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Abstract

A trellis of a code is a labeled directed graph whose paths from the initial to the

terminal state correspond to the codewords. The main interest in trellises is due to

their applications in the decoding of convolutional and block codes.

The absolute state complexity of a linear code C is defined in terms of the number

of vertices in the minimal trellises of all codes in the permutation equivalence class of

C. In this thesis, we investigate the absolute state complexity of algebraic geometric

codes. We illustrate lower bounds which, together with the well-known Wolf upper

bound, give a good idea about the possible values of the absolute state complexities of

algebraic geometric codes. A key role in the analysis is played by the gonality sequence

of the function field that is used in code construction.
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Özet

Başlangıç ve bitiş durumları arasındaki yolları bir kodun elemanlarına denk gelen

etiketlenmiş yönlü çizgeye o kodun kafesi denir. Kafesler, evrişimli ve blok kodların

çözümlemelerindeki uygulamaları sebebiyle ilgi uyandıran konulardır.

Doǧrusal bir kodun mutlak durum karmaşıklıǧı, o kodun permütasyon denklik

sınıfındaki tüm kodların minimal kafeslerindeki köşe sayıları cinsinden tanımlanır. Bu

tezde cebirsel geometri kodlarının mutlak durum karmaşıklıǧı araştırılmıştır. İyi bilinen

Wolf üst sınırıyla birlikte cebirsel geometri kodlarının mutlak durum karmaşıklıǧının

alabileceǧi deǧerleri anlamamıza yarayan alt sınırlar gösterilmiştir. Yapılan analizlerde

kod inşasında kullanılan fonksiyon cisminin gonalite dizisi önemli bir rol oynamıştır.
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CHAPTER 1

TRELLIS STATE COMPLEXITY OF LINEAR CODES

This chapter is devoted to the introduction of the main topic of this thesis: trellises.

After some basic definitions and properties, we obtain the main (upper) bound on the

trellis complexity of codes, namely the Wolf bound. We also show the existence of a

minimal trellis for linear codes, which will be frequently used in the following chapters.

Our main reference is the chapter of A. Vardy in the Handbook of Coding Theory

([11]).

1.1 Codes and Trellises

In this section, we start with reviewing some basic notions of coding theory. We will

then introduce some definitions and concepts from the trellis theory that will be used

throughout the thesis.

Let Fq be a finite field with q elements. For x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈

F
n
q the Hamming distance on F

n
q is defined as

d(x, y) := | {i | 1 ≤ i ≤ n, xi 6= yi} |.

The weight of x ∈ F
n
q is given by

w(x) := | {i | xi 6= 0} | = d(x, 0).

A block code over Fq is a subset of F
n
q while a linear code is an Fq-linear subspace

of F
n
q . In the latter case, we call the k = dimFq

(C) the dimension of the code. An

element of a code C is called a codeword and the number n is called the length of C.

The minimum distance d(C) of a code C is defined as

d(C) := min{d(x, y) | x, y ∈ C, x 6= y}.
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It is easy to see that the minimum distance of a linear code corresponds to the minimum

weight of a nonzero codeword. A linear code of length n, dimension k, and minimum

distance d is called an [n, k, d] code.

The dual code of C is the code C⊥ defined as

C⊥ := {x = (x1, . . . , xn) ∈ F
n
q | 〈x, y〉 = 0, ∀y ∈ C}

where 〈x, y〉 :=
n∑

i=1

xiyi is the usual inner product on F
n
q

A generator matrix of a linear code C is a k×n matrix whose rows form a basis of

C whereas a parity check matrix for C is a generator matrix of C⊥.

Definition 1.1.1. Let C be an [n, k, d] linear code and i be a positive integer with

1 ≤ i ≤ k. We define the i-th generalized Hamming weight of C as

di(C) := min{| supp(D) | | D is a subcode of C, dim(D) ≥ i}

where support of D is defined as

supp(D) := {i | ∃(x1, . . . , xn) ∈ D s.t. xi 6= 0}

The sequence {di(C) : i = 1, . . . , k} is called the generalized Hamming weight

hierarchy of C. Note that d1(C) = d.

Proposition 1.1.1. (Singleton Bound). For an [n, k, d] linear code over Fq we have

k + d ≤ n+ 1

A code whose parameters satisfy the equality in the above proposition is called an

MDS (maximum distance separable) code.

An edge-labeled directed graph consists of a set V of vertices, a finite set A called

the alphabet, and a set E of ordered triples (v, v′, α) where v, v′ ∈ V and α ∈ A. An

element of E is called an edge of the graph, and we say that an edge (v, v′, α) ∈ E

begins at v, ends at v′, and has label α.

Definition 1.1.2. A trellis T = (V,E,A) of depth n is an edge-labeled directed graph

where V is the union of (n+ 1) disjoint subsets V0, V1, . . . , Vn, such that

(i) every edge in T that begins at a vertex in Vi, ends at a vertex in Vi+1

(ii) every vertex in T lies on some path from a vertex in V0 to a vertex in Vn.

2



An example of a trellis is shown in Figure 1.1a. The graph in Figure 1.1b is not a

trellis since it does not satisfy condition (i) above.

a b

cd

a b

cd

e

a. b.

Figure 1.1: A graph that is a trellis and a graph that is not.

Throughout this thesis, we will assume that V0 and Vn have single vertex, called

the root and the toor, respectively. The ordered index set I = {0, 1, . . . , n} induced by

the partiton of V is called the time axis for T . We call Vi the set of vertices at time

i. The partition of the vertex set V induces the corresponding partition of edge set E

into disjoint n subsets E1, . . . , En where Ei is the set of edges that end at a vertex in

Vi.

0

0

0

1

1

1

1
1

0

a.

0

0

0

1

1

11

0

b.

Figure 1.2: An improper and proper trellises over F2 which are one-to-one.

Definition 1.1.3. Let T = (V,E,A) be a trellis of depth n.

(i) If all paths of length n in a trellis T are labeled distinctly, T is called one-to-one

(Figure 1.2).

(ii) If the edges beginning at the same vertex of a trellis T are labeled distinctly, T is

called proper (Figure 1.2b). Otherwise, T is said to be improper (Figure 1.2a).
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From the above definition we see that the set of one-to-one trellises includes the set

of proper trellises, since V0 has only one element.

Definition 1.1.4. Let T = (V,E,A) be a trellis of depth n. For a path of length n

v0
α1→ v1

α2→ . . .
αn→ vn,

consider the n-tuple (α1, α2, . . . , αn) over A. We say that T represents a block code C

of length n over A if the set of all paths of length n yields exactly the set of codewords

of C.

Two trellises T = (V,E,A) and T ′ = (V ′, E ′, A) are said to be isomorphic if there

is a one-to-one correspondence ψ from V to V ′ such that ψ(Vi) = V ′
i (for all i), and

(v, v′, α) is an edge in E if and only if (ψ(v), ψ(v′), α) is an edge in E ′. Note that

isomorphic trellises represent the same code.

It is obvious that every trellis T represents a unique code. On the other hand,

there can be many nonisomorphic trellises for the same code. A natural question is

given any two nonisomorphic trellises for C which one is ‘better’? The answer to this

question should be ‘whichever yields a simpler trellis representation for C’. To measure

simplicity, we can define several trellis complexity measures and prefer the trellis that

minimizes these complexity measures.

Let C be a block code of length n over the finite field Fq, and T = (V,E,Fq) be a

trellis of length n that represents C. We define the following complexity measures for

T :

state cardinality profile : the ordered sequence |V0|, |V1|, . . . , |Vn| (1.1)

maximum number of states : Smax = max{|V0|, |V1|, . . . , |Vn|} (1.2)

In section 3, we will see that if C is a linear code over Fq and T is ‘the minimal

trellis’ for C, the cardinality of Vi is a power of q. Then complexity measures of T are

state complexity profile : the ordered sequence s0, s0, . . . , sn (1.3)

state complexity : s = max{s0, s0, . . . , sn} (1.4)

where si = logq |Vi|.
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We can define similar complexity measures based on the number of edges in the

trellis. However, such complexity measures are closely related to the state complex-

ity s in (1.4) and a trellis that minimizes one complexity measure often minimizes

other measures too. Since a state complexity is more common to study, we will just

concantrate on this.

To minimize the state complexity of a trellis for any given block code C, we need to

construct a simple trellis representing the code C. This leads to the notion of minimal

trellises.

1.2 Minimal Proper Trellises

Now, we start by defining the minimal proper trellis and proceed by constructing such

a trellis for any block code.

Definition 1.2.1. Let T be a proper trellis for a code C of length n. If any proper

trellis T ′ for C satisfies |Vi| ≤ |V ′
i | for each i = 0, 1, . . . , n, then we say that T is a

minimal proper trellis for C.

T is said to be a minimal trellis for C if T is a trellis that minimizes the number of

vertices at each time i among all possible (not just among proper) trellis representations

for C.

Theorem 1.2.1. Every block code has a minimal proper trellis which is unique up to

isomorphism.

This theorem will be proved via three propositions (Propositions 1.2.1, 1.2.2, and

1.2.3). For this purpose, we proceed by defining two equivalence relations one of which

is defined by a proper trellis T for C and the other is defined by the code C itself. To

introduce these equivalence relations, we will give the following definitions.

Definition 1.2.2. Let C be a code of length n over a finite alphabet A. The codes P∗
i

and F∗
i , known as the projection of C on the past, respectively, future at time i, are

defined as

P∗
i = {(c1, c2, . . . , ci) : (c1, c2, . . . , ci, ci+1, . . . , cn) ∈ C} (1.5)

F∗
i = {(ci+1, ci+2, . . . , cn) : (c1, c2, . . . , ci, ci+1, . . . , cn) ∈ C}. (1.6)

5



We have P∗
n = F∗

0 = C and P∗
0 = F∗

n = ∅.

T-equivalence relation. Let T be a proper trellis for a code C of length n. Given

a codeword c ∈ P∗
i and a path P = e1, e2, . . . , ei beginning at the root of T , we say

that P corresponds to c if c = (α(e1), α(e2), . . . , α(ei)) where α(ei) denotes the label

of edge ei. Note that T is proper only if the correspondence between paths of length

i in T and codewords in P∗
i is one-to-one for all i = 1, . . . , n. Let c and c′ be any two

codewords in P∗
i . If the paths Pc and Pc′ corresponding to these codewords end at the

same vertex in Vi, we say that c and c′ are T -equivalent and denote it by c ∼T c′.

From the definition, we can say that the number of T -equivalence classes in P∗
i equals

to the number of vertices at time i in T .

Remark 1.2.1. If T is not proper, the relation defined above may not be an equiv-

alance relation since transitivity may fail. For example, in the improper trellis in Figure

1.3, we have 00 ∼T 10, 10 ∼T 11, but, 00 �T 11.

0

0

0

1
0

1

1

0

Figure 1.3: An improper trellis for the code C = {000, 100, 101, 111}

Future equivalance relation. For each c ∈ P∗
i , we define the future of c in C as the

set

F (c) := {x ∈ An−i : (c, x) ∈ C}.

Let c and c′ be any two codewords in P∗
i . We say that c and c′ are future-equivalent

if F (c) = F (c′) and denote it by c ∼ c′.

Proposition 1.2.1. Let T be a proper trellis for C and let c, c′ ∈ P∗
i . If c ∼T c

′, then

c ∼ c′.

6



Proof. Since T is a proper trellis for C, there is exactly one path of length i that

corresponds to each of c and c′ in T . Since these codewords end at the same vertex v

in Vi, futures of c and c′ correspond to the paths of length n− i from v.

It follows from Prop 1.2.1 that the number of future equivalence classes in P∗
i is less

than or equal to the number of T -equivalence classes in P∗
i . Since the latter number is

equal to |Vi|, we have

|V ∗
i | ≤ |Vi|, for all i = 1, 2, . . . , n, (1.7)

where |V ∗
i | denotes the number of future equivalence classes in P∗

i . Recall that the

future equivalence relation is independent of the proper trellis representing the code

C. Hence, we consider a trellis T ∗ = (V ∗, E∗, A) for C whose vertices in V ∗
i are in

one-to-one correspondence with the future equivalence classes in P∗
i (for all i). Note

that |V ∗
0 | = |V ∗

n | = 1 since P∗
0 = ∅ and P∗

n = C. Let v ∈ V ∗
i and v′ ∈ V ∗

i+1 be two

vertices of T ∗. Then v and v′ are connected by an edge (in E∗
i+1) if and only if v and v′

correspond to the classes (c1, c2, . . . , ci) ∈ P∗
i and (c1, c2, . . . , ci+1) ∈ P∗

i+1. In this case,

the label of the edge joining v to v′ is ci+1.

Example 1.2.1. Consider the binary linear code C = {000, 011, 100, 111} together

with its proper trellis representation in Figure 1.2b. Future equivalence classes for C

at time i = 1, 2 are

F (0) = {00, 11} = F (1) ⇒ 0 ∼ 1 in P∗
1

F (00) = {0} = F (10) ⇒ 00 ∼ 10 in P∗
2

F (01) = {0} = F (11) ⇒ 01 ∼ 11 in P∗
2

0 0

11

0

1

v0

v1

v21

v22

v3

Figure 1.4: The minimal proper trellis for the code C = {000, 011, 100, 111}.
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Then we have

V ∗
1 = {{0, 1}} = {v1}

V ∗
2 = {{00, 10}, {01, 11}} = {v21, v22}.

The correspondng minimal proper trellis for C is shown in Figure 1.4.

Proposition 1.2.2. T ∗ is a minimal proper trellis for C.

Proof. Minimality of T ∗ follows from (1.7). So, we need to show that T ∗ is proper

and represents C. Let e1 = (v, v′, α) and e2 = (v, v′′, α) be two edges in T ∗ from

v ∈ V ∗
i with the same label. Then there are codewords c = (c1, c2, . . . , ci, α, . . .), d =

(d1, d2, . . . , di, α, . . .) ∈ C with (c1, c2, . . . , ci) ∈ v, (d1, d2, . . . , di) ∈ v, (c1, c2, . . . , ci, α) ∈

v′ , and (d1, d2, . . . , di, α) ∈ v′′. Since

(c1, c2, . . . , ci) ∼ (d1, d2, . . . , di)

it follows from the construction of T ∗ that

(c1, c2, . . . , ci, α) ∼ (d1, d2, . . . , di, α)

Therefore v′ = v′′.

It remains to show that T ∗ represents C. Since we used the codewords of C to define

the edges of T ∗, it is clear that C is contained in the trellis code of T ∗. To prove that the

code corresponding to T ∗ is contained in C, we show by induction on i that every path

of length i starting at the root of T ∗ corresponds to a codeword of P∗
i . For i = 0, the

statement is trivial. Assume that the statement is true for i = k and we are given a path

of length k+1, P = e1, e2, . . . , ek+1, that begins at the root of T ∗ and ek+1 = (v, v′, α).

By induction there is a codeword c ∈ C, such that (c1, c2, . . . , ck) ∈ P∗
k corresponds

to the first k edges of the path. From the construction of T ∗, there is a codeword

d ∈ C such that (d1, d2, . . . , dk) ∈ v, (d1, d2, . . . , dk, dk+1) ∈ v′ and α(ek+1) = α. Since

(c1, c2, . . . , ck) and (d1, d2, . . . , dk) end at the same vertex, they have the same future.

Then, (c1, c2, . . . , ck, dk+1, . . . , dn) ∈ C. It follows that (c1, c2, . . . , ck, α) is a codeword

of P∗
k+1.

Proposition 1.2.3. Any minimal proper trellis for C is isomorphic to T ∗.

8



Proof. Let T be a minimal proper trellis for C, and c ∈ P∗
i . Let v(c) be the T -

equivalence class of c, and v′(c) be the T ∗-equivalence class of c, which is also future-

equivalence class of c. By Proposition 1.2.1, v(c) ⊆ v∗(c) for any c ∈ P∗
i . Since T is

minimal, it does not have more equivalence classes than T ∗. Thus, v(c) = v∗(c). This

leads to a one-to-one correspondence between Vi and V ∗
i . For any v ∈ Vi, choose a

codeword c ∈ v, and let ψ(v) = v∗(c) where v∗(c) ∈ V ∗
i .

If v ∈ Vi and (v, v′, α) is an edge in T , there exists a codeword c ∈ C whose path

includes α. From the construction of T ∗, ((c1, c2, . . . , ci), (c1, c2, . . . , ci+1), α) is an edge

of T ∗, which is (ψ(v), ψ(v′), α). On the other hand, if

((c1, c2, . . . , ci), (c1, c2, . . . , ci+1), α)

is an edge of T ∗, there must be an edge (v(c1, c2, . . . , ci), v
′(c1, c2, . . . , ci+1), α) in T ;

otherwise the codeword c would not be in the trellis code of T . Therefore, ψ is an

isomorphism between T and T ∗.

Remark 1.2.2. The minimal proper trellis for C may not be minimum over all trellises

of C. Consider the nonlinear code C = {000, 100, 101, 111} whose minimal proper trellis

is shown in Figure 1.6a. Note that the improper trellis in Figure 1.6b for the same

code has less vertices at time 2.

0

0

0

1

1

1

0

0

1

a.

0

0

0

1
0

1

1

0

b.

Figure 1.5: Minimal proper trellis and improper minimal trellis for the same code

.

Remark 1.2.3. The minimal trellis for C may not be unique like the minimal proper

trellis. Consider the nonlinear code C = {00, 10, 11}. As we can see in Figure 1.6, the

code has two nonisomorphic minimal trellis representations for C.
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A natural question one might ask is when is the minimal proper trellis a minimal

trellis for C. We will address this question in the following section.

0 0

01

1

0

11

1

0

Figure 1.6: Two nonisomorphic minimal trellises for the code C = {00, 10, 11}.

1.3 Minimal Trellises For Linear Codes

There are alternative ways to construct minimal trellises for linear codes. In this

section, we will introduce two of these methods which are commonly used.

Proposition 1.3.1. If C is a linear code, then a minimal proper trellis for C is also

a minimal trellis for C. Furthermore, any minimal trellis for C is proper.

Proof. Let c be a codeword in C and H be a parity check matrix of C. Note that an

(n− i)-tuple (xi+1, . . . , xn) is a tail of (c1, . . . , ci) ∈ P∗
i if and only if

(c1, . . . , ci, 0, . . . , 0)H = −(0, . . . , 0, xi+1, . . . , xn)H.

Hence, two codewords (c1, . . . , ci) and (d1, . . . , di) ∈ P∗
i have a common tail if and only

if

(c1, . . . , ci, 0, . . . , 0)H = (d1, . . . , di, 0, . . . , 0)H.

In this case they have same futures, i.e. (c1, . . . , ci) ∼ (d1, . . . , di). From this argument,

we see that if T is any trellis for C, and any two codewords in P∗
i end at the same vertex

at time i, then their futures are equal. Moreover, such codewords end at the same vertex

in T ∗ at time i. Hence, T ∗ does not have more vertices for each time i = 1, . . . , n than

T does, i.e., a minimal proper trellis is a minimal trellis for C. In the above argument

if we let T be a proper trellis for C, then we conclude that any minimal trellis for C

must be proper.

10



Bahl-Cocke-Jelinek-Raviv construction (BCJR). Let C be a code of length n

over Fq. Let H = [h1, h2, . . . , hn] be a parity check matrix for C, where h1, h2, . . . , hn

are the columns of H. Vertices of BCJR trellis at time i are defined by

Vi = {c1h1 + c2h2 + · · · + cihi : (c1, . . . , ci) ∈ P∗
i } (1.8)

with V0 = {0} = Vn. There is an edge e = (v, v′, α) in T = (V,E,Fq) with v ∈ Vi and

v′ ∈ Vi+1 if and only if there is a codeword c ∈ C such that

c1h1 + c2h2 + · · · + cihi = v,

c1h1 + · · · + cihi + ci+1hi+1 = v′,

α = ci+1.

Note that the vertex set at time i is a linear space for all i. Thus, Vi is the image of C

under the linear mapping σi : C → Vi defined by

σi(c) = c1h1 + c2h2 · · · + cihi (1.9)

with c = (c1, c2, . . . , cn), while the edge set Ei, which is also a linear space for all i, is

the image of C under the linear mapping τi defined by

τi(c) = (σi(c), σi+1(c), ci+1). (1.10)

We denote the dimensions of the vertex space Vi and the edge space Ei by

si =dimVi = logq |Vi|, for i = 0, 1, . . . , n

bi =dimEi = logq |Ei|, for i = 1, 2, . . . , n.

Remark 1.3.1. Note that Vi is the row space of GiH
T
i i.e., si =rank( GiH

T
i ), where

Gi and Hi are the matrices that consist of the first i columns of G and H, respectively.

Example 1.3.1. Consider the self-dual (i.e. C = C⊥) binary linear code C defined by

the following generator and parity-check matrices:

G = H =


0 1 1 0

1 0 0 1




Then we know by the BCJR construction that V0 = V4 = {0} while V1, V2, V3 can be,

respectively, represented as the row-spaces of the following matrices:
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
0 0

0 1


 ,


1 0

0 1


 ,


0 0

0 1




In other words,

V1 =
{
(0, 0), (0, 1)

}
= {v11, v12},

V2 =
{
(0, 0), (1, 0), (0, 1), (1, 1)

}
= {v21, v22, v23, v24},

V3 =
{
(0, 0), (0, 1)

}
= {v31, v32}

The state complexity profile of T is given by {s0, s1, s2, s3, s4} = {0, 1, 2, 1, 0} and

the resulting BCJR trellis is shown in Figure 1.7.

0

0

1

0

1 0

1

1

0

1

0 1

v0

v11

v12

v21

v22

v23

v24

v31

v32

v4

Figure 1.7: A minimal BCJR trellis for the code C = {0000, 1001, 0110, 1111}.

Proposition 1.3.2. BCJR trellis T = (V,E,Fq) represents the linear code C.

Proof. Since codewords of C define the edge set of T , every codeword corresponds

to a path of length n in T . We have to show that every path of length n produces a

codeword. For any path e1, . . . , en of length n, we have 0 = vn = α(e1)h1+· · ·+α(en)hn.

Hence, (α(e1), . . . , α(en)) ∈ C.

Theorem 1.3.1. The BCJR construction produces a minimal trellis.

Proof. Let T be any trellis and T ∗ be a minimal trellis for C. We know from the proof

of Proposition 1.3.1 that if any two codewords c and c′ in P∗
i end at the same vertex

at time i in T , then they have common futures. To establish the minimality of BCJR

trellis, it is enough to show that if two codewords of P∗
i are future equivalent then
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they end at the same vertex at time i in T . Let c, c′ ∈ P∗
i be future equivalent and let

x = (xi+1, . . . , xn) be a common tail of c and c′. Then (c, x)HT = (c′, x)HT = 0. This

implies that

c1h1 + · · · + cihi = −xi+1hi+1 + · · · + xnhn = c′1h1 + · · · + c′ihi.

Then, from the definition of Vi, we say that the paths in T corresponding to c and c′

end at the same vertex at time i.

By Propositions 1.2.3, 1.3.1 and 1.3.2, and Theorem 1.3.1, we obtain the following.

Theorem 1.3.2. Every linear code has a minimal trellis which is unique up to iso-

morphism.

Forney construction. Let C be a code of length n over Fq. We define the past and,

respectively, future subcodes of C as

Pi = {(c1, . . . , ci) : (c1, . . . , ci, 0 . . . , 0) ∈ C} ⊆ F
i
q (1.11)

Fi = {(ci+1, . . . , cn) : (0 . . . , 0, ci+1, . . . , cn, ) ∈ C} ⊆ F
n−i
q (1.12)

with Pn = F0 = C and P0 = Fn = {0}. Clearly, the direct sum Pi ⊕ Fi is a linear

subcode of C. The Forney trellis T = (V,E,Fq) for C is constructed by identifying the

vertices in Vi with the cosets of Pi ⊕Fi in C, that is,

Vi := C/Pi ⊕Fi (1.13)

for i = 0, 1, . . . , n. We have P0 ⊕ F0 = Pn ⊕ Fn = C so that V0 and Vn consist of a

single coset. There is an edge e = (v, v′, α) in T = (V,E,Fq) from v ∈ Vi to v′ ∈ Vi+1 if

and only if there is a codeword c ∈ C such that c lies in the intersection of the cosets

of v and v′ and whose (i+ 1)st coordinate is α.

Theorem 1.3.3. Forney construction produces a minimal trellis.

Proof. Let H be a parity check matrix for C and let c ∈ C. Consider the mapping σi

in (1.9). Then, c ∈ Pi ⊕Fi, with (c1, . . . , ci, 0, . . . , 0) ∈ Pi and (0, . . . , 0, ci+1, . . . , cn) ∈

Fi, if and only if σi(c) = 0. This shows that Pi ⊕Fi is the kernel of σi. Thus,
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dim σi(C) =dim C - dim(Pi ⊕Fi).

Hence, the number of vertices in the BCJR trellis is equal to the number of vertices in

the Forney trellis for each time. Then, the Forney trellis is minimal since the BCJR

trellis is so.

Example 1.3.2. Consider again the linear code C of Example 1.3.1. The past subcodes

of C are P0 = P1 = P2 = {0}, P3 = {0, 011}, and P4 = C whereas the future subcodes

of C are F0 = C, F1 = {0, 110}, and F2 = F3 = F4 = {0}. Thus the direct sum

subcodes are

P1 ⊕F1 = {0000, 0110},

P2 ⊕F2 = {0000},

P3 ⊕F3 = {0000, 0110}.

Then, C/(Pi ⊕Fi) are

V1 =
{
{0000, 0110}, {1001, 1111}

}
= {v11, v12},

V2 =
{
{0000}, {0110}, {1001}, {1111}

}
= {v21, v22, v23, v24},

V3 =
{
{0000, 0110}, {1001, 1111}

}
= {v31, v32}.

The resulting Forney trellis, which is identical to the BCJR trellis, is shown in Figure

1.7.

1.4 Absolute State Complexity

We start by defining the notion of permutation equivalence for codes. Two codes are

said to be permutation equivalent, if one of them is obtained by permuting the

coordinates in the other. In coding theory, permutation equivalent codes are viewed

as essentially the same. However, the following example shows that two permutation

equivalent codes can have significantly different minimal trellis representations.
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Figure 1.8: Minimal trellis for [6,3,2] linear code.

Example 1.4.1. Consider the binary [6, 3, 2] linear code C, generated by

G =




1 0 0 0 0 1

0 1 0 1 0 0

0 0 1 0 1 0


.

A minimal trellis for C is shown in Figure 1.8. Now, permute the time axis of the

minimal trellis for C with the permutation π = (2, 3, 6). The resulting code C ′ is

generated by the following matrix,

G′ =




1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1


.

The corresponding minimal trellis is shown in Figure 1.9.

Motivated by this example, we introduce the following notions of state complexity

for codes. Let C be a linear code of length n over Fq. If T is a trellis representation of

C, recall that we defined the state complexity of T as

sT (C) :=max{s0, . . . , sn}
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where si(T ) = logq |Vi| for all i. If T ∗ is a minimal trellis for C, then we define the

state complexity of the code C as s(C) := sT ∗(C). As seen in Example 1.4.1, s(C) may

change if one considers permutation equivalent codes to C. Let us denote by [C] the

set of codes that are permutation equivalent to C. Then we define the absolute state

complexity of C as

s[C] := min{s(C ′) : C ′ ∈ [C]}.

0 0

11

0 0

11

0 0

11

Figure 1.9: Minimal trellis for the permuted binary [6,3,2] linear code .

From now on, we will be interested in the absolute state complexity of linear codes.

Our intent in the rest of this chapter is to estimate the state and absolute state com-

plexities of linear codes. Let us start with a simple fact.

Proposition 1.4.1. The minimal trellis T = (V,E,Fq) for a linear code C of length

n and the minimal trellis T⊥ = (V ⊥, E⊥,Fq) for its dual code C⊥ have identical state

complexities.

Proof. Let G and H denote the generator and parity check matrices of C, respectively.

By Remark 1.3.1, we know that dim(Vi) is equal to the rank of GiH
T
i . Similarly, we

have dim(V ⊥
i ) =rank(HiG

T
i ) for the dual trellis. Then, the two dimensions are clearly

the same.

For a linear [n, k, d] code C over Fq, we denote the dimensions of the past and future

subcodes (cf. (1.11) and (1.12)) of C by pi = dimPi and fi = dimFi. It is clear that

the sequence p1, . . . , pn is nondecreasing while the sequence f1, . . . , fn is nonincreasing.

From the Forney construction (cf. (1.13)), we have

si(C) = k −4i(C),
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where 4i = 4i(C) := pi + fi, for each i = 0, 1, . . . , n. Hence, the state complexity of

the code is

s(C) = k −4(C),

where 4 = 4(C) :=min{40,41, . . . ,4n}. Let us also define 4[C] :=max{4(C ′) :

C ′ ∈ [C]}.

Remark 1.4.1. By definition of the minimum distance d of C, we have

(i) Pi = {0} for 0 ≤ i ≤ d− 1. In particular, min{40, . . . ,4d−1} = 4d−1.

(ii) Fi = {0} for n− d+ 1 ≤ i ≤ n. In particular min {4n−d+1, . . . ,4n} = 4n−d+1.

Proposition 1.4.2. For a linear [n,k,d] code C, we have

s(C) =

{
k if 2d ≥ n+ 2

k − min{4d−1, . . . ,4n−d+1} otherwise

Proof. If 2d ≥ n + 2, then there exists an integer i such that n − d + 1 ≤ i ≤ d − 1.

Then the result follows from Remark 1.4.1.

Theorem 1.4.1. (Wolf bound) Let C be an [n, k, d] linear code over Fq. Then the

state complexity of C is upper bounded by

s(C) ≤ w(C) := min(k, n− k).

Proof. We know that si(C) = k − 4i(C) ≤ k for all i so that s(C) ≤ k. Since C

and C⊥ have identical state complexities, si(C) = s⊥i (C) ≤ n − k, which implies that

s(C) ≤ n− k. Then the result follows.

The Wolf bound holds for any permutation of the time axis of the minimal trellis

for an [n, k, d] linear code C, i.e., s[C] ≤ w(C).

We will finish this chapter with two crucial propositions, due to Munuera and

Torres, that reduce the estimation of the absolute state complexity to estimations at

weights of a code. These two results will play key roles in Chapters 2 and 3.

Proposition 1.4.3. Let t be a non-negative integer. Then s[C] ≥ w(C) − t if either

2d ≥ n+ 2 − t, or 2d⊥ ≥ n+ 2 − t.
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Proof. We know that Pd−1 = {0}. Now, let us assume that 2d ≥ n + 2 − t. If

Fd−1 = {0}, then sd−1(C) = k which implies that s(C) ≥ sd−1(C) = k. On the other

hand, if Fd−1 6= {0}, then Fd−1 is a subcode of C of length (n−d+1) whose minimum

distance is at least d. From the Singleton bound, we get

fd−1 ≤ nFd−1
− dFd−1

+ 1 ≤ (n− d+ 1) − d+ 1 = n− 2d+ 2 ≤ t.

Thus, s(C) ≥ sd−1(C) ≥ k − t.

If we assume that 2d⊥ ≥ n+ 2− t and if we apply the above argument to the dual

code of C, then we obtain s(C⊥) ≥ n − k − t. From Proposition 1.4.1 and the Wolf

bound, we conclude that s(C) ≥ w(C) − t. Since the dimension and the length of C

do not depend on the coordinate permutation, s[C] ≥ w(C) − t .

Remark 1.4.2. For an MDS code, if n ≥ 2k then we get 2d = 2n + 2 − 2k ≥ n + 2.

Otherwise, we have 2d⊥ = 2k + 2 ≥ n + 2 (we used the fact that the dual of an MDS

code is also MDS). Thus it always holds that max(2d, 2d⊥) ≥ n + 2 for MDS codes.

This implies, with Proposition 1.4.2, the well known result that MDS codes attain the

Wolf bound.

Proposition 1.4.4. Let i be a positive integer with 1 ≤ i ≤ k. Then s[C] ≥ w(C)−i+1

provided that either di(C) ≥ n + 2 − d or di(C
⊥) ≥ n + 2 − d⊥ where di(C) is the ith

generalized Hamming weight.

Proof. Assume that di(C) ≥ n + 2 − d. Since Fd−1 has length n − d + 1, we have

|Supp(Fd−1)| ≤ n − d + 1. Then |Supp(Fd−1)| < di(C) by the assumption. From the

definition of di(C), fd−1 < i so that s(C) ≥ sd−1(C) ≥ k−i+1. If di(C
⊥) ≥ n+2−d⊥,

by applying a similar argument to C⊥, we obtain s(C⊥) ≥ n − k − i + 1. Therefore,

s(C) ≥ w(C)− i+ 1. Noting that the lower bound does not depend on the coordinate

permutation of C, the result follows.
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CHAPTER 2

A GOPPA-LIKE BOUND ON THE ABSOLUTE STATE COMPLEXITY

OF AG CODES

In this chapter we investigate the absolute state complexity (ASC) of algebraic geo-

metric (AG) codes. In the previous chapter we proved a general upper bound on ASC

of linear codes (Wolf bound). Here, we will obtain lower bounds for the ASC of AG

codes. A major role will be played by the gonality sequence of a function field which is

used in the construction of the code. Our main reference in this chapter is an article of

Munuera and Tores [5]. However, we state and prove some of their results in a different

form since it is not clear whether some results of [5] are completely correct or not (cf.

Propositions 2.3.1, 2.3.2, Theorem 2.3.1 and Corollaries 2.3.1, 2.3.2). When the so-

called abundance of the code and its dual are the same, our statements match theirs.

For an introduction to AG codes, we refer to Stichtenoth’s book [10].

2.1 Algebraic Geometric Codes

Let F/Fq be an algebraic function field of genus g and P1, P2 . . . , Pn be a set of pairwise

distinct rational places of F/K. Let D and G be divisors of F/K such that D =

P1 + P2 + · · ·+ Pn and the supports of G and D are disjoint. For a divisor A of F/K,

we define the vector space L(A) as

L(A) := {f ∈ F | (f) + A ≥ 0} ∪ {0}

where (f) is the principal divisor of f . We denote the degree and the dimension of L(A)

over K by degA and `(A), respectively. The algebraic geometric (AG) code CL(D,G)

associated with the divisors D and G is the image of the following Fq-linear map

φ : L(G) → F
n
q (2.1)

f 7→ (f(P1), f(P2), . . . , f(Pn)). (2.2)
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Let us note that the dual code is also an AG code. Namely, CL(D,G)⊥ = CL(D,H),

where H = W − (G−D) for some canonical divisor W .

The code CL(D,G) is an [n, k, d] code over F
n
q with the parameters

k = `(G) − `(G−D), (2.3)

d ≥ n− degG (Goppa bound). (2.4)

We denote the dimension of kerφ (i.e. `(G − D)) by a and call it the abundance

of the code. We will assume throughout that G − D is special (i.e. i(G − D) =

`(W − (G−D)) 6= 0). If not, it is easy to see that G is also nonspecial and hence

k = `(G) − `(G−D) = (degG+ 1 − g) − (deg(G−D) + 1 − g) = n,

i.e. CL(D,G) = F
n
q is a trivial code.

2.2 Gonality Sequence of Algebraic Function Fields

For every positive integer i, we define the i-th gonality of the function field F/K as

γi := min {degA | A ∈ Div(F/K) and `(A) ≥ i}. (2.5)

The sequence GS(F/K) := (γi : i ∈ N) is called the gonality sequence of F/K. If

we choose A in (2.5) as the zero divisor of F/K, we see that the first element of the

gonality sequence is 0.

Lemma 2.2.1. Let

γ = min{[F : K(x)] | x ∈ F \K}.

Then, γ = γ2.

Proof. Choose an element x ∈ F \K and consider the divisor A := (x)∞. Since 1 and

x are linearly independent in L(A), we have `(A) ≥ 2. Thus, for any x ∈ F \K, we

have

γ2 ≤ degA = [F : K(x)].

Therefore, γ2 ≤ γ. On the other hand, let A be a divisor with deg A=γ2 and `(A) ≥ 2.

There is a positive divisor B with B ∼ A so that deg B=deg A and `(B) = `(A). For

x ∈ L(B) \K note that (x)∞ ≤ B since B is effective. Hence,

[F : K(x)] = deg(x)∞ ≤ degB = γ2.
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This implies that γ2 ≥ γ and the proof is concluded.

Remark 2.2.1. The number γ in Lemma 2.2.1 is the (usual) gonality of F/K.

Lemma 2.2.2. Let F/K be an algebric function field of genus g and suppose that F/K

has a rational place. Then

(i) The gonality sequence of F/K is strictly increasing.

(ii) γi = g + i− 1 for any i with i ≥ g + 1.

(iii) γi ≥ 2(i− 1) for any i with 1 ≤ i ≤ g.

(iv) γg = 2g − 2.

Proof. (i) Let A be a divisor of degree γi with `(A) ≥ i. If we show the existence of a

divisor B with deg B < γi and `(B) ≥ i − 1 then the proof follows. Let B := A − P

where P is a rational place. We know that `(A)−`(B) ≤ deg A−deg B=1 ([10, Lemma

1.4.8]). Hence, `(B) ≥ `(A) − 1 ≥ i− 1.

(ii) Let A be a divisor with deg A = i + g − 1 ≥ 2g. For a canonical divisor W ,

we have `(W − A) = 0 since deg(W − A) < 0. By Riemann-Roch Theorem, we have

`(A) =deg A + 1 − g = i. Thus, γi ≤ g + i − 1. Now, let B be a divisor with deg

B < i+ g − 1. There exists a divisor D such that B ≤ D and deg D = i+ g − 2. By

assumption on i, we have deg D ≥ 2g − 1. Hence, `(D) =deg D + 1 − g = i− 1. This

shows that if deg B < i + g − 1, then `(B) < `(D) < i. Therefore, γi = i + g − 1 in

this case.

(iii-iv) Let W be a canonical divisor so that deg W = 2g− 2 and `(W ) = g. Then,

by the definition of gonality numbers, we have

γg ≤ 2g − 2. (2.6)

Since there is no negative gonality number, we have 0 ≤ γi ≤ 2g−2 for i ≤ g. Consider

a divisor A with degA = γi and `(A) ≥ i. By Clifford’s theorem, `(A) ≤ 1 + (1/2)deg

A = 1 + γi/2. Hence, we have i ≤ 1 + γi/2, i.e. γi ≥ 2i − 2 if i ≤ g. If i = g, then

γg ≥ 2g − 2. This implies, together with (2.6), that γg = 2g − 2.

Example 2.2.1. Consider the Hermitian function field H = Fq2(x, y) defined by

yq + y = xq+1.
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The genus of H is q(q− 1)/2 and it has q3 + 1 rational places (see [10, Lemma 6.4.4]).

The gonality sequence of H is exactly known. Namely, if k is a positive integer of the

form k = 1
2
(j + 1)(j + 2) − i (for 0 ≤ i ≤ j), then

γk =





j(q + 1) − i if 1 ≤ k ≤ g

k + g − 1 if k > g
(2.7)

In fact, we can compute the gonality sequence of any smooth plane curve by Pellikaan’s

work [9, Corollary 2.4]. Below, we list the gonality sequences of the Hermitian function

field over various square finite fields:

GS(H/F4) = {0, 2,→}

GS(H/F9) = {0, 3, 4, 6,→}

GS(H/F16) = {0, 4, 5, 8, 9, 10, 12 →}

GS(H/F25) = {0, 5, 6, 10, 11, 12, 15, 16, 17, 18, 20 →}

GS(H/F49) = {0, 7, 8, 14, 15, 16, 21, 22, 23, 24, 28, 29, 30, 31, 32, 35, 36, 37, 38, 39, 40,

42,→}

GS(H/F64) = {0, 8, 9, 16, 17, 18, 24, 25, 26, 27, 32, 33, 34, 35, 36, 40, 41, 42, 43, 44, 45,

48, 49, 50, 51, 52, 53, 54, 56 →}.

We proceed by results that will be used to prove a lower bound for the ASC of AG

codes.

Lemma 2.2.3. Consider C = CL(D,G) of abundance a. Then the i-th generalized

Hamming weight di of C satisfies

di ≥ n− degG+ γa+i (2.8)

where γa + i is the (a+ i)-th element of the gonality sequence of F/K.

Proof. We first show the following claim:

di ≤ t if and only if there exists (n − t) pairwise distinct places in supp(D), say

Pt+1, . . . , Pn without loss of generality, such that `(G− Pt+1 − · · · − Pn) ≥ a+ i.

If di ≤ t, then there is a subcode Vi of C such that dimVi = i and |supp(Vi)| ≤ t.

Let Vi be generated by φ(f1), . . . , φ(fi), where f1, . . . , fi ∈ L(G). Then, f1, . . . , fi are

linearly independent functions which have zeros at at least (n− t) distinct places, say

Pt+1, . . . , Pn. Then, f1, . . . , fi ∈ L(G−Pt+1 − · · · −Pn) \L(G−D). If {g1, . . . , ga} is a
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basis of L(G −D), then the set B = {f1, . . . , fi, g1, . . . , ga} ⊆ L(G − Pt+1 − · · · − Pn)

is linearly independent. Hence, `(G− Pt+1 − · · · − Pn) ≥ a+ i.

On the other hand, assume that {g1, . . . , ga} is a basis of L(G−D). We can extend

it to a basis B = {g1, . . . , ga, f1, . . . , fi, . . .} of L(G − Pt+1 − · · · − Pn). Let the set

{φ(f1), . . . , φ(fi)} generate a subcode Vi of C. Since f1, . . . , fi are zero at Pt+1, . . . , Pn,

we have |supp(Vi)| ≤ t. This implies that di ≤ t.

Using the above claim, we have

di(C) = min{degD′ | 0 ≤ D′ ≤ D, `(G−D +D′) ≥ a+ i}

= min{n− degD′′ | 0 ≤ D′′ ≤ D, `(G−D′′) ≥ a+ i}

for every i, 1 ≤ i ≤ k, where k is the dimension of C. Now, let A ≤ D be an effective

divisor such that di(C) = n−deg A and `(G − A) ≥ a + i. By definition of (a + i)-th

element of the gonality sequence, we have

γa+i ≤ deg(G− A) = degG− n+ di(C).

Then, di(C) ≥ n−deg G+ γa+i.

Corollary 2.2.1. (Improved Goppa Bound) For any AG code CL(D,G) of abun-

dance a, we have

d ≥ n− degG+ γa+1. (2.9)

Proof. Letting i = 1 in Lemma 2.2.3, the result follows.

Note that if the abundance is zero, then d ≥ n−deg G in (2.9), which is nothing

but the Goppa bound (2.4). Since the gonality sequence is increasing, by Lemma 2.2.1

Equation (2.9) improves the Goppa bound in general.

We finish this section with one more lower bound on the minimum distance of AG

codes.

Corollary 2.2.2. For an AG code CL(D,G) of abundance a, we have

d ≥ (n− k + 1) − (g − a). (2.10)

Proof. Note that k = `(G) − a satisfies k ≥ degG + 1 − g − a by the Riemann-Roch

Theorem. Then, Corollary 2.2.1 implies that

d ≥ (n− k + 1) − g − a+ γa+1.
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It is sufficient to show that a ≤ g since we then have γa+1 ≥ 2a from Lemma 2.2.1.

If a = 0, this is clear. Assume that a ≥ 1. Since the divisor G −D is assumed to be

special we have deg(G−D) ≤ 2g − 2. Then, by Clifford’s theorem we have

a = `(G−D) ≤ 1 +
1

2
deg(G−D) ≤ g.

Note that (2.10) can be rewritten as d ≥ s(C)− (g− a), where s(C) = n− k+ 1 is

the Singleton bound for linear codes (cf. Prop. 1.1.1).

2.3 A Goppa-like Bound on the ASC of AG Codes

We will give the proof of the main Theorem (a lower bound on s[C]) in this section,

next two statements are the applications of Propositions 1.4.2 and 1.4.3, and they help

us to estimate how far an AG code is from the Wolf bound.

Proposition 2.3.1. For C = CL(D,G), if one of the following holds

(1) deg(G) < bn/2c + γa+1,

(2) deg(G) > dn/2e + 2g − 2 − γa⊥+1,

then we have s[C] = w(C).

Proof. If (1) is satisfied, from the improved Goppa bound (2.9), we have

d ≥ n− degG+ γa+1 (by (2.9))

> bn/2c (by assumption (1))

Thus, d ≥ n/2+1 and 2d ≥ n+2. Then, from Proposition 1.4.2, we have s[C] ≥ w(C).

The result follows from Wolf bound being an upper bound of s[C]. If (2) is satisfied,

then we apply the same idea to the dual code C⊥ = CL(D,W −G+D). We have

d⊥ ≥ n− deg(W −G+D) + γa⊥+1 (by (2.9))

= n− (2g − 2) + degG− n+ γa⊥+1

> bn/2c (by assumption (2))

Hence d⊥ ≥ n/2 + 1 and 2d⊥ ≥ n + 2. The result again follows from Proposition

1.4.2.
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Proposition 2.3.2. Let i be a positive integer with 1 ≤ i ≤ k. If either

(1) γa+i ≥ 2 degG− n− γa+1 + 2, or

(2) γa⊥+i ≥ n+ 2(2g − 2) − 2 degG− γa⊥+1 + 2

holds, then s[C] ≥ w(C) − i+ 1.

Proof. Suppose that (1) is satisfied. Then we have

di ≥ n− degG+ γa+i (by Lemma 2.2.3)

≥ degG− γa+1 + 2 (by assumption (1))

≥ n+ 2 − d (by Corollary 2.2.1)

The result follows from Proposition 1.4.3.

Now, assume that (2) is satisfied and apply the argument above to the dual code

C⊥ = CL(D,W −G+D). We have:

d⊥i ≥ n− deg(W −G+D) + γa⊥+i (by Lemma 2.2.3)

= n− (2g − 2) + degG− n+ γa⊥+i

≥ degG− (2g − 2) + (n+ 2(2g − 2) − 2 degG− γa⊥+1 + 2) (by assumption (1))

= n− degG+ (2g − 2) − γa⊥+1 + 2

= deg(W −G+D) − γa⊥+1 + 2

≥ n− d⊥ + 2 (by Corollary 2.2.1)

Again, we have the desired result by Proposition 1.4.3.

Now we prove the following simple and general bound for the ASC of AG codes.

Theorem 2.3.1. For an AG code C = CL(D,G), we have

s[C] ≥ w(C) − g + min{a, a⊥}, (2.11)

where a and a⊥ denote the abundances of C and C⊥, respectively.

Proof. Let i = g + 1 − a. We know from the proof of Corollary 2.2.2 that a ≤ g, so

that i ≥ 1. Furthermore, we have γg+1 = 2g by Lemma 2.2.1(ii). Then,

γa+i = γg+1 = 2g ≥ 2 degG− n− γa+1 + 2 ⇔ 2 degG ≤ n+ 2g − 2 + γa+1.

Now let ĩ = g + 1 − a⊥. Then,

γa⊥+ĩ = γg+1 = 2g ≥ n+2(2g−2)−2 degG−n−γa⊥+1+2 ⇔ 2 degG ≥ n+2g−2−γa⊥+1.
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Since 2deg G must satisfy one of the inequalities above, we have that either hypothesis

(1) in Proposition 2.3.2 is satisfied with i = g+1− a or the hypothesis (2) in the same

Proposition is satisfied with ĩ = g + 1 − a⊥. Then, we have

s[C] ≥ w(C) − (g + 1 − a) + 1 = w(C) − g + a

or

s[C] ≥ w(C) − (g + 1 − a⊥) + 1 = w(C) − g + a⊥.

Remark 2.3.1. The bound in Theorem 2.3.1 is in general sharp. Consider an AG code

C = CL(D,G) constructed using the rational function field. Note that the abundance

a = 0 since deg(G−D) ≤ 2g − 2 = −2. Hence, we have

s[C] ≥ w(C) − (g − a) = w(C).

In fact, any AG code on the rational function field is MDS [10, Page 44]. Hence, the

fact that they reach the Wolf bound also follows from Remark 1.4.2.

Corollary 2.3.1. Consider the AG code CL(D,G).

(i) If a ≤ a⊥ and degG ≥ bn/2c + γa+1, then

s[C] ≥ w(C) −

(
degG+ 1 − a−

⌊
n+ γa+1

2

⌋)
.

(ii) If a ≥ a⊥ and degG ≤ dn/2e + 2g − 2 − γa⊥+1, then

s[C] ≥ w(C) −

(
2g − 1 − degG− a⊥ +

⌈
n− γa⊥+1

2

⌉)
.

Proof. (i) By assumption the bound from Theorem 2.3.1 is

s[C] ≥ w(C) − g + a. (2.12)

Let α := degG+1−a−b(n+ γa+1)/2c. Our claim is to show that s[C] ≥ w(C)−α.

If g − a ≤ α, then the result follows from (2.12). Hence, assume that g − a ≥ α + 1

26



and let i = α+ 1. Note that i ≥ 1 by the following:

i = degG+ 2 − a−
⌊

n+γa+1

2

⌋

≥
⌊

n
2

⌋
+ γa+1 + 2 − a−

⌊
n+γa+1

2

⌋
(by assumption)

≥
⌊

n
2

⌋
+ γa+1 + 2 − a− n+γa+1

2

≥
⌊

n
2

⌋
− n

2
+ γa+1

2
− a+ 2

≥
⌊

n
2

⌋
− n/2 + 2 (by Lemma 2.2.2)

≥ 1

Since g ≥ a+ i, we also have the following by Lemma 2.2.2:

γa+i ≥ 2(a+ i− 1) = 2 degG+ 2 − 2

⌊
n+ γa+1

2

⌋

≥ 2 degG+ 2 − n− γa+1. (2.13)

Then, the result follows from Proposition 2.3.2(i).

Part (ii) is proved similarly. Let β = 2g − 1 − degG− a⊥ +
⌈

n−γ
a⊥+1

2

⌉
. The claim

is to show that s[C] ≥ w(C) − β. If g − a⊥ ≤ β, then the result follows from Theorem

2.3.1, since a ≥ a⊥ by assumption. Therefore, assume that g − a⊥ ≥ β + 1 = j. As

above, we can show that j ≥ 1 by the hypothesis on degG and Lemma 2.2.1. Then, it

follows that

γa⊥+j ≥ n− γa⊥+1 − 2 degG+ 4g − 2, (2.14)

by Lemma 2.2.2. The proof is concluded by using Proposition 2.3.2(ii).

Corollary 2.3.2. (i) Under the hypothesis of Corollary 2.3.1(i), we have

s[C] ≥

⌊
n+ γa+1

2

⌋
− g.

(ii) Under the hypothesis of Corollary 2.3.1(ii), we have

s[C] ≥ g + n−

⌈
n+ γa⊥+1

2

⌉
.

Proof. (i) Set i = α+ 1, where α is as in the proof of Corollary 2.3.1(i). Then

di − n+ degG ≥ γa+i (by (2.8))

≥ 2 degG+ 2 − n− γa+1 (by (2.13))

≥ degG+ 2 − d (by ( 2.9))
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Hence, di ≥ n+ 2 − d. From the proof of Proposition 1.4.3, we have

s[C] ≥ k − i+ 1 = k − degG− 1 + a+

⌊
n+ γa+1

2

⌋
.

Since k = `(G) − a ≥ degG+ 1 − g − a, the result follows.

(ii) The proof follows similarly. Set j = β+1, where β is as in the proof of Corollary

2.3.1(ii). Then

d⊥j − n+ deg(W −G+D) ≥ γa⊥+j (by (2.8))

≥ n− γa⊥+1 − 2 degG+ 4g − 2 (by (2.14))

= deg(W −G+D) − γa⊥+1 − degG+ 2g

≥ n− d⊥ − degG+ 2g (by (2.9))

Hence,

d⊥j ≥ 2n− deg(W −G+D) − d⊥ − degG+ 2g = n− d⊥ + 2.

From the proof of Proposition 1.4.3, we have

s[C] ≥ (n− k) − j + 1 = (n− k) −

(
2g − 1 − degG− a⊥ +

⌈
n− γa⊥+1

2

⌉)
.

Note that

n− k = dim(C⊥) = `(W −G+D) − a⊥

≥ deg(W −G+D) + g + 1 − a⊥

= (2g − 2 − degG+ n) + g + 1 − a⊥

Hence,

s[C] ≥ (2g − 2 − degG+ n+ g + 1 − a⊥) −

(
2g − 1 − degG− a⊥ +

⌈
n− γa⊥+1

2

⌉)

= g + n−

⌈
n− γa⊥+1

2

⌉

2.4 Further Lower Bounds on the ASC of AG Codes

We will end this chapter with two more lower bounds on the ASC of AG codes. Forney’s

construction of the minimal trellis will play a key role here.
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Observe that the i-th past Pi and the i-th future Fi subcodes of C in Forney’s

construction of minimal trellis are, respectively,

Pi = C(D − Pi+1 − · · · − Pn, G− Pi+1 − · · · − Pn) (2.15)

Fi = C(D − P1 − · · · − Pi, G− P1 − · · · − Pi). (2.16)

Let Ai := G− P1 − · · · − Pi and Bi := G− Pi+1 − · · · − Pn. We then have

si(T ) = dim(C) − dim(Pi) − dim(Fi)

= `(G) − a− [`(Bi) − a] − [`(Ai) − a]

= `(G) + a− `(Ai) − `(Bi). (2.17)

Proposition 2.4.1. For C = CL(D,G) we have

s[C] ≥ k + 2a− `(2G−D) − 1. (2.18)

Proof. Let 0 ≤ i ≤ n. If `(Ai) ≥ 1 and `(Bi) ≥ 1 for some i, then by ([10, Prop 1.4.14])

we have

`(Ai) + `(Bi) ≤ `(Ai +Bi) + 1. (2.19)

The claim follows if we use (2.19) in (2.17). Now, assume that either `(Ai) = 0 or

`(Bi) = 0 for all i. Since (G−D) ≤ (G−Ai) and (G−D) ≤ (G−Bi), the abundance

is zero. Further, min{`(Ai) + `(Bi) :for 0 ≤ i ≤ n} ≤ 1. Therefore,

s(C) ≥ k − 1 ≥ k − `(2G−D) − 1.

Proposition 2.4.2. Let 0 ≤ i ≤ n and j ∈ N such that degG − γj < min(i, n − i).

Then

s[C] ≥ k − 2(j − 1 − a). (2.20)

Proof. Note that, by assumption, degAi < γj and degBi < γj, since

degAi + i− γj = degG− γj < i

degBi + n− i− γj = degG− γj < n− i.

29



Then by the definiton of the i-th gonality number, we have

`(Ai) ≤ j − 1 and `(Bi) ≤ j − 1.

Thus, by (2.17), we have

si(T ) ≥ k + 2a− 2(j − 1).

Now, we will present an example which shows the behavior of the bounds we have

stated so far.

Example 2.4.1. Consider the Hermitian functio field H over Fq2 . Let Q∞ denote the

place at infinity and Q1, . . . , Qq3 denote all other rational places of H. The AG code

Cm defined over H is

Cm := CL(D,mQ∞),

where D :=
q3∑

i=1

Qi. These codes are called Hermitian codes. We refer to [10, Chapter

7] for more information on these codes. We will use some properties of Cm from this

reference in the following.

Note that if m < 0, L(mQ∞) = {0} and hence Cm = {0}. If, on the other hand,

m > n + 2g − 2, then k = `(G) − `(G − D) = n by the Riemann-Roch Theorem.

Hence, Cm = F
n
q2 in this case. Therefore, it is natural to restrict to m ∈ [0, n+ 2g − 2].

Furthermore, we can assume that m ∈
[

n−1
2
, n−3

2
+ 2g

]
since, otherwise, s[C] = w(C)

by Proposition 2.3.1.

A final natural restriction onm is due to the dual code. Namely, C⊥
m = CL(D,m⊥Q∞)

where m⊥ = n + 2g − 2 −m ([10, Proposition 7.4.2 ]). It is not difficult to note that

m ∈
[

n−1
2

+ g, n−3
2

+ 2g
]

iff m⊥ ∈
[

n−1
2
, n−3

2
+ g
]
. Since s(C) = s(C⊥), we finally

restrict our attention to Hermitian codes Cm with m ∈
[

n−1
2
, n−3

2
+ g
]
.

Observe that

deg(G−D) = m− q3 ≤
q3 − 3

2
+ g − q3 = −

q3

2
−

3

2
+
q(q − 1)

2
.

Hence, for any q, we have deg(G −D) < 0 (i.e. a = 0). Similarly, one can show that

deg(W −G) < 0 (i.e. a⊥ = 0). Therefore, the dimension of Cm is

k = `(G) = degG+ 1 − g.
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In the following table, we list various lower bounds on s[Cm] for q ∈ {2, 3, 4, 5, 7, 8}.

There are the Wolf bound and the bounds obtained in Corollary 2.3.2, Propositions

2.3.2, 2.4.1, and 2.4.2. We use the gonality sequences of H (over various finite fields)

obtained in Example 2.2.1. To compute `(2G−D) in Proposition 2.4.1, we use exact

formulas for Cm’s (for all m) in [10, Proposition 7.4.3]. Namely, we have

k = dimC2m = `(2G) − `(2G−D).

The right hand side is found in [10, Proposition 7.4.3] and `(2G) can be exactly com-

puted by the Riemann-Roch Thorem since by the restricted interval for m,

deg 2G = 2m ≥ n− 1 = q3 − 1 ≥ 2g − 2, for anyq.

The bold face entries are the best lower bound obtained in this way.
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q

2 m 4

Wolf 4

C.2.3.2 3

P.2.3.2 3

P.2.4.1 2

P.2.4.2 2

3 m 13 14 15

Wolf 11 12 13

C.2.3.2 10 10 10

P.2.3.2 10 11 10

P.2.4.1 10 10 10

P.2.4.2 9 10 11

4 m 32 33 34 35 36 37

Wolf 27 28 29 30 31 32

C.2.3.2 26 26 26 26 26 26

P.2.3.2 26 27 27 27 28 27

P.2.4.1 25 26 26 26 26 25

P.2.4.2 25 26 27 28 27 26

5 m 62 63 64 65 66 67 68 69 70 71

Wolf 53 54 55 56 57 58 59 60 61 62

C.2.3.2 52 52 52 52 52 52 52 52 52 52

P.2.3.2 52 53 54 53 54 54 53 54 53 52

P.2.4.1 52 52 53 53 53 54 53 53 53 52

P.2.4.2 51 52 53 54 55 54 53 54 55 56

7 m 171 172 173 174 175 176 177 178 179 180

Wolf 151 152 153 154 155 156 157 158 159 160

C.2.3.2 150 150 150 150 150 150 150 150 150 150

P.2.3.2 150 151 152 153 152 153 154 154 153 154

P.2.4.1 150 150 151 152 152 152 153 154 154 153

P.2.4.2 149 150 151 152 153 154 155 154 153 154

m 181 182 183 184 185 186 187 188 189 190 191

Wolf 161 162 163 164 165 166 167 168 169 170 171

C.2.3.2 150 150 150 150 150 150 150 150 150 150 150

P.2.3.2 155 154 153 154 154 153 152 153 152 151 150

P.2.4.1 154 154 153 153 154 153 152 152 152 151 150

P.2.4.2 155 156 157 158 157 156 155 156 157 158 159

8 m 256 257 258 259 260 261 262 263 264 265 266 267 268 269

Wolf 229 230 231 232 233 234 235 236 237 238 239 240 241 242

C.2.3.2 228 228 228 228 228 228 228 228 228 228 228 228 228 228

P.2.3.2 228 229 230 231 230 231 232 233 232 232 233 234 233 232

P.2.4.1 227 228 229 230 230 230 231 232 232 231 232 233 233 232

P.2.4.2 227 228 229 230 231 232 233 234 233 232 233 234 235 236

m 270 271 272 273 274 275 276 277 278 279 280 281 282 283

Wolf 243 244 245 246 247 248 249 250 251 252 253 254 255 256

C.2.3.2 228 228 228 228 228 228 228 228 228 228 228 228 228 228

P.2.3.2 233 234 233 232 232 233 232 231 230 231 230 229 228 228

P.2.4.1 232 233 233 232 231 232 232 231 231 230 230 229 228 227

P.2.4.2 237 238 237 236 235 236 237 238 239 240 239 238 237 236

Table 2.1: Bounds on s[Cm] for codes on the Hermitian function field where q =

2, 3, 4, 5, 7, 8.
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CHAPTER 3

IMPROVEMENTS FOR A CLASS OF AG CODES

Blackmore and Norton in [2] introduced a lower bound on s[C] for an AG code C,

called the second gonality bound. In this chapter, we will improve the previous lower

bounds on s[C] for a class of an AG code C by introducing a numerical function R(N),

and we will derive a result that is similar to the second gonality bound.

Our main reference will be another article of Munuera and Tores ([6]). For com-

parison we will also refer to two articles of Blackmore and Norton ([1] and [2])

3.1 The Numerical Function R(N)

Throughout the chapter we assume that the algebraic function field F/K has a rational

place (cf. Proposition 3.1.1) and we consider GS(F/K) as a subset of N′ := {−1}∪N0.

We will call an element in N′ \GS(F/K) as a gap of F/K. By Lemma 2.2.1, there are

exactly g + 1 gaps and the biggest of them is 2g − 1.

Proposition 3.1.1. Suppose that F/K has a rational place.

(i) Let a be an integer. Then a ∈ GS(F/K) iff 2g − 1 − a /∈ GS(F/K).

(ii) For i = 1, . . . , g,

γg−γi+i−1 < 2g − 1 − γi < γg−γi+i. (3.1)

Proof. (i) If a < 0 then a /∈ GS(F/K). Since 2g − 1 − a ≥ 2g, by Lemma 2.2.1(ii),

2g − 1 − a ∈ GS(F/K). If a > 2g − 1, the result follows similarly. Now, assume that

0 ≤ a ≤ 2g− 1. There are exactly g gonality numbers of F/K in the interval [0, 2g− 1]

(cf. Lemma 2.2.1). Thus, if we show that 2g − 1 − γi 6= γj for each i, j ∈ [1, . . . , g],

then the proof is complete. Let A be a divisor of F/K with deg A = γi and `(A) ≥ i,
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and let W be a canonical divisor of F/K. Then, we have `(W − A) ≥ g − γi + i − 1

by Riemann-Roch Theorem.

(1) Let j ≤ g−γi+i−1. Then, γj ≤ deg(W−A) = 2g−2−γi so that γj < 2g−1−γi.

(2) Let j ≥ g − γi + i and assume that 2g − 1 − γi = γj. Let B be a divisor of F/K

with deg B = γj and `(B) ≥ j. By the Riemann-Roch Theorem

`(W −B) ≥ j + g − γj − 1

= j − g + γi

≥ i (3.2)

Since deg(W − B) = 2g − 2 − γj = γi − 1, this contradicts with (3.2) by definition of

gonality numbers.

(ii) Let 1 ≤ i ≤ g. There are precisely γi− i+1 nongonality numbers in the interval

[0, γi]. By (i), the interval [2g−1−γi, 2g−1] has γi−i+1 gonality numbers. Taking the

fact that 2g− 1 /∈ GS(F/K) and γg = 2g− 2 into account, we obtain the first gonality

number which is γg−γi+i. Since 2g − 1 − γi /∈ GS(F/K), the proof concludes.

Lemma 3.1.1. The AG code C = CL(D,G) is non-abundant and 2 degG−n ≤ 2g−2

provided that 2k ≤ n and n > 2g.

Proof. Suppose that `(G−D) ≥ 1. If G−D is non-special, then

k = `(G) − (deg(G−D) + 1 − g) ≥ (degG+ 1 − g) − (deg(G−D) + 1 − g) = n

which is not possible by the hypothesis. So, G − D is a special divisor. Then by

Clifford’s theorem we have

`(G−D) ≤
degG− n

2
+ 1.

Thus,

k ≥ (degG+ 1 − g) −
degG− n

2
− 1 =

degG+ n− 2g

2
.

From the hypothesis, n ≥ 2k ≥ degG + n − 2g which implies 2g ≥ degG. Since,

deg(G − D) ≥ 0 (as `(G − D) ≥ 1), we have 2g ≥ degG ≥ n. This contradicts the

hypothesis that n > 2g. Taking into account the fact that

n

2
≥ k = `(G) ≥ degG+ 1 − g,

the second statement follows.
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Let ˜̀= ˜̀
F/K : N′ → N0 be the numerical function defined by

˜̀(a) := max{i ∈ N : γi ≤ a} and ˜̀(−1) := 0.

By Lemma 2.2.1, we conclude that ˜̀ is a nondecreasing function with ˜̀(2g−2) = g and

˜̀(2g − 1 + i) = g + i for i ≥ 1. In addition, if a+ 1 /∈ GS(F/K), then ˜̀(a+ 1) = ˜̀(a),

and if a+ 1 ∈ GS(F/K) then ˜̀(a+ 1) = ˜̀(a) + 1. In particular, ˜̀(a+ 1) ≤ ˜̀(a) + 1.

Lemma 3.1.2. For a divisor M of degM ≥ −1, we have `(M) ≤ ˜̀(degM).

Proof. If deg M = −1, then `(M) = 0 = ˜̀(−1). Now assume that deg M ≥ 0 and let

i ∈ N0 be such that γi ≤ degM < γi+1 so that ˜̀(degM) = i. From the definition of

gonality number, we have `(M) ≤ i.

Let R = RF/K : N′ ∩ [−1, 2g − 2] → N be the numerical function defined by

R(N) := min{˜̀(a) + ˜̀(b) : a, b ∈ N′ with a+ b = N}.

In the following result, we will use the notation introduced in Chapter 1 that was used

in Forney’s construction (cf. Page 16).

Theorem 3.1.1. Let C = CL(D,G) be an AG code with 2k ≤ n and n > 2g. If

m := degG, then

4[C] ≤ R(2m− n). (3.3)

In particular, s[C] ≥ w(C) −R(2m− n).

Proof. It is sufficient to show that 4(C) ≤ R(2m − n) since the function R depends

only on the function field where C is defined. By the hypothesis, w(C) = k. We can

assume that 2d < n+2 by Proposition 1.4.1, since we have s(C) = k otherwise. Then,

by the Goppa bound,

n+ 2 > 2d > 2n− 2m,

which implies that 2m − n ≥ 1. Let us consider the i-th past Pi and the i-th future

Fi subcodes of C in the Forney’s construction which are given in (2.15) and (2.16)

,respectively, for an AG code. By Lemma 3.1.1, the code C is non-abundant so that

the i-th element of the state complexity profile of C is

si = si(C) = k −4i
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where 4i = `(G−P1 − · · ·−Pi) + `(G−Pi+1 − · · ·−Pn). Then, by Proposisition 1.4.1

and since d ≥ n−m, we have s(C) = w(C) −4(C), where

4(C) = min{4d−1, . . . ,4n} = min{4n−m−1, . . . ,4m+1}.

Let i ∈ Z with n−m− 1 ≤ i ≤ m+ 1, then

deg(G− P1 − · · · − Pi) ≥ −1, and deg(G− Pi+1 − · · · − Pn) ≥ −1.

Therefore, by Lemma 3.1.2 we have

4i ≤ ˜̀(deg(G− P1 − · · · − Pi)) + ˜̀(deg(G− Pi + 1 − · · · − Pn)).

Now, by the definition of the function R and since 2m− n ≤ 2g − 2, we have

4 = min
i=1,...,n

4i ≤ ˜̀(m− i) + ˜̀(m− (n− i)) = R(2m− n) ≤ R(2g − 2).

Thus, the proof is complete.

In the remaining parts of this section, we will explore the function R.

Lemma 3.1.3. Let N ∈ N′ ∩ [−1, 2g − 2].

(i) R is a non-decreasing function such that R(N) ≤ R(N + 1) ≤ R(N) + 1,

(ii) 1 ≤ R(N) ≤ i− 1, if N < γi − 1,

(iii) R(N) ≤ b(N + 1)/2c + 1,

(iv) There is a gap a = a(N) of F/K with a ≤ N/2 such that R(N) = ˜̀(a)+ ˜̀(N−a).

Proof. By definition of R, we have R(−1) = 1 since R(−1) = ˜̀(−1) + ˜̀(0).

(i) Assume that R(N + 1) = ˜̀(a) + ˜̀(b) with a+ b = N + 1 and a ≤ b. Since ˜̀ is a

non-decreasing function, we have

R(N) ≤ ˜̀(a) + ˜̀(b− 1) ≤ ˜̀(a) + ˜̀(b) = R(N + 1).

Thus, we have R(N) ≥ 1. Let R(N) < R(N + 1) and R(N) = ˜̀(a′) + ˜̀(b′) where

a′ + b′ = N , then

˜̀(a′) + ˜̀(b′) = R(N) < R(N + 1) ≤ ˜̀(a′ + 1) + ˜̀(b′).

36



Therefore ˜̀(a′) < ˜̀(a′ +1), which implies that ˜̀(a′)+1 = ˜̀(a′ +1). Hence, R(N +1) =

R(N) + 1.

(ii) R(N) ≤ ˜̀(N + 1) where N = (N + 1) − 1. By hypothesis, N + 1 < γi, so that

˜̀(N + 1) ≤ i− 1.

(iii) There exists i ∈ {1, . . . , g} such that γi ≤ N + 1 < γi+1, so R(N) ≤ i by (ii).

Since 2i− 2 ≤ γi ≤ N + 1, by Lemma 2.2.1 , R(N) ≤ (N + 3)/2.

(iv) Assume that R(N) = ˜̀(a) + ˜̀(b) where a ≤ b = N − a and a ∈ GS(F/K).

Then, ˜̀(a− 1) = ˜̀(a) − 1 and ˜̀(b+ 1) ≤ ˜̀(b) + 1. Thus,

˜̀(a− 1) + ˜̀(b+ 1) ≤ ˜̀(a) + ˜̀(b) = R(N) ≤ ˜̀(a− 1) + ˜̀(b+ 1).

If a−1 is a gap of F/K, the proof is finished. Otherwise we repeat the above argument

until we obtain a gap number.

Remark 3.1.1. Theorem 3.1.1 produces the result obtained in Theorem 2.3.1, which

is s[C] ≥ w(C)− g whenever 2k ≤ n and n > 2g since we have R(N) ≤ R(2g− 2) ≤ g

for N ∈ N′ ∩ [−1, 2g − 2].

Our goal in the rest of this section is to improve Theorem 3.1.1 further.

Lemma 3.1.4. Let i ∈ N′, N ∈ N′ ∩ [−1, 2g − 2] and r ∈ N with i+ r ≤ N + 1. We

have

min{˜̀(a) + ˜̀(N − a) : a ∈ A} = {˜̀(i+ r) + ˜̀(N − i− r)},

provided that A = {i, i+ 1, . . . , i+ r} ⊂ N′ is a set of r + 1 consecutive integers where

i+ 1, . . . , i+ r are gaps of F/K.

Proof. Assume that a = i+ j with 1 ≤ j ≤ r. Since a is a gap of F/K, ˜̀(a) = ˜̀(i). To

have minimum ˜̀(a)+ ˜̀(N −a), ˜̀(N −a) must be minimum. Since ˜̀ is a nondecreasing

function, we choose the largest a in A.

Proposition 3.1.2. Let N ∈ N′ ∩ [−1, 2g − 2]. Then,

R(N) = min{˜̀(a) + ˜̀(N − a) : a = bN/2c , or

(−1 ≤ a ≤ N/2 and a is a gap of F/K with a+ 1 ∈ GS(F/K))}

Proof. First note that we have , by Lemma 3.1.3(iv), some gap a of F/K that satisfies

R(N) = ˜̀(a) + ˜̀(N − a) where a ≤ N/2. So, we look for the gaps a with ≤ N/2. Let

a < bN/2c. We can assume that each integer a′ with a < a′ ≤ bN/2c is a gap of F/K.
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Then R(N) = ˜̀(bN/2c) + ˜̀(dN/2e) by Lemma 3.1.3. If a′ is not a gap of F/K then

we can assume that a+1 ∈ GS(F/K) by Lemma 3.1.4, and the proof is complete.

Example 3.1.1. Let N ∈ N′ ∩ [−1, 2g− 2] with dN/2e < γ2. From Proposition 3.1.2,

we have

R(N) = min{˜̀(−1) + ˜̀(N + 1), ˜̀(bN/2c) + ˜̀(dN/2e)}.

If N + 1 < γ2 then ˜̀(N + 1) ≤ 1, which implies R(N) = 1 since ˜̀(−1) = 0 and

R(N) ≥ 1. If N + 1 ≥ γ2 then ˜̀(N + 1) = 2. Further, ˜̀(bN/2c) = ˜̀(dN/2e) = 1, so

R(N) = 2.

To provide the desired improvement mentioned in Remark 3.1.1, it is effective to

compute R(2g − 2), which is given in the following statement.

Proposition 3.1.3. R(2g − 2) = g − max{γi − (2i− 2) : i = 1, . . . , g}

Proof. By the definition of R and Lemma 3.1.4, we have

R(2g − 2) = min{˜̀(a) + ˜̀(2g − 2 − a) : −1 ≤ a ≤ 2g − 1, a+ 1 ∈ GS(F/K)}.

Let a = γi − 1 with 1 ≤ i ≤ g. Then,

R(2g − 2) = min{˜̀(γi − 1) + ˜̀(2g − γi − 1) : i = 1, . . . , g}.

We have ˜̀(γi − 1) = i− 1 and ˜̀(2g − γi − 1) = g − γi − 1 + i, by the definition of the

function ˜̀and (3.1), respectively. Therefore,

R(2g − 2) = min{g − γi + 2i− 2 : i = 1, . . . , g}.

Theorem 3.1.2. Let C = CL(D,G) be an AG code with 2k ≤ n and n > 2g, where g

is the genus of F/K. Then

s[C] ≥ w(C) − g + γ2 − 2.

Proof. By Lemma 3.1.1 and by Proposition 3.1.3 we have 2m − n ≤ 2g − 2 and

R(2g − 2) ≤ g − γ2 + 2. Then, by Theorem 3.1.1, we obtain

s[C] ≥ w(C) −R(2m− n) ≥ w(C) − (g − γ2 + 2).
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3.2 An Improvement on the ASC of Hermitian Codes

In this section, we will study the function R on the Hermitian function field. At the

end of the section we will compare the bound we obtain by Theorem 3.1.1 with the

bound computed by Blackmore and Norton in [1]

On the Hermitian function field, we can exactly compute the function R since the

genus of H/Fq2 is g = q(q + 1)/2 and its gonality sequence is known (Example 2.2.1).

For an integer a ∈ N0, let α and β be the non-negative integers defined by a =

αq + β, 0 ≤ β < q. Since a = αq + β = α(q + 1) − (α − β), it is easily seen that

a ∈ GS(H/Fq2) iff β ≤ α by Example 2.2.1 .

Lemma 3.2.1. We have

˜̀(a) =
α(α + 1)

2
+ min{α, β} + 1.

Proof. If a = 0, then the result holds since ˜̀(0) = 1. Now, assume a > 0. Let

a ∈ GS(H/Fq2) so that min{α, β} = β. Using Example 2.2.1, let k be such that

γk = a. Thus,

k =
(α+ 1)(α+ 2)

2
− (α− β)

=
α(α + 1)

2
+ β + 1,

since a = αq + β = α(q + 1) − (α − β). If a is a gap of H/Fq2 then β > α and

˜̀(a) = ˜̀(αq + α). Similarly, we find k which satisfies γk = αq + α. Then,

k =
(α+ 1)(α+ 2)

2
=
α(α + 1)

2
+ α+ 1.

Lemma 3.2.2. Let N ∈ N′∩ [−1, 2g−2] and a = αq+β be a gap of H/Fq2 with α ≥ 1

and a ≤ N/2. Then

˜̀(a) + ˜̀(N − a) ≤ ˜̀(a− q) + ˜̀(N − (a− q)).

Proof. Let a′ := a − q = (α − 1)q + β and b := N − a = δq + ε with 0 ≤ ε < q, so

b′ = N − a′ = (δ + 1)q + ε. By Lemma 3.2.1, we have

˜̀(a) − ˜̀(a′) =
α(α+ 1)

2
+ α+ 1 −

(
α(α− 1)

2
+ (α− 1) + 1

)

= α+ 1 (3.4)
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If b ∈ GS(H/Fq2), then, since ε ≤ δ,

˜̀(b) − ˜̀(b′) =
δ(δ + 1)

2
+ ε+ 1 −

(
(δ + 1)(δ + 2)

2
+ ε+ 1

)

= −δ − 1. (3.5)

From the above equations and since a is a gap number, (i.e., a ≤ b = N − a which

implies δ ≥ α), we have

˜̀(a) + ˜̀(b) = ˜̀(a′) + ˜̀(b′) − δ + α

≤ ˜̀(a′) + ˜̀(b′). (3.6)

Let b be a gap number so that ε > δ. Then

˜̀(b) − ˜̀(b′) =
δ(δ + 1)

2
+ δ + 1 −

(
(δ + 1)(δ + 2)

2
+ δ + 2

)

= −δ − 2. (3.7)

Thus, the result follows.

Proposition 3.2.1. Let N ∈ N0∩ [0, 2g−2] and assume that α and β are the integers

defined by bN/2c = αq + β with 0 ≤ β < q and let α ≥ 1.

(i) If bN/2c is a gap of H/Fq2, then

R(N) = min{˜̀(bN/2c) + ˜̀(dN/2e), ˜̀(αq − 1) + ˜̀(N − αq + 1)}.

(ii) If bN/2c ∈ GS(H/Fq2), then

R(N) = ˜̀(αq − 1) + ˜̀(N − αq + 1).

Proof. Note that αq − 1 /∈ GS(H/Fq2) since αq = α(q + 1) − (α + 1) and α + 1 > α

but αq ∈ GS(H/Fq2). Then the result follows by Prop 3.8 and Lemma 3.2.2.

We now define the concept of ‘jump’ to improve the above result. If R(N) >

R(N − 1), the integer N with 0 ≤ N ≤ 2g − 2 is called a jump of H/Fq2 . The set of

jumps of H/Fq2 is denoted by U(H/Fq2) and the number of jumps is equal to R(2g−2),

which can be computed via Proposition 3.2.1.
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Lemma 3.2.3. Let H/Fq2 be a Hermitian function field of degree q + 1. Then

(1) |U(H/Fq2)| =

{
q2/4 if q is even

(q2 − 1)/4 if q is odd

(2) U(H/Fq2) = {αq + β : 0 ≤ α ≤ q − 2, −1 ≤ α ≤ q − 2, and 2β + 2 ≤ α or

β = q − 1} \ {2g − 1}.

Proof. (1) We compute R(2g − 2). Let q be even. Then

g − 1 =
q(q − 1)

2
− 1 =

(q − 2)(q + 1)

2
=

(q − 2)q

2
+
q − 2

2

so g − 1 ∈ GS(H/Fq2). By Proposition 3.2.1 we have

R(2g − 2) = ˜̀(αq − 1) + ˜̀(2g − 2 − αq + 1)

where α = (q − 2)/2. Note that

αq − 1 =
(q − 2)

2
q − 1 =

(q − 4)

2
q + q − 1

and

2g − 2 − αq + 1 = (q − 2)(q + 1) − q
(q − 2)

2
+ 1 =

(q − 2)q

2
+ q − 1.

Then by Lemma 3.2.1, we have

˜̀(αq − 1) =
(q − 4)

2

(q − 2)

2

1

2
+
q

2
− 2 + 1 =

q2

8
−
q

4

and

˜̀(2g − 2 − αq + 1) =
(q − 2)

2

q

2

1

2
+
q

2
=
q2

8
+
q

4
.

Hence, the result follows. Similar arguments are applied for an odd q.

(2) Let T be the set on the right hand side of the equality in the item (2). We first

show that |T | = R(2g − 2). Consider 2β + 2 = α = q − 2 so that 1 = q − 3 − 2β and

β = b(q − 4)/2c. Further, the number of elements of T where β = q − 1 is q − 1 since

2g − 1 /∈ T , i.e., for α = q − 2 we have αq + β = 2g − 1. Thus

|T | =

b(q−4)/2c∑

β=0

(q − 3 − 2β) + q − 1 = R(2g − 2).

Since every element in T is a jump of H/Fq2 , the proof is finished.

Example 3.2.1. Consider the Hermitian function field over F64 so that q = 8 and

g = 28. In the following table the bold face entries demonstrate the jumps of H/F64

where the integers range from -1 to 54.
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−1 0 1 2 3 4 5 6

7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22

23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38

39 40 41 42 43 44 45 46

47 48 49 50 51 52 53 54

Proposition 3.2.2. Let H/Fq2 be a Hermitian function field and N ∈ N′∩[−1, 2g−2].

Let α and β be the integers defined by N = αq + β with 0 ≤ α ≤ q − 2 and −1 ≤ β ≤

q − 2.

(1) If β > bα/2c − 1, then R(N) = R(αq + bα/2c − 1),

(2) If β ≤ bα/2c − 1, then

R(N) =

{
α(α+ 2)/4 + β + 2 if α is even

(α+ 1)2/4 + β + 2 if α is odd

Proof. (1) The largest jump of H/Fq2 not exceeding N is achieved when β =
⌊

(α−2)
2

⌋
,

i.e., 2β + 2 = α. Thus the equality holds.

(2) Let us put all the integers from -1 to 2g-2 in an array according to the values of

α and β which, respectively, correspond to the rows and the columns of the array as

in the above example. The j-th row of the array contains b(j + 2)/2c jumps of H/Fq2

which are exactly in the first b(j + 2)/2c columns of the array. Then the number of

jumps of H/Fq2 is:

β + 2 + 2(
∑α/2

i=1 i) = α(α+ 2)/4, when α is even, and

β + 2 + 2(
∑(α−1)/2

i=1 i) + (α+ 1)/2 = (α+ 1)2/4, when α is odd.

We finish the chapter with an example to demonstrate the effect of these results on

the bounds of s[C], where C is an AG code on the Hermitian function field.

Example 3.2.2. Let C = CL(D,mQ∞) be a Hermitian code over Fq2 . For q =

2, 3, 4, 5, 7, 8, the values of m =deg G and the genus g are given in Example 2.4.1. To

apply Theorem 3.1.1, m has to satisfy −1 ≤ 2m−n ≤ 2g−2 which corresponds to the

interval used in Example 2.4.1, i.e. m ∈ [n−1
2
, n−3

2
+ g]. Note that 2k ≤ n and n > 2g.
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In the following table, the row Wolf and the row Chp2 contains the Wolf upper

bound on s[C] and the best lower bound obtained in Chapter 2, respectively. While

true values of s[C] which are obtained by Blackmore and Norton [1] are given in the row

True, the bounds obtained from Theorem 3.1.1 and Proposition 3.2.2 are demonstrated

in the row Thm 3.1.1. The lower bounds that attain the true values of s[C] are in bold

face.

q

2 m 4

Wolf 4

Chp2 3

Thm 3.1.1 3

True 3

3 m 13 14 15

Wolf 11 12 13

Chp2 10 11 11

Thm 3.1.1 10 11 11

True 11 11 11

4 m 32 33 34 35 36 37

Wolf 27 28 29 30 31 32

Chp2 26 27 27 28 28 27

Thm 3.1.1 26 27 27 28 27 28

True 26 27 27 28 28 28

5 m 62 63 64 65 66 67 68 69 70 71

Wolf 53 54 55 56 57 58 59 60 61 62

Chp 2 52 53 54 54 55 54 53 54 55 56

Thm 3.1.1 52 53 54 54 55 55 55 56 55 56

True 53 53 54 54 55 56 56 56 57 56

7 m 171 172 173 174 175 176 177 178 179 180

Wolf 151 152 153 154 155 156 157 158 159 160

Chp 2 150 151 152 153 153 154 155 154 154 154

Thm 3.1.1 150 151 152 153 153 154 155 155 155 156

True 151 151 152 153 153 154 155 156 156 156

m 181 182 183 184 185 186 187 188 189 190 191

Wolf 161 162 163 164 165 166 167 168 169 170 171

Chp 2 155 156 157 158 157 156 155 156 157 158 159

Thm 3.1.1 157 156 157 158 158 157 158 159 158 158 159

True 157 158 157 158 159 159 159 159 160 160 159

8 m 256 257 258 259 260 261 262 263 264 265 266 267 268 269

Wolf 229 230 231 232 233 234 235 236 237 238 239 240 241 242

Chp 2 228 229 230 231 231 232 233 234 233 232 233 234 235 236

Thm 3.1.1 228 229 230 231 231 232 233 234 233 234 235 236 235 236

True 228 229 230 231 231 232 233 234 234 234 235 236 237 236

m 270 271 272 273 274 275 276 277 278 279 280 281 282 283

Wolf 243 244 245 246 247 248 249 250 251 252 253 254 255 256

Chp 2 237 238 237 236 235 236 237 238 239 240 239 238 237 236

Thm 3.1.1 237 238 237 237 238 239 238 238 239 240 239 238 239 240

True 237 238 239 238 238 239 240 240 239 240 241 241 240 240

Table 3.1: Bounds on s[Cm] for Hermitian codes over Fq2 for q = 2, 3, 4, 5, 7, 8.
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