
Distributed Privacy Preserving k-Means Clustering with
Additive Secret Sharing

∗

Mahir Can Doganay
mahircan@su.sabanciuniv.edu

Thomas B. Pedersen
pedersen@sabanciuniv.edu

Yücel Saygın
ysaygin@sabanciuniv.edu

Erkay Savaş
erkays@sabanciuniv.edu

Albert Levi
levi@sabanciuniv.edu

Faculty of Engineering and Natural Sciences
Sabanci University, Istanbul, Turkey

ABSTRACT

Recent concerns about privacy issues motivated data mining
researchers to develop methods for performing data mining
while preserving the privacy of individuals. However, the
current techniques for privacy preserving data mining suf-
fer from high communication and computation overheads
which are prohibitive considering even a modest database
size. Furthermore, the proposed techniques have strict as-
sumptions on the involved parties which need to be relaxed
in order to reflect the real-world requirements. In this pa-
per we concentrate on a distributed scenario where the data
is partitioned vertically over multiple sites and the involved
sites would like to perform clustering without revealing their
local databases. For this setting, we propose a new protocol
for privacy preserving k-means clustering based on additive
secret sharing. We show that the new protocol is more se-
cure than the state of the art. Experiments conducted on
real and synthetic data sets show that, in realistic scenarios,
the communication and computation cost of our protocol is
considerably less than the state of the art which is crucial
for data mining applications.

Categories and Subject Descriptors

D.2.8 [Database Management]: Database Applications—
Data Mining,Privacy

Keywords

Privacy Preserving Data Mining, Secret Sharing, Secure Mul-
tiparty Computation, k-Means Clustering

∗This work was partially funded by the Information Soci-
ety Technologies Programme of the European Commission,
Future and Emerging Technologies under IST-014915 GeoP-
KDD project.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PAIS’08, March 29, 2008, Nantes, France.
Copyright 2008 ACM 978-1-59593-965-4 ...$5.00.

1. INTRODUCTION
Massive amounts of data are collected for various reasons

by many organizations with the hope that data mining tech-
nology will extract useful knowledge from the collected data
and turn it into something beneficial for the organization.
In fact, data mining technology proved its success in nu-
merous areas such as business intelligence, life-sciences, and
security. On the other hand, the popularity of data min-
ing was about to pave the way to its demise. Part of the
reason for that is the launch of large scale projects related
to homeland security. Some projects were actually stopped
since they failed to meet privacy concerns. According to
a very recent article in Computer World by Jaikumar Vi-
jayan “The chairman of the House Committee on Homeland
Security, has asked Department of Homeland Security Sec-
retary Michael Chertoff to provide a detailed listing of all
IT programs that have been canceled, discontinued or mod-
ified because of privacy concerns”[13]. In addition to that,
the Chairman also asked for information about the measures
being taken to address privacy issues[13]. As a result of in-
creased privacy concerns, data mining researchers focused
on developing techniques that would enable data mining
while preserving the privacy of individuals and started a
popular branch of research named “privacy preserving data
mining”[1]. Protocols based on statistics and cryptography
were proposed for privacy preserving classification, cluster-
ing, and pattern mining in centralized and distributed en-
vironments. However, privacy preserving data management
in general, is still an ongoing research topic, and efficient,
as well as provably secure, methods without strong assump-
tions are yet to be proposed.

In this paper, we consider a distributed scenario in which
the data is vertically partitioned (different attributes for the
same entity can be stored at different sites). In this case
each site has a different projection of the database. We
choose the popular k-means clustering algorithm and pro-
pose a new protocol for distributed privacy preserving k-
means clustering. Instead of using computationally costly
public key encryption schemes, we utilize additive secret
sharing as a cryptographic primitive to implement a secure
multiparty computation protocol in order to do privacy pre-
serving clustering. State-of-the art privacy preserving clus-
tering algorithms were not implemented and tested before,
so our initial contribution is to implement an existing tech-

3

nique as a benchmark. We then show that our protocol out-
performs the state-of-the art in terms of computation cost.
The communication cost of our protocol is better than the
state-of-the art up to 64 parties which is a realistic number
for most applications. We also show that our protocol pro-
vides more security with less assumptions on the involved
parties.

The rest of this paper is organized as follows: Section 2
outlines related work. In Section 3 we explain the central
tools used in our scheme and in [12]. In Section 4 we state
the problem and present our algorithm. In Section 5 we
discuss how our method preserves the privacy of the data
records of individuals. In Section 6, we analyze the com-
putation and communication overhead of our algorithm and
compare to [12]. Simulation results that support the analy-
sis of this section are given in Section 7. Finally in Section 8,
we give our conclusions.

2. RELATED WORK
Privacy preserving data mining algorithms fall in two cate-

gories: (1) Random perturbation-based and (2) secure multi-
party computation based.

Perturbation techniques mix additive or multiplicative noise
with the data so that actual values in the data set are not
learned, yet the data mining results gathered from the per-
turbed data will not deviate significantly from the results
gathered from the original data. The work of Aggrawal and
Srikant[1] falls into this category. One recent significant
work by Kargupta et al.[9] shows that random projection
based multiplicative data perturbation is a very efficient way
to perform privacy preserving distributed data mining. The
results obtained from perturbed data have below 5% error
rate as compared to the results obtained from the original
data. Algorithms in that category present a very practical
and efficient way of performing privacy preserving data min-
ing; however, they are based on trading accuracy of the data
mining results with privacy of individuals. Furthermore, al-
gorithms in this category do not preserve privacy in any
formal cryptological sense, i.e. one cannot easily calculate
how much effort and resources are needed to filter out the
noise and breach privacy.

Algorithms based on secure multiparty computation (SMC)
do not have to trade accuracy with privacy and they preserve
the security and privacy of the data of individuals in a for-
mal way. It is well known from the SMC literature that any
(reasonable) function can be computed among distributed
parties without revealing the private inputs[15, 2]. There-
fore, theoretically it is possible to perform distributed data
mining without revealing data at individual sites. Clifton et
al.[3] proposed that data mining algorithms should make use
of a relatively small set of primitive functions and therefore
generalized SMC algorithms for these primitive functions
can be used to solve data mining problems. However, gener-
alized solutions to SMC problems suffer from high levels of
communication and computation cost. Therefore, these so-
lutions should be used with caution in data mining problems
where the size of the data is measured in gigabytes. One of
the algorithms in this category of privacy preserving data
mining algorithms is Clifton and Kantarcioglu’s protocol[5]
for association rule mining. They make use of the commu-
tative encryption property of RSA encryption and this at
the worst case needs a number of public key encryptions ex-
ponential in the number of data holders. Since public key

encryptions, such as RSA, consists of expensive operations,
these protocols suffer from high computation cost. However,
not all algorithms in this category are inefficient. The pro-
posed protocol of Clifton and Vaidya[12] for k-means cluster-
ing over vertically partitioned data brings a communication
overhead linear in the size of the data.

The use of secret sharing to perform secure multiparty
data mining gained some momentum in recent years. One
of the most notable examples is the work of Laur, Lipmaa
and Mielikainen[8] in which they use secret sharing for pri-
vate support vector classification. One other notable use of
secret sharing in a privacy preserving data mining algorithm
is the work of Wright and Yang[14] to compute Bayesian net-
works over vertically partitioned data. Similar to the work
of Clifton and Vaidya[12], we address privacy preserving k-
means clustering problem over vertically partitioned data,
where each involved party has a subset of attributes of all
the entities in the dataset.

3. PRELIMINARIES
As Clifton and Vaidya[12], we assume that some of the

parties in the protocol are non-colluding. In [12] they assume
the existence of 3 parties who are pairwise non-colluding. In
this paper we assume the existence of 4 such pairwise non-
colluding parties. Since the security of our protocol relies
on secret sharing, our protocol is secure even if the parties
have unlimited computing power. In contrast, Clifton and
Vaidya assume that all parties are computationally bounded.
As always in an information theoretical scenario, we assume
the existence of authentic and confidential channels. Such
channels can always be implemented with a combination of
symmetric and public key cryptography. We will not address
this issue further.

Both our scheme and the scheme of Clifton and Vaidya[12]
are based on homomorphic cryptographic methods. The im-
provement of our scheme over that of [12] comes from the
use of homomorphic secret sharing instead of homomorphic
encryption.

A public key encryption scheme is a set of three func-
tions G, E, and D. The function G is a key generation

function and when G is called with a random argument it
generates a key-pair : (pk, sk) = G(r), where pk is called the
public key, and sk is called the secret key. The two keys
satisfy the following decryption condition: D(sk, c) = m,
where c = E(pk, m, r) is called the ciphertext, m is called
the message or plaintext, and r is a random number. Fur-
thermore it is computationally infeasible to compute the
message m when given only pk and E(pk, m, r). An en-
cryption scheme is said to be additively homomorphic if
E(pk, m0, r)E(pk, m1, r

′) = E(pk, m0 + m1, r
′′), for some

value r′′. Additively homomorphic encryption schemes are
the central tool of [12]. The well-known Paillier homomor-
phic encryption scheme take messages of size n bits, and
creates 2n-bit ciphertexts. In practical applications of [12]
messages are of 32 bits, so a ciphertext is approximately 64
times larger than the message.

A (t, n) secret sharing scheme is a set of two functions
S and R. The function S is a sharing function and takes
a secret s as input and creates n secret shares: S(s) =
(s1, . . . , sn). The two functions satisfy that for any set I ⊆
{1, . . . , n} of t indices R(I, sI1 , . . . , sIt

) = s. Furthermore
we require that it is impossible to recover s from a set of
t − 1 secret shares. A secret sharing scheme is additively

4

homomorphic if R(I, sI1 + s′I1 , . . . , sIt
+ s′It

) = s + s′.
A very simple (n, n) secret sharing scheme which is addi-

tively homomorphic is S(s) = (r1, . . . , rn−1, r), where ri is
random for i ∈ {1, . . . , n− 1}, and r = s−

∑n−1
i=1 ri. To re-

cover s all secret shares are added: s = r +
∑n−1

i=1 ri. If even
one secret share is missing nothing is known about s. We
use this simple additive secret sharing scheme in this paper.
Notice that the communication cost when secret sharing a
number between n parties is exactly n−1 (one random num-
ber send to each of the other n− 1 parties).

The two homomorphic schemes described in this section
are useful tools in computing simple functions over distributed
data. As a simple example, suppose we want to compute the
sum of n numbers a1, . . . , an, where each number is a secret
known to only one party. With homomorphic encryption,
the first party can compute (pk, sk) = G(r), and send pk
to all the other n − 1 parties. He then sends E(pk, a1, r1)
to the second party, who computes E(pk, a1 + a2, r2) =
E(pk, a1, r1)E(pk, a2, r

′
2). The second party forwards this

ciphertext to the third party, and so on, until the last party
sends E(pk,

∑
i
ai, rn) back to the first party, who can then

decrypt the result. Since it is computationally infeasible for
any party, except for the first, to compute the intermediate
results, no one will be able to learn anything else than the
final sum. A similar procedure can be implemented with
homomorphic secret sharing.

4. OUR ALGORITHM
Our privacy-preserving clustering algorithm is an improve-

ment of the one proposed by Clifton and Vaidya in [12]. The
central difference between our algorithm and the algorithm
of [12] is the search for the cluster which is closest to a
given entity. In [12] homomorphic encryption is used to do
a secure computation of the closest cluster, whereas we use
secret sharing. The power of secret sharing in this setting
is that communication overheads are considerably lower. To
make our presentation clear, we simplify some parts of the
algorithms, but apply the same simplifications to [12] when
we compare the efficiency of the two algorithms in Sec. 7.

Our algorithm performs distributed k-means clustering
with r parties. The data is vertically partitioned such that
each of the r parties has some of the attributes of the dataset.
The number of entities in the dataset is n. The goal of the r
parties is to perform k-means clustering on their aggregated

data without revealing the values of the attributes they own
to the other parties. The algorithm will divide the entries
into k clusters and each party learns the cluster means cor-
responding to their own attributes, and the index of the
cluster into which each entity is assigned. Ideally, no party
should learn anything else than this.

Let µc, c ∈ {1, ..., k}, represent the cluster means of the
result. Let µci be the projection of cluster mean c onto the
attributes of party i (µc = (µc1, . . . , µcr)). As output of
privacy preserving k-means clustering party i gets:

• The final mean µci for each cluster c ∈ {1, . . . , k}.

• The cluster index for each entity j ∈ {1, ..., n}.

Privacy preserving k-means clustering over vertically parti-
tioned data is studied by Clifton and Vaidya in [12]. In our
work we follow the same approach as Clifton and Vaidya.
However, Clifton and Vaidya make use of additive homo-
morphic encryption which requires public key encryptions.

The public key encryptions are the bottleneck of the method
described in [12]. In contrast, we use additive secret sharing
to achieve privacy, which gives us lower computation and
communication overhead than [12].

Like the work of Clifton and Vaidya, our algorithm fol-
lows the standard k-means clustering method. Firstly, ini-
tial cluster means are selected, and all entities in the dataset
are assigned to the closest initial clusters. After the initial
assignment of clusters, the cluster means are recalculated
and each entity is reassigned to the cluster with the clos-
est cluster mean. The process continues until a termination
criterion is met. Algorithm 1 shows the pseudo code of the
privacy preserving k-means clustering algorithm, which is
common to our work and [12].

Algorithm 1 Privacy Preserving k-means algorithm

do in parallel for each party i ∈ {1, . . . , r}
for each cluster c← 1, . . . , k do

initialize µci randomly
end for

end parallel

repeat

for each entity j ← 1, . . . , n do

Cluster[j] ← SecurelyComputeClosestCluster(j)
end for

do in parallel for each party i ∈ {1, . . . , r}
for each cluster c← 1, . . . , k do

µci ← mean of party i’s attributes in cluster c
end for

end parallel

until termination criteria met

The algorithm that we present in this paper terminates
when there is no change in the assignment of clusters. The
algorithm presented in [12] terminates when the change in
cluster means between two iterations is less than a given
threshold. Our termination criterion corresponds to setting
the threshold to 0. To give a fair comparison with the origi-
nal algorithm presented in [12], we have used a threshold of
0 in our implementation of their algorithm.

The final clustering result depends on how we choose the
initial cluster means. It is, however, a standard approach
to choose the initial cluster means randomly, which is the
case in [12] as well. Another factor to be considered is the
distance measure used. For simplicity we use Euclidean dis-
tance. Whenever we compare our work to the work of [12],
we use Euclidean distance in their algorithm as well.

Since the data is vertically partitioned, each party can
compute part of the distances between each of the n entities
in the dataset and the cluster means. Since we use Euclidean
distance the square of the total distance between an entity
and a cluster mean is the sum of the squares of the sub-
distances computed at the subspaces of each party:

‖xi − µc‖
2 =

r∑

p=1

‖xip − µcp‖
2. (1)

However, the parties cannot reveal their sub-distances in
order to compute the sum of them, since the local sub-
distances may contain private information. We therefore
need to compute and compare the distances securely with-
out revealing the individual sub-distances. This is done in
the “SecurelyComputeClosestCluster” algorithm, which we

5

will describe in the next subsection. It is in the secure com-
putation of closest clusters that our algorithm varies from
that of [12].

4.1 Secure Closest Cluster Computation
To compute the closest cluster mean for a given entity

in the database we have to securely sum the sub-distances
computed by each party and compare the results so that
nothing other than the comparison result is learned. With n
entities, the algorithm has to be invoked nt times, where t is
the number of iterations in the standard k-means algorithm.
In this section, we describe the algorithm for securely finding
the cluster mean which is closest to a given entity.

Similar to [12], the security of our algorithm relies on three
ideas:

• Each party sends secret shares its sub-distance to all
the other parties, and the sum of the sub-distances is
computed on the secret shares (where [12] adds random
blinding values in a protocol which applies encryption).

• The comparison of distances is performed on secret
shares so that only the comparison result is learned.
The actual values of the distances are not learned.

• The ordering of clusters is permuted so that for each
entity in the database, only the index of the closest
cluster is learned. Relative orderings of the entity’s
distances to each cluster mean µc cannot be learned.
This is very simple when we work with secret shares,
but in [12] this is the step that requires the highest
amount of communication and computation since they
rely heavily on public key encryptions.

The most important difference between our work and the
work of Clifton and Vaidya is the secure computation of the
closest cluster. In [12] the first party selects “disguising val-
ues” for each pair of cluster and party such that the sum
of all disguising values corresponding to one cluster is zero.
Then, the first party together with all other parties compute
the encryption of the sub-distances plus the corresponding
disguising value. Afterwards, the encrypted distances are
permuted by the second party. Finally, the first party de-
crypts the distances, finds the minimal distance, and reveals
the identity of the closest cluster with the help from party
2. The closest cluster corresponds to the new cluster assign-
ment of the given entity. In contrast to Clifton and Vaidya,
we use additive secret sharing, which allows us to compute
all distances by locally adding up the correct shares. Our
algorithm for securely computing the closest cluster mean
for each entity has three phases. Pseudo code of these three
phases are in Algorithm 2.

Phase 1: In the first phase of the secure closest clus-
ter computation algorithm each party secret shares its sub-
distance for each cluster mean with every other party. Let
Xic be the ith sub-distance between the entity that is be-
ing evaluated and the cluster mean c. Each party (i) cre-
ates a random number αc

ij for every other party, and sends
αc

ij to party j for all c ∈ {1, . . . , k}. The ith party keeps
αc

ii = Xic −

∑
j 6=i

αc
ij to himself. Note that Xic cannot be

computed unless all parties come together to recover it.
Phase 2: After the completion of Phase 1, for every clus-

ter c, we let Tic denote party i’s secret share of the dis-
tance between the given entity and cluster mean c (Tic =∑r

j=1 αc
ji).

Algorithm 2 Secure Closest Cluster Computation

Require: entity e, cluster means µ1, . . . , µk

Ensure: Closest cluster to e
do in parallel for each party i ∈ {1, . . . , r}

for each cluster c← 1, . . . , k do

Phase 1 :

Xic ← local component of the distance from e to
cluster mean µc

for every other party j do

αij ← random number
send αij to party j

end for

αii ← Xic −

∑
j 6=i

αij

Phase 2 :

Tic =
∑

j
αji

send Tic to party r (Party 1 does not send any-
thing!)

end for

end parallel

Phase 3 : (Phase 3 only involves parties 1, 2, 3 and r)
do in parallel for parties i = 1, r

for each cluster c← 1, . . . , k do

Party 1: D1c ← T1c

Party r: Drc ←

∑r

i=2 Tic

end for

(D′
i1, . . . , D

′
ik)←SecurePermute(Di1, . . . , Dik)

end parallel

return SecureFindMinimum(D′
i1, . . . , D

′
ik)

Since all αc
ij , i 6= j, are random numbers, Tic is also a

random number, so nothing can be learned from it. Every
party, apart from the first party, now sends Tic to the rth
party.

Phase 3: This phase only involves parties 1, 2, 3 and r.
Party r adds the values Tic to compute Drc =

∑r

i=2 Tic.
Party one defines D1c = T1c. The distance between the
given entity and cluster mean c is now Dc = D1c + Drc.
Since party 1 did not send T1c, party r cannot learn the
distance. The task of party 1 and r is now to find the
minimum element from the list (D1, . . . , Dk), where party
1 knows D1c, and party r knows Drc of each element. This
is done by comparing each of the elements with the current
smallest element one by one. The comparison presents two
problems:

1. How does parties 1 and r compare two numbers Dc =
D1c + Drc and Dc′ = D1c′ + Drc′ such that neither of
them will learn the values of Dc and Dc′?

2. How do we prevent parties 1 and r from learning the
ordering of all the distances? They should only learn
the minimum distance?

The first problem is solved by observing that Dc < Dc′ if
and only if D1c−D1c′ < Drc′ −Drc. Party 1 knows the left
hand side, and party r knows the right hand side. They can
now compute the result of the comparison by applying the
so called “Yao’s millionaires problem”. We will describe this
in detail in Sec. 4.3.

To solve the second problem above, parties 1 and r per-
mute the order of the elements in the vector (D1, . . . , Dk)
with the help of party 2 and party 3. We discuss this further
in Sec. 4.2 below.

6

Once Phase 3 is completed parties 1 and r can reveal
the index of the cluster which is closest to the entity being
considered.

4.2 Secure Permutation
Since parties 1 and r obtain the result of all the compar-

isons of the distances from a given entity to all the cluster-
means they will not only know which cluster is closer to the
given entity, but also know which cluster is furthest away,
second furthest away and so forth. This clearly gives parties
1 and r an advantage over the other parties. To prevent par-
ties 1 and r from obtaining this information, we first make a
“secure permutation” of all the cluster distances. After find-
ing the minimum element in the permuted list of distances
parties 1 and r are only told the true identity if the cluster
at minimum distance.

The secure permutation is the bottleneck for the protocol
by Clifton and Vaidya since it amounts to more than 90%
if the computation time. The reason being that in their
protocol party 1 has to create kr public-key encryptions for
each entity in the database.

Party 1 Party r Party 2 Party 3

-

(D11, . . . , D1k)

-

(Dr1, . . . , Drk)

-�

π

�

(D1π(1) + r1, . . . , D1π(k) + rk)

�

(Drπ(1) − r1, . . . , Drπ(k) − rk)

Figure 1: Secure Permutation Protocol

In our protocol we take advantage of secret sharing to
make a considerably more efficient permutation protocol.
Parties 1 and r need the help of two other parties, parties 2
and 3, for the permutation. Party 1 simply sends his secret
shares to party 2, and party r sends his secret shares to party
3. Then parties 2 and 3 agree on a permutation and each
of them apply the permutation to the vector of shares they
received. To make sure that parties 1 and r cannot recognize
the elements in the vector they get back, party 2 adds a
random number ri to element i, while party 3 subtracts ri

(recall that each element of the vectors are additive secret
shares of a distance, so adding and subtracting the same
random number will not change the result of the protocol).
After applying the permutations, they send the vector back
to the parties they got them from. The protocol can be seen
in Fig. 1.

Since we are assuming the presence of confidential and
authentic channels, parties 2 and 3 can agree on the permu-
tations in any way they want.

4.3 Secure Minimum Element
In the last step of the “Secure Closest Cluster Compu-

tation” parties 1 and r compare the distances between the
current entity and all the cluster means. Each of them has a
secret share of the k entries in the permuted vector of these
distances. To find the minimum, they perform k − 1 com-
parisons with the current minimum element (they do not

compare the first distance). After finding the minimal ele-
ment, party 1 informs party 2 of the permuted identity of
the closest cluster. Since party 2 knows the permutation,
she can announce the real identity of the closest cluster to
all parties.

Clifton and Vaidya[12] suggest using Yao’s circuit evalua-
tion for the comparisons. They argue that even though Yao’s
protocol is very inefficient, it may be plausible to use it for
the comparison, since they only perform kn comparisons in
each iteration of the k-means algorithm. Nonetheless, in our
experiments, we use a protocol proposed by Savaş, Pedersen,
and Kaya in [7] in both our protocol and our implementation
of Clifton and Vaidya’s protocol.

In the comparison protocol of [6, 7], two players who wish
to compare two integers, each create two secret shares of
their own inputs and send these shares to two semi-honest
non-colluding third parties. The protocol utilizes the fact
that additive secret sharing is homomorphic with respect to
addition, thus bitwise additive secret sharing is homomor-
phic with respect to bitwise addition, XOR operation of bits.
The protocol of [7], like Fischlin’s protocol[4], uses a trick
by Sander, Yung, Young [11] to convert XOR homomorphic
secret sharing into AND homomorphic secret sharing with-
out disclosing the secret. For the proofs of correctness and
security, the readers are referred to [7].

We have modified the protocol from [7] slightly, by ob-
serving that the two semi-honest third parties are actually
not needed in the protocol. In the original protocol, the
parties involved in secure comparison secret-share their in-
puts with 2 semi-honest third parties, sending one share to
a third party and the remaining share to the other third
party. This is equivalent to each party secret-sharing their
inputs among themselves; each party sends a secret share
of its input to the other party while keeping the remain-
ing secret share to itself. Therefore, in our protocol, the
parties who are involved in the secure comparison (parties
1 and r) apply the protocol in [7] by secret-sharing their
inputs among themselves. In the original protocol[7], two
third parties end up with secret shares of a binary vector.
The vector is as long as the inputs that are compared. If
the first input to the comparison is greater than the other,
then the vector has exactly one 1-bit at the first position
where the first input is greater than the second input. Since
the position of the 1-bit gives information about the relative
difference between these two inputs, the two third parties
agree on a permutation and permute the vector before it is
sent to the party who will learn the result of the comparison.
In our protocol, parties 1 and r do not perform the permu-
tation themselves since they are the ones that will learn the
result of the comparison. Instead, we use the permutation
algorithm described above in Sec. 4.2.

5. PRIVACY DISCUSSION
Before going into the discussion about privacy, we have

to define what we mean by private information in the algo-
rithm. Above we set as our goal that the only information
party i will learn after the algorithm is:

• The final mean µci for each cluster c ∈ {1, . . . , k}.

• The cluster index for each entity j ∈ {1, ..., n}.

No other information other than these two should be learned
out of algorithm. The actual values of data attributes be-

7

longing to the data holders are obviously private informa-
tion. Since these values are not shared among data holders
during the execution of our algorithm, we may say these val-
ues are kept private. Portions of distances calculated by each
party according to their set of attributes are also deemed pri-
vate information since one may recover the actual values of
the entities by knowing the distances of the entities to the
cluster means.

5.1 Privacy in our Protocol
In order to examine how our method protects privacy,

we focus on the “Securely Computing the Closest Cluster”
algorithm which is the only part of the algorithm in which
there are interactions between the parties. In Phase 1 of the
algorithm, all parties secret-share their local distance values
with the other parties. Since each party keeps one share for
himself and since all shares are needed to recover the local
distances, no information will leak even if all the remaining
r − 1 parties collude.

In Phase 2 of the algorithm all parties send their Tij values
to party r. Since Tij are secret-shares of the total distance
(it is the sum of the secret-shares of the local distances) and
since party 1 does not send T1j to party r, parties 1 and
r cannot gain any information unless they collude. Notice
that T1j contains shares from all other parties’ local distance
components.

Phase 3 of the algorithm consists of the permutation and
secure comparison sub-phases. In the permutation phase
parties 1 and r send their secret shares of the distance to
parties 2 and 3 respectively. Now parties 2 and 3 are in the
same situation as parties 1 and r were after Phase 2. Collu-
sion between parties 2 and 3 allow them to learn an entity’s
distance to each cluster mean, therefore the permutation
phase is privacy-preserving under the assumption that par-
ties 2 and 3 are non-colluding. The secure comparison is
privacy-preserving under the assumption that parties 1 and
r are non-colluding; detailed proof is explained in [7].

Finally the “Securely Computing the Closest Cluster” al-
gorithm returns the closest cluster to the given entity. Clearly
this is exactly what the parties are supposed to learn in the
last round. However, all parties will see how entities change
cluster in each iteration of the k-means clustering algorithm.
An entity, which fluctuates between two clusters, can be as-
sumed to be approximately half-way between the two clus-
ter means. This is more information than is strictly allowed.
However, the original algorithm by Clifton and Vaidya[12]
suffers from the same problem as well.

5.2 Security Comparison
In both our protocol and the protocol by Clifton and

Vaidya [12], privacy breaches may occur when two or more
parties collude. Therefore, in both the protocols, some non-
collusion assumptions have to be made for some specific
parties. However, the gained information in Clifton’s and
Vaidya’s protocol as a result of collusion is much more se-
vere. In the protocol by Clifton and Vaidya, each party,
upon computing local distances Xic, sends Xic to party 1.
Party 1 adds random values αic to Xic of each party. After
this phase, each party sends Xic + αic to party r. Here,
collusion between parties 1 and r allows them to learn the
value of Xic of all other parties, which is no doubt a severe
privacy breach. In our protocol such a privacy breach is mit-
igated by the use of secret sharing. Each party secret-shares

Xic with every other party, so the value of Xic can be re-
covered only if all parties come together. As a solution to
this problem, Clifton and Vaidya[12] propose an extension to
their protocol that increases the number of colluding parties
needed to reveal Xic of each party. In essence, they apply
their permutation steps more than once according to a cho-
sen anti-collusion parameter. If this parameter is denoted
as p, they repeat the permutation algorithm p − 1 times
by choosing a different party at each time to play the role
of party 1. This method increases security of the protocol;
however, it also increases computation and communication
cost considerably.

In our protocol, we have non-collusion assumptions for
parties 1, 2, 3 and r. If permuter parties (parties 2 or 3)
collude, they can reveal each entity’s distance to each clus-
ter mean µc. Also, if parties 1, r and one of the permuter
parties(2 or 3) collude, they can reveal each entity’s distance
to each cluster mean µc. We can say that collusion between
2 specific parties(parties 2 and 3) leads to a privacy breach
in our protocol at the worst case. We can also do the same
trick as in the protocol of [12] and increase the non-collusion
threshold by applying the permutation algorithm more than
once, at each iteration picking different two parties to play
the roles of party 2 and 3. Since our permutation algorithm
does not contain any encryption or similar expensive oper-
ations, it can be applied more than once without bringing
too much computation and communication overhead.

The comparison of the security of the two protocols reveal
that collusion between 2 specific parties leads to some pri-
vacy breach in both protocols. However, in [12] the leaked
information is more severe in case of a collusion. Some in-
formation specific to a party (Xic for party i) can be learned
in [12], whereas in our protocol leaked information is global
information, not bound to a specific party.

6. COST ANALYSIS
A privacy preserving distributed data mining algorithm

aiming to be used in real life applications should not bring
too much communication and computation overhead. In
the following two subsections we analyze the communication
and computation overheads of our algorithm. The overheads
mainly occur in the “Securely Finding the Closest Cluster”
part of the algorithm. Thus, we only analyze this portion
of our algorithm. It should be noted that both communica-
tion and computation overheads of the k-means clustering
algorithm depend on the dataset. The number of iterations
required before the termination criteria is met depends on
the data and the initial cluster means. Therefore, in the
communication and computation cost analysis, we only con-
sider one iteration of the k-means algorithm. We let r be the
number of parties, n the number of entities in the database
and k the number of clusters.

6.1 Communication Cost Analysis
Most of the communication overhead in our protocol is

created in Phase 1 of the“Securely Finding the Closest Clus-
ter”algorithm. In this phase, for each entity, one party sends
secret shares of its portion of the distance to every other
party for each of the k clusters. This is equal to sending
each party a vector of length k. Each entry of this vector is
a secret share of 32 bits. Since there are r parties and each of
them send a shared secret vector of length k to every other
party, the communication cost of this step of our protocol is

8

32r(r − 1)kn bits.
In the original work of Clifton and Vaidya[12], every party

sends its local distance value encrypted to party 1. Party 1
adds random values to these local distance values by using
the additive homomorphic property of the public key en-
cryption scheme used, and sends the distorted values back
to each data holder. Assuming that a public key encryp-
tion scheme with 1024 bits of key and block size is used,
which is the minimum for security purposes, the communi-
cation cost of this phase in the work of Clifton and Vaidya
is 2(r − 1)1024kn = 2048(r − 1)kn bits.

From the above analysis we observe that for values of r
up to 2048/32 = 64, our algorithm has smaller communica-
tion cost in phase 1 as compared to the work of Clifton and
Vaidya[12].

Phase 2 of our algorithm is very similar to Clifton and
Vaidya’s protocol in terms of communication cost, each party
apart from party 1 will send a 32 bit integer to the rth

party, therefore the communication costs here are the same,
32n(r − 2)k bits.

In Phase 3 of the algorithm we run a protocol for Yao’s
Millionaires problem which gives us very little communica-
tion overhead. The only communication is one call to the
permutation protocol in each call to the comparison proto-
col. The vectors permuted are of length 32λ, where λ is a
security parameter given to the comparison protocol. Typ-
ical values for λ are around 50. We have applied the same
comparison algorithm in our implementation of the protocol
by Clifton and Vaidya, so the two protocols have the same
computational overhead in this step.

To sum up, the total communication cost of our algorithm
is much lower up to a certain number of parties (up to 64
parties when using 1024-bit encryption in [12]). We confirm
this bound in our experiments in Section 7.

6.2 Computation Cost Analysis
In terms of computation overhead, our protocol is more

efficient than the protocol of Clifton and Vaidya. Since we
use secret sharing rather than encryption, our protocol uses
primitive operations only. However, the algorithm of Clifton
and Vaidya uses public key encryptions which requires ex-
pensive modular exponentiation operations on very large
numbers. In Phase 1 of Clifton and Vaidya’s protocol two
public key encryptions and one public key decryption are
needed for every entity and cluster pair. In total, 3nk mod-
ular exponentiations are needed in Clifton and Vaidya’s pro-
tocol. Given the primitive nature of the operations in our
protocol, our protocol gives much lower computation over-
head, which is confirmed by our experiments in Section 7.

7. EXPERIMENTAL RESULTS
We implemented our protocol and the protocol of Clifton

and Vaidya[12] and performed simulations on them in order
to validate the theoretical findings for both communication
and computation costs given in Section 6. For testing pur-
poses in our simulations we used two datasets. The first
dataset is a synthetic control chart time series data taken
from the UCI Machine Learning repository. The dataset
consists of 600 items, all of them with 60 attributes. The
second dataset is a spatio-temporal dataset consisting of tra-
jectories of school buses. The number of measurement points
for each trajectory is over 1050. Since each measurement
consists of one x and one y coordinate, each item in the

dataset has over 2100 attributes. For both of the datasets,
the attributes are partitioned among the parties evenly; that
is, every party has equal or near equal number of attributes.
However, the distribution of attributes does not affect nei-
ther of the two algorithms considerably (since the first step
of each iteration is to compute local distances).

It is important to note that the initial cluster assignments
of entities greatly affects the execution time of the k-means
clustering algorithm. In order to make a fair comparison,
we make sure that initial cluster assignments of the entities
in the datasets are the same for each test for both of the
protocols.

The tests are done on a 2.0 Ghz Intel Core2Duo mobile PC
with 2GB’s of RAM. The implementations are done in the
C#.NET programming language. In the implementation
of the protocol in [12], we use the Paillier[10] public key
encryption scheme with 1024 bit cipher texts. Normally
Paillier encryption is considered secure when it is used with
ciphertexts of 2048 bits. However, in our experiments we use
a weaker version with ciphertexts of 1024 bits. This makes
the protocol of [12] faster for the purpose of our experiments;
but as can be seen from the experiments, even with this weak
implementation of Paillier, our scheme performs better.

We have performed two tests with each of the datasets.
First test is to see how much communication overhead our
protocol brings and how the communication overhead in our
protocol compares to communication overhead in the proto-
col of Clifton and Vaidya[12]. The total amounts of trans-
missions caused by the protocols with respect to the number
of parties are depicted in Figures 2 and 3 for two different
datasets. As can be seen from these figures, our protocol
has lower communication cost up to a certain threshold for
the number of parties. This threshold is expected to be 64
as analyzed in Section 6.1. The simulation results given in
Figure 3 show a threshold value around 61. The reason of
this minor decrease is that the ciphertexts produced in the
protocol of [12] are not always 1024 bits, but sometimes a
bit less than that due to the nature of the public key cryp-
tosystem used. Figure 2 shows the communication cost up
to 60 parties only. We cannot have more than 60 parties for
this dataset since the dataset has 60 attributes.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 10 20 30 40 50 60

M
B

 T
ra

n
s
m

it
te

d

Number of parties

Cliftons protocol
Our protocol

Figure 2: Communication cost with the timeseries

dataset.

9

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 10 20 30 40 50 60 70

M
B

 T
ra

n
s
m

it
te

d

Number of parties

Cliftons protocol
Our protocol

Figure 3: Communication cost with the trajectories

dataset.

The second test that we have performed is to analyze and
compare the computational overheads brought by our pro-
tocol and the protocol of Clifton and Vaidya[12]. Execution
times of the protocols with respect to the number of par-
ties are shown in Figures 4 and 5 for the two datasets (the
time axis is in log scale). As expected from the analysis
described in Section 6.2, our protocol has a smaller compu-
tational overhead compared to Clifton and Vaidya[12]. The
execution times of our protocol are always less than 30 sec-
onds, whereas the execution times of [12] are thousands of
seconds. The reason of this significant performance differ-
ence lies in the use of public key cryptography. In order
to compare each entity to each cluster mean, Clifton and
Vaidya[12] have to perform expensive public key encryp-
tions and decryptions linear in the number of parties. In
our protocol, however, we do not rely on such computation-
ally expensive public key operations.

 10

 100

 1000

 10000

 100000

 6 8 10 12 14 16 18 20

L
o

g
 o

f
T

im
e

 i
n

 S
e

c
.

Number of parties

Cliftons protocol
Our protocol

Figure 4: Timing with the timeseries dataset.

8. CONCLUSIONS

 10

 100

 1000

 10000

 100000

 6 8 10 12 14 16 18 20

L
o

g
 o

f
T

im
e

 i
n

 S
e

c
.

Number of parties

Cliftons protocol
Our protocol

Figure 5: Timing with the trajectories dataset.

In this paper, we proposed a new algorithm for apply-
ing k-means clustering to vertically partitioned data with-
out compromising the privacy of individuals. We have taken
the work by Clifton and Vaidya[12] as a basis. Clifton and
Vaidya use the additive homomorphic property of certain
public key encryptions, but we based our protocol on addi-
tive secret sharing which is also homomorphic with respect
to addition. Due to the fact that we use secret sharing rather
than encryption, we do not suffer from the bit expansion
drawback of public key encryption schemes which gives us
less communication overhead. Since we are not doing any
expensive modular exponentiations our protocol also gives
us less computation overhead as well.

9. REFERENCES

[1] Rakesh Agrawal and Ramakrishnan Srikant.
Privacy-preserving data mining. In Proceedings of the

2000 ACM SIGMOD International Conference on

Management of Data, May 16-18, 2000, Dallas,

Texas, USA, pages 439–450. ACM, 2000.

[2] Michael Ben-Or, Shafi Goldwasser, and Avi
Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed
computation. In STOC ’88: Proceedings of the

twentieth annual ACM symposium on Theory of

computing, pages 1–10, New York, NY, USA, 1988.
ACM.

[3] Chris Clifton, Murat Kantarcioglu, Jaideep Vaidya,
Xiaodong Lin, and Michael Y. Zhu. Tools for privacy
preserving distributed data mining. SIGKDD Explor.

Newsl., 4(2):28–34, 2002.

[4] Marc Fischlin. A cost-effective pay-per-multiplication
comparison method for millionaires. In Progress in

Cryptology - CT-RSA 2001: The Cryptographers’

Track at RSA Conference 2001, volume 2020 of
Lecture Notes in Computer Science, page 457, 2001.

[5] Murat Kantarcioglu and Chris Clifton.
Privacy-preserving distributed mining of association
rules on horizontally partitioned data. IEEE Trans.

Knowl. Data Eng., 16(9):1026–1037, 2004.

[6] S. V. Kaya, T. B. Pedersen, E. Savaş, and Y. Saygin.

10

Efficient privacy preserving distributed clustering
based on secret sharing. In PAKDD 2007

International Workshops: Emerging Technologies in

Knowledge Discovery and Data Mining, pages
280–291. Springer, 2007.

[7] Selim Volkan Kaya. Toolbox for Privacy Preserving
Data Mining. Master’s thesis, Sabanci University,
Istanbul, TURKEY, July 2007.

[8] Sven Laur, Helger Lipmaa, and Taneli Mielikäinen.
Cryptographically private support vector machines. In
KDD ’06: Proceedings of the 12th ACM SIGKDD

international conference on Knowledge discovery and

data mining, pages 618–624. ACM, 2006.

[9] Kun Liu, Hillol Kargupta, and Jessica Ryan. Random
projection-based multiplicative data perturbation for
privacy preserving distributed data mining. IEEE

Trans. Knowl. Data Eng., 18(1):92–106, 2006.

[10] Pascal Paillier. Public-key cryptosystems based on
composite degree residuosity classes. In Advances in

Cryptology — EUROCRYPT ’99. International

Conference on the Theory and Application of

Cryptographic Techniques, Lecture Notes in Computer
Science, pages 223–238. Springer-Verlag, May 1999.

[11] Tomas Sander, Adam Young, and Moti Yung.
Non-interactive cryptocomputing for nc1. In FOCS

’99: Proceedings of the 40th Annual Symposium on

Foundations of Computer Science, page 554,
Washington, DC, USA, 1999. IEEE Computer Society.

[12] Jaideep Vaidya and Chris Clifton. Privacy-preserving
k-means clustering over vertically partitioned data. In
KDD ’03: Proceedings of the ninth ACM SIGKDD

international conference on Knowledge discovery and

data mining, pages 206–215, New York, NY, USA,
2003. ACM Press.

[13] Jaikumar Vijayan. House committee chair wants info
on cancelled dhs data-mining programs. Computer

World, September 18 2007.

[14] Rebecca Wright and Zhiqiang Yang.
Privacy-preserving bayesian network structure
computation on distributed heterogeneous data. In
KDD ’04: Proceedings of the tenth ACM SIGKDD

international conference on Knowledge discovery and

data mining, pages 713–718, New York, NY, USA,
2004. ACM.

[15] Andrew C. Yao. Protocols for secure computations. In
Proceedings of the 23rd IEEE Symposium on

Foundations of Computer Science (FOCS ’82), pages
160–164, 1982.

11

