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Semi
lassi
al approa
h to the a
-
ondu
tan
e of 
haoti
 
avitiesCyril Petitjean1, Daniel Waltner1, Ja
k Kuipers1, �nanç Adagideli1,2 and Klaus Ri
hter1
1Institut für Theoretis
he Physik, Universität Regensburg, 93040 Regensburg, Germany.

2Fa
ulty of Engineering and Natural S
ien
es, Saban
i University, 34956 Tuzla Istanbul, Turkey.(Dated: June 9, 2009)We address frequen
y-dependent quantum transport through mesos
opi
 
ondu
tors in the semi-
lassi
al limit. By generalizing the traje
tory-based semi
lassi
al theory of d
 quantum transport tothe a
 
ase, we derive the average s
reened 
ondu
tan
e as well as a
 weak-lo
alization 
orre
tionsfor 
haoti
 
ondu
tors. Thereby we 
on�rm respe
tive random matrix results and generalize themby a

ounting for Ehrenfest time e�e
ts. We 
onsider the 
ase of a 
avity 
onne
ted through manyleads to a ma
ros
opi
 
ir
uit whi
h 
ontains a
-sour
es. In addition to the reservoir the 
avityitself is 
apa
itively 
oupled to a gate. By in
orporating tunnel barriers between 
avity and leadswe obtain results for arbitrary tunnel rates. Finally, based on our �ndings we investigate the e�e
t ofdephasing on the 
harge relaxation resistan
e of a mesos
opi
 
apa
itor in the linear low-frequen
yregime.PACS numbers: 05.45.Mt,74.40.+k,73.23.-b,03.65.YzI. INTRODUCTIONIn 
ontrast to d
-transport experiments, the appliedexternal frequen
y ω of an a
-driven mesos
opi
 stru
-ture provides a new energy s
ale ~ω that permits one toa

ess further properties of these systems, in
luding theirintrinsi
 
harge distribution and dynami
s.The interest in the a
-reponse of mesos
opi
 
ondu
-tors goes ba
k to the work of Pieper and Pri
e1 on thedynami
 
ondu
tan
e of a mesos
opi
 Aharonov-Bohmring. This pioneering work was followed by several exper-iments ranging from photon-assisted transport to quan-tum shot noise2,3,4,5,6,7. More re
ently, the a
-regime hasbeen experimentally reinvestigated a
hieving the mea-surement of the in and out of phase parts of the a
-
ondu
tan
e8 and the realization of a high-frequen
y sin-gle ele
tron sour
e9. Moreover, the re
ent rise of interestin the full 
ounting statisti
s of 
harge transfer has ledto a reexamination of the frequen
y noise spe
tra10,11,12.This experimental progress has sin
e triggered renewedtheoreti
al interest in time dependent mesos
opi
 trans-port13,14,15,16,17.One way to ta
kle the a
-transport problem is to startfrom linear response theory for a given potential distri-bution of the sample18,19,20. This involves the di�
ultythat, in prin
iple, the potential distribution and morepre
isely its link to the s
reening is unknown. Anotherapproa
h 
onsists of deriving the a
-response to an ex-ternal perturbation that only enters into quantities de-s
ribing the reservoirs. Su
h approa
hs were initiatedby Pastawski21 within a non-equilibruium Green fun
-tion based generalized Landauer-Büttiker formalism, andthen the s
attering matrix formalism of a time-dependentsystem was developed by Büttiker et al.22,23. Sin
e theenergy is in general no longer 
onserved for an a
-bias,the formalism is based on the 
on
ept of a s
attering ma-trix that depends on two energy arguments24 or equiv-alently on two times25. Fortunately, when the inversefrequen
y is small 
ompared to the time to es
ape the


avity, the a
-transport 
an be expressed in terms of thederivative of the s
attering matrix with respe
t to en-ergy26. In this arti
le we start from the time dependents
attering matrix formalism and limit our investigationsto open, 
lassi
ally 
haoti
 ballisti
 
ondu
tors in the low-frequen
y regime27.For a
-transport we 
al
ulate the average 
orrelator ofs
attering matri
es S(E) at di�erent energies E. For thiswe need to know the joint distribution of the matrix el-ements Sαβ;ij at di�erent values of the energy or otherparameters. (We label the reservoirs 
onne
ted to the
ondu
tor by a greek index and the mode number by alatin index.) To our knowledge a general solution to thisproblem does not yet exist for 
haoti
 systems. How-ever, in the limit of a large number of 
hannels, the �rstmoments of the distribution Sαβ;ij(E)S†
αβ;ij(E

′) were de-rived using both semi
lassi
al methods28,29 and variousrandom matrix theory (RMT) based methods25,30,31,32.Although the a
-transport properties of ballisti
 
haoti
systems seem to be well des
ribed by the RMT of trans-port32, we develop a semi
lassi
al approa
h for three rea-sons: First, this allows us to 
on�rm the random matrixpredi
tion by using a 
omplementary traje
tory-basedsemi
lassi
al method. Se
ond, the energy dependen
ein the random matrix formalism was introdu
ed by re-sorting to arti�
ial models su
h as the "stub model"25.While being powerful, this treatment is far from mi
ro-s
opi
 or natural. The third and strongest reason is to gobeyond the RMT treatment and investigate the 
rossoverto the 
lassi
al limit. Similarly as for the stati
 
aseRMT is not appli
able in this regime. As �rst noti
ed byAleiner and Larkin33, ballisti
 transport is 
hara
terizedby a new time s
ale, known as the Ehrenfest time τE
34,35,that 
ontrols the appearan
e of interferen
e e�e
ts. TheEhrenfest time 
orresponds to the time during whi
h alo
alized wavepa
ket spreads to a 
lassi
al length s
ale.Typi
ally, in open 
haoti
 systems two su
h lengths arerelevant, the system size L and the lead width W . We
an thus de�ne an Ehrenfest time asso
iated with ea
h

http://arxiv.org/abs/0906.1791v1


2one36,37, the 
losed-
avity Ehrenfest time,
τcl
E = λ−1 ln[L/λF], (1)and the open-
avity Ehrenfest time,

τop
E = λ−1 ln[W 2/λFL], (2)where λ is the 
lassi
al Lyapunov exponent of the 
avity.Although the su

ess of the semi
lassi
al method(beyond the so-
alled diagonal approximation, see be-low) to des
ribe quantitatively universal and nonuniversal d
-transport properties is now 
learly es-tablished38,39,40,41,42,43,44,45,46,47,48,49, the 
orrespond-ing semi
lassi
al understanding of frequen
y dependenttransport is far less developed. Based on an earliersemi
lassi
al evaluation of matrix element sum rules byWilkinson50 and a semi
lassi
al theory of linear responsefun
tions51, a semi
lassi
al approa
h to the frequen
y-dependent 
ondu
tivity within the Kubo-formalism ledto an expression of the a
-(magneto-) 
ondu
tivity σ(ω)in terms of a tra
e formula for 
lassi
al periodi
 orbits52.Closely related to this evaluation of σ(ω) is the problemof frequen
y-dependent (infrared-) absorption in ballisti
mesos
opi
 
avities whi
h has been treated semi
lassi-
ally in Ref. [51℄. Peaks in the absorption 
ould be as-signed to resonan
e e�e
ts when the external frequen
y

ω 
orresponds to the inverse periods of fundamental pe-riodi
 orbits in the 
avity. Ref. [33℄ 
ontains a �rst,
σ-model based approa
h to weak lo
alization e�e
ts inthe a
-Kubo 
ondu
tivity, where the �ndings were inter-preted in a quasi
lassi
al traje
tory pi
ture (beyond thediagonal approximation). We note also that the semi-
lassi
al treatment of the produ
t of s
attering matri
es
S(E) at di�erent energies, has been investigated in dif-ferent 
ontext su
h as the Eri
son �u
tuations41 and thetime delay48, however without 
onsidering the Ehrenfesttime dependen
e.The outline of this arti
le is as follows: In Se
tion IIwe introdu
e our model to treat the system of interestnamely a quantum dot under a
 bias, and re
all some ba-si
 results about 
onservation laws in presen
e of a timedependent �eld. In Se
t. III we present the method usedto treat s
reening, whi
h is based on a self-
onsistent ap-proa
h developed by Büttiker et al.23. The admittan
e,i.e. the a
-
ondu
tan
e, is then 
al
ulated semi
lassi
allyfor the parti
ular 
ase of strong 
oupling to the leads(transparent 
onta
t) in Se
t. IV, where we illustrate ourresult by treating the time dependen
e of a pulsed 
avity.We generalize the method to 
ope with arbitrary tunnelrates in Se
t. V, and �nally we use our general resultsto investigate dephasing e�e
ts on the 
harge relaxationresistan
e of a mesos
opi
 
apa
itor in Se
t. VI.II. THE MODELWe 
onsider a ballisti
 quantum dot, i.e. a two-dimensional 
haoti
 
avity 
oupled to M ele
tron reser-voirs via M leads. Ea
h lead α has a width Wα and

Figure 1: Two dimensional 
haoti
 
avity with M leads andone gate 0. Ea
h lead α has a width Wα and is 
oupled toa reservoir at potential Uα(ω) and 
urrent Iα(ω). Ea
h tun-nel barrier is 
hara
terized by the set of transmission prob-abilities Γα = {Γα,1, · · · , Γα,Nα}. The gate and the sam-ple are 
apa
itively 
oupled, whi
h leads to a gate 
urrent
I0(ω) = −iωC[U0(ω) − U(ω)].is 
oupled to the 
avity through a tunnel barrier (seeFig. 1). In addition to the treatment of Ref. [45℄ we as-sign a parti
ular tunnel probability to ea
h lead mode.The tunnel barrier is thus 
hara
terized by a set of trans-mission probabilities, Γα = {Γα,1, · · · , Γα,Nα

}, with Nαthe maximum mode number of lead α. The 
haoti
 dot isadditionally 
apa
itively 
oupled to a gate 
onne
ted toa reservoir at voltage U0(ω), from whi
h a 
urrent I0(ω)�ows. This 
apa
itive 
oupling with the gate is takeninto a

ount via a geometri
al 
apa
itan
e C22,32,53.We further require that the size of the 
onta
t is mu
hsmaller than the system size L, but still semi
lassi
allylarge, 1 ≪ Nα ≪ L/λF. This requirement ensures thatthe parti
le spend enough time inside the 
avity to expe-rien
e the 
haoti
 dynami
s.As usual for su
h mesos
opi
 stru
tures we need to dis-tinguish between quantum and 
lassi
al time s
ales. Onthe quantum side we have already introdu
ed the Ehren-fest times (τop
E , τcl

E ) in Eqs. (1,2), while another time s
aleis the Heisenberg time τH, the time to resolve the meanlevel spa
ing of the system. On the 
lassi
al side the timeof �ight τf between two 
onse
utive boun
es at the sys-tem 
avity wall is relevant. In most ballisti
 systems orbilliards we have τf ≃ λ−1. Another relevant time s
aleis the ballisti
 ergodi
 time τerg whi
h determines howlong it takes for an ele
tron to visit most of the availablephase spa
e. However, as we deal with transport proper-ties, a further important time s
ale is the dwell time τD,the average time spent in the 
avity before rea
hing the
onta
t, we have τD/τerg ≫ 1. The related es
ape ratetherefore satis�es
τ−1
D = τ−1

H

M
∑

α=1

Nα
∑

i=1

Γα,i. (3)For small openings whi
h we 
onsider here, we have
λ τD ≫ 1.



3The a
-transport properties of su
h a mesos
opi
 sys-tem are 
hara
terized by the dimensionless admittan
e
gαβ(ω) = Gαβ(ω)/G0 = G−1

0 ∂Iα(ω)/∂Uβ(ω), (4)with G0 = dse
2/h, where ds = 1 or 2 in the absen
eor presen
e of spin degenera
y. In this study we limitourselves to the 
oe�
ients gαβ(ω) with α, β = 1, · · · , Mwhere the 
oe�
ients denoting the gate are determinedby 
urrent 
onservation and the freedom to 
hoose thezero point of energy22,

M
∑

α=0

gαβ(ω) =
M
∑

β=0

gαβ(ω) = 0 . (5)We note that Eq. (5) is a straightforward 
onsequen
eof the underlying gauge invarian
e. Owing to the 
on-servation of 
harge, the total ele
tri
 
urrent ful�lls the
ontinuity equation
∇∇∇ · jp +

∂ρ

∂t
= 0, (6)where ρ is the 
harge density and jp the parti
le 
urrentdensity. For d
-transport, the 
harge density is time in-dependent and so we have∇∇∇· jp = 0. Thus the sum of all
urrents that enter into the dot is always zero. Moreoverthe 
urrent properties must remain un
hanged under a si-multaneous global shift of the voltages of the reservoirs.These 
onditions imply the well know unitarity of thes
attering matrix54,

∑

α,i

S†
αβ;ij(E)Sαγ;ik(E) = δβγ;jk. (7)For a
-transport, the produ
t of s
attering matri
esat di�erent energies no longer obey a similar prop-erty54,55,56,57 i.e.

∑

α,i

S†
αβ;ij(E)Sαγ;ik(E′) 6= δβγ;jk, (8)indeed this inequality expresses the fa
t that, due to thepossible temporary pile up of 
harge in the 
avity, theparti
le 
urrent density no longer satis�es ∇∇∇ · jp = 0.However one 
an instead use the Poisson equation

∇∇∇ · D = ρ, (9)where D = −ǫ0∇∇∇ϕ with ϕ the ele
tri
 potential, to de�nethe total ele
tri
 
urrent density whi
h satis�es∇∇∇· j = 0,as a sum of a parti
le and a displa
ement 
urrent:
j = jp +

∂D

∂t
. (10)In order to �nd j one needs to know the ele
tri
al �eld

D. In general its 
al
ulation is not a trivial task be
ausethe intrinsi
 many-body aspe
t of the problem makes thetreatment of the Poisson equation (9) tri
ky, espe
ially

if it is ne
essary to treat the parti
le and displa
ement
urrent on the same footing.In this work we shall adopt the approa
h of Ref. [23℄ tosimplify the problem. In this approa
h the environmentis redu
ed to a single gate, the Coulomb intera
tion isdes
ribed by a geometri
al 
apa
itan
e C, and the two
urrents are treated on di�erent footing; the parti
le 
ur-rent is 
al
ulated quantum me
hani
ally via the s
atter-ing approa
h, while the displa
ement 
urrent is treated
lassi
ally via the ele
trostati
 law (Eqs. (6,9)). This sim-pli�
ation will permit us below to re-express the Poissonequation (9) to obtain the simplest gauge invariant the-ory that takes 
are of the s
reening. We emphasize thateven though our model 
ould be thought of as oversim-pli�ed it has the advantage of being able to probe thee�e
ts due to the long range Coulomb intera
tion. In-deed, for non-intera
ting parti
les it is possible to treatthe dot and the gate via two sets of un
orrelated 
onti-nuity equations. The Coulomb intera
tion removes thispossibility, and we need to 
onsider the gate and dot asa whole system.III. EXPRESSION FOR THE ADMITTANCEThe method to 
ompute the admittan
e pro
eeds intwo steps55: First the dire
t response (parti
le 
urrent)to the 
hange of the external potential is 
al
ulated un-der the assumption that the internal potential U(ω) ofthe sample is �xed. This leads to the de�nition of theuns
reened admittan
e gu
αβ(ω). Se
ond, a self-
onsistentpro
edure based on the gauge invarian
e (
urrent 
on-servation and freedom to 
hoose the zero of voltages) isused to obtain the s
reened admittan
e gαβ(ω).The uns
reened admittan
e reads22

gu
αβ(ω) =

∫

dE
f(E − ~ω

2 ) − f(E + ~ω
2 ))

~ω
(11)

×Tr

[

δαβ1α − Sαβ

(

E +
~ω

2

)

S
†
αβ

(

E − ~ω

2

)]

,where f(E) stands for the Fermi distribution, Sαβ is the
Nα×Nβ s
attering matrix from lead β to lead α, and 1αis an Nα × Nα identity matrix. Under the assumptionthat U(ω) is spatially uniform, the s
reened admittan
e
gαβ(ω) is straightforward to obtain22. For sake of 
om-pleteness we present here only the outline of the methodand refer to Ref. [26℄ for more details.On the one hand the 
urrent reponse at 
onta
t α is

Iα(ω) = G0





M
∑

β=1

gu
αβ(ω)Uβ(ω) + gi

α0(ω)U(ω)



 , (12)where gi
α0(ω) is the unknown internal reponse of themesos
opi
 
ondu
tor generated by the �u
tuating po-tential U(ω). On the other hand the 
urrent indu
ed atthe gate is

I0(ω) = −iωC[U0(ω) − U(ω)]. (13)



4Gauge invarian
e permits a shift of −U(ω) and providesan expression for the unknown internal response,
gi

α0(ω) = −
M
∑

β=1

gu
αβ(ω). (14)Then 
urrent 
onservation, ∑M

α=1 Iα(ω) + I0(ω) = 0,yields the result of the s
reened admittan
e22,
gαβ(ω) = gu

αβ(ω) +

∑M
δ=1 gu

αδ(ω)
∑M

δ′=1 gu
δ′β(ω)

iωC/G0 −
∑M

δ=1

∑M
δ′=1 gu

δδ′(ω)
.(15)In the self-
onsistent approa
h used to obtain Eq. (15),the only ele
tron-ele
tron intera
tion term that has been
onsidered is the 
apa
itive 
harging energy of the 
avity.This implies that we should 
onsider a su�
iently largequantum dot58. We note that, using a 1/N -expansion,the self-
onsistent approa
h above was re
ently formally
on�rmed in Ref. [59℄. Moreover, Eq. (15) 
an be gener-alized to non-equilibrium problems, using Keldysh non-equilibrium Green fun
tions60.In the next se
tions we present the semi
lassi
al evalu-ation of Eq. (11) in the zero temperature limit (in
luding�nite temperature is straightforward). For reasons of pre-sentation we �rst give the semi
lassi
al derivation for thetransparent 
ase in Se
t. IV, and then we explore thegeneral 
ase in Se
t. V. In Se
t. VI we present an appli-
ation of the s
reened result for tunnel 
oupling, when we
ompute the relaxation resistan
e of a mesos
opi
 
haoti

apa
itor.IV. SEMICLASSICAL THEORY FOR THEADMITTANCEA. Semi
lassi
al approximationWe �rst 
onsider the multi-terminal 
ase assumingtransparent barriers, i.e. Γα,i = 1, ∀(α, i). In the limit

kBT → 0 the uns
reened admittan
e, Eq. (11), redu
esto
gu

αβ(ω) =Nαδαβ−Tr

[

Sαβ(EF+
~ω

2
)S†

αβ(EF−
~ω

2
)

]

.(16)Semi
lassi
ally, the matrix elements for s
attering pro-
esses from mode i in lead β to mode j in lead α read29,61
Sαβ;ji(EF ± ~ω

2
) = (17)

−
∫

β

dx0

∫

α

dx
〈j|x〉〈x0|i〉
(2πi~)1/2

∑

γ

Aγe
i

~
Sγ(x,x0;EF±

~ω
2 ),where |i〉 is the transverse wave fun
tion of the i-th mode.Here the x0 (or x) integral is over the 
ross se
tion of the

βth (or αth) lead. At this point Sαβ is given by a sumover 
lassi
al traje
tories, labelled by γ. The 
lassi
al

paths γ 
onne
t X0 = (x0, px0) (on a 
ross se
tion oflead β) to X = (x, px) (on a 
ross se
tion of lead α).Ea
h path gives a 
ontribution os
illating with a
tion
Sγ (in
luding Maslov indi
es) evaluated at the energy
EF ± ~ω/2 and weighted by the the 
omplex amplitude
Aγ . This redu
es to the square root of an inverse elementof the stability matrix62, i.e. Aγ = |(dpx0/dx)γ |

1
2 .We insert Eq. (17) into Eq. (16) and obtain doublesums over paths γ, γ′ and lead modes |i〉, |j〉. The sumover the 
hannel indi
es is then performed with the semi-
lassi
al approximation45,∑Nβ

i=1〈x0|i〉〈i|x′
0〉 ≈ δ(x′

0−x0),and yields
gu

αβ(ω) − Nαδαβ = −
∫

β

dx0

∫

α

dx
∑

γ,γ′

AγA∗
γ′

2π~
e

i

~
δS(EF,ω).(18)Here,

δS(EF, ω) = Sγ(x0, x; EF +
~ω

2
) − Sγ′(x0, x; EF − ~ω

2
).(19)As we are interested in the limit ~ω ≪ EF, we 
an expand

δS(EF, ω) aroundEF. The dimensionless a
-
ondu
tan
eis then given by
gu

αβ(ω) − Nαδαβ = −
∫

β

dx0

∫

α

dx
∑

γ,γ′

AγA∗
γ′

2π~
(20)

× exp

[

i

~
δS(EF) +

iω

2
(tγ + tγ′)

]

,where δS(EF) = Sγ(x0, x; EF) − Sγ′(x0, x; EF) and tγ(tγ′) is the total duration of the path γ (γ′). Eq. (20) isthe starting point of our further investigations.B. Drude Admittan
eWe are interested in quantities arising from averagingover variations in the energy or 
avity shapes. For mostsets of paths, the phase given by the linearized a
tion dif-feren
e δS(EF) will os
illate widely with these variations,so their 
ontributions will average out. In the semi
las-si
al limit, the dominant 
ontribution to Eq. (20) is thediagonal one, γ = γ′, whi
h leads to tγ = tγ′ , δS(EF) = 0and gives
gu,D

αβ (ω) = Nαδαβ −
∫

β

dx0

∫

α

dx
∑

γ

|Aγ |2
2π~

eiωtγ . (21)In the following we pro
eed along the lines of Ref. [42℄.The key point is the repla
ement of the semi
lassi
al am-plitudes by their 
orresponding 
lassi
al probabilities. Tothis end we use a 
lassi
al sum rule valid under ergodi
assumptions63,
∑

γ

|Aγ |2eiωtγ [· · · ]γ = (22)
∫ ∞

0

dt

∫ π/2

−π/2

dθ0dθ eiωtpF cos(θ0)P (X,X0; t)[· · · ]X0 .
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Figure 2: A semi
lassi
al 
ontribution to weak lo
alizationfor a system with strong (transparent) 
oupling to the leads.The two paths follow ea
h other 
losely everywhere ex
eptat the en
ounter, where one path (dashed line) 
rosses itselfat an angle ǫ, while the other one (full line) does not (goingthe opposite way around the loop). The 
ross-hat
hed areadenotes the region where two segments of the solid paths arepaired (within Wα ≃ Wβ ≃ W of ea
h other)In Eq. (22), pF cos(θ0) is the initial momentum along theinje
tion lead and P (X,X0; t) the 
lassi
al probabilitydensity to go from an initial phase spa
e point X0 =
(x0, θ0) at the boundary between the system and the leadto the 
orresponding point X = (x, θ). The average of Pover an ensemble or over energy gives a smooth fun
tionthat reads

〈P (X,X0; t)〉 =
cos(θ)

2τD

∑M
α=1 Wα

e−t/τD , (23)with the es
ape rate τ−1
D given in Eq. (3).Using Eqs. (21), (22) and (23), we re
over the Drudeadmittan
e

gu,D
αβ (ω) = Nαδαβ − NαNβ

N

(

1

1 − iωτD

)

, (24)where N =
∑M

α=1 Nα.C. Weak lo
alization for transmission, re�e
tionand 
oherent ba
ks
attering1. Weak lo
alizationThe leading-order weak-lo
alization 
orre
tion to the
ondu
tan
e was identi�ed in Refs. [33,39℄ as those aris-ing from traje
tories that are exponentially 
lose almosteverywhere ex
ept in the vi
inity of an en
ounter. Anexample of su
h a traje
tory pair for 
haoti
 ballisti
systems is shown in Fig. 2. At the en
ounter, separat-ing the `loop' from the `legs', one of the traje
tories (γ′)interse
ts itself, while the other one (γ) avoids the 
ross-ing. Thus, they travel along the loop they form in op-posite dire
tions. In the semi
lassi
al limit, only pairsof traje
tories with a small 
rossing angle ǫ 
ontributesigni�
antly to weak lo
alization. In this 
ase, ea
h tra-je
tory remains 
orrelated for some time on both sides

of the en
ounter. In other words, the smallness of ǫ re-quires two minimal times: TL(ǫ) to form a loop, and
TW(ǫ) in order for the legs to separate before es
apinginto di�erent leads. The en
ounter introdu
es a typi
allength s
ale δr⊥ that 
orresponds to the perpendi
ulardistan
e between the two paths in the vi
inity of theen
ounter. In the 
ase of hyperboli
 dynami
s, we get
δr⊥ = vFǫ/(2λ) ∼ Lǫ. Hen
e, the typi
al minimal timeis given by Tℓ(ǫ) = λ−1 ln[(ℓ/δr⊥)2], with ℓ = {L, W}that we 
an approximate as

TL(ǫ) ≃ λ−1 ln[ǫ−2], (25a)
TW(ǫ) ≃ λ−1 ln[ǫ−2(W/L)2]. (25b)The presen
e of the external driving does not 
hangethis pi
ture. Ea
h weak-lo
alization 
ontribution a

u-mulates a phase di�eren
e given by the linearized a
tion

δS(EF) ≃ δSRS = EFǫ2/λ39. Following the same linesas for the derivation of the Drude 
ontribution, thoughthe sum over paths is now restri
ted to paths with anen
ounter, the sum rule (22) still applies, provided theprobability P (X,X0; t) is restri
ted to paths whi
h 
rossthemselves. To ensure this we write
P (X,X0; t) =

∫

C

dR2dR1P (X,R2; t − t2)

× P (R2,R1; t2 − t1)P (R1,X0; t1) , (26)where the integration is performed over the energy sur-fa
e C. Here, we use Ri = (ri, φi), φi ∈ [−π, π] for phasespa
e points inside the 
avity, while X lies on the leadsurfa
e as before.We then restri
t the probabilities inside the integralto traje
tories whi
h 
ross themselves at phase spa
epositions R1,2 with the �rst (or se
ond) visit of the
rossing o

urring at time t1 (or t2). We 
an write
dR2 = v2

F sin ǫdt1dt2dǫ and set R2 = (r1, φ1 ± ǫ). Thenthe weak-lo
alization 
orre
tion is given by
gu,wl

αβ (ω) =
1

π~

∫

β

dX0

∫

dǫℜe
[

eiδSRS/~

]

〈F (X0, ǫ, ω)〉 ,(27)with,
F (X0, ǫ, ω) = (28)

2v2
F sin ǫ

∫ ∞

TL+TW

dt

∫ t−TW/2

TL+TW/2

dt2

∫ t2−TL

TW/2

dt1

×pF cos θ0

∫

R

dY

∫

C

dR1P (X,R2; t − t2)

×P (R2,R1; t2 − t1)P (R1,X0; t1) eiωt.Under our approximation tγ′ ≃ tγ = t, the intro-du
tion of the driving frequen
y leads to performing aFourier transform of the survival probability, and we ob-tain
〈F (X0, ǫ, ω)〉 =

(vFτD)2pF sin ǫ cos θ0

πΩ

Nα

N
(29)

×exp [−TL/τD] exp [iω(TL + TW)]

(1 − iωτD)3
,



6with Ω the 
avity area. Inserting Eq. (29) into Eq. (27),the ǫ integral is dominated by small angle (ǫ ≪ 1)
ontributions, allowing for the approximation sin ǫ ≃ ǫand pushing the upper limit to in�nity. This yieldsan Euler Gamma fun
tion times an exponential term
e−τcl

E /τDeiω(τcl
E +τop

E ) (with τop
E and τcl

E given by Eqs. (1,2)that reads, to leading order in (λ τD)−1,
∫ ∞

0

dǫ 2ℜe

[

exp

[

iEFǫ2

λ~

]]

ǫ
1+ 2

λτD
(1−2iωτD)

(

W

L

)
2iω
λ

≃ − π~

mv2
FτD

e
−

τcl
E

τD
+iω(τcl

E +τop
E )

(1 − 2iωτD)+O

[

1

λτD

]

.(30)Performing the X0 integral and using Nβ = (π~)−1pFWβand N = (~τD)−1mΩ, the weak-lo
alization 
orre
tion tothe uns
reened admittan
e is
gu,wl

αβ (ω) =
NαNβ

N2
e−τcl

E /τD
(1 − 2iωτD) eiω(τcl

E +τop
E )

(1 − iωτD)3
. (31)We note that due to the absen
e of unitarity of the un-s
reened admittan
e we need to expli
itly evaluate all theelements of gu

αβ(ω). The weak-lo
alization 
ontributionto re�e
tion ru,wl
αα (ω) is derived in the same manner as

gu,wl
αβ (ω), repla
ing however the fa
tor Nβ/N by Nα/N .We then obtain
ru,wl
αα (ω) =

(

Nα

N

)2

e−τcl
E /τD

(1 − 2iωτD) eiω(τcl
E +τop

E )

(1 − iωτD)3
.(32)However as in the d
-
ase there is another leading-order 
ontribution to the re�e
tion, the so-
alled 
oherentba
ks
attering. This di�ers from weak lo
alization asthe path segments that hit the lead are 
orrelated. Thisme
hanism should be treated separately when 
omputingthe Ehrenfest time dependen
e, whi
h is the obje
t of thenext paragraph.2. Coherent ba
ks
atteringThough the 
orrelation between two paths does notin�uen
e the treatment of the external frequen
y, it in-du
es an a
tion di�eren
e δS(EF) = δScbs = −(p0⊥ +

mλr0⊥)r0⊥ where the perpendi
ular di�eren
e in po-sition and momentum are r0⊥ = (x0 − x) cos θ0 and
p0⊥ = −pF(θ − θ0). As for weak lo
alization, we 
an

identify two times
ales, 1
2T ′

L, 1
2T ′

W, asso
iated with thetime for paths to spread to L, W , respe
tively. Howeverunlike for weak lo
alization we de�ne these times
alesas times measured from the lead rather than from theen
ounter. Thus we have
T ′

ℓ(r0⊥, p0⊥) ≃ 2

λ
ln [(mλℓ)/ |p0⊥ + mλr0⊥|] , (33)with ℓ = {L, W}47. Repla
ing the integral over X0 byan integral over (r0⊥, p0⊥) and using pF cos θ0dX0 =

dp0⊥dr0⊥, the 
oherent-ba
ks
attering 
ontributionreads
ru,cbs
αα (ω) = (π~)−1

∫

α

dp0⊥dr0⊥ℜe
[

e
i

~
δScbs

]

〈

F cbs(X0, ω)
〉

,(34)with
〈

F cbs(X0, ω)
〉

=

∫ ∞

T ′

L

dt

∫

α

dX P (X,X0; t)e
iωt

=
Nα

N

e−(T ′

L−
1
2T ′

W)/τDeiωT ′

L

1 − iωτD
. (35)As in the d
-
ase we perform a 
hange of variables

p̃0⊥ = p0⊥ + mλr0⊥. Then we push the p̃0⊥ integrallimit to in�nity and evaluate the r0⊥ integral over Wα.This result,
∫ ∞

−∞

dp̃0⊥
~ sin(p̃0⊥Wα/~)

p̃0⊥

∣

∣

∣

∣

p̃0⊥

mλL

∣

∣

∣

∣

(1−2iωτD)

λτD
(

W

L

)
1

λτD

= π~ e
−

τcl
E

τD eiω(τcl
E +τop

E ) + O
[

(λτD)−1
]

, (36)together with Eq. (35) and Eq. (34) yields
ru,cbs
αα (ω) = −Nα

N
e−τcl

E /τD
eiω(τcl

E +τop
E )

(1 − iωτD)
. (37)Surprisingly the 
oherent-ba
ks
attering 
ontributionthus has exa
tly the same exponential dependen
e on

τop
E and τcl

E as the other weak-lo
alization 
ontributions.While in the d
-
ase this property is a 
onsequen
e of
urrent 
onservation, this fa
t is not obvious in the a
-
ase.At this point we 
an summarize our results for theuns
reened admittan
e. From Eqs. (24, 31, 32, 37),
〈

gu
αβ(ω)

〉 
an be written as
〈

gu
αβ(ω)

〉

= δαβNα − NαNβ

N(1 − iωτD)
+

Nα exp
[

− τcl
E

τD

]

exp
[

iω(τcl
E + τop

E )
]

N(1 − iωτD)

(

Nβ(1 − 2iωτD)

N(1 − iωτD)2
− δαβ

)

+ O(N−1). (38)First we note that in the limit of zero Ehrenfest time we re
over the RMT result for the uns
reened admit-



7tan
e of Brouwer and Büttiker32. Con
erning the Ehren-fest time dependen
e of the admittan
e, we note that theresult is 
onsistent with the absorption study performedin Ref. [64℄. As for the d
-
ase we �nd the absen
e ofthe Ehrenfest time τop
E in the term exp[−τcl

E /τD] whi
hderives from the 
lassi
al 
orrelation between the pathsthat 
onstitute the en
ounter. The physi
al origin of theterm exp
[

iω(τcl
E + τop

E )
] 
omes from the fa
t that bothtraje
tories that 
ontribute to weak lo
alization and 
o-herent ba
ks
attering involve an en
ounter that has aminimal duration of (τcl

E + τop
E ) (Leg part and loop partof the en
ounter, see Fig. 2). The presen
e of this mini-mal duration, 2τe

E = τcl
E + τop

E , is in a

ordan
e with theEhrenfest time shift predi
tion of the quantum 
orre
tionto the survival probability65 and the photofragmentationstatisti
s66. We return to the Ehrenfest time dependen
ein Se
t. IVE.We 
an also 
onsider the e�e
t of a magneti
 �ux on themesos
opi
 admittan
e. A weak magneti
 �eld has littlee�e
t on the 
lassi
al dynami
s but generates a phasedi�eren
e between two traje
tories that travel in oppositedire
tions around a weak-lo
alization generating 
losedloop. This phase di�eren
e is Φ/Φ0, where Φ0 is the �uxquantum, and Φ is proportional to the �ux through thedire
ted area en
losed by the loop. To in
orporate this in

the previous semi
lassi
al treatment we must introdu
e afa
tor exp[iΦ/Φ0] into F in Eq. (29) and F cbs in Eq. (35).The 
al
ulation gives a Lorentzian shape29,39,42 for the
Φ-dependen
e of the quantum 
orre
tion to the averageadmittan
e,

g
u,wl/cbs
αβ (ω, Φ) =

g
u,wl/cbs
αβ (ω, 0)

1 + A2Φ2 (τf/τD − iωτf)
−1 . (39)Here A2 = αΩ2, with α a system dependent parameter oforder unity, Ω the 
avity area and τf is the time of �ightbetween two 
onse
utive boun
es at the 
avity wall.D. The s
reened admittan
eFollowing the self-
onsistent approa
h, the s
reenedadmittan
e is straightforwardly obtained when we sub-stitute Eq. (38) into Eq. (15) and expand the result toleading order in N−1. This simple substitution is justi-�ed, be
ause the typi
al �u
tuations of the uns
reenedadmittan
e are of order N−2. The s
reened admittan
ethen reads

〈gαβ(ω)〉 = δαβNα − NαNβ

N(1 − iωτ)
+

Nα exp
[

− τcl
E

τD

]

exp
[

iω(τcl
E + τop

E )
]

N(1 − iωτD)

(

Nβ(1 − 2iωτ)

N(1 − iωτ)2
− δαβ

)

+ O(N−1), (40)where τ−1 = τ−1
D +NG0/C is the 
harge relaxation timeor quantum RC time. Eq. (40) is the �rst intermediateresult from whi
h we 
an draw some general 
on
lusions.At zero Ehrenfest time we re
over the two-terminal resultof Brouwer and Büttiker in Ref. [32℄. The 
omparison be-tween the s
reened (Eq. (40)) and uns
reened (Eq. (38))admittan
e shows that the s
reening amounts to the re-pla
ement of the dwell time τD by the RC time τ every-where up to the prefa
tor of the third term. Only for theweak lo
alization and the 
oherent-ba
ks
attering 
ontri-butions does the dwell time dependen
e survive. Thoughthe relevant time s
ale for the 
lassi
al admittan
e is the
harge relaxation time τ , the quantum 
orre
tions are
hara
terized by the dwell time τD. It is important toremember that τD is a 
hara
teristi
 time s
ale of thenon-intera
ting system. Its relevan
e here has its originin the fa
t that weak lo
alization is due to the interfer-en
e of ele
troni
 waves, whi
h is unimportant for 
hargea

umulation in the system. The absen
e of the RC time

τ at leading order in ω is thus quite natural. We re
allthat, as 
onstru
ted in the framework of the model, theadmittan
e matrix Eq. (40) is 
urrent 
onserving if thegate is in
luded. The elements of the admittan
e relatedto the gate are obtained via the sum rule (5). Neverthe-

less, if we impose this above sum rule to the uns
reenedresult we also obtain a 
onserved 
urrent, and this situ-ation 
orresponds to a 
avity whi
h has in�nite 
apa
i-tan
e to the gate. In the reverse limit of zero 
apa
itan
ewe rea
h the 
harge neutral regime that 
orresponds toputting τ = 0 in Eq. (40). Upon performing that, were
over the 
harge-neutral limit obtained by Aleiner andLarkin in Refs. [33,67℄ whi
h for the 
onventional weak-lo
alization 
ontribution reads
gwl,τ=0

αβ (ω) =
NαNβ

N2

exp
[

− τcl
E

τD
+ iω(τcl

E + τop
E )
]

(1 − iωτD)
. (41)We note that for the parti
ular geometry of a 
apa
itor(only one lead and one gate), sin
e Eq. (40) is valid forany 
apa
itive 
oupling, we 
an obtain the e�e
t of theEhrenfest time s
ale on the interferen
e 
orre
tion to theadmittan
e of a mesos
opi
 
apa
itor. This was not pos-sible within the 
harge-neutral limit approa
h of Aleinerand Larkin, sin
e the interferen
e 
orre
tions 
onsideredhere are absent in that 
ase.Here one important remark is due. In both, Eq. (40)and Eq. (41) the admittan
e involves an os
illatory be-havior as a fun
tion of the Ehrenfest time, whi
h should



8in prin
iple be more easily a

essible experimentally. In-deed, we see here in our quest for the Ehrenfest timephysi
s a 
lear advantage in investigating weak lo
aliza-tion in the a
-regime. In the stati
 
ase, the ratio τE/τDis the only relevant and tunable parameter for the d
weak-lo
alization 
orre
tion. Consequently, the range ofexperimental investigation is 
onsiderably redu
ed by thelogarithmi
 dependen
e of τE on the system size. Forthe dynami
al weak lo
alization the frequen
y depen-den
e ω 
ombined with the 
apa
itive 
oupling C pro-vides more freedom in probing τE-behavior. However,although the ωτE Ehrenfest time dependen
e was pre-di
ted in Ref. [33℄ (in whi
h some possible experimentalveri�
ation was fore
asted in a magneto
ondutan
e ex-periment or in an opti
al ba
ks
attering experiment), weare not aware of any experimental veri�
ation of the ex-isten
e of su
h an os
illation. To date there exist onlytwo experiments devoted to exploring the τE signature:The shot noise experiment by Oberholzer et al.68 andthe weak lo
alization experiment in an antidot latti
e byYevtushenko et al.69. Both experiments were performedin the stati
 
ase.E. Pulsed 
avitiesIn this se
tion we 
omment on the Ehrenfest time de-penden
e of the admittan
e and its link to that of thesurvival probability65,66. To this end we 
onsider the par-ti
ular 
ase of a pulsed 
avity57, i.e. the appli
ation of apulse Uα(t) = aαδ(t) to one of the 
onta
ts α. The re-sponse 
urrent at 
onta
t β to su
h a pulse will be propor-tional to the frequen
y integral over the a
-
ondu
tan
e,
gu

αβ(t) =
1

2π

∫

dω gu
αβ(ω) exp (−iωt) . (42)This problem was previously addressed in Ref. [57℄ wherethe 
onne
tion between the RMT 
al
ulation of the ad-mittan
e and RMT results for the quantum and the 
las-si
al survival probability70,71 were dis
ussed. More pre-
isely, in Refs. [70,71℄ a di�eren
e between the quantumand the 
lassi
al survival probability was predi
ted fortimes of order t∗ =

√
τDτH. The 
on
lusion of Ref. [57℄was two-fold: �rst, based on the weak-lo
alization 
or-re
tion, a deviation of the uns
reened admittan
e at t∗was 
on�rmed, while se
ondly the s
reened system wasshown not to exhibit su
h a t∗-dependen
e.Based on our semi
lassi
al results (38,40) we are ableto 
on�rm this dependen
e. For the uns
reened admit-tan
e, the weak-lo
alization and 
oherent-ba
ks
attering
ontribution, δgu

αβ(t) = gu,wl
αβ (t) + gu,cbs

αβ (t), yields a 
om-pli
ated time-dependen
e and reads on a log s
ale
ln

[

NτD

NαNβ
δgu

αβ(t)

]

= − t − τop
E

τD
(43)

+ ln

[

−δαβ

Nα
+

1

N

(

t − 2τe
E

τD

)(

2 − t − 2τe
E

2τD

)]

.

Here we re
all that 2τe
E = τcl

E + τop
E . At zero Ehrenfesttime, τe

E = 0, we see as in Ref. [57℄ that while the initialtime dependen
e is determined by τD (�rst term of rhs ofEq.(43)), for times larger than t∗ the t2-term in the logwill be important. We therefore �nd a deviation fromthe 
lassi
al exponential behavior.This 
on
lusion still holds at �nite Ehrenfest time, upto the in
lusion of a time shift 2τe
E as predi
ted in there
ent semi
lassi
al derivation65 of the survival probabil-ity.The treatment of the s
reened 
ase is more demandingdue to the presen
e of the RC time τ . However sin
e thepole linked to the dwell time τD is only simple, it is 
learthat even at in
omplete s
reening, there is no term pro-portional to t2. This is in a

ordan
e with the absen
e ofdeviations for the intera
ting admittan
e. However, theEhrenfest time dependen
e will be equivalent to the un-s
reened one, leading to a time shift . Only for 
ompletes
reening (τ = 0) it is possible to obtain a simple result,whi
h reads on a log s
ale

ln

[

NτD

NαNβ
δgτ=0

αβ (t)

]

= − t − τop
E

τD
+ ln

[

1

N
− δαβ

Nα

]

. (44)V. MULTI-TERMINAL SYSTEM WITHTUNNEL BARRIERThe 
al
ulation of the admittan
e with tunnel barriersfollows the traje
tory-based method re
ently developedby Whitney45 for the d
-
ase. We re
all here the threemain 
hanges in the theory with respe
t to the trans-parent 
ase. For more details on the in
lusion of tunnelbarriers we refer to Ref. [45℄.At �rst, in the presen
e of tunnel barriers the 
om-plex amplitude Aγ in Eq. (17) is extended to in
lude thetunneling probabilities reading45,
Aγ = C

1
2
γ tβ,itα,j

∏

β′,j′

[rβ′,j′ ]
Nγ(β′,j′) (45)where Cγ = |(dpx0/dx)γ | is the rate of 
hange of the ini-tial momentum px0 for the exit position x of γ, Nγ(β′, j′)is the number of times that γ is re�e
ted ba
k into thesystem from the tunnel barrier on lead β′ and the trans-mission and refe
tion amplitudes at the lead β satisfy

|tβ,i|2 = (1 − |rβ,i|2) = Γβ,i. We note that without anyloss of generality, we asso
iated in Eq. (45) the momen-tum px0 (or px) with the 
hannel i (or j).At this point the repla
ement of the semi
lassi
al am-plitudes by their 
orresponding 
lassi
al probabilities stillholds, though the tunneling probabilities are in
luded.As an example the probability to go from a phase point
X0 (here we asso
iate the 
hannel i to the momentum
pF cos θ0) on lead β to an arbitrary point on lead α sim-ply satis�es (for α 6= β),

∫ ∞

0

dt

∫

α

dX 〈P (X,X0; t)〉 =
Γβ,iΓ

(1)
α

N
, (46)
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Figure 3: A failed 
oherent-ba
ks
attering 
ontribution to a
-
ondu
tan
e, gu,cbs

αβ (ω). It involves paths whi
h return 
losebut anti-parallel to themselves at lead α, but are re�e
ted o�the tunnel-barrier, remaining in the 
avity to �nally es
apevia lead β. The 
ross-hat
hed area denotes the region wherethe two solid paths are paired (within Wα ≃ W of ea
h other).where we let Γ
(1)
β =

∑Nβ

j=1 Γβ,j and de�ne N =
∑

α Γ
(1)
α .More importantly, the introdu
tion of a tunnel barrierindu
es three 
hanges: (i) The dwell time (single pathsurvival time) be
omes

τ−1
D1 = τ−1

H

∑

α

Γ(1)
α = τ−1

H N, (47)be
ause a typi
al path may hit a lead but be re�e
tedo� the tunnel barrier (remaining in the 
avity) numeroustimes before tunneling and es
aping.(ii) The paired-paths survival time for paths 
loserthan the lead width is no longer equal to the dwell timeinstead it is given by
τ−1
D2 = τ−1

H

∑

α

(

2Γ(1)
α − Γ(2)

α

)

= τ−1
H

(

2N − Ñ

)

, (48)where Γ
(2)
α =

∑Nα

i=1 Γ2
α,i and we de�ne Ñ =

∑

α Γ
(2)
α . Thisis be
ause a se
ond path following a path whi
h has notes
aped will hit the same tunnel barrier, and thus mayes
ape even though the �rst path did not. Compare thiswith a system without tunnel barriers: there a path hasnot es
aped be
ause it has not tou
hed the leads; thus ase
ond path following the �rst one has no possibility toes
ape.(iii) The 
oherent ba
ks
attering peak 
ontributes totransmission as well as re�e
tion. The positive 
ontri-bution to the transmission 
ompetes with the usual neg-ative weak-lo
alization 
ontribution to transmission, seealso Fig 3.For the 
al
ulation of the Drude 
ondu
tan
e, only
hange (i) above is required, yielding

gu,D
αβ (ω) = Γ

(1)
β δαβ −

Γ
(1)
α Γ

(1)
β

N

1

1 − iωτD1
(49)

When 
al
ulating the 
onventional weak-lo
alization
ontribution we need 
hanges (i) and (ii) above. Sin
ethe 
lassi
al paths 
onsidered stay 
lose to itself for atime TW (ǫ)/2 on either side of the en
ounter we mustuse the paired-paths survival time, τD2, for these parts ofthe path. Elsewhere the es
ape time is given by the singlepath survival time, τD1. With these new ingredients we�nd that the 
onventional weak-lo
alization 
ontributionbe
omes
gu,wl

αβ (ω) =
Γ

(1)
α Γ

(1)
β

N2

(

2 − Ñ

N

)

− 2iωτD1

(1 − iωτD1)3
e−ΘτE eiω(τcl

E +τop
E ),(50)with ΘτE = τop

E /τD2 + (τcl
E − τop

E )/τD1. The exponentialsuppression exp(−ΘτE) related to the 
lassi
al 
orrela-tion is simply the probability that the path segmentssurvive a time τop
E as a pair (τop

E /2 on either side ofthe 
rossing) and survive an additional time (τcl
E − τop

E )unpaired (to 
omplete a loop of length τcl
E ). Similarlyas for the transparent 
ase, the exponential dependen
e

exp[iω(τcl
E + τop

E )] indi
ates that the minimal duration ofa weak lo
alization traje
tory is τcl
E + τop

E .However as realized by Whitney45, this is not the to-tal weak-lo
alization 
ontribution to 
ondu
tan
e, be-
ause of failed 
oherent-ba
ks
attering gu,cbs(ω) that
ontributes to 
ondu
tan
e (
hange (iii) above). We re-
all that this involves a path whi
h returns 
lose butanti-parallel to itself at lead α, but is then re�e
ted o�the tunnel-barrier on lead α, remaining in the 
avity un-til it eventually es
apes through lead β. An example ofsu
h a traje
tory is shown in Fig. 3. We 
an 
al
ulatethe ba
ks
attering 
ontribution as before but using τD2,when the paths are within Wα of ea
h other, and τD1elsewhere. This result is then multiplied by the proba-bility that the path re�e
ts o� lead α and then es
apesthrough lead β and weighted by the dynami
al fa
tor
(1 − iωτD1)

−1 due to the diagonal transmission from αto β i.e. the leg part of Fig 3. In addition to the 
o-herent ba
ks
attering expression for ru,cbs(ω) this givesa 
ontribution to the admittan
e of the form
gu,cbs1

αβ (ω) =
Γ

(2)
α − Γ

(1)
α

(1 − iωτD1)2
Γ

(1)
β

N2
e−ΘτE eiω(τcl

E +τop
E ),(51a)

gu,cbs2
αβ (ω) =

Γ
(2)
β − Γ

(1)
β

(1 − iωτD1)2
Γ

(1)
α

N2
e−ΘτE eiω(τcl

E +τop
E ),(51b)

ru,cbs
αβ (ω) = − δαβ

1 − iωτD1

Γ
(2)
α

N
e−ΘτE eiω(τcl

E +τop
E ), (51
)where we re
all that Γ

(2)
α =

∑Nα

i=1 Γ2
α,i.Using Eqs. (49, 50, 51), the uns
reened admittan
e inthe presen
e of tunnel barriers reads
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〈

gu
αβ(ω)

〉

= Γ(1)
α δαβ −

Γ
(1)
α Γ

(1)
β

N(1 − iωτD1)
(52)

+
Γ

(1)
α Γ

(1)
β

N2

e−ΘτE eiω(τcl
E +τop

E )

(1 − iωτD1)

(

2 − Ñ/N − 2iωτD1

(1 − iωτD1)2
+

Γ
(2)
α /Γ

(1)
α + Γ

(2)
β /Γ

(1)
β − 2

(1 − iωτD1)
− Γ

(2)
α

Γ
(1)
α

N

Γ
(1)
β

δαβ

)

+ O
(

N−1
)

.As a 
he
k of the formula (52), we 
an easily re
overthe previous Eq. (38) for the uns
reened admittan
e ob-tained for transparent barriers and also the tunnel d
- 
ondu
tan
e45.After the substitution of Eq. (52) into Eq. (15) thes
reened admittan
e in presen
e of tunnel barriers reads
〈gαβ(ω)〉 = Γ(1)

α δαβ −
Γ

(1)
α Γ

(1)
β

N(1 − iωτ)
(53)

+
Γ

(1)
α Γ

(1)
β

N2

e−ΘτE eiω(τcl
E +τop

E )

(1 − iωτD1)

(

2 − Ñ/N − 2iωτ

(1 − iωτ)2
+

Γ
(2)
α /Γ

(1)
α + Γ

(2)
β /Γ

(1)
β − 2

(1 − iωτ)
− Γ

(2)
α

Γ
(1)
α

N

Γ
(1)
β

δαβ

)

+ O
(

N−1
)

,where the quantum RC time reads now τ−1 = τ−1
D1 +

NG0/C. We emphasize that from Eq. (53) it is possi-ble to derive all the results presented in this paper andtherefore this equation is the 
entral result of this paper.In the se
ond line of Eq. (53), the se
ond 
ontribu-tion in the bra
kets represents the 
orre
tion due to thepresen
e of the failed 
oherent ba
ks
attering. Impor-tantly, Eq. (53) in
ludes both, the limit of in�nite 
apa
-itan
e C and the transparent 
ase. In the 
harge neu-trality limit (τ = 0) the presen
e of the tunnel barriersdoes not drasti
ally alter the 
on
lusion drawn for thetransparent 
ase. Indeed, for the weak-lo
alization 
or-re
tion, in addition to the expe
ted substitution Nα, Nby Γ
(1)
α , N , we observe only a renormalisation by a fa
tor

(Γ
(2)
α /Γ

(1)
α + Γ

(2)
β /Γ

(1)
β − Ñ/N). Thus Eq. (41) be
omes

gwl,τ=0
αβ (ω) = (54)
(

Γ
(2)
α

Γ
(1)
α

+
Γ

(2)
β

Γ
(1)
β

− Ñ

N

)

Γ
(1)
α Γ

(1)
β

N2

e−ΘτE eiω(τcl
E +τop

E )

(1 − iωτD1)
.More importantly, one of the main e�e
ts of the tunnelbarrier in the d
-
ase was the suppression of the weak-lo
alization 
orre
tion45,72 for opaque barriers. Thissuppression results from the 
ompetition between twopurely quantum e�e
ts, interferen
e and tunneling. The
orresponding semi
lassi
al treatment45 shows that the
an
ellation is due to an exa
t 
ompensation betweenthe weak-lo
alization 
orre
tion and the failed 
oher-ent ba
ks
attering. It is interesting that this 
on
lu-sion 
annot be generalized to a
-transport. Sin
e thefrequen
y dependen
e of the weak-lo
alization 
orre
tiondi�ers from the one of the failed 
oherent ba
ks
attering

the 
ompensation 
annot o

ur. Dynami
al weak lo
al-ization is thus more robust against the presen
e of tunnelbarriers. We note, however, that for τ = 0 we re
over the
an
ellation of the weak-lo
alization 
orre
tion with tun-nel probabilities, see Eq. (54).VI. CHARGE RELAXATION RESISTANCE OFA MESOSCOPIC CHAOTIC CAPACITORTo illustrate and apply the general results derivedabove, we 
onsider here the mesos
opi
 equivalent of a
lassi
al RC 
ir
uit22. A quantum 
oherent 
apa
itor hasbeen re
ently investigated experimentally by Gabelli etal.8 using a two-dimensional ele
tron gas. The quantum
apa
itor is 
omposed of a ma
ros
opi
 metalli
 ele
trodeon top of a lateral quantum dot de�ning the se
ond ele
-trode. The role of the resistan
e is played by a quan-tum point 
onta
t that 
onne
ts the quantum dot to areservoir. The experiment was performed in the 
oherentregime at high magneti
 �eld in the one edge state limit.Measuring the real and imaginary part of the admittan
eof su
h a 
ir
uit, Ref. [8℄ 
on�rmed the predi
ted22 uni-versal value of the quantized 
harge relaxation resistan
eof a single 
hannel 
avity, whi
h is equal to half a resis-tan
e quantum h/2e2.Based on this experimental realization we propose hereto investigate the opposite regime of large 
hannel num-bers at zero magneti
 �eld. This regime is not 
hara
ter-ized by the universal value of the pre
eding fully quantumone, however it should be experimentally a

essible. Ifwe assume that the quantum dot is 
haoti
 we 
an mapthis system to the one-terminal geometry of the more



11general set-up 
onsidered in the previous se
tion. Thetransparen
y of the quantum point 
onta
t is repla
edby the transmission probability of the tunnel barrier Γ1.To simplify the result we assume in the following that the
N 
hannels of the 
apa
itor have the same tunnel rate,i.e. Γ1,i = Γ (∀i), the dwell time of the 
apa
itor is thus
τD = τH/(NΓ).In a quantum 
oherent 
apa
itor, there is obviously nod
-
urrent, but we 
an address a
-transport via the ad-mittan
e G(ω)23,53. At low temperatures it is 
hara
ter-ized by an ele
tro
hemi
al 
apa
itan
e Cµ and a 
hargerelaxation resistan
e Rq,

G(ω) = −iωCµ + ω2C2
µRq + O(ω3) . (55)In 
ontrast to their 
lassi
al 
ounterparts, Cµ and Rqstrongly depend on the lo
al density inside the sample73.They are thus sensitive to the phase 
oherent dynami
sof the ele
trons inside the sample and thus subje
t todephasing.

Figure 4: S
hemati
 pi
ture of the mesos
opi
 
apa
itor withthe dephasing lead (see text). The 
haoti
 
avity has an extralead (lead φ), whose voltage is 
hosen to render the net 
urrentzero, whi
h leads to dephasing without a loss of parti
les.Sin
e ea
h 
hannel has the same tunnel rate Γ1,i = Γ and
Γφ,i = Γφ, ∀i, the dwell time of the 
apa
itor is τD ∝ (NΓ)−1and the dephasing time reads τφ ∝ (NφΓφ)−1.To model the loss of 
oheren
e of ele
trons inside the
avity we appeal to the so-
alled voltage/dephasing probemodel74, whi
h 
onsists of adding another lead φ, (seeFig. 4) to our 
avity and tuning the potential of thisprobe in su
h a way that the net 
urrent is zero. Conse-quently any ele
tron that enters this lead is immediatelyrepla
ed by another one with an unrelated phase lead-ing to in
oheren
e without loss of parti
les. While su
han approa
h has re
ently been used for the mesos
opi

apa
itor in the one 
hannel limit14, here we investigatesimilar e�e
ts of the dephasing in the limit of large 
han-nel numbers75 where our semi
lassi
al method is fullyjusti�ed.The admittan
e 
an be written as

G(ω) =
−iωCχ(ω)

−iωC + χ(ω)
, (56)where

χ(ω) = G0

(

gu
11(ω) −

gu
1φ(ω)gu

φ1(ω)

gu
φφ(ω)

)

. (57)

The uns
reened admittan
e elements are given inEq. (52). The survival times τD1 and τD2 of this two-leadgeometry are related to the real dwell time τD of our
apa
itor and to the dephasing time τφ = τH/(NφΓφ),where Nφ and Γφ,i = Γφ (∀i) are, respe
tively, the num-ber of 
hannels and the tunneling rates of the dephasinglead46:
τD1 = τD

[

1 +
τD

τφ

]−1

, (58a)
τD2 = τD

[

(2 − Γ) +
τD

τφ
(2 − Γφ)

]−1

. (58b)Inserting expression (52) for the uns
reened admittan
eelements into Eqs. (56, 57) and performing an expansionin ω we get
Cµ =

Ce2ν

C + e2ν
, (59a)

G0Rq =
1

ΓN
+

D(τcl
E , τop

E , τφ)

(ΓN)2
+ O(N−3). (59b)where we additionally used the relation between the meandensity of states, ν, and the dwell time, τD = hν/(dsNΓ).The dephasing fun
tion D(τcl

E , τop
E , τφ) reads

D(τcl
E , τop

E , τφ) = Γe
−

τ
op
E

τD
(1−Γ)−

τcl
E

τD
e
−

τ
op
E
τφ

(1−Γφ)−
τcl
E

τφ

(

1 + τD

τφ

) .(60)We �nally 
onsider the e�e
t of a magneti
 �ux onthe 
harge relaxation resistan
e. Substituting Eq. (39)(the dwell time being repla
ed by the survival time τD1)into Eq. (56) leaves the ele
tro
hemi
al 
apa
itan
e Cµun
hanged; only the dephasing fun
tion D(τcl
E , τop

E , τφ) isa�e
ted and repla
ed by
D(τcl

E , τop
E , τφ, Φ) = Γe

−
τ
op
E

(1−Γ)

τD
−

τcl
E

τD
e
−

τ
op
E

(1−Γφ)

τφ
−

τcl
E

τφ

(

1 + A2Φ2 τD

τf
+ τD

τφ

) .(61)From this semi
lassi
al investigation of the 
harge re-laxation resistan
e, we 
an see that the fully 
oherentlimit (τφ = ∞, τop
E = τcl

E = 0, Φ = 0) delivers,
Rq =

1

G0

1

ΓN

(

1 +
1

N

)

+ O(N−3). (62)Eq. (62) is the �rst derivation of the 
harge relaxationresitan
e in the large N limit in presen
e of tunnel bar-riers. While the leading order was guessed54, the weak-lo
alization 
orre
tion to Rq has never been 
al
ulatedbefore. Surprisingly, it is linear in the inverse tunnel rate
Γ−1, indi
ating that the 
al
ulation of the sub-leading or-der 
orre
tion 
annot be simply obtained by an e�e
tiverenormalisation of the 
hannel number Neff = ΓN .



12For the in
oherent limit, obtained either by τE → ∞,
Φ → ∞ or τφ = 0, we get a suppression of the weak-lo
alization 
orre
tion and thus Rq redu
es to

Rq =
1

G0

1

ΓN
. (63)This value 
orresponds to the fully in
oherent limitthat 
orresponds to the two-terminal resistan
e, and hasbeen obtained under the simple appli
ation of our de-phasing pro
ess. Interestingly, this limit was not trivialto obtain in the edge state 
al
ulation14 (N = 1), whereperfe
t inter-
hannel relaxation inside the voltage probewas assumed. This seems not to be required in the fully
haoti
 
ase in the limit N ≫ 1.VII. CONCLUSIONSIn this work we fo
used on the topi
 of a
-transportthrough 
haoti
 ballisti
 
ondu
tors, addressing in par-ti
ular weak lo
alization 
orre
tions to the admittan
efrom a semi
lassi
al perspe
tive. Employing traje
tory-based methods we 
on�rmed RMT results for the bareand s
reened admittan
e and, going beyond RMT, de-rived the Ehrenfest time dependen
e. The Ehrenfesttimes
ale enters twi
e into the expressions for dynami-
al weak lo
alization: �rst, as an exponential suppres-sion with an exponent given by the ratio of the Ehren-fest and dwell time, τE/τD; se
ond the dynami
al weaklo
alization a
quires an os
illatory frequen
y-dependentbehavior of period 2τE, whi
h may be amenable to mea-surements based on variations of the a
-frequen
y. Weemphasize that our results are valid for any �nite 
apa
-itan
e C and hen
e not limited to the ele
troneutralityassumption of Ref. [33℄. This extends the 
lass of exper-imental settings for whi
h the Ehrenfest time 
orre
tion
an be investigated. More generally, the results presentedunderline, �rstly, the power of semi
lassi
al te
hniquesto provide a 
lear and quantitative pi
ture of a
-driven

quantum transport in the various regimes and, se
ondly,they give a justi�
ation of the "stub model"25 in the low-frequen
y regime.Moreover we took into a

ount tunnel barriers in thesemi
lassi
al approa
h to the a
-admittan
e, extendingthe work of Whitney45 on d
-transport. This led us to ageneral formulation of a
-transport. One main 
on
lusionis that weak-lo
alization is more robust against e�e
ts oftunnel barriers in the dynami
al than in the d
-regime.The extension of our semi
lassi
al treatment to tunnelbarriers also enables us to a

ess the experimentally rel-evant 
ase of a quantum 
oherent 
apa
itor, for whi
hwe provide the �rst derivation of the weak-lo
alization
orre
tion to the 
harge relaxation resistan
e in presen
eof tunnel barriers.We add that, from a methodologi
al point of view,the semi
lassi
al approa
h presented might be helpful toa
hieve a better understanding of the proximity e�e
ton the density of states of 
haoti
 Andreev billiards. Fi-nally, the a
-
ondu
tan
e dis
ussed here is 
losely relatedto problems of 
omputing (photo-)absorption and, moregenerally, linear-response based dynami
al sus
eptibili-ties for mesos
opi
 quantum systems. It appears promis-ing to apply the semi
lassi
al te
hniques, developed herefor (a
-)quantum transport, to re�ne earlier semi
lassi-
al approa
hes51 to (photo-)absorption in 
losed ballisti

avities or metal 
lusters, whi
h additionally poses the
hallenge to semi
lassi
ally 
ope with s
reening e�e
tsand plasmon ex
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