Tu/(Ngly),
where Ny and I'y ; = I'y (Vi) are, respectively, the num-
ber of channels and the tunneling rates of the dephasing
lead46:

-1
™1 = o [1+T—D] : (58)

To

-1
Tb2 = TD {(2 -+ :__Z(z - Fcﬁ)} . (58b)

Inserting expression (B2)) for the unscreened admittance
elements into Eqs. (56, 7)) and performing an expansion
in w we get

Ce?v
= oy %)
_ 1 D(T}(E:)la 7-E ’ 7-(15) -3
GoR, = FN+ (TN)? + O(N™?). (59b)

where we additionally used the relation between the mean
density of states, v, and the dwell time, 7p = hv/(dsNT).
The dephasing functlon D(rgl, 2P, T¢) reads

D(T}(E:)lv TEP7T¢) =Te "]i) a-r )7 e -
(60)

We finally consider the effect of a magnetic flux on
the charge relaxation resistance. Substituting Eq. (39)
(the dwell time being replaced by the survival time 1)
into Eq. (B6]) leaves the electrochemical capacitance Cu
unchanged; only the dephasing function D(rg, 757, 75) is
affected and replaced by

_ma-n g e—%ﬁ_%
D(8, 7P 74, ®) =Te ~ 7> |
(1+.A2(I)27;_1?+:_2>

(61)

From this semiclassical investigation of the charge re-
laxation resistance, we can see that the fully coherent
limit (74 = oo, Tp¥ = 7§ = 0, ® = 0) delivers,

R, = LN (1 + %) +O(N?). (62)

Eq. (62)) is the first derivation of the charge relaxation
resitance in the large N limit in presence of tunnel bar-
riers. While the leading order was guessed?, the weak-
localization correction to R, has never been calculated
before. Surprisingly, it is linear in the inverse tunnel rate
I'!, indicating that the calculation of the sub-leading or-
der correction cannot be simply obtained by an effective
renormalisation of the channel number N.g = I'N.



For the incoherent limit, obtained either by v — oo,
® — oo or 74 = 0, we get a suppression of the weak-
localization correction and thus R, reduces to

1 1

" GoI'N’ (63)

This value corresponds to the fully incoherent limit
that corresponds to the two-terminal resistance, and has
been obtained under the simple application of our de-
phasing process. Interestingly, this limit was not trivial
to obtain in the edge state calculationt? (N = 1), where
perfect inter-channel relaxation inside the voltage probe
was assumed. This seems not to be required in the fully
chaotic case in the limit N > 1.

VII. CONCLUSIONS

In this work we focused on the topic of ac-transport
through chaotic ballistic conductors, addressing in par-
ticular weak localization corrections to the admittance
from a semiclassical perspective. Employing trajectory-
based methods we confirmed RMT results for the bare
and screened admittance and, going beyond RMT, de-
rived the Ehrenfest time dependence. The Ehrenfest
timescale enters twice into the expressions for dynami-
cal weak localization: first, as an exponential suppres-
sion with an exponent given by the ratio of the Ehren-
fest and dwell time, 7g/7p; second the dynamical weak
localization acquires an oscillatory frequency-dependent
behavior of period 27w, which may be amenable to mea-
surements based on variations of the ac-frequency. We
emphasize that our results are valid for any finite capac-
itance C and hence not limited to the electroneutrality
assumption of Ref. [33]. This extends the class of exper-
imental settings for which the Ehrenfest time correction
can be investigated. More generally, the results presented
underline, firstly, the power of semiclassical techniques
to provide a clear and quantitative picture of ac-driven
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quantum transport in the various regimes and, secondly,
they give a justification of the "stub model"2 in the low-
frequency regime.

Moreover we took into account tunnel barriers in the
semiclassical approach to the ac-admittance, extending
the work of Whitney4® on dc-transport. This led us to a
general formulation of ac-transport. One main conclusion
is that weak-localization is more robust against effects of
tunnel barriers in the dynamical than in the dc-regime.
The extension of our semiclassical treatment to tunnel
barriers also enables us to access the experimentally rel-
evant case of a quantum coherent capacitor, for which
we provide the first derivation of the weak-localization
correction to the charge relaxation resistance in presence
of tunnel barriers.

We add that, from a methodological point of view,
the semiclassical approach presented might be helpful to
achieve a better understanding of the proximity effect
on the density of states of chaotic Andreev billiards. Fi-
nally, the ac-conductance discussed here is closely related
to problems of computing (photo-)absorption and, more
generally, linear-response based dynamical susceptibili-
ties for mesoscopic quantum systems. It appears promis-
ing to apply the semiclassical techniques, developed here
for (ac-)quantum transport, to refine earlier semiclassi-
cal approaches®! to (photo-)absorption in closed ballistic
cavities or metal clusters, which additionally poses the
challenge to semiclassically cope with screening effects
and plasmon excitations.
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