
Economic Lot Scheduling with Resources in Parallel

ÇAĞRI HAKSÖZ∗

Sabancı University

MICHAEL PINEDO†

Leonard N. Stern School of Business, New York University

Current Version: December 5, 2008.

Keywords: Economic Lot Scheduling, Parallel Resources, Multiple Knapsack, Bin Packing, Heuristics

Abstract

In this paper we consider the economic lot scheduling problem with m machines (or facilities)

in parallel. There are n different types of items. Item j has a demand Dj per unit time, a holding

cost hj per unit time, and a setup cost Kj . The machines have different speeds. The speed of

machine i is vi. Machine i can produce item j at rate viPj . We consider three different models.

The objective in all three models is to find an assignment of items to machines that minimizes the

total cost per unit time of the entire system. In the first model each machine operates according

to a rotation or cyclical schedule and the cycle lengths of the rotation schedules of the m machines

have to be the same. In the second model each machine again operates according to a rotation

schedule, but the rotation schedules are allowed to have different cycle lengths. In the third model

the machines do not have to operate according to rotation schedules. For each model we consider a

number of special cases that provide some insights into the role each parameter plays. Based on the

results of the special cases we formulate for each model a heuristic that can be applied to arbitrary

instances. In the concluding remarks we discuss the significance of our results for problems that

occur in practice.
∗Assistant Professor of Operations Management, Faculty of Management, Orhanlı, Tuzla, 34956 Istanbul, Turkey. Phone:+90-216-483-9683.

Email:cagrihaksoz@sabanciuniv.edu.
†Julius Schlesinger Professor of Operations Management, IOMS Dept, 44 W 4th St., New York, NY 10012. Phone:+1-212-998-

0287.Email:mpinedo@stern.nyu.edu.

1

1 Introduction

The Economic Lot Scheduling Problem arises often in industry. The goal is to schedule lots (or

batches) of one or more items on a machine in such a way that the total setup cost and the total

holding (i.e., inventory carrying) cost per unit time is minimized.

In this paper we consider the Economic Lot Scheduling Problem with multiple machines in

parallel. We assume that the machines are not identical and operate at different speeds. Each

item must be assigned to one and only one machine and each item must be produced in a cyclic

fashion. The problem is to determine which item has to be assigned to which machine.

The Economic Lot Scheduling Problem on parallel machines occurs in many industries. Con-

sider, for example, a paper mill. Paper mills typically have several paper machines and each

machine operates at its own speed. Many different types of paper (differentiated by the basis

weight, grade, and finish of the paper) have to be produced on the various machines. The custom

typically is to keep on producing any given type of item on the same machine with the machine

operating according to a so-called rotation or cyclic schedule. This paper aims at obtaining insights

on how setup costs and inventory carrying costs affect the assignments of items to machines. The

goal is to develop priority rules for assigning items to machines. The priority rules should be easily

implementable and useful for the real world. Such priority rules may depend on the cycle lengths

as well as on whether or not the cycle lengths of the different machines are the same.

In what follows we consider three basic models. In the first model (Model I), we assume that

each machine has to follow a rotation schedule, implying that all items that are assigned to any

given machine have the same cycle length. We also assume that all the machines must have the

same cycle length; this implies that all items on all machines have the same cycle length. In

the second model (Model II), again each machine must follow a rotation schedule. However, the

cycle lengths of the rotation schedules of the various machines are allowed to be different. In the

third model (Model III), each machine can follow an arbitrary schedule, not necessarily a rotation

schedule. It is clear that, given a fixed set of items, the minimum total cost in Model I is higher

than the minimum total cost in Model II, which is again higher than the minimum total cost in

Model III.

An enormous amount of research has been done on economic lot scheduling. For an overview of

this research, see Elmaghraby (1978), Potts and van Wassenhove (1992), Muckstadt and Roundy

(1993), Haase (1993), Kimms (1997), Drexl and Kimms (1997), Zipkin (2000), and Pinedo (2005).

2

A significant amount of research has been done on lot scheduling where items have to follow given

routes within a network of facilities; these routes are often referred to as “gozinto” structures,

see Muckstadt and Roundy (1993). Not as much research has been done on lot sizing in parallel

facilities. Carreno (1990) considered the special case of the problem described here by assuming

that the m different machines are identical, i.e., operate at the same speed. Jones and Inman

(1996) presented some very practical algorithms for machines in parallel, again for the case when

the machines have identical speeds. Kang, Malik, and Thomas (1999) studied a problem somewhat

related to ours with sequence-dependent setup costs in a multi-period setting. Finally, Bollapragada

and Rao (1999) considered m machines at different speeds. They assumed that the production of

an item could be split arbitrarily and spread out over multiple machines. Each machine follows

a rotation schedule and the cycle lenghts of the machines are allowed to be different. In a sense,

their model is a continuous version of our Model II. They develop for their model a Mixed Integer

Programming formulation with a concave objective function. Bollapragada and Rao also develop

two more practical heuristic rules that are not based on the mathematical programming framework.

Clearly, in their optimal solutions, items of any given type may be produced on more than one

machine.

A significant amount of research in the scheduling literature has also focused on parallel ma-

chines with different speeds. It is often assumed that there is a finite number of jobs (n) which

have to be processed on parallel machines that operate at different speeds. Such a parallel machine

environment is in the finite scheduling literature often referred to as uniform machines, see Pinedo

(2002). A job in a parallel machine scheduling model is similar to the processing of an item in

this paper. Such a job in a scheduling model also has to be processed on just one of the machines

without any interruptions.

Some of the results that we present in this paper turn out to be intuitive. For example, an

intuitive explanation can be given for the fact that when loading the machines, one should always

give a preference to the machine that is the slowest and start loading that one first. However, other

results are less intuitive: when loading the machines (starting with the slowest one), which items

should be assigned to the slower machines and which items to the faster? Which items to assign

first to the slowest machine actually depends very much on the model under consideration; the

priority rules are different for Models I, II, and III. We also focus on the differences between our

heuristics for Model II and the heuristics proposed by Bollapragada and Rao for their continuous

version of our Model II.

3

This paper is organized as follows. The second section contains the notation and preliminary

results. The third, fourth and fifth sections focus on Models I, II, and III, respectively. Each

section considers various special cases and presents a heuristic for the general case. In the last

section we present our conclusions, discuss the usefulness of the results for scheduling in practice

and describe areas that deserve more attention.

2 Preliminaries

We assume in all three models that there are m machines with speeds v1 ≤ v2 ≤ · · · ≤ vm and that

the speed of the slowest machine is v1 = 1. Let Kj denote the setup cost of item j, j = 1, . . . , n.

This setup cost does not depend on the machine. Let hj denote the holding (inventory carrying)

cost of item j per unit time and Dj the demand rate for item j. Let Pj denote the production rate

of item j on machine 1; the production rate of item j on machine i is Pij = viPj . Let ρj = Dj/Pj

denote the proportion of time that machine 1 must be dedicated to the production of item j if

item j is assigned to machine 1; let

ρij =
Dj

Pij
=

ρj

vi

denote the proportion of time machine i has to be dedicated to the production of item j if item j

is assigned to machine i.

We first focus on Models I and II. In Model I, the variable x denotes the cycle length of each

one of the machines (their cycle lengths are identical). In Model II, the variable xi denotes the

cycle length of machine i. In order to simplify notation, let

Fij =
1
2
hjDj(1− ρij).

If item j is assigned to machine i and it is the only item on machine i, then its cycle length can

be determined independently of the other machines and

xij =

√
2Kj

hjDj(1− ρij)
=

√
Kj

Fij
,

4

(see, for example, Zipkin (2000) or Pinedo (2005), Chapter 7).

It is a well-known fact that the optimal cycle length of a rotation schedule, when there are n

different items assigned to a single machine i with speed vi, is

xi =

√√√√
n∑

j=1

Kj

(n∑

j=1

hjDj

2
(1− ρij)

)−1
=

√√√√
n∑

j=1

Kj

(n∑

j=1

Fij

)−1
,

(see, for example, Pinedo (2005)). The total average cost of machine i per unit time then is

Zi = xi

n∑

j=1

Fij +
1
xi

n∑

j=1

Kj = 2

√√√√
n∑

j=1

Fij

√√√√
n∑

j=1

Kj .

The heuristics for the three models considered are different, i.e., the heuristic for the case in

which the cycle lengths of the m machines are the same (Model I) is different from the heuristic

for the case when the cycle lengths of the various machines are allowed to be different (Model II).

If the system is working at full capacity, i.e., if

ρ1 + ρ2 + · · ·+ ρn = v1 + v2 + · · ·+ vm,

then there is a “fitting” or “packing” problem when searching for a combination of items that

exactly covers the capacity of each machine (assuming an item cannot be produced on more than

one machine). This packing problem is mathematically equivalent to the PARTITION, or SUBSET

SUM problem, or the Multiple Knapsack problem, and is known to be NP-hard. So, if the system

is working at full capacity, then there may not even be a feasible solution with every item produced

on just one machine.

However, there are a number of scenarios in which the fitting or packing problem does not play

a role. Consider the following three scenarios: (i) all the machines are operating well below their

full capacity; (ii) there are many items that require very little machine time, i.e., items that have a

ρj very close to zero; (iii) all ρj are identical to ρ. (In the last case, when all ρj = ρ and the system

is working at full capacity, then a feasible solution only exists provided each vi is a multiple of ρ).

It can be shown that in any one of such scenarios the fitting or packing problem is not a real

problem. We will focus in this paper on such cases in order to obtain some insights into the priority

rules for scheduling the various items on the different machines. The rules obtained this way can

5

then be used for the development of heuristics for arbitrary instances.

In the real world, machines are often working at full capacity and there is indeed a preference

not to produce the same item on two different machines. However, in practice the packing problem

is typically not an issue because the quantities to be produced are somewhat adjustable and there

are usually many items with very low production quantities.

Model III needs some additional discussion. In Model III, when an assignment of items is made

to a machine, another problem can occur: An assignment of items to a machine may be such that

there does not exist a feasible schedule of the items with each one of them having its own optimal

cycle length. For example, suppose an item with a high ρ is put together on a machine with

many small ρ items. Suppose the high ρ item requires a long cycle length (because of a high setup

cost) and the small ρ items require very short cycle lengths (because of high inventory carrying

costs). So the high ρ item requires long production runs during which it is not possible to do

the short runs of the low ρ items. Given an assignment with such a combination of items on one

machine, it may not be possible to find a schedule in which each item has its own optimal cycle

length. However, this particular problem is not a major issue when the number of items is large

and all the ρ’s are relatively small. In our analysis of Model III, we assume therefore that once

an assignment of items to machines has been made, it will be possible to find for each machine an

optimal (or close to optimal) schedule with each item being produced according to its own optimal

cycle length. We are mainly interested in the assignment problem that is part of Model III. There

are two reasons why we are interested in the assignment problem assuming that for each machine

an optimal schedule can be found once the assignment has been made: the first reason is that

the solution of this assignment problem provides a useful lower bound for all three models. The

second reason is that solving the assignment problem first and then scheduling each machine is

an approach that is often used in industry. In what follows we refer to the assignment problem in

Model III also as the Lower Bound Problem.

6

3 Rotation Schedules with Identical Cycle Lengths (Model

I)

In this section we present heuristics for the case where the cycle lengths of the m machines are the

same. This problem is somewhat similar to a well-known problem in combinatorial optimization

called the multiple knapsack problem.

In order to obtain some insights, consider two machines and n items. The two machines operate

at speeds va and vb, where va ≤ vb. Let Na (Nb) denote the set of items that are assigned to machine

a (b) and let na (nb) denote the number of different items in set Na (Nb).

If the cycle length of both machines is x, then the total average cost per unit time is

∑

i∈Na

(1
2
hi(Dix− D2

i x

vaPi
)
)

+
∑

i∈Nb

(1
2
hi(Dix− D2

i x

vbPi
)
)

+
(∑

i∈Na∪Nb

Ki

)
/x.

In order to determine the optimal cycle length x, we take the derivative of the total costs on

both machines with respect to x, set that equal to zero, and obtain the equation

1
x2

∑

i∈Na∪Nb

Ki =
1
2

∑

i∈Na∪Nb

hiDi − 1
2va

∑

i∈Na

hiDiρi − 1
2vb

∑

i∈Nb

hiDiρi,

or

x =
(2vavb

G

∑

i∈ Na∪Nb

Ki

) 1
2
,

where

G = vavb

∑

i∈Na∪Nb

hiDi − vb

∑

i∈Na

hiDiρi − va

∑

i∈Nb

hiDiρi.

We now perform an interchange between a set of items that is originally assigned to machine

a, say set R, with a set of items that is originally assigned to machine b, say set S. We assume

that such an interchange is possible, i.e., that either

∑

j∈S

ρj =
∑

j∈R

ρj ,

or that the difference between the two sums is smaller than the current idle time on the machine

7

that receives the larger set. We take set S ⊆ Nb from machine b and put it on machine a and take

set R ⊆ Na from machine a and put it on machine b. The optimal cycle length may change and in

order to determine the new optimal cycle length we must consider again the derivative of the total

cost and set it equal to zero:

1
x2

∑

i∈Na∪Nb

Ki =
1
2

(∑

i∈Na∪Nb

hiDi

)
− 1

2va

(∑

i∈(Na\R)∪S

hiDiρi

)
− 1

2vb

(∑

i∈(Nb\S)∪R

hiDiρi

)
.

So

x =
(2vavb

G∗
∑

i∈Na∪Nb

Ki

) 1
2
,

where

G∗ = vavb

∑

i∈Na∪Nb

hiDi − vb

∑

i∈(Na\R)∪S

hiDiρi − va

∑

i∈(Nb\S)∪R

hiDiρi.

The average total cost before the interchange is

Z =
(2vavb

G

∑

i∈Na∪Nb

Ki

) 1
2 1
2

(∑

i∈Na∪Nb

hiDi −
∑

i∈Na

hiDiρi

va
−

∑

i∈Nb

hiDiρi

vb

)

=
(G

2vavb

∑

i∈Na∪Nb

Ki

) 1
2
,

whereas the average total cost after the pairwise interchange is

Z∗ =
(G∗

2vavb

∑

i∈Na∪Nb

Ki

) 1
2
.

The only difference in the total cost is due to the difference between G and G∗. If G∗ ≤ G,

then Z∗ ≤ Z. So if

−vb

∑

j∈R

hjDjρj − va

∑

k∈S

hkDkρk ≥ −vb

∑

k∈S

hkDkρk − va

∑

j∈R

hjDjρj ,

8

or

va

(∑

k∈S

hkDkρk −
∑

j∈R

hjDjρj

)
≤ vb

(∑

k∈S

hkDkρk −
∑

j∈R

hjDjρj

)
,

then Z∗ ≤ Z. Since va ≤ vb, it follows that the total cost is less when the set of items with the

higher
∑

hjDjρj , i.e., set S, is assigned to the slower machine, i.e., machine a. If set R is empty

and there is enough slack on the slower machine to accommodate set S, then it is better to move

set S to the slower machine.

It makes intuitive sense that the setup cost Kj does not have an effect on which machine the

item is assigned. The contribution of the setup cost to the total average cost per unit time does

not depend on the machine, since all machines are operating with the same cycle length.

That items should be assigned preferably to the slowest machine is also intuitive. The inventory

carrying cost on a slower machine will be lower than on a faster machine that operates with the

same cycle length. The reason is clear: on a slower machine the buildup of inventory takes more

time and the peak inventory is lower. One measure that is proportional to the inventory carrying

cost for a particular item is the product of the inventory holding cost hj and the average amount

in inventory (which is half the peak inventory), i.e.,

1
2
hj(1− ρj

vi
)Djx.

The only term in this expression that depends on the machine to which the item is assigned is

−hjDjρjx/vi. If the total costs have to be minimized, then this term should be maximized (because

of the minus sign). In order to maximize the sum of these terms over all the items, the highest

hjDjρj should be assigned to the slowest machine.

Before describing a general heuristic for this problem, we first consider three special cases, which

lead to three different heuristics. After analyzing the three special cases, we discuss heuristics that

are applicable to arbitrary instances of Model I.

The first case is the easiest, since it allows for a polynomial time solution. In this first case, we

assume that ρj = ρ for j = 1, . . . , n.

Theorem 1. If all ρj = ρ, then the total cost is minimized by loading the machines starting with

the slowest one, followed by the second slowest one, etc., and by assigning the jobs to the machines

in decreasing order of hjDj.

9

The theorem can be shown easily through pairwise interchange arguments. The result implies

that this special case can be solved in polynomial time.

In the second special case, we assume that all hjDj are equal to a constant AhD, and that the

ρj may all be different. That is, for each item the product hjDj takes the same value AhD, but the

hj and the Dj may be different from item to item. Consider now, for example, three items with

parameters h1D1 = h2D2 = h3D3 = AhD and

ρ2 = ρ3 =
1
2
ρ1.

It is clear that if R = {1} and S = {2, 3}, then an interchange between sets R and S is always

possible, since the two sets take exactly the same amount of machine time (on any machine). From

the interchange argument it follows that as far as total costs are concerned the interchange does

not make any difference. It is clear that in this second special case the objective is to first maximize

the utilization of the slowest machine, then maximize the utilization of the second slowest machine,

and so on. This problem is very similar to the well-known bin-packing problem in combinatorial

optimization which is known to be strongly NP-hard. It can be shown easily (through a reduction

from the 3-PARTITION problem) that our problem is strongly NP-Hard even when hjDj = AhD

for j = 1, . . . , n (and arbitrary ρj).

This second special case may be regarded as a more general version of the bin-packing problem.

The machines are the bins and the items have to be stored in the bins while minimizing the number

of bins used. This problem is more general than the classical bin-packing problem, because the

machines have different speeds. The problem is therefore equivalent to a bin-packing problem with

bins of different sizes.

Many different heuristics have been developed for the bin-packing problem; these bin-packing

heuristics can be applied to our second special case with only minor modifications. A well known

bin packing heuristic is the First Fit Decreasing (FFD) heuristic, see Garey and Johnson (1979).

According to this heuristic, the items are first ordered in decreasing order of ρj , i.e., according to

Longest Processing Time first (LPT), and the machines are ordered in increasing order of their

speeds. Then the items are taken one after another from the top of the list and put on the slowest

machine that still has enough remaining capacity. However, a well-known worst case analysis of

the FFD rule (see Gary and Johnson (1979)) is not applicable here, since that worst case analysis

assumes bins of the same size, i.e., machines with identical speeds. It is easy to design for this

10

special case a more elaborate two-phase heuristic.

In the third special case, we assume that the product hjDjρj is equal to the same constant

AhDρ for every j . From the interchange argument described in the beginning of this section,

it follows that the objective now is to maximize the number of different items on the slowest

machine, followed by the number of items on the second slowest machine, and so on. (This is

in contrast to the maximization of the utilization in the second special case.) Again, it can be

shown easily (through a reduction from 3-PARTITION) that the problem is strongly NP-Hard

when hjDjρj = AhDρ for j = 1, . . . , n, and ρj arbitrary.

Maximizing the number of jobs on the slowest machine, followed by the number of jobs on the

second slowest machine, etc., can also be done via a two-phase heuristic.

Before performing Phase 1 of the two-phase heuristic, the items have to be ranked in increasing

order of ρj (i.e., according to Shortest Processing Time first (SPT)). In Phase 1, load the machines

beginning with the slowest machine, followed by the second slowest, etc. Assign the items to the

machines according to the SPT rule. Each machine then has a number of jobs assigned to it. (The

slower machines may or may not end up with more jobs than the faster machines. They may have

more because they are assigned shorter jobs; on the other hand, they may have less because they

have less capacity).

In Phase 2, the heuristic tries (again beginning with the slowest machine) to maximize the

utilization of the machines with lower rank without reducing the number of items processed. This

is done as follows: First, the remaining idle capacity on the slowest machine (i.e, machine 1) is

computed. Next, perform a pairwise interchange between a short job on machine one and longer

job on machine 2 in order to better utilize the remaining capacity on machine 1. After maximizing

the utilization of machine 1 (using the same number of items as under the original assignment), the

heuristic proceeds with machine 2. It tries to maximize the utilization of machine 2 by swapping

items between machines 2 and 3, and so on.

The heuristics for the second and third special cases are specifically designed for those particular

assumptions. A heuristic for an arbitrary instance of this problem should be more general. Because

of the similarity of this problem to the (multiple) knapsack problem, it makes sense to adapt a

heuristic for the knapsack problem to the version of the problem in this section with arbitrary hj ,

Dj and Kj , assuming the machines are fully utilized. A well-known heuristic for the knapsack

problem is based on a ranking of the items according to the benefit they provide (or according

11

to the cost incurred) divided by the space they occupy. In our model the cost is proportional to

hjDjρj and the space occupied is ρj . So the ratio is

hjDjρj

ρj
= hjDj .

This suggests the following general heuristic for the problem in this section: Put the jobs in

decreasing order of hjDj . Start filling the slowest machine with the item that has the highest

hjDj . Without loss of generality, we can assume that

h1D1 ≥ h2D2 ≥ · · · ≥ hnDn.

Starting at the top of the list, every time an item is taken and put on the slowest machine that

still has enough remaining capacity. (This heuristic is indeed in agreement with the three rules

described for the three special cases above).

However, such a simple one-phase heuristic for the knapsack problem may not always yield good

results. While loading a machine, going down the list of items, it may not be possible to use the

remaining capacity of that machine fully. It may be the case that one item with a relatively high

ρj does not fit in the remaining capacity of the machine currently being loaded and therefore has

to be assigned to the next machine. However, the next item on the list with a lower ρj may still fit

on the current machine. In order to see how badly a one-phase heuristic can perform, consider the

following example with 2 machines and 2 jobs. Machine 1 has speed 1 and machine 2 has speed ∞.

The jobs are ranked in decreasing order of hjDj : h1D1 = 2 + ε, h2D2 = 2; ρ1 = ρ + ε, ρ2 = 1− ρ.

Assume all Kj = 0. If we use the heuristic, then item 1 goes on the slow machine and item 2 goes

on the fast machine. The total cost per unit time under this assignment (ignoring values of order

ε) is

Z1(1) + Z2(2) = x(1− ρ) + x = x(2− ρ),

where x is the cycle time. The total cost under the assignment that puts item 2 on the slow

machine and item 1 on the fast machine is

Z1(2) + Z2(1) = x(1− (1− ρ)) + x = x(1 + ρ).

So the heuristic may yield a solution that is two times more expensive than the optimal solution

12

(when one of the items has a ρ very close to zero and the other item has a ρ very close to 1).

It is, of course, possible to use more elaborate multi-phase heuristics for this problem. There are

also well-known fully polynomial time approximation schemes (PTAS) for the knapsack problem

(see, for example, Schuurman and Woeginger (2001)). One could solve the problem using the

following framework: apply a knapsack algorithm (either a heuristic or a PTAS) to the slowest

machine. After having assigned items to the slowest machine, apply the same knapsack type

algorithm to the remaining items on the second slowest machine, etc. Note, however, that even if

every single machine knapsack problem is then solved to optimality, the solution obtained for the

overall problem may not be optimal.

4 Rotation Schedules with Different Cycle Lengths

(Model II)

The problem in this section is basically different from the problem in the previous section. Now the

cycle length of each machine can be adapted to the items assigned to that machine independent of

what happens on the other machines.

One heuristic that would immediately come to mind is the following: Compute for each item

the optimal cycle length assuming it would be the only item to be produced on a machine that

operates at speed v = 1. Rank the items according to these optimal cycle lengths, i.e., according

to
2Kj

hjDj(1− ρj)
=

Kj

Fj
.

Now, put the items in a list either in increasing order of their cycle lengths or in decreasing order.

Assign the items one by one to the machines, starting with the slowest machine first. Even if the

items with longer cycle lengths would be grouped together on one machine while the items with

shorter cycle lengths would go to another machine, it is not clear whether the items with longer

cycle lengths should be assigned to a slower machine and the items with shorter cycle lengths

should be assigned to a faster machine or vice versa.

Before presenting a general heuristic for this problem, we consider first three special cases. In

our first special case, we assume that we have two machines and both machines are fully utilized.

13

Furthermore, ρj = ρ and hjDj = AhD for all j, and all Kj ’s are different. Consider two machines

with speeds va and vb, where va ≤ vb. The number of items on machines a and b, na and nb, are,

of course, independent of the schedule. Clearly, n = na + nb. Let

Fa =
AhD

2

(
1− ρ

va

)

and

Fb =
AhD

2

(
1− ρ

vb

)
.

If va ≤ vb, then Fa ≤ Fb and na ≤ nb. The average total cost on the two machines is

Z = Za + Zb = 2
√

naFa

∑

j∈Na

Kj + 2
√

nbFb

∑

j∈Nb

Kj .

Without loss of generality we may assume that

K1 ≤ K2 ≤ · · · ≤ Kn.

Let

Ktot = K1 + K2 + · · ·+ Kn.

It is clear that the problem of minimizing the total average cost on the two machines reduces

to determining the total amount of Kj , i.e., the sum of Kj for a group of items, that has to be

assigned to machine a. Let y denote this total amount. The remaining amount, Ktot − y is then

assigned to machine b. So the function to be minimized is

Z = 2
√

naFay + 2
√

nbFb(Ktot − y).

The feasible range of y is K ′ ≤ y ≤ K ′′, where

K ′ =
na∑

j=1

Kj

14

and

K ′′ =
n∑

j=n−na+1

Kj = Ktot −
nb∑

j=1

Kj .

Because of the fact that the total cost function Z is unimodal (see Figure 1), the function is

minimized either for y = K ′ or for y = K ′′. Either solution may occur, depending upon the data

set. This implies that the optimal assignment puts either the na items with the lowest setup costs

or the na items with the highest setup costs on the slower machine. This result forms a basis for

the following more general result for m machines and n items. Assume again that ρj = ρ and

hjDj = AhD for all j and only the setup costs K1 ≤ K2 ≤ · · · ≤ Kn are different.

Theorem 2. If under an optimal schedule for m machines both items j and k are assigned to

machine i and if Kj < Kl < Kk, then item l must also be assigned to machine i.

Proof: The proof is by contradiction. Suppose item l is assigned to another machine, say

machine h. Consider the subproblem that consists only of machines h and i and the items that

have been assigned to these two machines. If Kj < Kl < Kk, then this schedule does not have the

set of items with the smallest Kj assigned to one machine and the set of items with the largest Kj

assigned to the other machine. This contradiction completes the proof. 2

One may want to conjecture that an optimal assignment for m machines could be achieved by

loading the machines starting with the slowest one and assigning the items to the machines either

in decreasing order of Kj or in increasing order of Kj . Unfortunately, such a “monotone” result

does not hold for three or more machines and a counterexample can be found easily.

The second case also assumes that all machines are fully utilized and that ρj = ρ. However,

now Kj = K and all hjDj products are different. Consider two machines with speeds va and vb,

where va ≤ vb.

The average total cost on the two machines is

Z = Za + Zb = 2
√

naK(1− ρ

va
)

∑

j∈Na

hjDj + 2
√

nbK(1− ρ

vb
)

∑

j∈Nb

hjDj .

Without loss of generality we may assume that

h1D1 ≤ h2D2 ≤ · · · ≤ hnDn.

15

y

T
o
ta

l C
o
st

K' K"

Feasible Range

Figure 1: Total Cost Function

Let hDtot = h1D1 +h2D2 + · · ·+hnDn. It is clear that the problem of minimizing the total average

cost on the two machines reduces to determining the total amount of hjDj that has to be assigned

to machine a. Let z denote this total amount. The remaining amount, hDtot − z is assigned to

machine b. The following theorem for m machines and n items can be shown in a way that is

similar to the proof of Theorem 2. Assume that ρj = ρ and Kj = K for all j and only the products

h1D1 ≤ h2D2 ≤ · · · ≤ hnDn are different.

Theorem 3. If under an optimal schedule for m machines both items j and k are assigned to

machine i and if hjDj < hlDl < hkDk, then item l must be assigned to machine i as well.

Note that Theorems 2 and 3 do not give any indication whether items with long cycle lengths

should be assigned to slower machines and items with short cycle lengths to faster machines or

vice versa. The assignment very much depends on the particular data set.

Theorems 2 and 3 apply to the case when all machines are operating at capacity. However,

if the machine utilization is below capacity, then Theorems 2 and 3 do not provide much insight.

It then becomes an issue of aggregating items with similar cycle lengths on the same machine. It

may be better, when the cycle lengths of two items are more or less similar, to put the two items

together on a faster machine (even when there is still capacity left on the slower machine for one

of the two items).

16

Example: Consider two machines with speeds v1 = 1 and v2 = 2. Consider four items with

ρj = 0.333 for j = 1, . . . , 4. This setup implies that it is possible to produce exactly three of the

four items on the slow machine. Let hjDj = 2 for j = 1, . . . , 4. Let K1 = K2 = 9 and K3 = K4 = 1.

This implies that the cycle lengths of items 1 and 2 are three times longer than the cycle lengths of

items 3 and 4. Should one put items 1, 2, and 3 on the slowest machine and item 4 on machine 2, or

should one put items 1 and 2 on the slowest machine and items 3 and 4 on machine 2 (aggregating

the two products with the long cycle lengths on machine 1 and the two items with the short cycle

lengths on machine 2)? Straightforward computations yield

Z1(1, 2, 3) + Z2(4) = 12.33 + 1.83 = 14.16,

and

Z1(1, 2) + Z2(3, 4) = 9.80 + 3.65 = 13.45.

So in this case, it is not optimal to fully utilize the capacity of machine 1. It is better to keep the

two items with a long cycle length on the slow machine while keeping the two items with a short

cycle length on machine 2.

The previous cases (Theorems 2 and 3) do not give any indication of how differences in ρj affect

the assignment of items to machines. Actually, as stated earlier, a case with different ρj is much

harder to handle, especially because of the issues concerning fitting and packing. Nonetheless, the

following somewhat stylized case is amenable to analysis and provides significant insight.

In this third case, we consider two sets of items, namely sets R and S. Set R consists of l items

all with the same ρj , i.e.,

ρj = ρ/l = ρR, j ∈ R,

and set S consists of k items, each one with

ρj = ρ/k = ρS , j ∈ S.

All items in set R have the same value of Kj and hjDj , i.e., Kj = KR and hjDj = AR
hD for j ∈ R.

All items in set S also have the same value Kj and hjDj , i.e., Kj = KS and hjDj = AS
hD for all

j ∈ S. Assume that k > l and ρR > ρS . The machines have speeds va and vb, where va ≤ vb. We

17

assume that all items from set R (set S) would fit on either machine.

Theorem 4. If

KRAR
hD ≥ KSAS

hD

and

ρR ≥ ρS ,

then the items in Set R (with the higher KhD and ρ values) have to go on the slower machine,

i.e., machine a.

Proof: Assume first that the items of set R are put on machine b and the items of set S are

put on machine a. The total cost per unit time of the two machines is

√
2l2KRAR

hD(1− ρ

lvb
) +

√
2k2KSAS

hD(1− ρ

kva
).

After interchanging the two sets, the total cost becomes

√
2l2KRAR

hD(1− ρ

lva
) +

√
2k2KSAS

hD(1− ρ

kvb
).

Let α = ρ/va and β = ρ/vb. So 1 > α > β. To prove the theorem, we have to show that it is

better to put the set with the larger jobs (larger ρj) on the slower machine and the set with the

smaller jobs on the faster machine. That is, if k > l, then set R (S) has to go on machine a (b).

So it has to be shown that

(
KSAS

hD

) 1
2 (k2 − kβ)

1
2 +

(
KRAR

hD

) 1
2 (l2 − lα)

1
2 <

(
KSAS

hD

) 1
2 (k2 − kα)

1
2

+
(
KRAR

hD

) 1
2 (l2 − lβ)

1
2 .

Or
(
KSAS

hD

) 1
2
(
(k2 − kβ)

1
2 − (k2 − kα)

1
2

)
<

(
KRAR

hD

) 1
2
(
(l2 − lβ)

1
2 − (l2 − lα)

1
2

)
.

18

Since KSAS
hD ≤ KRAR

hD, it suffices to show that

(k2 − kβ)
1
2 − (k2 − kα)

1
2 < (l2 − lβ)

1
2 − (l2 − lα)

1
2 .

It suffices to show that the derivative of the LHS of this expression with respect to k is negative.

The derivative of the LHS of the inequality above is

1
2
(k2 − kβ)−

1
2 (2k − β)− 1

2
(k2 − kα)−

1
2 (2k − α) < 0.

Or

2k − β

2k − α
<

(k − β

k − α

) 1
2
.

Straightforward algebra yields

β2(k − α) < α2(k − β),

which indeed holds. 2

In order to have a feel for the impact of KRAR
hD and KSAS

hD on the total cost under the

conditions stated in Theorem 4, consider the following case: Assume KSAS
hD and KRAR

hD are

allowed to be arbitrary while k = l, i.e., ρR = ρS . Let va = 1 and vb be very large. If ρ/(kva)

is close to 1, then the total cost of the suboptimal assignment (i.e., set S with the lower KSAS
hD

assigned to the slower machine) divided by that of the optimal assignment (i.e., set R with the

higher KRAR
hD assigned to the slower machine) becomes approximately

√
KRAR

hD

KSAS
hD

,

which may be arbitrary large.

To see that ρR and ρS has much less of an impact on the total cost, consider the following

extreme case. Let KRAR
hD = KSAS

hD; va = 1 and vb = ∞; and k = ∞ and l = 1. The total cost

under the suboptimal assignment of sets R and S is now of the same order of magnitude as the

total cost cost under the optimal assignment of sets R and S.

Theorem 4 does not provide any insight with regard to how items should be grouped with

regard to their cycle lengths. All items within Set R have the same cycle length and all items

19

within Set S have the same cycle length; the cycle length of a Set R item can be either smaller

or larger than the cycle length of a Set S item. So in some cases, items with a short cycle length

would be assigned to the slowest machine, while in other cases, the items with a long cycle length

would be assigned to the slowest machine.

However, Theorem 4 does give some insights into some other effects. In case Kj = K and

hjDj = AhD for all j, the theorem suggests the following rule: Load the machines starting with

the slowest one first, and assign the items according to the Longest Processing Time first (LPT)

rule. Clearly, this rule may have to deal also with packing and fitting problems, but in general it

seems to be appropriate.

Theorem 4 also provides some insights into some other secondary effects when all the items in

sets R and S have the same ρ and the same cycle length.

Example: Consider two machines that operate at speeds va and vb and four items with the

same ρ. Each machine has to be assigned two items. The following data are associated with the

four items:

K1 = K2 = γK, h1D1 = h2D2 = γAhD,

K3 = K4 = δK, h3D3 = h4D4 = δAhD,

where γ < δ. So

K1

h1D1
=

K2

h2D2
=

γK

γAhD
=

K

AhD
,

K3

h3D3
=

K4

h4D4
=

δK

δAhD
=

K

AhD
.

The individual cycle lengths of all four items are the same. Since

xi =

√√√√
(n∑

j=1

Fj

)−1
n∑

j=1

Kj

and

Zi = 2

√√√√
n∑

j=1

Fj

√√√√
n∑

j=1

Kj ,

it turns out that if va = vb, any combination of two items on one machine and the remaining

two on the other machine minimizes the total cost. What happens if va < vb (α > β)? Applying

20

Theorem 4 to this example indicates that if Set S consists of items 1 and 2 and if Set R consists

of items 3 and 4, then putting items 3 and 4 (with the higher value of KjhjDj) together on the

slower machine results in the assignment with the lowest cost.

The results obtained in this section for the special cases (and also the computational results

reported in Haksöz and Pinedo (2001)) suggest the following general heuristic for arbitrary in-

stances: Put the items in a monotone order of their cycle times, i.e., either in increasing order or

in decreasing order of
√

2Kj

hjDj(1− ρj)

Load the items in that order on the machines starting with the slowest one. If there is a tie (or

close to a tie) and the remaining capacity of the machine being loaded is still high, choose the item

with the higher value of KjhjDj ; if the remaining capacity of the machine that is being loaded is

low, then choose the items based on goodness of fit.

It turns out that our heuristics for Model II (allowing each machine to have its own cycle

length) are basically different from the heuristics designed by Bollapragada and Rao (1999) for

the continuous version of this problem. In our heuristics we try to keep items with similar cycle

lengths on the same machine. Bollapragada and Rao, who do allow items of any given type to be

produced on more than one machine, propose a heuristic based on an entirely different philosophy.

(Their heuristic was actually designed for a more elaborate model; however, one can adapt their

heuristic to a model with similar assumptions as ours.) They rank all the items in decreasing order

of the production cost on any machine per unit of the demand rate of that item, i.e., they order

the items in decreasing order of

1
Dj

√
KjhjDj(1− ρij) =

√
Kjhj

Dj
(1− ρij).

They find the best cost rate of any item on any machine and produce as much as possible of that

item on that machine, i.e., either till the machine capacity is exhausted or till enough of that

item has been produced. They proceed with finding among the remaining items that still need to

be produced, the lowest cost rate on any machine, and so on. Bollapragada and Rao’s heuristic,

starting out with a completely different ranking of the items, clearly would work very well for

21

their problem (especially when setup costs are low). However, it could be the case that items with

similar production cost rates have very different cycle lengths. So it could be the case that items

with completely different cycle lengths are combined on the same machine.

5 Arbitrary Schedules on Machines with Different Speeds

(Model III)

In this section we consider again m different machines with speeds

1 = v1 ≤ v2 ≤ · · · ≤ vm

and the schedules do not have to be rotation schedules. This problem can be approached via

a two-phase procedure. Phase 1 consists of an assignment problem that requires a heuristic for

assigning the different items to the different machines. This phase is somewhat similar to the

multiple knapsack problem. Phase 2 consists of a problem that has been studied extensively in

the literature. Given a machine and a set of items to be produced, find the optimal schedule that

minimizes the total cost on that machine, see Dobson (1987). Clearly, solving the problem in two

separate phases may result in a suboptimal solution.

An assignment to a machine may result in a set of items that, in a sense, may be somewhat

incompatible. For example, suppose an item with a high ρ is put together on a machine with many

small ρ items. The high ρ item may require a long cycle length (because of a high setup cost) and

the small ρ items may require a very short cycle length (because of high inventory carrying costs).

This makes the second phase of the solution procedure very hard to solve. The high ρ item may

require long production runs during which it is not possible to have short runs of low ρ items.

In spite of this difficulty, we are still interested in the first phase of this two-phase approach,

mainly to obtain some insights in the factors that influence the assignment of a particular item

to a given machine. We analyze Phase 1 of the two-phase procedure assuming that, if item j is

assigned to machine i, it will be produced on that machine according to a cycle that is optimal

with regard to item j. An optimal solution for this assignment problem provides a lower bound for

the optimal schedules for Model III as well as a lower bound for the optimal schedules for Models

I and II.

22

From the previous sections, it is clear that for any item, the slowest machine is the least

expensive. The minimum total cost per unit time if item j is assigned to machine i is

Zij =
√

2KjhjDj(1−Dj/(viPj)) = 2
√

KjFij .

Our first special case of the assignment problem is somewhat comparable to the special cases

considered in Theorems 1, 2, and 3. Consider the case where ρj = ρ for all j. As in the previous

sections, this problem is relatively easy.

Theorem 5. An optimal assignment is obtained by loading the slowest machine first and assigning

the items in decreasing order of KjhjDj.

Proof: Under the assumptions made, the cycle lengths of all items are independent of one

another, which makes this case particularly easy. A simple pairwise interchange shows that the

item with the highest KjhjDj should go on the slowest machine. 2

So in this case, the Kj , the hj , and the Dj do not play any role on their own; only their product

matters. Note that the assumption with regard to the values of Kj , hj and Dj in Theorem 5 are

less strict than the assumptions with regard to the Kj , hj , Dj values in Theorems 2 and 3 for

Model II. The result of Theorem 5 applies to any combination of values for Kj , hj and Dj and is

basically the solution to a classical assignment problem. This was not the case in Theorems 2 and

3. Also, in contrast to the result in Theorem 2, the result here applies even when the machines

are operating below capacity. It is clear that under the assumptions of Theorem 5 the utilization

of the slowest machine always has to be maximized.

Our second special case of the assignment problem is somewhat similar to the third special

case in the previous section. We again consider two sets of items, namely Set R and Set S. Set R

consists of l items all having the same ρj , namely

ρj = ρR = ρ/l, j ∈ R,

and set S consists of k items, each one with

ρj = ρS = ρ/k, j ∈ S.

23

All items in Set R have the same value of KjhjDj = AR
KhD for j ∈ R. All items in Set S have the

same value KjhjDj = AS
KhD for all j ∈ S. Assume that k > l. So ρR > ρS . We have two machines

a and b with speeds va and vb, where va ≤ vb. A result similar to Theorem 4 can now be shown.

Theorem 6. If

AR
KhD ≥ AS

KhD

and

ρR ≥ ρS ,

then the items in Set R with a higher KjhjDj and a larger ρj have to be processed on the slower

machine, i.e., machine a.

Proof: Assume first that the items of Set R are put on machine b and the items of Set S are

put on machine a. The total cost per unit time of the two machines is

l

√(
2(1− ρ

lvb
)
)

+ k

√(
2(1− ρ

kva
)
)
.

After the interchange of the two sets the total cost becomes

l

√(
2(1− ρ

lva
)
)

+ k

√(
2(1− ρ

kvb
)
)
.

It turns out that it is better to put the set with the larger jobs (larger ρj) on the slower machine

and the smaller jobs on the faster machine. That is, if k > l, then set R (S) has to be assigned to

machine a (b). In order to prove this, it has to be shown that

(k2 − kα)
1
2 + (l2 − lβ)

1
2 < (k2 − kβ)

1
2 + (l2 − lα)

1
2 ,

where α > β. This is exactly the same inequality that had to be shown in Theorem 4 for Model II.

Just like with Model II, the optimal schedule here is to assign the longest job to the slowest

machine. 2

The assumptions in Theorem 6 are more general in two respects than the assumptions under-

lying Theorem 4. First, in Theorem 4, the Kj as well as the hjDj of all the items belonging to

the same set have to be identical; in Theorem 6, the product KjhjDj of all the items belonging to

24

the same set have to be identical. The assumptions underlying Theorem 6 are also more general in

another aspect: in Theorem 4, it was assumed that Sets R and S were the only items on the two

machines. The interchange argument for Model II could only work under this assumption; if there

had been additional items scheduled for production on the two machines, then the total cost per

unit time would have depended on the interactions between these additional items and the items

in Sets R and S. This assumption is not necessary in Theorem 6. Additional items are allowed on

the two machines, since the total cost per unit time does not depend in this case on the interplay

between these additional items and the items in Sets R and S.

From Theorem 6, it also follows that the LPT rule is an appropriate rule when KjhjDj = AKhD

for all j. However, similar to Model II, the KjhjDj appears to be also a more important factor

than the ρj .

The following heuristic can be used for the general case. Load the machines starting with the

slowest; when loading machine i, assign jobs in decreasing order of their KjhjDj values among the

remaining items.

If the machines are operating below capacity, then the optimal solution attempts to fill the

slowest machine as much as possible. This is in contrast to Model II, in which the capacity of the

slowest machine may in certain instances not be fully utilized.

The conclusions drawn in this section are less firm than those drawn in the previous sections,

mainly because they do depend on the assumption that items with different cycle lengths can be

combined with one another on one machine.

6 Computational Results

All the experiments reported in this section involve two machines with v1 = 1 and v2 = 3. The

same data sets are used for all three models. This is done in order to be able to compare the effects

of the different cycle length assumptions on the values of the objective functions.

For each model we compare a number of different scheduling rules with one another. We

randomly select 20 different samples of job sets and on each sample we apply each one of the

various rules we are interested in. The samples are selected randomly as follows: The Kj and the

hj are both generated from a Uniform [0, 5] distribution. The Dj and Pj are generated randomly

from an exponential distribution with mean 5. The number of jobs are determined by generating

25

jobs till at least 95% of the system capacity is utilized. This implies that the number of jobs is

usually approximately 40.

In our experiments for model I we compare two rules with one another, namely the rule that

loads the machines in decreasing order of hjDj (starting with the slowest machine) and the rule

that loads the machine in increasing order of hjDj (starting with the slowest machine first). From

Table 1 it follows that in these instances the first rule performs approximately consistently 0.3%

better than the second rule. All tables are located in the appendix.

(Insert Table 1 about here.)

In our experiments for Model II we compared three rules with one another, namely the rule that

loads the machines in decreasing order of Kj/hjDj (starting with the slowest machine first), the

rule that loads the machines in increasing order of Kj/hjDj and the rule that loads the machines

in decreasing order of KjhjDj . It is clear why the first two rules are of interest: they both combine

items that favor long cycle lengths on one machine and items that favor short cycle lengths on the

other machine. In our experiments the rule that assigns the items with the shorter cycle lengths

to the slower machine performs slightly better than the rule that assigns the items with the longer

cycle lengths to the slower machines. The third rule is only of interest because we know that this

rule works very well for Model III (see Theorem 6). From Table 2 it is clear that the performance

of the first two rules is more or less similar; one rule beats the other by 0.3%, which is statistically

not significant. However, the third rule does worse. Yet, the difference is still lower than 5%. The

value of the objective function under the third rule is 4.75% higher than under the first two.

(Insert Table 2 about here.)

In our experiments for Model III we compared four rules with one another. The first rule we

tried is the rule that is optimal when all ρj are equal to one another, i.e., loading the machines

in decreasing order of KjhjDj . We compare this rule with the rule that loads the machines in

decreasing order of Kj/hjDj . In Model II, this rule performs much better than the rule that loads

the machines in decreasing order of KjhjDj . In Model III, the first rule beats the second in most

instances, but only by 0.6%.

With the third and fourth rules we try to measure the effect of the ρj . The third rule orders the

items in decreasing order of KjhjDjρj and and the fourth rule in decreasing order of KjhjDj/ρj .

26

It appears from the results in Table 3 that all four rules perform more or less similar. Not one of

the four rules performs consistently better.

When the cost performance of the three models are compared with one another, it appears that

Model II performs approximately 8% better than Model I and Model III performs approximately

9% better than Model II. These results are in agreement with our expectations.

(Insert Table 3 about here.)

7 Conclusions, Extensions, and Real World Applica-

tions

Comparing the results obtained for Models I, II and III, it is clear that each model requires its

own priority rules.

A comparison of the results for the three models when all ρj = ρ can be summarized as follows:

In Model I, Kj does not play any role at all and the items should be loaded on the m machines

in decreasing order of hjDj starting with the slowest machine first. This rule holds whether the

machines are fully loaded or not. It appears that because of the fact that all the machines have to

adhere to the same cycle length x, the value of the objective function does not depend very much

on the assignment of the different items to the various machines.

In Model II, when all ρj = ρ, Kj plays a role that is very similar to the role of the hjDj . A

monotone rule such as the one obtained for Model I does not hold here. However, it appears that

a good heuristic would be to load the items in either increasing or decreasing order of Kj/hjDj ,

starting with the slowest machine first. This is approximately equivalent to putting items that favor

longer cycle lengths together on one machine and items that favor shorter cycle lengths together on

another machine. If the machines are not fully loaded, it may not be optimal to keep the slowest

machine fully loaded. Computational experiments show that the value of the total cost in Model

II is more sensitive to the schedule than the value of the total cost in Model I (see Haksöz and

Pinedo (2001)). However, the performance of the Kj/hjDj rule is somewhat comparable to the

performance of the hjDj/Kj rule (this rule puts items that favor shorter cycle lengths together on

the slower machines and items that favor longer cycle lengths on the faster machines). The very

bad rules are, of course, those rules that combine items which favor a long cycle length with items

27

which favor a short cycle length on the same machine; an empirical study (see Haksöz and Pinedo

(2001)) shows that the total cost then can be easily 10 percent higher than the optimal cost.

In Model III, when all ρj = ρ, it is optimal to load the items in decreasing order of KjhjDj

starting with the slowest machine first (assuming that there exist feasible schedules under which

each item can be produced according to its own optimal cycle length). Note that this rule does

not perform very well for Model II. In Model III, it is always better to utilize the slowest machine

as much as possible.

When the ρjs are different, all three models become significantly more complicated. However,

the ρj tends to have less of an impact on the values of the objectives than Kj , hj and Dj . The ρj

also affects the solution in a different way: there is now a packing or fitting problem. Theorems

4 and 6 (and the discussion following Theorem 4) indicate that, in an optimal schedule, an item

with a high ρj is more likely to be assigned to a slow machine.

When all the ρj ’s are different, the problems are typically variations of the classical knapsack

problem or of the multiple knapsack problem. The two machine case with v1 = 1 and v2 = ∞
becomes a special case of the knapsack problem and the m machine case with v1 = v2 = · · · =

vm−1 = 1 and vm = ∞ becomes a special case of the multiple knapsack problem. We expect that

all the heuristics discussed should work reasonably well when all the ρj ’s are small (i.e., ¿ 1).

Several other observations apply to all three models discussed. It is clear from the results that

there is most of the time (but not always) a preference to utilize the slower machines. The two

parameters hj and Dj of item j never play a separate role in any one of the heuristics or algorithms

for any one of the models discussed. They only play a role as part of the product hjDj . This is

in a clear contrast to the greedy priority rule based on production costs per unit of demand that

was suggested by Bollapragada and Rao (1999) (their rule would not be appropriate for our Model

II, since it could yield solutions that combine items with completely different cycle lengths on the

same machine).

The results presented in this paper may be very useful for scheduling in practice, even though

there are still some differences between the modelling assumptions and certain customs in practice.

For example, we have assumed in this paper that a machine has only a single parameter, namely

a speed vi. In practice, a machine may have various parameters that are important. For example,

a paper machine has its own speed, as well as its own “width”. The width is also a measure that

affects the paper production per unit time. So, it may be more appropriate to view the speed of

machine i as the amount of paper it can produce per unit time.

28

In practice, the cycle length of a machine may not be just an arbitrary number. Often, it is a

round number such as 10 days, half a month, or one month. That means that in the real world the

problem of finding the optimal cycle length is not really a continuous problem but rather a discrete

problem. Nevertheless, we believe that the mathematical insights obtained for the continuous case

are also useful for the discrete case.

In practice, the cycle lengths of the various items on a machine are often different. However,

one cycle length has to be a multiple of a base cycle length. That means, the cycle length of one

item may be x, while the cycle length of another item is 2x or 4x. Nonetheless, even the insights

obtained with Model I may prove useful in practice. Often different machines (with different

capacities) operate with the same cycle length.

Many related problems appear to be of interest. We mention here three: First, what happens

if setup costs have the structure Kij = αiKj , where α1 ≤ α2 ≤ ... ≤ αm? (In practice, a setup cost

is often a simple function of a machine parameter and an item parameter.) Second, consider the

problem with preemptions allowed and items may be produced on two machines (thereby incurring

two setup costs). Packing and fitting become then less important. In what other respects do the

models change? Third, can we prove some limiting result stating that with a large number of items

that all take a very small amount of the machine capacity, the heuristics will yield solutions that

are very close to optimal (within ε)?

Acknowledgements

We greatly acknowledge the beneficial discussions with Sridhar Seshadri.

References

R. Bollapragada and U. Rao (1999) “Single-Stage Resource Allocation and Economic Lot

Scheduling on Multiple, Nonidentical Production Lines,” Management Science, Vol. 45, pp. 889-

904.

W. Brüggemann (1995) Ausgewählte Probleme der Produktionsplanung, Physica-Verlag (Springer

29

Verlag), Heidelberg.

J.J. Carreno (1990) “Economic Lot Scheduling for Multiple Products on Parallel Identical

Machines,” Management Science, Vol. 36, pp. 348-358.

Z.-L. Chen and M. Powell (1999) “Solving Parallel Machine Scheduling Problems by Column

Generation,” INFORMS Journal of Computing, Vol. 11, pp. 78-94.

G. Dobson (1987) “The Economic Lot-Scheduling Problem: Achieving Feasibility using Time-

Varying Lot Sizes,” Operations Research, Vol. 35, pp. 764-771.

G. Dobson (1992) “The Cyclic Lot Scheduling Problem with Sequence-Dependent Setups,”

Operations Research, Vol. 40, pp. 736-749.

A. Drexl and A. Kimms (1997) “Lot Sizing and Scheduling - Survey and Extensions,” European

Journal of Operational Research, Vol. 99, pp. 221-235.

R.J. Duffin, E.L. Peterson, and C.M. Zener (1967) Geometric Programming, J. Wiley and Sons,

New York.

S.E. Elmaghraby (1978) “The Economic Lot Scheduling Problem (ELSP): Review and Exten-

sions,” Management Science, Vol. 24, pp. 587-598.

M.R. Garey and D.S. Johnson (1979) Computers and Intractability - A Guide to the Theory of

NP-Completeness, W.H. Freeman and Company, San Francisco.

K. Haase (1993) Lot Sizing and Scheduling for Production Planning, Lecture Notes in Economics

and Mathematical Systems, Vol. 408, Springer Verlag, Berlin.

Ç. Haksöz and M. Pinedo (2001) “Economic Lot Scheduling with Resources in Parallel,”

Working Paper, Department of Information, Operations, and Management Sciences, New York

University, New York, New York.

P.C. Jones and R.R. Inman (1996) “Product Grouping for Batch Processes,” International

Journal of Production Research, Vol. 34, pp. 3095-3105.

S. Kang, K. Malik, and L.J. Thomas (1999) “Lot sizing and scheduling on parallel machines

with sequence dependent setup costs,” Management Science, Vol. 45, pp. 273-289.

A. Kimms (1997) Multi-Level Lot Sizing and Scheduling, Physica Verlag, Heidelberg.

30

S. Martello and P. Toth (1990) Knapsack Problems: Algorithms and Computer Implementa-

tions, J. Wiley, Chichester, England.

J.A. Muckstadt and R. Roundy (1993) “Analysis of Multi-Stage Production Systems,” Chapter

2 in Handbooks in OR and MS, Vol. 4, pp. 59-132, S.C. Graves et al. Eds., Elsevier Science

Publishers.

M. Pinedo (2002) Scheduling – Theory, Algorithms, and Systems, Prentice-Hall, Upper Saddle

River, New Jersey.

M. Pinedo (2005) Planning and Scheduling in Manufacturing and Services, Springer, New York,

NY.

D. Pisinger (1999) “An Exact Algorithm for Large Multiple Knapsack Problems,” European

Journal of Operational Research, Vol. 114, pp. 528-541.

C.N. Potts and L.N. van Wassenhove (1992) “Integrating Scheduling with Batching and Lot

Sizing: A Review of Algorithms and Complexity,” Journal of the Operational Research Society,

Vol. 43, pp. 395-406.

M. Salomon, L.G. Kroon, R. Kuik, and L.N. van Wassenhove (1991) “Some Extensions of the

Discrete Lotsizing and Scheduling Problem,” Management Science, Vol. 37, pp. 801-812.

M. Van den Akker, H. Hoogeveen and S. Van de Velde (1999) “Parallel Machine Scheduling by

Column Generation,” Operations Research, Vol. 47, pp. 862-872.

P. Schuurman and G.J. Woeginger (2001) “Approximation Schemes - A Tutorial,” START

Project Y43-MAT Combinatorial Approximation Algorithms, TU Graz, Austria.

P.H. Zipkin (2000) Foundations of Inventory Management, McGraw-Hill, Boston, MA.

31

Appendix

Table 1: Computational Results for Model I

Test Sample hjDj 1/hjDj
1 339.59 346.93
2 297.11 299.38
3 357.63 363.44
4 394.52 399.85
5 336.50 319.33
6 350.92 356.75
7 483.62 434.74
8 332.86 336.86
9 444.93 450.83

10 302.80 305.23
11 362.61 365.99
12 414.53 421.14
13 305.72 309.52
14 378.91 382.45
15 339.20 344.37
16 437.18 441.48
17 347.27 351.77
18 364.65 371.79
19 345.14 349.97
20 366.58 371.46

Average Cost 365.11 366.16

32

Table 2: Computational Results for Model II

Test Sample Kj/hjDj hjDj/Kj KjhjDj
1 301.26 298.35 308.20
2 261.53 267.31 290.73
3 333.63 330.96 347.34
4 363.84 362.91 377.20
5 280.02 300.05 317.97
6 330.65 324.31 343.81
7 438.56 433.46 458.49
8 296.25 302.28 317.63
9 392.97 391.06 417.34

10 278.04 279.16 290.97
11 324.07 336.70 352.80
12 368.05 366.47 387.19
13 277.19 280.40 295.43
14 352.36 354.32 367.61
15 310.45 305.76 315.56
16 406.83 410.58 426.33
17 323.05 321.04 339.16
18 321.40 319.54 337.15
19 315.01 313.42 323.56
20 343.17 338.54 353.11

Average Cost 330.92 331.83 348.38

33

Table 3: Computational Results for Model III

Test Sample KjhjDj Kj/hjDj KjhjDjρρρρj KjhjDj/ρρρρj
1 279.24 283.35 279.62 279.60
2 236.77 237.47 236.86 237.04
3 309.92 314.61 307.37 310.52
4 337.74 341.00 338.04 337.94
5 282.44 263.78 275.29 283.59
6 311.79 314.87 312.49 312.75
7 403.82 409.49 404.51 403.75
8 278.40 280.40 278.48 278.60
9 360.18 363.70 361.05 359.77

10 259.66 261.11 259.97 260.40
11 290.07 291.23 290.22 290.29
12 340.24 343.17 340.81 340.63
13 253.48 255.35 253.93 253.73
14 327.06 329.01 327.38 327.60
15 282.07 284.58 282.46 282.44
16 376.27 378.91 376.80 376.53
17 304.83 307.35 305.28 305.30
18 301.17 305.52 301.63 301.53
19 286.48 288.70 286.79 286.65
20 319.21 322.89 320.13 319.59

Average Cost 307.04 308.82 306.96 307.41

34

