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Abstract. V. P. Zahariuta, in 1973, used the theory of Fredholm operators to develop
a method to classify Cartesian products of locally convex spaces. In this work we
modify his method to study the isomorphic classification of Cartesian products of
the kind Ep

0�a� � Eq
1 �b� where 1 % p;q < 1 , p �j q, a � �an�1n�1 and b � �bn�1n�1 are

sequences of positive numbers and Ep
0�a�, Eq

1 �b� are respectively `p-finite and
`q-infinite type power series spaces.

Introduction. Let �aik�i;k2N be a matrix of real numbers, such that 0 % aik % ai;k�1 for all
i; k and p ^ 1: We denote by Kp�aik� the `p-Köthe space defined by the matrix �aik�; i.e. the
space of all sequences of scalars x � �xi� such that

jxjk :�
�P

i
�jxijaik�p

�1=p
< 1 8 k 2 N:

With the topology generated by the system of seminorms fj:jk; k 2 Ng it is a FreÂchet space. If
a � �ai� is a sequence of positive numbers the Köthe spaces

Ep
0�a� � Kp exp ÿ 1

k
ai

� �� �
; Ep

1 �a� � Kp�exp�kai��

are called, respectively, `p-finite and `p-infinite type power series spaces. They are Schwartz
spaces if and only if ai ! 1 :

Power series spaces play an important role in Functional Analysis because they provide
sequence space representations for large classes of spaces of (analytic or C1 ) functions (see
for more details [8, 9, 14]). Their isomorphic classification and structure properties were
studied by Kolmogorov, Pelczynski, Mityagin and many other mathematicians and the
question of isomorphic classification was solved completely in the Schwartzian case (see [8]
for details) by the help of classical linear topological invariants, namely approximative and
diametral dimensions.

For arbitrary (non-Schwartzian) spaces, Mityagin [10] obtained a complete isomorphic
classification of `2-power series spaces (see also [12]). Moreover, he initiated in this paper a
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method to construct new (generalized) linear topological invariants that are more powerful
than approximative and diametral dimensions. Zahariuta [18] developed this method for
KoÈ the spaces and obtained new results about isomorphic classification for some classes of
KoÈ the spaces that include Cartesian and tensor products of power series spaces (for further
developments see the survey [22]).

Another approach to the isomorphic classification of Cartesian products was Zahariuta�s
use of the theory of Fredholm operators [19, 20]. We modify Zahariuta�s method (following
[13], see also [21]) in order to extend its area of applications, and use the modified version to
study the isomorphic classification of Cartesian products of the kind Ep

0�a� � Eq
1 �b�; where

a; b are sequences of positive numbers and p; q 2 �1; 1�: Let us note that in [19], [20] a
complete isomorphic classification of these spaces is obtained in the case where at least one
of the sequences a; b tends to 1 (i.e. at least one of the Cartesian factors is a Schwartz
space). On the other hand, in the non-Schwartzian case a complete isomorphic classification
of the spaces E1

0�a� � E1
1 �b� is obtained in [2], [3] by using the appropriate linear

topological invariants. In the same way one can characterize the isomorphisms of the spaces
Ep

0�a� � Ep
1 �b�; where p is fixed, p 2 �1; 1�: Here we complete these results by studying the

non-Schwartzian case for p �j q:
Some of our results are presented without proof in [4].

Ac knowl edg e m en t . We would like to thank professors S. L. Troyanski and V. P.
Zahariuta for helpful discussions concerning the proof of Proposition 4.

Preliminaries. Let X and Y be locally convex spaces and T : X ! Y be a continuous
linear operator. The operator T is bounded (respectively precompact) if there exists a
neighborhood U of zero in X such that T�U� is bounded (respectively precompact) in Y.
The operator T is strictly singular if its restriction on any closed infinite-dimensional
subspace of X is not an isomorphism.

We write �X;Y� 2 b; �X;Y� 2k; �X;Y� 2ss; �X;Y� 2 bss if every continuous
linear operator from X into Y is bounded, precompact, strictly singular, bounded and strictly
singular, respectively. Since every precompact operator is bounded and strictly singular the
relation �X;Y� 2k implies �X;Y� 2 bss: The converse is not true. For example, if
1 % p < q < 1 then �`p; `q� 2 bss, but �`p; `q�2jk since the identity mapping from `p to
`q is not compact (see [7], Vol. I, Ch. 2. Sect. C).

A KoÈ the matrix �aik� is of type �d1� or �d2�, respectively, if the following condition holds:

9 k0 8 k 9m; C : a2
ik % Caik0 aim;�d1�

8 k 9m 8 ` 9C : Ca2
im ^ aikai`:�d2�

The corresponding KoÈ the spaces are referred as (d1) or (d2) spaces. It is easy to see that
finite (respectively infinite) power series spaces are (d2) (respectively (d1)) spaces. V. P.
Zahariuta [20] showed that �X;Y� 2 b if X and Y are locally convex spaces with absolute
bases, satisfying the conditions �d2� and �d1� respectively. Of course then �X;Y� 2k if X is
a Schwartz space or Y is a Montel space. D. Vogt [15] studied the relation �X;Y� 2 b for
FreÂchet spaces. Using his results ( Satz 6.2 and Prop. 5.3 in [15]), one obtains that �X;Y� 2 b
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if X and Y are FreÂchet spaces satisfying the conditions � �W� and �DN� respectively. One can
easily see that (d2)) � �W� and �d1� ) �DN�; so the following statement holds.

Proposition 1. If X is (d2)-Köthe space and Y is (d1)-Köthe space then �X;Y� 2 b: In
particular, for any p; q 2 �1; 1� we have �Ep

0�a�; Eq
1 �b�� 2 b:

A locally convex space X is called Mackey-complete if for every bounded, absolutely
convex, closed subset A � X the linear span of A is a Banach space with unit ball A: It is
easy to see that a sequentially complete locally convex space is Mackey-complete. In
particular every FreÂchet space is Mackey-complete.

An operator acting between two linear topological spaces is Fredholm if it is an open
mapping with finite dimensional kernel and finite codimensional closed range. An operator
T acting in a linear topological space X will be called Riesz type operator if 1X ÿ T is a
Fredholm operator. The following proposition is due to V. V. Wrobel (see [16], Th. 3 and
[17], Satz 1):

Proposition 2. Bounded strictly singular operators between Mackey-complete spaces form
an ideal of Riesz type operators.

If E and ~E are linear topological spaces with bases �ei� and �~ej� respectively, then an
operator T : E! ~E is quasidiagonal if there exist scalars ri and a mapping j�i� such that

Tei � ri~ej�i� 8i: The spaces E and ~E are quasidiagonally isomorphic (we write E �qd
~E) if there

exists an isomorphism T : E! ~E that is quasidiagonal.
Let Kp�aik� be a `p-Köthe space, 1 % p < 1 : For any strictly increasing sequence of

integers �j�i�� the Köthe space Kp�aj�i�k� is called a basic subspace of Kp�aik�: Obviously each
basic subspace is complemented. C. Bessaga [1] made the following conjecture:

If X is a (nuclear) Köthe space then every complemented subspace of X with basis is quasi-
diagonally isomorphic to a basic subspace of X:

Modifying some ideas of M. Dragilev [5], C. Bessaga [1] proved his conjecture for stable
nuclear finite or infinite power series spaces. Later many authors worked on this subject and
Bessaga�s conjecture was proved for wide classes of spaces. In particular, for power series
spaces the following proposition holds (see [10, 11] and [6]).

Proposition 3. If X is `p-finite (respectively `p-infinite) power series space then every
complemented subspace of X with `p-absolute basis is quasi-diagonally isomorphic to a basic
subspace of X:

Finally we consider the following

Proposition 4. If 1 % p < q < 1 and Kp�aik� � Kq�bik� then the space Kp�aik� is nuclear.

Pr oof. We consider two cases: p < 2 and p ^ 2:
Let p < 2: It is easy to see that the space Kp�aik� is nuclear if and only if

9 r 8 k 9m :
P1
i�1

aik

aim

� �r

< 1 :
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Since �`q; `p� 2k the space Kp�aik� is Schwartzian. Let T : Kp�aik� ! Kq�bik� be an
isomorphism. Then we have

8 k 9 k1; m; C1; C2 : jxjk % C1jTxjk1
% C2jxjm:

Choose m big enough so that aik=aim ! 0 (it is possible since the space is Schwartzian). We
can assume without loss of generality that the sequence �aik=aim� is decreasing (if not, one
can reorder it).

Using the fact that the space `q is of type q1 � min �2; q� (see [7], Vol. 2, p.72) we obtain,
for any n, a qi; i � 1; . . . ; n ; qi � 1 or qi � ÿ1 such that

ank

anm
n1=p %

Pn
i�1

aik

aim

� �p� �1=p

� Pn
i�1

qi
ei

aim

���� ����
k

% C1
Pn
i�1

qi
Tei

aim

���� ����
k1

% MC1
Pn
i�1

jTeijk1

aim

� �q1� �1=q1

% MC2n1=q1 ;

where M is a constant. From here it follows that
ank

anm
% MC2n

1
q1
ÿ 1

p;

therefore the sequence �aik=aim� belongs to `r for r > pq1=�q1 ÿ p�:
In the case p ^ 2 we show that the space Kq�bik� is nuclear using the fact that `p has

cotype p: Since Tÿ1 is an isomorphism we have

8 k 9 k1; m; C1; C2 : jxjk % C1jTÿ1xjk1
% C2jxjm:

As in the first case, we can assume that the sequence �bik=bim� is decreasing, and we obtain

bnk

bnm
n1=p %

Pn
i�1

bik

bim

� �p� �1=p

� Pn
i�1

ei

bim

���� ����p
k

� �1=p

% C1
Pn
i�1

Tÿ1ei

bim

���� ����p
k1

 !1=p

% MC1
Pn
i�1

qi
Tÿ1ei

bim

���� ����
k1

% MC2
Pn
i�1

qi
ei

bim

���� ����
m

�MC2n1=q:

From here the nuclearity follows as in the first case.

Modification of Zahariuta�s method. We present now the modification of the method for
isomorphic classification developed by Zahariuta in [20]. As usual we identify an operator
T � �Tij� : E1 � E2 ! F1 � F2 with the corresponding 2� 2-matrix, whose entries are
operators acting between the factors of the Cartesian products.

Lemma 1. If T � �Tij� : E1 � E2 ! F1 � F2 is an isomorphism such that T11 : E1 ! F1 is
also an isomorphism then E2 � F2:

Pr oof. Let Tÿ1 � �Sij�: Consider the operators

S22 : F2 ! E2; H : E2 ! F2;

where H � T22 ÿ T21Tÿ1
11 T12: Taking into account the fact that T11S12 � T12S22 � 0 we obtain

HS22 � T22S22 ÿ T21Tÿ1
11 T12S22 � T22S22 � T21S12 � 1F2 :
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In an analogous way from S21T11 � S22T21 � 0 it follows that

S22T22 ÿ S22T21Tÿ1
11 T12 � S22T22 � S21T12 � 1E2 :

Hence the spaces E2 and F2 are isomorphic.

Theorem 1. If X1;X2; ~X1; ~X2 are linear topological spaces such that X1 �X2 � ~X1 � ~X2

and each operator acting in X1 that factors over ~X2 is Riesz type operator then there exist a
finite dimensional subspace L1 in X1 and complemented subspaces E1 � X1 and M1 � ~X1

such that

X1 � E1 � L1; ~X1 � E1 �M1; M1 � ~X2 � L1 �X2:

Pr oof. Let T � �Tij� : X1 �X2 ! ~X1 � ~X2 be an isomorphism, and let Tÿ1 � �Sij�: Then
we have S11T11 � S12T21 � 1X1 ; and since S12T21 is Riesz type operator S11T11 is a Fredholm
operator. Thus the subspace L1 :� ker S11T11 has finite dimension, the subspace
G � S11T11�X1� is closed and has finite codimension. Let E1 be a complementary subspace
of L1 in X1 and pG be a projection on G: Obviously the operator A � S11T11 : E1 ! G is an
isomorphism. We set F1 � T11�E1�; then T11 maps E1 into F1 isomorphically. Moreover F1 is
a complemented subspace of ~X1: Indeed, it is easy to see that the operator

P � T11Aÿ1pGS11 : ~X1 ! ~X1

is a projection on F1:

Let M1 � Pÿ1�0� be the corresponding complementary subspace. Then we have

X1 � E1 � L1; ~X1 � F1�M1 � E1 �M1;

so applying the lemma to E1 � �L1 �X2� and F1 � �M1 � ~X2� we obtain
L1 �X2 �M1 � ~X2:

For any locally convex space X and any integer s, the symbol X�s� denotes an s-
codimensional subspace of X if s ^ 0 and a product of the kind X � L, where dim L � ÿs; if
s < 0:

Corollary 1 (see [20], x 6). Retaining the assumptions of the theorem, if each operator acting
in ~X1 that factors over X2 is Riesz type operator, then the subspace M1 has finite dimension, so
~X1 � X�s�1 ; ~X2 � X�ÿs�

2 with s � dim L1 ÿ dim M1:

Pr oof. By the assumption it follows immediately that each operator acting in M1 that
factors over X2 is Riesz type operator. Applying the theorem to the isomorphism
M1 � ~X2 � L1 �X2 we see that there exist complementary subspaces M2 and M3 of M1 such
that M3 is finite dimensional and M2 is isomorphic to a complemented subspace of L1; hence
M1 has finite dimension.

Isomorphisms of Cartesian products of power series spaces. We begin with the following
lemma.

Lemma 2. If X � projkXk and Y � projmYm are projective limits of normed spaces such
that 8 k;m �Xk;Ym� 2ss then each bounded operator T : X ! Y is strictly singular.
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Pr oof. Suppose, on the contrary, there is a bounded operator T : X ! Y that is not
strictly singular. Then there exists an infinite-dimensional subspace M � X such that the
restriction TjM is an isomorphism. This means in particular that

8k 9m�k�; Ck : jxjk % CkjTxjm�k� 8x 2M:

On the other hand, since T is bounded, we have

9k0 8m 9Dm : jTxjm % Dmjxjk0
8x 2 X;

therefore

jxjk0
% Ck0 jTxjm�k0� % Ck0 Dm�k0�jxjk0

8x 2M;

i.e., if we consider T as an operator from Xk0 to Ym�k0� then its restriction to M is an
isomorphism. This contradicts the assumption �Xk0 ;Ym�k0�� 2ss, so the lemma is proved.

Theorem 2. Let p �j ~q; q �j ~p; 1 % p; q; ~p; ~q < 1 ; and a; b; ~a; ~b be sequences of positive
numbers. Then the following conditions are equivalent:

(i) Ep
0�a� � Eq

1 �b� � E~p
0�~a� � E~q

1 � ~b�;
(ii) there exists an integer s such that

E~p
0�~a� � �Ep

0�a���s� and E~q
1 � ~b� � �Eq

1 �b���ÿs�:

Pr oof. By Proposition 1

�Ep
0�a�;E~q

1 � ~b�� 2 b and �E~p
0�~a�;Eq

1 �b�� 2 b:
We apply Lemma 2 to the pairs of spaces

Ep
0�a� � projk`

p exp ÿ 1
k

an

� �� �
; E~q

1 � ~b� � projk`
~q�exp k ~bn��

and E~p
0�~a�;Eq

1 �b�:
Since �`p; `q� 2ss for p < q and �`p; `q� 2k for p > q (see [7], Vol. I, Ch. 2, Sect. C) the

assumptions of Lemma 2 are fulfilled, hence

�Ep
0�a�;E~q

1 � ~b�� 2 bss and �E~p
0�~a�;Eq

1 �b�� 2 bss:
Now Corollary 1 completes the proof.

Corollary 2. Under the assumptions of the theorem it follows from Proposition 4 that:

if p �j ~p the spaces Ep
0�a�; E~p

0�~a� are nuclear;
if q �j ~q the spaces Eq

1 �b�; E~q
1 � ~b� are nuclear.

In the next theorem we consider the case when one of the conditions p �j ~q; q �j ~p does not
hold.

Theorem 3. Let a; b; ~a; ~b be sequences of positive numbers and p; q; ~q 2 �1; 1�; p �j ~q:
Then

(i) Ep
0�a� � Eq

1 �b� � Eq
0�~a� � E~q

1 � ~b�;
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if and only if

(A) when ~a or b tends to 1 , there exists an integer s such that

Eq
0�~a� � �Ep

0�a���s� and E~q
1 � ~b� � �Eq

1 �b���ÿs�;

(B) when non tends to 1 , there exist complementary subsequences ~a
0
; ~a

00
of ~a and b

0
; b

00
of

b such that ~a
00
; b

00
are bounded and, further,

Ep
0�a� � Eq

0�~a
0 � and E~q

1 � ~b� � Eq
1 �b

0 �:
Pr oof. As in Theorem 2 it follows

�Ep
0�a�;E~q

1 � ~b�� 2 bss and �Eq
0�~a�;Eq

1 �b�� 2 b:
In the case (A) at least one of the spaces Eq

0�~a�; Eq
1 �b� is Schwartzian, therefore

�Eq
0�~a�;Eq

1 �b�� 2k � bss:
Thus the result follows from Corollary 1.

In the case (B) we have, by Theorem 1, a finite codimensional subspace of Ep
0�a� is

isomorphic to a complemented subspace of Eq
0�~a�: Since ~ai !j 1 the space Eq

0�~a� contains a
basic subspace isomorphic to `q: Since any finite codimensional subspace of `q is isomorphic
to `q, then Ep

0�a� is isomorphic to a complemented subspace of Eq
0�~a�: By Proposition 3 there

exist complementary subsequences ~a
0
; ~a

00
of the sequence ~a such that

Eq
0�~a� � Eq

0�~a
0 � �Eq

0�~a
00 � and Ep

0�a� � Eq
0�~a

0 �:
From Theorem 1 it follows that Eq

1 �b� � Eq
0�~a

00 � � E~q
1 � ~b�; so again by Proposition 3 there

exist complementary subsequences b
0
; b

00
of the sequence b such that

E~q
1 � ~b� � Eq

1 �b
0 � and Eq

0�~a
00 � � Eq

1 �b
00 �:

It is easy to see that the subsequences ~a
00
; b

00
are bounded. Indeed, if on the contrary ~a

00
; b

00

are not bounded, then, passing to subsequences and using Proposition 3, one would obtain
subsequences ~a

000
; b

000
such that

Eq
0�~a

000 � � Eq
1 �b

000 �
and either ~a

000 ! 1 or b
000 ! 1 : This is impossible because then any operator from Eq

0�~a
000 �

to Eq
1 �b

000 � would be compact. Thus the spaces Eq
0�~a

00 � and Eq
1 �b

00 � are either finite
dimensional, or they are isomorphic to `q:

Corollary 3. Under the assumptions of Theorem 3, it follows from Proposition 4:

in the case (A) if p �j q the spaces Ep
0�a�; Eq

0�~a� are nuclear, respectively if q �j ~q the spaces
Eq
1 �b�; E~q

1 � ~b� are nuclear;
in the case (B) if p �j q then the space Ep

0�a� is nuclear, respectively if q �j ~q then the space
E~q
1 � ~b� is nuclear.

Using Mityagin�s criterion for isomorphisms of power series spaces [12] one can easily
obtain from Theorem 2 and Theorem 3 a complete characterization of isomorphisms

Ep
0�a� � Eq

1 �b� � E~p
0�~a� � E~q

1 � ~b�; p �j ~q or q �j ~p

in terms of sequences a; b; ~a; ~b: In particular we have
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Theorem 4. If p �j ~q or q �j ~p then the following conditions are equivalent:

(i) Ep
0�a� � Eq

1 �b� � E~p
0�~a� � E~q

1 � ~b�;
(ii) Ep

0�a� � Eq
1 �b� �

qd
E~p

0�~a� � E~q
1 � ~b�:

If all the spaces Ep
0�a�;E~p

0�~a�;Eq
1 �b�;E~q

1 � ~b� are non-Schwartz we have:

Theorem 5. If each of the sequences a; b; ~a; ~b does not tend to 1 and p �j ~q or q �j ~p then

Ep
0�a� � Eq

1 �b� � E~p
0�~a� � E~q

1 � ~b� if and only if ~p � p; ~q � q and Ep
0�a� �

qd
Ep

0�~a�;
Eq
1 �b� �

qd
Eq
1 � ~b�:

Let us note that the method used here does not work if p � ~q and q � ~p: Analogs of
Theorem 3 and Theorem 4 in the case p � q � ~p � ~q � 1 were obtained in [2], [3] by using
the method of generalized linear topological invariants.

Finally let us note that our approach can be used to obtain analogous results for
isomorphic classification of spaces Kp�aik� �Kq�bik�; where �aik� is (d2)-matrix and �bik� is
(d1)-matrix.
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