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Abstract Secure multi-party protocols have been proposed
to enable non-colluding parties to cooperate without a trusted
server. Even though such protocols prevent information dis-
closure other than the objective function, they are quite costly
in computation and communication. Therefore, the high over-
head makes it necessary for parties to estimate the utility
that can be achieved as a result of the protocol beforehand.
In this paper, we propose a look ahead approach, specifi-
cally for secure multi-party protocols to achieve distributed
k-anonymity, which helps parties to decide if the utility ben-
efit from the protocol is within an acceptable range before
initiating the protocol. Look ahead operation is highly local-
ized and its accuracy depends on the amount of information
the parties are willing to share. Experimental results show
the effectiveness of the proposed methods.

Keywords Secure multi party computation · Distributed
k-anonymity · Privacy · Security

1 Introduction

Secure multi party computation (SMC) protocols are one of
the first techniques for privacy preserving data mining in dis-
tributed environment [19]. The idea behind these protocols
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is based on the theoretical proof that two or more parties,
both having their own private data, can collaborate to calcu-
late any function on the union of their data [7]. While do-
ing so, the protocol does not reveal anything other than the
output of the function and does not require a trusted third
party. While this property is promising for privacy preserv-
ing applications, SMC may be prohibitively expensive. In
fact, many SMC protocols for privacy preserving data min-
ing suffer from high computation and communication costs.
Furthermore, those that are closest to be practical are based
on semi-honest model, which assumes that parties will not
deviate from the protocol. Theoretically, it is possible to con-
vert semi-honest models into malicious models. However,
resulting protocols are even more costly.

The high overhead of SMC protocols raises the question
whether the information gain (increase in utility) after the
protocol is worth the cost. This is a valid argument for min-
ing on horizontally or vertically partitioned data (but espe-
cially crucial for horizontally partitioned data where objec-
tive function is well defined on the partitions since they have
the same schema.). More specifically, for private table Tσ of
party Pσ and an objective function O; initiating the SMC
protocol is meaningful only if the information gain from O;
|Iσ| = |I(O(T∪))− I(O(Tσ))| where T∪ is the union of all
private tables, is more than a user defined threshold c. Of
course |Iσ| cannot be calculated without executing the pro-
tocol. However it may be possible to estimate it by knowing
some prior (and non-sensitive) information about T∪.

To the best of our knowledge, this is the first work that
looks ahead of an SMC protocol and gives an estimate for
Iσ. We state that an ideal look ahead satisfies the following:

1. Methodology is highly localized in computation, it is
fast and requires little communication cost (at least asymp-
totically better than the SMC protocol).

2. Methodology relies on non-sensitive data, or better, data
that would be implied from the output of the objective
function.

We state that an ideal look ahead will benefit the parties
in answering the following:

1. How likely the information gain Iσ will be within an ac-
ceptable range?

2. Since efficiency of SMC depends heavily on data, what
size of private data would be enough to get an acceptable
Iσ?

Our focus is the SMC protocol for distributed k-ano-
nymity previously studied in [31,11,10]. k-Anonymity is
a well known privacy preservation technique proposed in
[27,24] to prevent linking attacks on shared databases. A
database is said to be k-anonymous if every tuple appears
in the database at least k times. k-Anonymization is the pro-
cess of enforcing k-anonymity property on a given database
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by using generalization and suppression of values. Works in
[11,10] assume that data is vertically partitioned among two
parties and they share a common key making a join possible.
Authors in [11] propose a semi-honest SMC solution to cre-
ate a k-anonymization of the join without revealing anything
else (The protocol takes around 2 weeks time to execute for
k = 100 and 30162 tuples.). Work in [31] assumes horizon-
tally partitioned data.

The motivation behind k-anonymity or distributed k-ano-
nymity as a privacy notion has been studied extensively in
the literature. Many extensions to k-anonymity has been pro-
posed that address various weaknesses of the notion against
different types of adversaries [8,18,20,22,29,30,21,3]. `-
Diversity [20] is one such extension that enforces constraints
on the distribution of the sensitive values. We first focus on
the k-anonymization process and show later how the pro-
posed methodology can be extended for `-diversity. Our con-
tribution can be summarized as follows:

1. We design a fast look ahead of distributed k-anonymiza-
tion that bounds the probability that k-anonymity will be
achieved at a certain utility. Utility is quantified by com-
monly used metrics from the anonymization literature.

2. Look ahead works for horizontally, vertically and arbi-
trarily partitioned data.

3. Look ahead exploits prior information such as total data
size, attribute distributions, or attribute correlations, all
of which require simple SMC operations. Look ahead
returns tighter bounds as the security constraints allow
more prior information.

4. We show how look ahead can be extended to enforce
diversity on sensitive attributes as in [18,20].

5. To the best of our knowledge, this work is the first at-
tempt in making a probabilistic analysis of k-anonymity
given only statistics on the private data.

2 Background

2.1 k-Anonymity and Table Generalizations

Given a dataset (table) T , T [c][r] refers to the value of col-
umn c, row r of T . T [c] refers to the projection of column c
on T and T [.][r] refers to selection of row r on T . We write
|t ∈ T | for the cardinality of tuple t ∈ T .

Although there are many ways to generalize a given data
value, in this paper, we stick to generalizations according to
domain generalization hierarchies (DGH) given in Figure 1
since they are widely used in the literature.

Definition 1 (i-Gen Function) For two data values v∗ and
v from some attribute A, we write v∗ = ∆i(v) if and only
if v∗ is the ith parent of v in the DGH for A. Similarly for
tuples t, t∗, t∗ = ∆i1,··· ,in(t) iff t∗[c] = ∆ict[c] for all columns
c. Function ∆ returns all possible generalizations of a value
v. We also abuse notation and write ∆−1(v∗) to indicate the
leaf nodes of the subtree with root v∗.

E.g., given DGH structures in Figure 1. ∆1(USA )=AM ,
∆2(Canada ) =* , ∆0,1(<M,USA >)=<M,AM >, ∆(USA )={USA ,
AM ,*}, ∆−1(AM )= {USA , Canada , Peru , Brazil }
Definition 2 (Single Dimensional Generalization) We say
a table T ∗ is a µ = [i1, · · · , in] single dimensional generaliza-
tion of table T with respect to set of attributes QI={A1,· · · ,
An} if and only if |T | = |T ∗| and records in T , T ∗ can be
ordered in such a way that T ∗[QI][r] = ∆i1,··· ,in(T [QI][r]) for
every row r. We say µ is a generalization mapping for T and
T ∗; and write T ∗ = ∆µ(T ).

Definition 3 (µ-Cost) Given a generalization T ∗, µ-cost re-
turns the generalization mapping of T ∗: µ(T ∗) = [i1, · · · , in]
iff T ∗ = ∆i1,··· ,in(T )

For example, Tables T ∗σ ,T ∗1 are [0,2] generalizations of
Tσ and T1 respectively w.r.t. attributes sex and nation. Simi-
larly T ∗∪,σ = ∆0,1(T1), T ∗∪,1 = ∆0,1(T2). µ-Cost of T ∗∪,1 is [0,1].

Definition 4 Given two generalization mappings µ1=[i11, · · · ,
i1n] and µ2 = [i21, · · · , i2n], we say µ1 is a higher mapping than
µ2 and write µ1 ⊆ µ2 iff µ1 6= µ2 and i1j ≥ i2j for all j ∈ [1−n].
We define µ1−µ2 = ∑ j i1j − i2j

E.g., [0,2] is a higher mapping than [0,1].

Corollary 1 Given mappings µ1⊂ µ2 and T ∗1 = ∆µ1(T ), T ∗2 =
∆µ2(T ); T ∗2 is better utilized (contains more information)
than T ∗1 .

The above corollary is true because T ∗1 can be constructed
from T ∗2 . E.g., T ∗∪,σ is better utilized than T ∗σ .

In this paper, without loss of generality, we use single
dimensional generalizations. However, underlying ideas can
also be applied to multi dimensional generalizations [16].
We now revisit briefly k-anonymity definitions.

While publishing person specific sensitive data, simply
removing uniquely identifying information (SSN, name)
from data is not sufficient to prevent identification because
partially identifying information, quasi-identifiers, (age, sex,
nation . . . ) can still be mapped to individuals (and possi-
bly to their sensitive information such as salary) by using
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Table 1 Home party and remote party datasets and their local and global anonymizations

Name Sex Nation Salary
q1 F England >40K
q2 M Canada ≤40K
q3 M USA ≤40K
q4 F Peru ≤40K

Name Sex Nation Salary
q1 F * >40K
q2 M * ≤40K
q3 M * ≤40K
q4 F * ≤40K

Name Sex Nation Salary
q1 F EU >40K
q2 M AM ≤40K
q3 M AM ≤40K
q4 F AM ≤40K

q5 M AM >40K
q6 M AM >40K
q7 F AM ≤40K
q8 F EU >40K

Tσ T ∗
σ

Name Sex Nation Salary
q5 M Canada >40K
q6 M USA >40K
q7 F Brazil ≤40K
q8 F Italy >40K

Name Sex Nation Salary
q5 M * >40K
q6 M * >40K
q7 F * ≤40K
q8 F * >40K

T1 T ∗
1 T ∗

∪ = T ∗
∪,σ∪T ∗

∪,1

external knowledge [26]. (Even though Tσ of Table 1 does
not contain info about names, releasing Tσ is not safe when
external information about QI attributes is present. If an ad-
versary knows some person Alice is a British female; she
can map Alice to tuple q1 thus to salary >40K .) The goal
of privacy protection based on k-anonymity is to limit the
linking of a record from a set of released records to a spe-
cific individual even when adversaries can link individuals
via QI:

Definition 5 (k-Anonymity [26]) A table T ∗ is k-anony-
mous w.r.t. a set of quasi identifier attributes QI if each record
in T ∗[QI] appears at least k times.

For example, T ∗σ ,T ∗1 are 2-anonymous generalizations of
Tσ and T1 respectively. Note that given T ∗σ , the same adver-
sary can at best link Alice to tuples q1 and q4.

Definition 6 (Equivalence Class) The equivalence class
of tuple t in dataset T ∗ is the set of all tuples in T ∗ with
identical quasi-identifier values to t.

For example, in dataset T ∗1 , the equivalence class for tu-
ple q1 is {q1,q4}.

There may be more than one k-anonymizations of a given
dataset, and the one with the most information content is
desirable. Previous literature has presented many metrics to
measure the utility of a given anonymization [9,23,13,4,1].
We revisit Loss Metric (LM) defined in [9]. LM penalizes
each generalization value v∗ proportional to |∆(v∗)| and re-
turns an average penalty for the generalization. Let a is the
number of attributes, then:

LM(T ∗) =
1

|T | ·a ∑
i, j

|∆(T [i][ j])|−1
|∆(∗)|−1

Since k-anonymity does not enforce constraints on the
sensitive attributes, sensitive information disclosure is still
possible in a k-anonymization. (e.g., in T ∗1 , both tuples of
equivalence class {q2,q3} have the same sensitive value.)
This problem has been addressed in [20,18,8] by enforcing

diversity on sensitive attributes within a given equivalence
class. We show in Section 6 how to extend the look ahead
process to support diversity on sensitive attributes. For the
sake of simplicity, from now on we assume datasets contain
only QI attributes unless noted otherwise.

2.2 Distributed k-Anonymity

Even though k-anonymization of datasets by a single data
owner has been studied extensively; in real world, databases
may not reside in one source. Data might be horizontally or
vertically partitioned over multiple parties all of which may
be willing to participate to generate a k-anonymization of
the union. The main purpose of the participation is using a
larger dataset to create a better utilized k-anonymization.

Suppose in Table 1, two parties Pσ and P1 have Tσ and
T1 as private datasets and agree to release a 2-anonymous
union. Since data is horizontally partitioned, one solution
is to 2-anonymize locally and take a union. T ∗σ ,T ∗1 are op-
timal (with minimal distortion) 2-anonymous full-domain
generalizations of Tσ and T ∗1 respectively. However, opti-
mal 2-anonymization of Tσ ∪ T1; T ∗∪ is better utilized than
T ∗σ ∪T ∗1 . So there is a clear benefit in working on the union
of the datasets instead of working separately on each private
dataset.

As mentioned above, in most cases, there is no trusted
party to make a secure local anonymization on the union. So
SMC protocols are developed in [11,10,31] among parties
to securely compute the anonymization with semi-honest as-
sumption.

We assume data is horizontally partitioned but we will
state how to modify the methodology to work on vertically
partitioned data. We assume we have n + 1 parties Pσ,P1,
· · · ,Pn with private tables Tσ,T1, · · · ,Tn. The home party Pσ
is looking ahead of the SMC protocol and remote parties
P1, · · · ,Pn are supplying statistical information on the union
of their private tables,

⋃
i Ti. We use the notation T∪ for the

global union (e.g., T∪ = Tσ ∪⋃
i Ti). We use the superscript

* in table notations to indicate anonymizations. We use the
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notation T ∗∪,i to indicate the portion of T ∗∪ that is generalized
from Ti (see Table 1), thus T ∗∪ = T ∗∪,σ∪

⋃
i T ∗∪,i. Until Section

5.7, without loss of generality, we assume n = 1.

2.3 k-Anonymity Extensions

Many extensions to k-anonymity have been proposed to deal
with potential disclosure problems in the basic definition
[8,18,20,22,29,30,21,3]. Problems arise mostly because k-
anonymity does not enforce diversity on the sensitive values
within an equivalence class. Even though, there is no dis-
tributed protocol proposed for the k-anonymity extensions
yet, there is strong motivation in doing so. In Section 6, we
design a look ahead for recursive (c, `)-diversity protocol.

Definition 7 (Recursive (c, `)-diversity [20]) Let the or-
dered set Ri = {r1, · · ·rm} hold the frequencies of sensitive
values that appear in an equivalence class ECi. We say a ta-
ble T ∗ is recursive (c, `)-diverse iff for all ECi ∈ T ∗, r1 ≤
(r` + r`+1 + · · ·+ rm).

From now on, without loss of generality, we assume we
have only two values in the sensitive attribute domain (m =
2, ` = 2). In Table 1, T ∗∪ is (0.5,2)-diverse since for all equiv-
alence classes, the frequencies of ≤40K and >40K are the
same (i.e., r1 = r2). However T ∗σ does not respect any di-
versity requirement (except when c = 0), since all tuples in
equivalence class {q2,q3}, have salary ≤40K .

3 Information Gain

Given the cost of most SMC protocols, there arises the need
to justify the information gain from the protocols. Surely,
such gain is nonnegative, but could be 0 or may not meet the
expectations. So it is imperative for collaborating parties to
decide if information gain is within acceptable range:

Definition 8 (Info Gain) Let Pσ,P1, · · · ,Pn be n + 1 par-
ties with private tables Tσ,T1, · · · ,Tn. Let O be the objec-
tive function for the SMC protocol and I be the utility func-
tion (information content) defined on the output domain of
O. Local info gain for a single party Pσ is defined as |Iσ| =
I(O(T∪))−I(O(Tσ)) where T∪ = Tσ∪

⋃
i Ti. Global info gain

for the protocol is |I|= ∑ j |I j|+ |Iσ|.

Each party involving in an SMC expects to gain from
SMC either locally or globally depending on the application.
In this work, we assume that parties require the local info
gain to exceed some threshold c before they proceed with
the SMC protocol. However, without total knowledge of all
private tables (T∪), parties can only have some confidence
that SMC will meet their expectations:

Definition 9 (c, p-sufficient SMC) For a party Pσ, an SMC
is c, p-sufficient with respect to some prior knowledge K on
∪iTi, if P (|Iσ| ≥ c | K) ≥ p. We say SMC is c, p-sufficient
iff it is c, p-sufficient for all parties involved.

Our goal in a look ahead process will be to check if a
given SMC is c, p-sufficient for a user defined c and p.

For distributed k-anonymity, the objective function O is
trivially the optimal k-anonymization which we name as Ok.
Specifically, in this paper, we will make use of single dimen-
sional generalizations to achieve k-anonymity. This gener-
alization technique has been used in many previous work
on anonymization [15,20,18,22]. As mentioned above, our
work can be extended for multidimensional generalizations
[16,22] as well.

Information gain (I) is proportional to the quality of the
anonymization. It is challenging to come up with a standard
metric to measure the quality of an anonymization [23]. In
this work, we will be using the µ-cost as the quality metric.
Recall that a higher mapping is less utilized than a lower
mapping, and ’-’ operation has been defined over mappings
in Definition 4. µ-cost can be used for horizontally parti-
tioned data.

Calculation of LM cost is possible if we know attribute
distributions (denoted with KF ) and the generalization map-
ping. So there is a direct translation between the µ-cost and
LM cost for single dimensional generalizations given KF .
The advantage of translating µ-cost to LM cost is that LM
cost can be used for arbitrarily partitioned data. For vertical
partitioning, each party has at least one missing attribute.
We assume a total suppression (*) for data entries from the
missing attributes when calculating LM cost.

We can now specialize c, p-sufficiency for distributed k-
anonymity problem:

Definition 10 (c, p-sufficient k-Anonymity) For a party Pσ,
a distributed k-Anonymity protocol is c, p-sufficient with re-
spect to some prior knowledge K on ∪iTi, iff

P (µ(Ok(T∪))−µ(Ok(Tσ))≥ c | K)≥ p

We say SMC is c, p-sufficient iff it is c, p-sufficient for
all parties involved.

Informally, SMC is sufficient for an involving party if
the difference between the optimal generalization mapping
for the union and the optimal mapping for the local table is
more than c with p probability. Of course, the party can only
calculate such a probability if she has some knowledge on
the union denoted by K. The amount of prior knowledge K
is crucial in successfully predicting the outcome of an SMC.
As mentioned before, prior knowledge K cannot be sensitive
information. Non-sensitive K can be derived in three ways:

1. Information that could also be learned from the anony-
mization such as the global dataset size.
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2. Statistics about global data that are not considered as
sensitive. In the case of k-anonymity, statistics that are
not individually identifying such as attribute distribu-
tions are acceptable.

3. Based on the assumption that global joint distribution is
similar with local distribution, information that can be
gained from the local dataset. This type of prior knowl-
edge is the most tricky one since over fitting to local dis-
tribution needs to be avoided. Such an information can
be in terms of highly supported association rules in the
local dataset.

We show, in later sections, how to check for sufficiency
of distributed k-anonymity protocol given global attribute
distributions which we denote with KF .

Definition 11 (Global attribute distribution KF ) A distri-
bution function f T

c for an attribute c is defined over a dataset
T such that given a value v∗ returns the number of entities t
in T with v∗ ∈ ∆(t[c]). Global attribute distribution KF sent
to a home party Pσ contains all distribution function on

⋃
i Ti.

In Table 1, f T1
Nation (AM ) = 3, f T1

Nation (EU ) = 1. For the

parties {Pσ,P1}, KF = { f T1
Sex , f T1

Nation }.

4 Problem Definition

Given Section 3, distributed k-anonymity protocol is c, p-
sufficient for Pσ iff

P (µ(Ok(T∪))−µ(Ok(Tσ))≥ c | KF)≥ p

µσ = µ(Ok(Tσ)) requires local input and can be com-
puted by Pσ.

P (µ(Ok(T∪))−µσ ≥ c | KF)≥ p

Let Sµ = {µ=c
1 , · · · ,µ=c

m } be the mappings that are exactly
c distance beyond µσ and {µ>c

1 , · · · ,µ>c
m } be the mappings

that are more than c distance beyond µσ. Let also Aµ be the
event that ∆µ(T∪) is k-anonymous. Then we have;

P (µ(Ok(T∪))−µσ)≥ c | KF)

= P ((∪iAµ=c
i

)∪ (∪iAµ>c
i

) | KF)

= P (∪iAµ=c
i
| KF)

≥Maxi P (Aµ=c
i
| KF)

This follows from the monotonicity of k-anonymity. So
the problem of sufficiency reduces to prove that, for at least
one µ ∈ Sµ;

P (Aµ | KF)≥ p

Suppose in Table 1, Pσ needs to check for (1,p)-suffi-
ciency. Optimal 2-anonymization for Pσ’s private table Tσ
is T ∗σ with µ(T ∗σ ) = [0,2]. There is only one mapping [0,1]
which is 1 away from [0,2]. So we need to check if P (∆0,1(T∪)
is 2-anonymous | KF) ≥ p. Note that we do not need to
check also for the mapping [0,0] since if ∆0,1(T∪) violates
k-anonymity so does ∆0,0(T∪).

In the next section, we show how to calculate P (Aµ |KF),
the µ-probability, for a distributed k-anonymity protocol.

5 µ-Probability of a Protocol

Definition 12 (Bucket Set) A bucket set for a set of at-
tributes C, and a mapping µ, is given by B = {tuple b | ∃t
from the domain of C such that b∗ = ∆µ(t)}

In Table 1, for the domain tables defined and the map-
ping [0,1], the bucket set is given by {<M,AM> ,<M,EU> ,<F,AM> ,
<F,EU> }. When we refer to this bucket set, we will index the
elements: {b1,b2,b3,b4}

5.1 Assumptions

Deriving the exact µ-probability is a computationally costly
operation. To overcome this challenge, we make the follow-
ing assumptions in our probabilistic model:

Attribute Independence: Until Section 5.6, we assume that
there is no correlation between attributes. This is a valid
assumption if we only know KF about the unknown data.
So from Pσ’s point of view, for any foreign tuple t ∈ T1;
P (t[i] = vk) = P (t[i] = vk | t[ j] = v`) for all i 6= j, vk, and v`.

In section 5.6, we introduce bayesian networks (KB) as a
statistical information on

⋃
i Ti to capture correlations.

Tuple Independence: We assume foreign tuples are drawn
from the same distribution but they are independent. Mean-
ing for any two tuples t1, t2 ∈ T2, P (t1[i] = v j) = P (t1[i] =
v j | t2[i] = vk) for all possible i, vi, and vk. Such equality does
not necessarily hold given KF , but for large enough data, in-
dependence is a reasonable assumption. In Section 7, we ex-
perimentally show that tuple independence assumption does
not introduce any deviation from the exact µ-probability.

5.2 Deriving µ-Probability

Generalization of any table T∪ with a fixed mapping µ can
only contain tuples drawn from the associated bucket set
B = {b1, · · · ,bn}. Since we don’t know T∪, the cardinality
of the buckets act as a random variable. However, Pσ can
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Fig. 2 Probabilistic model for µ-probability.

extract the size of the
⋃

i Ti from KF . Letting Xi be the ran-
dom variable for the cardinality of bi, and assuming

⋃
i Ti

has cardinality N, we have the constraint ∑
i

Xi = N.

In Table 1, from Pσ’s point of view N = |T1|= 4. So for
the four buckets above; X1 +X2 +X3 +X4 = 4.

The generalization T ∗∪ satisfies k-anonymity if each
bucket (generalized tuple) in T ∗∪ has cardinality of either 0
or at least k. For horizontally partitioned data, party Pσ al-
ready knows his share on any bucket, so the buckets are ini-
tially non-empty. Let Xi ≥0 k denote the case when (Xi =
0) ∨ (Xi ≥ k) in the case of vertically partitioned data and
Xi + |bi ∈∆µ(Tσ)| ≥0 k in the case of horizontally partitioned
data then µ-probability takes the following form:

P (
⋂

i

Xi ≥0 k | ∑
i

Xi = N,KF)

If we have the knowledge of the distribution functions
for the attributes KF =

⋃
c fc,the probability that a random

tuple t ∈ T∪ will be generalized to a bucket bi is given by 1

`i = ∏
c

fc(bi[c])
N

(1)

which we will name as the likelihood of bucket bi.
For example, in Table 1, Pσ is assumed to know the at-

tribute distribution set KF = { f T2
sex , f T2

nation }. (E.g., f T2
sex (M)

=2, f T2
nation (Brazil) =1, · · · ). Thus the likelihood of bucket

b1 ({<M,AM>} ) is `1 = f
T2
sex (M)

N · f
T2
nation (AM)

N = 2
4 · 3

4 = 3
8 . Simi-

larly `2 = 1
8 , `3 = 3

8 , `4 = 1
8 .

Without tuple independence assumption, each Xi behaves
like a hypergeometric2 random variable with parameters (N,
N`i,N). However, hypergeometric density function is slow
to compute. But with tuple independence, we can model Xi
as a binomial random variable B 3 with parameters (N, `).
Such an assumption is reasonable for big N and moderate

1 assuming attribute independence
2 hyp(x;N,M,n):A sample of n balls is drawn from an urn containing

M white and N −M black balls without replacement. hyp gives the
probability of selecting exactly x white balls.

3 B(x;n,p):A sample of n balls is drawn from an urn of size N con-
taining N p white and N(1− p) black balls with replacement. B gives
the probability of selecting exactly x white balls.

` values [14]. Figure 2 summarizes our probabilistic model.
Each tuple is represented by a ball with a probability `i of
going into a bucket bi. Then the µ-probability can be written
as:

Pµ = P (
⋂

i

Xi ≥0 k | ∑
i

Xi = N,Xi ∼ B(N, `i)) (2)

In Table 1, |b1 ∈ ∆µ(Tσ)| = 2 similarly for b2,b3,b4,
initial bucket sizes are 0,1,1. So for k = 2, Pµ = P (X1 ≥
0,X2 ≥0 2,X3 ≥ 1,X4 ≥ 1)

5.3 Calculating exact µ-Probability

Pµ can be calculated in two ways:
1. A recursive approach can be followed by conditioning

on the last bucket:

P n,`1···n
µ = P (

n⋂

i

(Xi ≥0 k) |
n

∑
i

Xi = N,Xi ∼ B(N, `i))

= ∑
x≥0k

P (Xn = x)P (
n−1⋂

i

(Xi ≥0 k) |

n

∑
i

Xi = N,Xi ∼ B(N, `i),Xn = x)

= ∑
x≥0k

B(x;N, `n) ·P (
n−1⋂

i

(Xi ≥0 k) |

n−1

∑
i

Xi = N− x,Xi ∼ B(N, `′i))

= ∑
x≥0k

(
N
x

)
`x

n(1− `n)N−x ·P n−1,`′1···n−1
µ (3)

where `′i is the normalized likelihood `′i = `i
∑n−1

j ` j
.

2. Each tuple in
⋃

i Ti can be thought of an independent
trial in a binomial process in which each trial results in ex-
actly one of the n possible outcomes (e.g., b1, · · · ,bn). In this
case, the joint random variable (X1, · · · ,Xn) follows a multi-
nomial distribution with the following density function:

P (X1 = x1 · · ·Xn = xn) =
N!

x1! · · ·xn!
`x1

1 · · ·`xn
n

Pµ can be calculated by summing up the probabilities of
all assignments that respect k-anonymity:

Pµ = ∑
∑xi=N∧xi≥0k

N!
x1! · · ·xn!

`x1
1 · · ·`xn

n (4)

In Table 1, following the example above, one assignment
that satisfies 2-anonymity is X1 = 0,X2 = 1,X3 = 0,X4 =
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3. The probability share of this assignment on Pµ can be
calculated as

P (X1 = 0,X2 = 1,X3 = 0,X4 = 3)

= P (X4 = 3)P (X3 = 0 | X4 = 3)

·P (X2 = 1 | X3 = 0,X4 = 3)

·P (X1 = 0 | X2 = 1,X3 = 0,X4 = 3)

=
4!

0! ·1! ·0! ·3!
`0

1`
1
2`

0
3`

3
4 = 0.026

If we sum up all the probabilities for valid assignments,
we get the µ probability as 0.23.

Unfortunately, calculating µ-probability with Equation 3
or 4 is computationally expensive. Number of assignments
that satisfy X1 + · · ·+Xn = N, thus number of binomials that
needs to be calculated is in the order of

(N+n−1
N

)
. We next

show how to bound and approximate µ-probability.

5.4 Bounding µ-Probability

Let Ei be the event that 0≤ Xi ≤ k. Obviously,

Pµ = P (
⋂

Ēi) = 1−P (
⋃

Ei)

Bounding the probability of union of events is well stud-
ied in the literature. One of the most common bounds is
given by Bonferroni [5]:

Pµ = 1− (z1− z2 + z3− z4 + · · ·(−1)n−1zn)

where z1 = ∑i P (Ei), z2 = ∑i< j P (Ei,E j),
z3 = ∑i< j<` P (Ei,E j,E`), · · ·

Note that each zi can be calculated by applying Equation
3 on the associated X variables. Then Bonferroni bounds
apply;

Pµ ≤ 1− z1 + z2, Pµ ≤ 1− z1 + z2− z3 + z4, · · ·
Pµ ≥ 1− z1, Pµ ≥ 1− z1 + z2− z3, · · ·

Following the example above, z1 = P (E1) + P (E2) +
P (E3)+P (E4) = 0+

(4
1

)
`2(1−`2)3 +

(4
0

)
(1−`3)4 +

(4
0

)
(1−

`4)4 = 1.074. z2=P (E1,E2)+P (E1,E3)+P (E1,E4)+P (E2,E3)
+P (E2,E4)+P (E3,E4)=0+0+0+

(4
1

)(4
0

)
`2(1−`2−`3)3 +(4

1

)(4
0

)
`4(1− `2 − `4)3 +

(4
0

)(4
0

)
(1− `3 − `4)4 = 0.336. So

−0,073≤ Pµ ≤ 0.263.
Even though Bonferroni always holds, it does not guar-

antee tight bounds [25]. Besides that, calculation of high di-
mensional marginal distributions may still be infeasible for
large data. In Section 7, we experimentally show the effi-
ciency of the bounding algorithms.

5.5 Approximating µ-Probability

In this section, we adapt the approximation of multinomial
cumulative distribution given in [17] to µ-probability. The
resulting approximation is much faster to compute compared
to bounding techniques. Even though the error of the ap-
proximation is unbounded, as we show in Section 7, the ap-
proximation is practically quite accurate.

Let Ai be the event that Xi ≥0 k, then given Xi ∼B(N, `i)
we have;

Pµ = P (
⋂

Ai | ∑Xi = N)

=
P (∑Xi = N | ⋂

Ai) ·P (
⋂

Ai)
P (∑Xi = N)

=
P (∑Yi = N) ·P (

⋂
Ai)

P (∑Xi = N)
(5)

where Yi is a truncated binomial; Yi ∼ (Xi|Xi ≥0 k).
The second numerator term is a probability of indepen-

dent binomials so it can easily be computed as:

P (
⋂

Ai) = ∏P (Xi ≥0 k)

The first numerator term and the denominator however
is the probability regarding sums of random variables which
are independent but not identically distributed. However,
since both Xi and Yi are bounded, by Lindeberg theorem [5],
the central limit theorem holds; distribution of the sums con-
verges to a normal distribution N as n goes to infinity. So
given (X̄i,Ȳi) is the mean and (σ2

Xi
,σ2

Yi
) is the variance of

(Xi,Yi) respectively, then

Pµ ' P (|NY −N| ≤ 0.5)
P (|NX −N| ≤ 0.5)

·∏P (Xi ≥0 k)

where NX ∼N (∑ X̄i,∑σXi) and NY ∼N (∑Ȳi,∑σYi)
Following the example in Table 1, ∑ X̄i = 4,∑σXi = 2.75,

∑Ȳi = 4.72,∑σYi = 2.23, thus approximation gives Pµ '
0.23. Approximation in this case is successful up to the third
decimal even though n is considerably small.

Even though approximation is not guaranteed to lie with-
in the Bonferroni bounds, we show in Section 7 that the ap-
proximation is very accurate in practice and very fast com-
pared to the computation of exact algorithm and the Bonfer-
roni bounds.

5.6 Handling Correlations

So far, we assumed that only the knowledge of the global at-
tribute distributions is used to estimate µ-probability. How-
ever, such information cannot successfully describe a global
dataset with high attribute correlations. Sharing joint attribute
distribution instead of single attribute distributions can be a
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Fig. 3 A bayesian network

solution. However, such sharing should be done carefully
since supplying all joint probabilities with an SMC not only
is inefficient due to the large domain of joint attributes but
also might give out too much sensitive information.

Instead, parties can agree on summary structures that
contain information on correlations. Bayesian networks (BN)
are one such example. BNs are basically directed graphs
in which each vertex corresponds to an attribute and each
edge shows a dependency relation between the connected
attributes (see Figure 3). Attribute pairs not connected by
an edge are assumed to be conditionally independent. Joint
probabilities on the connected attributes are supplied with
the BN structures. The advantages of using BNs are 1. the
level of dependency to be shared can be adjusted, thus infor-
mation disclosure and the amount of communication traffic
can be limited, 2. BNs are also proposed for query selec-
tivity in database systems, thus might be readily available
within the database management system [6].

In situations where local data of a party is assumed to
follow a similar distribution with the global data, BNs can
be constructed locally without requiring an SMC. Such an
approach is however, only applicable to horizontally parti-
tioned data.

Incorporating information from a BN structure does not
complicate the computation of µ-probability. BNs only af-
fect the likelihoods of buckets given in Section 5.2. Thus
only Equation 1 is rewritten in terms of joint distributions.

5.7 Communication Protocol

As we mentioned before, assuming we have n remote parties
P1, · · · ,Pn, the knowledge KF that Pσ gets should describe
T∪− Tσ =

⋃n
i=1 Ti. Having Pσ get separate distributions on

Ti from each party Pi would disclose too much information.
Our goal in this section is two folds:

– We limit the information disclosure by extracting infor-
mation from the local anonymizations rather than private
tables. This is useful if the privacy policies of the partic-
ipating parties prevent disclosure of any information of
finer granularity.

– We use SMC protocols to calculate the global KF . Thus
for more than 2 parties, private shares inherent in the
global KF are indistinguishable. Fortunately, such a pro-
tocol is not costly for non-colluding parties.

Algorithm 1 Secure distribution of KF

Require: Parties {Pσ,P1, · · · ,Pn}, Pσ gets distribution functions on⋃n
i=1 Ti.

1: for all dimensions d do
2: Let set of values {v1, · · ·vn} be the domain of d
3: Pσ sends vector of random number R0 = {r0

1, · · · ,r0
n} to P1

4: i = 1
5: while i < n do
6: Pi calculates distorted distribution function

Gi = getUniform (d)
7: Pi sends Ri = Ri−1 +{Gi(v1), · · · ,Gi(vn)} to Pi+1
8: i++
9: Pn sends Rn to Pσ

10: Pσ calculates the distribution for d; fd(vi) = rn
i − rσ

i

Algorithm 2 getUniform(d)
Require: Party has the private table T and d is a dimension in T . Set

of values V = {v1, · · ·vn} is the domain of dimension d.
Ensure: Function G is the distorted distribution function for dimen-

sion d.
1: Let T ∗ be the k-anonymization of T with mapping µ.
2: for all vi ∈V do
3: Let generalized value v∗ = ∆µ(vi) in T ∗ and let p be the fre-

quency of v∗

4: Let V ′ = {v j | v j ∈ V ∧ v j ∈ ∆−1
µ (v∗)} and let q be the size of

V ′

5: Assuming each value is equally likely to appear, pick randomly
a vector R = {r1, · · · ,rq} such that ∑

i∈[1−q]
ri = p

6: G(v j) = r j for v j ∈V ′

7: V = V −V ′

8: Return G;

Algorithm 1 shows how parties can calculate global KF
securely. In line 3, Pσ supplies a random number for each
domain value vi. In line 7, each party adds its private share
(which we explain shortly) to the random sum and the last
party sends the final sum back to Pσ. Pσ finds the global
distribution by subtracting the initial random number from
the final sum.

The important point here is that private shares of parties
do not contain the exact frequency of vi. Parties distort the
frequency as given in Algorithm 2. The algorithm getUni-
form returns new distributions from the local k-anonymiza-
tion other than the private table. The anonymized distribu-
tion (of values of possibly coarser granularity) is first ex-
tracted and a new distribution on atomic values (e.g., G)
that respects the anonymized distribution is returned ran-
domly. Randomization should enforce symmetry thus in-
distinguishability between each atomic value in the same
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equivalence class (P (G(vi)= x)= P (G(v j)= x) for all i, j,x).
An example is to draw the frequencies from a multinomial
distribution:

P (r1 = x1, · · · ,rq = xq | r1 + · · ·+ rq = p)

=

{
0, x1 + · · ·+ xq 6= p;

p!
x1!····xq!

1
qp , otherwise.

Note that KF from the remote parties is truthful only on
a coarse granularity decided by their local anonymizations.
Thus, information released by the remote parties is bounded
by their local k-anonymizations.

Suppose this time we have the parties Pσ,P1, and P2 with
private tables Tσ,T1, and T2 in Tables 1 and 2. We again as-
sume Pσ initiates a look ahead with info KF . To get the fre-
quency of a domain value, say Male ; first, Pσ picks a random
number r and sends it to P1. P1 calculates G(M) from T ∗1 .
Since Sex column is not generalized in T ∗1 , G2(M) returns
the exact frequency of the males: 2. Thus, P2 sends r + 2 to
P2. P2 calculates G2(M) from T ∗2 . * is the generalization of M
in T ∗2 with frequency 4 (e.g., p = 4). There are two atomic
values M and F under * (e.g., q = 2). Thus the output of G2 on
M and F will respect the following multinomial distribution:

P (G2(M) = x,G2(F) = y) =





1
16 , x = 0,y = 4
4
16 , x = 1,y = 3
6
16 , x = 2,y = 2
4
16 , x = 3,y = 1
1
16 , x = 4,y = 0

5.8 Information Disclosure

In this section, we discuss for a given party how much infor-
mation on his/her private input is disclosed to other parties
due to the look ahead. The amount of information disclosure
depends on the outcome of the look ahead. So we evaluate
the disclosure case by case. We start with disclosure by the
remote parties:

1. Insufficient SMCIf the look ahead concludes that SMC
will not meet the expectations, we assume each party re-
leases their local anonymizations. Note that Algorithm 1
only operates on the local anonymizations of the remote
parties meaning any adversary can simulate the look ahead
from the released anonymizations. Thus, with respect to re-
mote parties, there is no information disclosure due to the
look ahead process.

2. Sufficient SMCIn this case parties initiate the SMC proto-
col. We again have two cases to consider depending on the
output of the SMC protocol. Let T ∗∪ be the output and party
Pi has private input Ti with local anonymization T ∗i .

2.1. µ(T ∗i )⊂ µ(T ∗∪ )If T ∗i is a higher level generalization than
T ∗∪ ; the released data T ∗∪ contains more information on Ti
than the local anonymization T ∗i . Thus KF on T ∗i does not
give out any more than T ∗∪ .

2.2. µ(T ∗i ) 6⊂ µ(T ∗∪ )We now try to upper bound the infor-
mation disclosure in this case. Surely, Pi sending the ex-
act local anonymization T ∗i to Pσ (as opposed to distribu-
tions on T ∗i ) results in a higher information disclosure. In
such a case, Pσ sees two different anonymizations of Ti en-
abling him/her conduct intersection attacks to recover some
data cells in finer granularity. Table 3 shows an example
where T ∗2 is the local anonymization of T2 and T ∗∪,2 is what
Pσ sees at the end of the protocol. Seeing T ∗2 and T ∗∪,2 to-
gether, Pσ can conclude that there is a tuple in T2 with sex=M ,
nation=EU , salary=>40K . Note that such information can-
not be extracted from T ∗∪,2 alone.

However, even though it is possible, it is quite unlikely
to launch intersection attacks in our protocol. Because Pσ
only sees the global KF on all local anonymizations. It is not
possible to distinguish distribution of one party from that of
an another. Even for the two party case, KF is distorted and
there is no way of telling the granularity of truth in KF (e.g.,
generalization mapping). Besides even if Pσ knows the map-
ping, it is still unlikely to link values to an individual in Ti.
Consider in Table 3, Pσ knows T ∗∪,1 and distributions on T ∗1 .
In addition to T ∗∪,1, Pσ will discover from the distributions
that there are two nationalities of EU and AM in T1. However,
he/she will not be able to link the attribute nation with sex
or age . In other words, what Pσ gets from KF does not help
to gain knowledge on any of the individuals.

Nevertheless, it is possible for parties to avoid case 2.2
by enforcing the output generalization mapping to be some
descendant of all local mappings. This would negate any in-
formation disclosure at the cost of utility. Such an approach
makes sense especially for the two party case in which dis-
closure risk is the highest. Also the utility loss for two party
case is minimized since it becomes easier to find a common
descendant mapping.

As for the disclosure by the home party, at the end of
the look ahead, the remote parties will know the decision
of Pσ on inputs Tσ,KF . This information cannot be simu-
lated from T ∗σ alone, thus there is a non-zero information
disclosure. This situation could have been avoided by en-
forcing the home party to use T ∗σ instead of Tσ in the look
ahead. However, we advocate that the risk of disclosure is
very small to take such a precaution at the cost of utility. It
is unlikely for the remote parties to infer anything from the
decision since no party knows the exact global KF . Besides,
decision does not disclose the exact µ-probability making
any inference on Tσ difficult if not impossible.
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Table 2 Tables for party P2

Name Sex Nation Salary
q9 F England >40K

q10 M Canada ≤40K
q11 M USA ≤40K
q12 M Italy ≤40K

Name Sex Nation Salary
q9 * EU >40K

q10 * AM ≤40K
q11 * AM ≤40K
q12 * EU ≤40K

Name Sex Nation Salary
q9 F EU >40K
q10 M AM ≤40K
q11 M AM ≤40K
q12 M EU ≤40K

T2 T ∗
2 T ∗

∪,2

Table 3 Intersection Attack

Name Age Sex Nation Salary
q13 12 M Italy >40K
q14 17 F USA ≤40K
q15 24 M Canada ≤40K
q16 25 F England ≤40K

Age Sex Nation Salary
10-20 * EU >40K
10-20 * AM ≤40K
20-30 * AM ≤40K
20-30 * EU ≤40K

Age Sex Nation Salary
10-20 M * >40K
10-20 F * ≤40K
20-30 M * ≤40K
20-30 F * ≤40K

T1 T ∗
1 T ∗

∪,1 = T ∗
∪ −T ∗

σ

6 Look Ahead for Distributed Recursive Diversity

6.1 Problem Definition

In this section, we show how to modify our methodology to
work with distributed `-diversity assuming we have different
distribution functions describing tuples with different sensi-
tive values. However, to the best of our knowledge, there
is no proposed protocol for distributed `-diversity problem.
Thus, we choose to leave the practical evaluation of the the-
ory as a future work.

While k-anonymity constraints on the size of the equiva-
lence classes, recursive diversity constraints on the distribu-
tion of sensitive attributes. In this section, we try to propose
an extension for recursive diversity when we have only two
sensitive values. We first revise our problem definition for
distributed diversity.

Definition 13 Let Aµ be the event that ∆µ(T∪) is recursive
(c,2) diverse. Assuming we have only two values s1,s2 in
the sensitive attribute domain, the problem of sufficiency in
this case is to prove that, for at least one µ ∈ Sµ;

P (Aµ | KF1,F2)≥ p

where F i is the distribution function for the set tuples
with sensitive value si.

Note that we assume in this case, the home party collects
separate distributions for each class of tuples. However by
doing so, we assume independence between QI attributes
with the sensitive attribute. A better approach would be to
consider correlations through summary structures such as
bayesian networks. We leave this challenge as a future work.

6.2 Deriving µ Probability for Recursive Diversity

The probabilistic model we construct in this section is sim-
ilar to the one presented in Section 5.2. The difference is

that there are now two separate distributions (one for each
sensitive value si) of random tuples to buckets. Let Ni be the
number of si tuples in T∪ then we have two sets of likelihood
probabilities

(
N1⋃

i

`1
i ,

N2⋃

i

`2
i ) and cardinality random variables (

N1⋃

i

X1
i ,

N2⋃

i

X2
i ),

each associated with one sensitive value. µ probability for
recursive (c, `) diversity can be written as

Let Zi be the event that max(X1
i ,X2

i ) ≤ c ·min(X1
i ,X2

i ),
then

Pµ = P (
⋂

Zi |

C1
︷ ︸︸ ︷
n

∑
i

X1
i = N1,

B1
︷ ︸︸ ︷
X1

i ∼ B(N1, `1
i ),

n

∑
i

X2
i = N2

︸ ︷︷ ︸
C2

,X2
i ∼ B(N2, `2

i )︸ ︷︷ ︸
B2

)

=
P (C1,C2 | ⋂

Zi,B1,B2)P (
⋂

Zi | B1,B2)
P (C1,C2 | B1,B2)

Since we assume QI attributes and sensitive attribute are
independent, C1,C2 becomes independent variables. Thus,

Pµ =
P (C1 | ⋂

Zi,B1) ·P (C2 | ⋂
Zi,B2)

P (C1 | B1) ·P (C2 | B2)
·P (

⋂
Zi | B1,B2)

Pµ can be calculated or bounded with the same tech-
niques given in Section 5.3 and 5.4. Pµ can be approximated
with the following equation:

Pµ' P (|NY 1 −N1| ≤ 0.5)
P (|NX1 −N1| ≤ 0.5)

· P (|NY 2 −N2| ≤ 0.5)
P (|NX2 −N2| ≤ 0.5)

·∏P (Zi)

where NX j ∼N (∑i X̄ j
i ,∑i σX j

i
) and N j

Y ∼N (∑i Ȳ
j

i ,∑i σY j
i
)

with Y j
i ∼ X j

i | Zi for j ∈ [1−2].



11

���������������������	��
����

��� ��� ��� ��� ��� ��� ��� ��� �	� �
� ���
����������	 ��
����������������������������������������� � �!��"

� ��������	
����
���
Fig. 4 Probability Results on Synthetic Dataset
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Fig. 5 Time Performance on Synthetic Dataset
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Fig. 6 Time Performance on Synthetic Dataset

7 Experiments

We evaluate our approaches in three different contexts based
on the data source. In Section 7.1, we work on a synthetic
uniform dataset. In this set of experiments, we vary the data
size and the number of equivalence classes while uniformly

distributing tuples to equivalence classes. The second and
third class of experiments in Sections 7.2 and 7.3 use the
famous UCI Adult dataset [2]. For the second set of exper-
iments, we use a shuffled version of the dataset to achieve
attribute independence. To be more precise, keeping the at-
tribute distributions fixed, we shuffled the values of each at-
tribute independently. By doing so, we set our expectation
on the joint probability of a given tuple to be the product of
the distributions of its values. The third set of experiments is
run on the original Adult dataset with correlations between
the attributes.

The experiments aim to convey the accuracy of the prob-
ability approximation and the time performance with respect
to different variables such as data size and the value of k.

7.1 Synthetic Dataset

For the synthetic dataset, we set k to 100 and the number
of equivalence classes to 4, which means each equivalence
class will contain 25% of the total number of tuples due to
the uniform distribution assumption. Figure 4 plots the re-
sults of Bonferroni Bounds (Lower and Upper) and the Ap-
proximation algorithm against the actual probability of be-
ing k-anonymous, when the size of the data varies. Bonfer-
roni Bounds get more precise as the data size increases. Ap-
proximation tends to overestimate with a margin of at most
0.1, but seems to be independent of the data size.

The question ’Why don’t we calculate the exact proba-
bility?’ is eliminated with Figure 5. The time it takes to cal-
culate the exact probability grows exponentially with respect
to the data size, whereas efficiency of Bonferroni Bounds
and the Approximation seems to be independent of the data
size

Although the Bonferroni Bounds seem to yield more ac-
curate results in less time, when we increase the number of
equivalence classes, the time performance of the bounds de-
crease drastically as shown in Figure 6. The exact probabil-
ity behaves similarly whereas the time requirement of the
Approximation is independent of the number of equivalence
classes.

7.2 Shuffled Adult Dataset

To test our approach, we have generated an SMC scenario
(Scenario 1) similar to the one in Section 2.2. We have two
parties ’home site’ and ’remote site’ that are willing to initi-
ate an SMC to create a global k-anonymization. The ’home
site’ employs the Look Ahead of the SMC protocol with the
’remote site’, thus approximates the local info gain (Section
3). Info gain is calculated with respect to the µ-cost metric
and we search for a (1, p)-sufficient SMC protocol. In other
words, we try to look ahead to calculate the probability that
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Fig. 8 Time Performance on Shuffled Dataset

the SMC protocol returns a lower mapping generalization
(a mapping positioned lower on the full domain generaliza-
tion lattice) than the local generalization. As also mentioned
in Corollary 1, a lower level mapping is provably more uti-
lized than a higher level mapping. For the sake of simplicity,
we check for the mapping that is one below with respect to
marital− status attribute.

To create the datasets for each site, we have partitioned
the dataset as follows: First, we have selected and removed
15% of the data (which corresponds to 4524 tuples) to form
the data of the home site. Then, using the remaining 85% of
the data, by random sampling, we have formed the data of
the remote site which has a size equal to the home site. Al-
though home site knows the general distribution of the data
of the remote site, data itself is invisible to the home site.
Repeating the latter step for 100 times we had 100 different
remote sites that are going to be subject to Look Ahead based
on the data of the home site. Conducting several experiments
on randomized data gives us an idea on the algorithm behav-
ior at the mean. To show the effect of the data size, we have
repeated the above mentioned procedure by increasing the
size of the data used for both home site and remote sites to
25% of the data (7540 tuples) and 35% of the data (10556
tuples).

Figure 7 shows the accuracy of Naive Approximation
and Randomized Naive Approximation for each data size
mentioned above and for different k values. We name the ap-
proximation ’naive’ as it does not take attribute correlations
into account, thus Naive Approximation calculates the prob-
ability on the information gain given only attribute distribu-
tions. We use the adjective ’Randomized’ when the remote
site shares a distorted version of the atomic frequencies in-
stead of the actual distribution, to bound the information re-
leased by its local k-anonymization (Section 5.7). Note that
in this set of experiments, we have shuffled the data and bro-
ken the correlations between the attributes.
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Fig. 9 Absolute Error on Adult Dataset for Scenario 1

We have applied the algorithm against every remote site
taking its corresponding home site as a base and then av-
eraged the results to be the representative result against the
actual probability. We calculate the actual probability as fol-
lows: We first combine all the local datasets to get the uni-
versal dataset (e.g., T∪). Then we check if k anonymity is
reached with the selected mapping as described above, and
take the average of the 100 runs. In other words, we try to
find out the percentage of a positive information gain out
of 100 cases and compare it with the probability value that
the Naive Approximation returns. Experiments show that
when there is a low correlation between the attributes, our
results are spot on. For instance, for the 25% Data Case and
for k = 30, our Naive Approximation algorithm finds the
µ-probability as 0.65 and we found that out of 100 univer-
sal datasets, 65 of them were k-anonymous with respect to
the selected mapping. This shows our probabilistic model is
very successful on predicting the probability of k-anonymity
when there is little correlation betweeen the attributes. Al-
though it has a larger error margin in some cases, Random-
ized Naive Approximation is almost as successful as Naive
Approximation. This difference obviously stems from the
distortion in the information provided by the remote site. It
is a trade off between accuracy and privacy but results show
that we do not lose that much by disclosing less.

Figure 8 shows the time performance of the Naive Ap-
proximation for different k values. Time requirement for the
Naive Approximation is identical to the Randomized ver-
sion as the only difference between the two is the frequen-
cies of the atomic values. Thus the time requirement of the
Randomized Naive Approximation is not shown. 25% and
35% Data Cases follow similar patterns but there is no total
domination between any pair of the lines. This is because
the time taken by the algorithm does not depend directly on
data size or k, instead it depends on the mapping used and
the number of equivalence classes (e.g., buckets in Section
5) in the resulting generalization.
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(a) 15% Data Case
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(b) 25% Data Case
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(c) 35% Data Case

Fig. 7 Accuracy of Naive and Randomized Naive Approximations on Shuffled Dataset in Different Data Sizes

7.3 Adult Dataset

In this set of experiments, we again use the Scenario 1, but
this time we use the original Adult dataset, which has at-
tribute correlations. We compare the results of the Naive Ap-
proximation and Correlation Aware Approximation (which
we name as the CA Approximation from now on) that uses
the Bayesian Network Structure to consider the effect of the
correlations between attributes. To create data for the par-
ties, we again sampled 15%, 25% and 35% of the Adult
Dataset in the same manner as in Section 7.2, but this time
we did not shuffle the data values.

Figure 9 shows the absolute error for each data case and
for different k values. It can again be inferred that there is
no direct relation between neither k and the absolute error
nor the data size and the absolute error. We rather expect a
relation between the mapping and the absolute error. We see
clearly that Naive Approximation fails to capture the cor-
relations and yields results that are off the target. For in-
stance, in the 15% Data Case, for k = 30, Naive Approx-
imation gives a µ-probability of 1, but out of 100 unions
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Fig. 10 Time Performance on Adult Dataset

of the home site with the remote sites, only 4 of them are
k-anonymous with respect to the given mapping µ. On the
other hand, the CA Approximation dominates the Naive Ap-
proximation in all cases. It yields a µ-probability of 0.12 for
the above mentioned case and has an absolute error of 0.08,
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Fig. 11 Absolute Error on Adult Dataset for Scenario 2

compared to the absolute error of 0.96 of the Naive Approx-
imation. The performance of Randomized CA Approxima-
tion is very close to the CA Approximation’s performance,
just like in the Naive Approximation case in Section 7.2.
We are off the mark in some cases as we trade privacy for
accuracy, but generally the results are as accurate as CA Ap-
proximation.

Figure 10 shows the time performance for the test men-
tioned above. Again the time performances of Randomized
CA Approximation is identical to CA Approximation and is
not shown in the figure. The value of k again does not di-
rectly affect the time requirement of the algorithm, but the
main decisive factor is the mapping used.

We have generated a new scenario (Scenario 2), where
we do not assume any parties thus do not partition the data
and we try to approximate the probability of being k ano-
nymous looking at a single sample from the original dataset
for a fixed mapping. Our aim is to work with a larger dataset
and factor out the effect of the generalization mapping on
accuracy and efficiency. We have sampled 100 new and in-
dependent datasets of size 60% of the original set. We have
repeated the same procedure while changing the sample data
size to 70% and 80% of the original dataset.

Figure 11 shows the absolute error of CA Approxima-
tion for each data case and for different k values. We see
that the error rate is at most 0.17. Although both columns
have similar shapes, 80% Data Case seems to be shifted to
right. That is because there is no direct relation between the
k value and the error rate, rather there is a relation between
the number and size of equivalence classes in data and the
error rate.

Finally, Figure 12 shows the time performance of CA
approximation. We again see that time taken depends on
the equivalence classes in the resulting generalization rather
than the data size and the k value, as 60% and 70% Data
Cases have similar structures and 80% Data Case requires
more time. Note that the time required for a CA approxi-
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Fig. 12 Time Performance on Adult Dataset for Scenario 2

mation is no more than 6 seconds. Compared to the running
time of a semi honest SMC protocol where execution time
is generally expressed in days or weeks, the look ahead ap-
proach is quite cheap and effective.

8 Conclusion and Future Work

Most SMC protocols are expensive in both communication
and computation. We introduced a look ahead approach for
SMC protocols that helps involved parties to decide whether
the protocol will meet the expectations before initiating it.
We presented a look ahead specifically for the distributed k-
anonymity by approximating the probability that the output
of the SMC will be more utilized than their local anonymiza-
tions. Experiments on real data showed that the look ahead
process is perfectly accurate given non-identifying statistics
on the global union.

Designing look aheads for other SMC protocols stands
as a future work. A wide variety of SMC protocols have
been proposed especially for privacy preserving data mining
applications [19,28,12] each requiring a unique look ahead
approach. As for the look ahead process on distributed ano-
nymization protocols, definitions of k-anonymity definitions
can be revisited, more efficient techniques can be developed
and experimentally evaluated.
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