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Abstract 
In this paper, we will talk about the Drivesafe project whose aim is creating conditions for prudent 
driving on highways and roadways with the purposes of reducing accidents caused by driver 
behavior. To achieve these primary goals, critical data is being collected from multimodal sensors 
(such as cameras, microphones, and other sensors) to build a unique databank on driver behavior. 
We are developing system and technologies for analyzing the data and automatically determining 
potentially dangerous situations (such as driver fatigue, distraction, etc.). Based on the findings from 
these studies, we will propose systems for warning the drivers and taking other precautionary 
measures to avoid accidents once a dangerous situation is detected. In order to address these issues a 
national consortium has been formed including Automotive Research Center (OTAM), Koç 
University, Istanbul Technical University, Sabanc� University, Ford A.� ., Renault A.� ., and Fiat 
A.� . 
 
1 Introduction 

Every year, more than three million accidents involving motor vehicles cause a total of 
40000 deaths worldwide. Driver error has been blamed as the primary cause for 
approximately 80% of these accidents. According to the figures given by the US National 
Highway Traffic Safety Administration, driver fatigue has resulted in 240,000 fatalities in 
the U.S. alone. In addition, it is also reported that the sleep related accidents cost public and 
private sector over $46 billion every year.  

According to the 2005 statistics prepared by the Traffic Education and Research Directorate 
of the Department of Security, Turkey, 3,215 people have died and 123,985 people have 
been injured in over 570,000 traffic accidents in highways and roads in Turkey. Primary 
economical loss due to these traffic accidents is estimated to be 651,166,236 USD. 
However, when the secondary and tertiary losses from loss of time, future income, the 
impact on the highways and the fuel costs included this future explodes to over 6.0 Billion 
US Dollars, which is a quite high percentage of the national GNP of the county. 

In 2005, an academic and industry consortium called Drive Safe has been established to 
create conditions for prudent driving on highways and roadways with the purposes of 
reducing accidents resulting from abnormal driver behavior. The consortium consists of 
Sabanc� University, Koç University, ITU Mekar Laboratories, OTAM Automotive Research 
Center, Ford A.� ., Oyak Renault A.� . and Fiat A.� . Services of several experts both from 
Turkey and abroad have been acquired to assist the team. This multi-campus multi-
disciplinary initiative is supported by the Turkish State Planning Organization and is 
partially supported by Japanese New Energy and Industrial Technology Development 
Organization (NEDO).  In addition, all partners and a few sponsors are providing resources 
in terms of equipment, fuel, man-power, and services.  



 

To achieve these primary goals, critical data will be collected from multimodal sensors 
including cameras, microphones, vehicular, and driver/driving related sensors to build a 
unique databank on driver behavior. The goal of the project is to develop systems and 
technologies for analyzing the data and automatically determining potentially dangerous 
situations, i.e., driver fatigue, distraction, drunk driving, etc. Based on the findings from 
these studies, the aim is to propose systems for warning the drivers and taking other 
precautionary measures to avoid accidents once a dangerous situation is detected. 

Secondary objectives include but are not restricted to:  
i. Personalization of vehicular chamber for improved safety and comfort.  
ii.  Secure, transparent and efficient communications in a hands-free environment. 
 

There have been a lot of effort, especially within the European community to address the 
problems in road and traffic safety. For example, eSafety, the first pillar of the Intelligent 
Car Initiative, is a joint initiative of the European Commission, industry and other 
stakeholders and aims to accelerate the development, deployment and use of Intelligent 
Integrated Safety Systems, that use information and communication technologies in 
intelligent solutions, in order to increase road safety and reduce the number of accidents on 
Europe's roads. 
Some of the subprojects that are under the umbrella of the eSafety project are: ADASE, 
AIDE, APROSYS, AWAKE, CarTALK, CHAUFFEUR 2, EASIS, EUCLUDE, ESCOPE, 
GST, HIGHWAY, HUMANIST.  
http://europa.eu.int/information_society/activities/esafety/index_en.htm 
The main goal of the ADASE 2 (Advanced Driver Assistance Systems in Europe) project is 
to introduce and implement active safety systems by harmonising and communicating active 
safety functions, identifying technological needs and focussing on essentials, preparing 
architectures, roadmaps and standards.http://www.adase2.net/  The AIDE (Adaptive 
Integrated Driver-vehicle InterfacE) project concentrates on human-machine interaction. 
http://www.aide-eu.org/ 
The APTOSYS (Integrated Project on Advanced Protection Systems) project has 
concentrated on passive safety systems. In this project different accidents have been studied 
and design implications for vehicles (passenger vehicles, heavy vehicles, motorcycles, etc.), 
and roads have been studied. http://www.aprosys.com/ The objective of the AWAKE 
project was to increase traffic safety by reducing the number and the consequences of traffic 
accidents caused by driver hypo-vigilance. The project has concentrated on detecting and 
diagnosing driver hypo-vigilance in real-time by fusing data from on-board driver 
monitoring sensors (eyelid behaviour and steering grip forces) and data regarding the 
driver’s behaviour (lane keeping performance) http://www.awake-eu.org/  The main goal of 
the EASIS (Electronic Architecture and System Engineering for Integrated Safety Systems) 
project is to develop powerful and highly dependable in-vehicle electronic architecture and 
appropriate development support for the realization of Integrated Safety Systems. 
http://www.easis-online.org/wEnglish/overview/index.shtml?navid=1 
The SENSATION (Advanced Sensory Development for Attention, Stress, Vigilance and 
Sleep/Wakefulness Monitoring) project aims to explore a wide range of micro and nano 
sensor technologies, with the aim to achieve unobtrusive, cost-effective, real-time 
monitoring, detection and prediction of human physiological state in relation to 
wakefulness, fatigue and stress anytime, everywhere and for everybody. 
http://www.sensation-eu.org/ 



 

2 Data Collection 
In this section we will discuss the various data collection activities in the project.  

2.1 In-Car Multisensor Data Collection 
A data collection vehicle was equipped with various sensors to collect data on driver 
behaviour under normal conditions. Figure 1 shows the test vehicle and Figure 2 shows 
some of the sensors in the vehicle.  

 
Figure 1: Data Collection vehicle 

The sensors in the test vehicle include 3 day cameras (2 looking at the driver, one looking at 
the road), 3 night cameras, various microphones, an inertial measurement unit (IMU) 
measuring xyz accelerations and angular velocities, 2D laser scanner, gas and brake pedal 
pressure sensors, GPS receiver, EEG (electroencephalograph). Additional data like tire 
angular speeds, steering wheel position and speed, engine rotational speed, vehicle 
longitudinal speed, vehicle yaw rate, turn signal states, clutch pedal position switches, brake 
pedal position switch, idle gear state and rear gear switch are obtained from the CANbus. A 
Matlab graphical user interface for easy and interactive visualization of non-vision, non-sound data 
collected in each run was prepared and is being used. 
Driving signals cannot be employed for driver authorization, since authorization should be 
performed before driving starts. However, driving behavior signals can be used to verify the 
driving condition of an identified user in a safe driving scenario. Assuming that the driver 
has already been identified, the driving behavior signals can be used to verify whether the 
driver is alert, as opposed to being sleepy or drunk. In addition, they could be useful for 
forensic purposes to identify drivers in a stolen-and-found vehicle or after a crash when 
audio-visual sensors are not available or cannot be relied upon.  
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Figure 2. Various sensors in the data collection vehicle  
 

Electroencephalography is the neurophysiologic measurement of the electrical activity of 
the brain from electrodes placed on the scalp. These signals showing brain activity will be 
used as ground truth for determining fatigue from other sensors. 
Figure 3 shows the route to be used in the data collection experiments. This route will be 
used in modeling driver behaviour under normal conditions. 

                                      
Figure 3. Experimental vehicle’s route 

Figure 4 shows a sample screen shot showing the outputs of various sensors. 

    
 
 
 
 
 
 
 



 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Sample screen shots showing the outputs of various sensors (cameras, EEG, laser sensor, CAN bus 

and IMU sensor) 

2.2 Data Collection in a Simulator environment 
Our experiments will focus on detecting driver fatigue after long hours of driving. Because of 
the dangers of carrying out these experiments in real driving conditions, data collection for 
these experiments will be carried out in a simulator environment. To check for the validity of 
the simulator data, the 3D model of the route that the test car will use has been made for the 
simulator. A separate route of 4-5 hours driving in various environments is designed to carry 
out fatigue experiments   
2.3 Animation Data 
Until sufficient data has been collected for fatigue modeling, an animation environment has 
been developed to generate fatigue conditions. For this purpose, muscle movements in the 
face are modeled, then video animations are synthesized for creating expressions related to 
fatigue. It is then possible to obtain different videos under different lighting conditions, 
different hair styles, etc. 
How to quantitatively and completely describe the rich facial expressions is a long-term 
endeavor in both engineering and psychophysiology. Ekman’s group [3] proposed a unified 
description method of expression: Facial Action Coding System (FACS). It totally has 71 
primitive units, called Action Unit (AU). Based on them, any expression display can be 
represented by single AU or the AU combination.  

                             
Figure 5. Sample action units 



 

This system has been used in modeling muscle movements. Figure 6 shows some frames 
from action unit simulations.  

       
Figure 6 (a) Some frames from the Action Unit 1 (inner brow raiser) video 

          
Figure 6 (b) Some frames from the Action Unit 9 (nose wrinkler) video 

 

3 Person Recognition in Vehicles 

It is expected that next generation human-vehicle interfaces will incorporate biometric person 
recognition using speech, video/image, analog driver behavior signals to provide more efficient and 
safe vehicle operation, as well as pervasive and secure communication in vehicles. Yet, technical 
and deployment limits exist in the ability of these systems to perform satisfactorily in real-world 
settings under adverse conditions such as in human-vehicle interaction. For instance, factors such as 
environmental noise, changes in acoustic and microphone conditions all significantly impact speaker 
recognition performance. Similarly, factors such as illumination variation, background variation, 
camera resolution and angle, and facial expressions contribute to performance loss of the visual 
person recognition. Biometric person recognition in vehicles is likely to be most challenging not 
only due to the challenges posed by the chamber, but also due to cost-economics. In this section we 
demonstrate that the required levels of accuracy for biometric person recognition in vehicles can be 
achieved by fusion of multiple modalities. 
Personalization of vehicles will open up new services for personal and vehicle safety, including:  
1. Vehicle safety: Determine whether the person behind the wheel is one of the authorized drivers.  
2. Safe driving: Verify whether the driver is in normal condition, as opposed to being sleepy or 

drunk, for safe driving.  
3. Safety of the people and goods especially in commercial vehicles 
4. Secure transactions: The more connected we become, the more transactions we need to do 

anywhere we can, which includes inside a vehicle. These include travel planning and 
arrangements, m-banking1, m-database access, and m-shopping, which all require varying levels 
of personal authentication.  

                                                 
 



 

Biometric person recognition has been extensively studied for more than two decades and 
technologies with varying degrees of success have been developed. However, most promising 
systems with respectable benchmark recognition rates, in controlled environment, have suffered 
significantly when it came to deployment in challenging environments such as cockpit of an airplane, 
or a moving vehicle chamber.  

The task of recognizing people from in-vehicle video is difficult for the following reasons: 
1. In vehicles, the subjects, especially the driver, are not expected to pose for the camera since their 
first priority is to operate the vehicle safely. Hence, there can be large illumination and pose 
variations. In addition, partial occlusions and disguise are common.  

2. The spatial resolution and quality of video is usually low, and due to the acquisition conditions,          
the face image sizes are smaller (sometimes much smaller) than the assumed sizes in most existing 
still image based face recognition systems.  
 

4 Experimental Results  

With funding from Japanese government and industry, Itakura et al. in the Center for Acoustic 
Information Research (CIAIR) at Nagoya University have embarked on a mega project called 
“Construction and Analysis of the Multi-Layered In-Car Spoken Dialogue Corpus”, where audio (12 
channels), video (3 channels), analog driver behavior signals (five different sensors) and location 
information have been collected from 812 male and female drivers resulting in a databank measured 
in terabytes [4][6]. We have carried out some initial experiments using this CIAIR database. 

The modalities used in the experiments are summarized in Table 1.  
Table 1: Data Collection Specifications 

   Speech Sampling: 16 kHz; 16-bit/sample; 12 channels 

   Video MPEG-1; 29.97 frames per second; 3 channels 

   Driving Signals 
Acceleration, Accelerator Pedal Pressure, Brake Pedal pressure, Steering Wheel Angle, 
Engine RPM, Vehicle Speed: Each at 16 bit/sample and 1.0 kHz. 

   Location Differential GPS: one reading per second 

 

4.1 Analyzing driving signals 
In this section, we will present experiments related to verification of driving behavior of known 
drivers using driving signals available with the CIAIR database. 
Driving signals have been used to verify whether a known driver is in normal driving condition 
using a subset of the CIAIR database. If the verification is not successful, this could indicate that 
there is a potential problem such as the driver may be fatigued or drunk. In this scenario,   the 
impostor data for each driver should be gathered in fatigued or drunk driving conditions. However, 
CIAIR database does not contain such data. Thus, we assumed that the impostor data for each driver 
is given by the driving signals of the remaining drivers in the cross validation scheme. Details of the 
experiments are given in [4] 
The experiments are carried out on two different subsets of the CIAR dataset, one having 28 drivers 
and the other having 314 drivers. Table 1 gives the unimodal success of each of the modalities on 
the dataset of 28 drivers, Table 2 gives the result of combining different modalities for the same 
subset. These tables show that gas and brake pedal signals have discriminative power. Classification 
performance of 69% has been reached in identifying drivers from these driving signals.  
The performance results from the 314 driver subset of the CIAIR database show that, the 
performance decreases in the larger database, however, it is still observed that gas and brake pedal 
signals have discriminative power. Details are given in [4] These results are very encouraging in 



 

that, the driving signals seem to carry important information to verify the driving behavior, and 
hence they may be used to detect fatigued or drunk driving conditions. 
Table 2: Correct classification rates for 28 drivers (B: brake, A: gas, E: motor speed, S: vehicle speed, T: 
wheel angle, dX: derivative features). 
Gauss mixture 

number 
B/BdB A/AdA E/EdE S/SdS T/TdT 

2 29.25 
28.49 

46.80 
47.34 

22.87 
24.46 

9.04 
13.82 

6.38 
7.10 

4 34.04 
34.04 

64.89 
60.96 

26.06 
25.00 

11.17 
14.05 

8.51 
9.04 

8 39.36 
35.63 

67.55 
68.08 

30.31 
26.20 

11.17 
12.76 

8.51 
9.67 

 
Table 3: Correct recognition rates for 28 drivers using combination of different modalities (B: brake, A: gas, 
E: motor speed, S: vehicle speed, T: wheel angle, dX: derivative features).  
Gauss mixture 

number 
B+A 
(1+2) 

A+E 
(2+1) 

B+E 
(2+1) 

A+B+E 
(3+2+1) 

8 (Bayesian) 64.36 63.29 44.68 68.61 
8 (weighted) 69.14 68.08 46.80 68.61 

 

4.2 Person Recognition Experiments 
We have carried out open-set person identification experiments using audio and video from a subset 
of the CIAIR database. Details of the experiments are given in [4] 
Our findings on the unimodal and multimodal experiments are presented in Table 4. The product 
rule, which assumes independence of modalities and combines the equally weighted modality scores, 
achieves 1.26% EER rate by improving the unimodal identification rates. On the other hand, the 
fusion of audio and face modalities with the RWS rule results in 1.04% EER rate by outperforming 
the product rule. These results indicate that combining audio and face modalities for open-set person 
identification considerably improves the overall performance. 
Table 4: Open-set identification results using a 20 people subset of the CIAIR database, where Å 
denotes the RWS rule and ····  stands for the product rule. A=audio, F=face 

Modality  EER (%) 

A 2.44 

F 7.89 

A···· F 1.26 

AÅÅÅÅF 1.04 

4.3 Fatigue Detection 
The general-purpose facial expression analysis has been explored for decades. Numerous 
techniques have been proposed. A recent survey of existing works can be found in [7]. 
FACS representation of facial expression, is static and deterministic. Face expression 
develops over time and the detected facial features contain uncertainties. A dynamic and 
stochastic facial expressions representation framework is therefore needed. 
Currently, a spatial and temporal model is being constructed to systematically represent and 
identify facial expressions like ‘inattention’, ‘yawning’, ‘falling asleep’. 

 
5. Active Passive Restraint Systems 

When a fatigued or influenced driver is detected, active safety systems should intervene and 
help the driver. In the limiting case of an over-fatigued or over-influenced driver, the 
vehicle control computer may stop the vehicle and automatically ask for assistance. In other 



 

cases, active safety features of the vehicle should help the driver. This may require 
temporary transition of driving control authority from the driver to the control computer. 
The simplest active safety features are of a warning nature and include alerting sound cues, 
or vibration of the steering wheel or driver seat to wake him/her up. Because of the 
potentially dangerous nature of these tasks, the active safety features are being developed in 
a simulator environment rather than using the test vehicles.  
Realistic Vehicle Model Development 
Since the active safety algorithms that are being considered are tested on simulators, 
realistic models of road vehicles need to be used. Along with the use of commercial road 
vehicle dynamics software, Simulink vehicle dynamics models at different levels of 
complexity were also prepared. The developed Simulink vehicle dynamics models range 
from single track to full vehicle models. Vehicle model has been illustrated in Figures 8. 

 
Figure 8. Vehicle model 

 

Lane Following Assistance 
In a preliminary study, a simple loss of attention control system was prepared in the 
simulator environment. This system analyzes the success of the driver in following the lane 
and intervenes if necessary with lane following assistance. A supervisory control 
architecture with two levels was used. The high level controller determines whether the 
driver needs lane keeping assistance or not. The high level controller is implemented using 
Stateflow and is rule based. If assistance is required, the low level automated lane keeping 
controller is switched on. This idea has been tested using a Simulink model of the vehicle 
with single track dynamics augmented with a Dugoff tire model, longitudinal dynamics and 
a static engine map model. The actual low level control action uses a PID controller. 
Preview of the lane ahead is used along with the predicted trajectory of the vehicle to 
determine the successfulness of lane keeping. In the case of failure, an audio warning signal 
is first sent to the driver. If the driver still does not correct his lane following performance, 
the automated lane keeping controller takes over and keeps sending audio warning signals to 
the driver to correct his/her steering performance.  
Other Active Safety Methods 
Other active safety systems that have been developed and are being tested include yaw 
stability control, rollover avoidance and safe following of preceding traffic using adaptive 
cruise control and stop and go assistants. These control systems are being tested in two 
home built simulators. Another simulator to be used exclusively for active safety control 



 

testing in a driver attention monitoring and warning framework has been designed and is 
being constructed. 
 

6. Summary and Conclusion 

In this paper, we have presented the Drivesafe project whose goal is to create conditions for 
prudent driving on highways and roadways with the purposes of reducing accidents caused by driver 
behavior. We have discussed the different data collection efforts from multimodal sensors (such 
as cameras, microphones and other sensors) to build a unique databank on driver behavior.  

We have given the results of preliminary studies on modeling driver behaviour using driving 
signals and multimodal person recognition technologies for secure personalized human-
vehicle interaction.  
Even though the performance of each individual modality could be increased in adverse 
conditions, such as using de-noising and echo cancellation for in-vehicle speech signal, the 
multimodal performance surpasses each uni-modal system once the best features or 
decisions from each modality are fused. Furthermore, multimodal person identification 
enables a fault tolerant design in case one of the sensors (e.g., one of the cameras or acoustic 
sensors) fails. Reliability measures can be assigned to each modality and/or to the output of 
each sensor so that only the features for the most reliable modalities and/or sensors can be 
considered in the fusion strategy. This includes the scenarios such as disregard speech 
modality when the background noise cannot be suppressed effectively, or disregard lip 
features if the driver is not looking straight into the camera, etc.  
We also demonstrate, that the driving behavior signals can be used to verify current driving 
condition of an identified driver in a drive-safe scenario, where active/passive safety 
enforcement systems could be deployed if his/her behavior does not comply with pre-
determined normal behavior. 
In addition to constructing a spatial and temporal model to systematically represent and 
identify facial expressions like ‘Inattention’, ‘yawning’, ‘falling asleep’, potential future 
research directions include i) detection of best features for each modality, ii) optimum 
fusion strategies, iii) better behavioral modeling of drivers. 
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