
 Elsevier Editorial System(tm) for Data & Knowledge Engineering

 Manuscript Draft

Manuscript Number: DATAK-D-08-00204

Title: Impossibility of Unconditionally Secure Scalar Products

Article Type: Full Length Article

Section/Category:

Keywords: Security and privacy; data mining; scalar products

Corresponding Author: Dr. Thomas Brochmann Pedersen, Ph.D.

Corresponding Author's Institution: Sabanci University

First Author: Thomas Brochmann Pedersen, Ph.D.

Order of Authors: Thomas Brochmann Pedersen, Ph.D.; Erkay Savas, Ph.D.

Manuscript Region of Origin:

Impossibility of Unconditionally Secure Scalar Products

Thomas B. Pedersena, Erkay Savaşa

aFaculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey

Abstract

The ability to perform scalar products of two vectors, each known to a different party,

is a central problem in privacy preserving data mining and other multi party computa-

tion problems. Ongoing search for both efficient and secure scalar product protocols

has revealed that this task is not easy. In this paper we show that, indeed, scalar prod-

ucts can never be made secure in the information theoreticalsense. We show that any

attempt to make unconditionally secure scalar products will always allow one of the

parties to learn the other parties input vector with high probability. On the other hand,

we show that under various assumptions, such as the existence of a trusted third party,

both efficient and secure scalar products do exist.

Key words: Security and privacy, data mining, scalar products

1. Introduction

For almost three decades it has been known that any distributed algorithm we may

think of can (at least in theory) be solved securely with standard multi party computa-

tion techniques[25, 12, 3]. However, the communication andcomputation cost of these

standard techniques are too high for most commercial purposes. To overcome these

inefficiency issues many recent special purpose protocols have been proposed in areas

such as privacy preserving data mining.

A quick survey of this research will soon reveal that some problems occur again

and again; as for example secure two-party computation of scalar products. Scalar

products are useful in a wide range of modern applications ofsecure computation such

Email addresses:pedersen@sabanciuniv.edu (Thomas B. Pedersen),erkays@sabanciuniv.edu
(Erkay Savaş)

Preprint submitted to Data and Knowledge Engineering August 25, 2008

Manuscript
Click here to view linked References

http://ees.elsevier.com/datak/viewRCResults.aspx?pdf=1&docID=1152&rev=0&fileID=19690&msid={F90552D7-C4DC-44FB-9D8F-4A3D12F64D33}

as privacy preserving data mining, scientific computing, and web personalisation. The

standard way of computing scalar products is to use homomorphic encryption, Shamir

secret sharing, or solutions based on oblivious transfer. However, some researchers

have expressed concern that these techniques will give too much communication and

computation overhead. Instead of using the standard techniques these authors propose

ad. hoc. protocols for secure scalar products [1, 23, 13, 21,17].

Unfortunately, many of the proposed scalar products are insecure. Goethalset

al.[10] demonstrate attacks on two of the proposed protocols[23, 1]. In this paper

we show thatno unconditionally secure scalar product protocol exists— even when

the adversary is semi-honest. Our result strengthen the claim of [10] that: “In almost

all solutions [which do not rely on extra assumptions], one can construct a system of

linear equations based on the specification of the protocol,and solve it for the secret

values.” As a consequence extra assumptions, such as the difficulty of factoring, or the

presence of a noisy channel, are needed to construct secure scalar products.

It is no big surprise that unconditionally secure scalar products are impossible.

The special case of computing the scalar product of binary vectors can be used com-

pute booleanand gates. However, unconditionally secure computation ofand gates

is impossible[4]. It is well known in the cryptographic community that commitment

schemes and oblivious transfer protocols cannot be unconditionally secure. We prove

the impossibility of unconditionally secure scalar products by showing a reduction

from commitment schemes to scalar products. More than that,we show that, without

extra assumptions, any two-party scalar product protocol between Alice and Bob, has

ann such that Alice learns approximatelyn scalar products, while Bob learns Alice’s

vector with probability 1/n. However, the reduction also suggests that secure scalar

products exist in alternative models where commitment schemes have been demon-

strated.

Since oblivious transfer is “universal” for secure function evaluation[25, 15], an

unconditionally secure scalar product protocol would be “universal” for secure two-

party computation.

Goethalset al.[10], and Wright and Yang [24] propose computationally secure

scalar product protocols. In many cases these scalar product protocols have less com-

2

munication overhead than the protocols proven insecure in [10]. This is in contrast to

the initial motivation of the authors of the previous scalarproduct protocols; namely

that standard cryptographic techniques were suspected to give protocols which are too

inefficient for practical purposes. In this paper, we further reduce the communication

overhead of the scalar product protocol from [10] in the caseof computing scalar prod-

ucts over small fields.

It is common in the privacy preserving data mining literature to assume that the

parties involved in the protocol are semi-honest and non-colluding (e.g. [23, 13, 1]).

We propose a new scalar product protocol which is secure in this model, and has a

communication overhead of onlyO(n1.6) when computing scalar products of vectors of

n-bit integers. The hidden constant is very small, and the resulting protocol is efficient

enough to be of interest in practical protocols.

Our contributions are: (1) the impossibility of scalar products, secure against

semi-honest adversaries without extra assumptions, (2) a lower bound on the infor-

mation leaked in any scalar product protocol when the adversary is computationally

unbounded, (3) two efficient scalar product protocols whichare secure in two different

models.

This paper is organised as follows: In Sec. 2 we give a brief discussion of the

model we work in. In Sec. 2.1 we show an attack on commitment schemes, when

no extra assumptions are made. Our first main result is the reduction of commitment

schemes to scalar products in Sec. 3 which proves the impossibility of unconditionally

secure scalar products, and in Sec. 4 we apply our bound to thescalar product from

[17]. In Sec. 5 we give two efficient and secure scalar productprotocols, the first is an

improvement of the protocol from [10], the second is a new scalar product protocol.

We give some concluding remarks in Sec. 6.

2. Preliminaries

When implementing cryptologic protocols it is important tobe precise about the

model which guarantees security of the protocol. The contribution of this paper is to

show that scalar products cannot be securely computed by twoparties when no extra

3

assumptions are made, but that efficientand secure implementations exists in other

models.

In our setting two parties, Alice and Bob, try to compute a function without help

from any external party. They both have unlimited time and space available for their

computations. We prove the impossibility of scalar products even for semi-honest par-

ties. That is: they do exactly as the protocol is describing,but collect information

during the execution of the protocol, which they try to use togain information about

the other parties inputs. Limiting our attention to semi-honest parties is not a restric-

tion, since this gives the strongest statement:No scalar product can be secure against

semi-honest adversaries if no extra assumptions are made. The impossibility results

automatically apply to active adversaries, since any protocol which is secure against

active adversaries is also secure against semi-honest adversaries.

In the following we give an informal overview of the definition of secure protocols.

For more details see [11]. Suppose that Alice and Bob have inputs drawn from random

variablesA andB, respectively. The want to compute a functionf (A,B), such that as

little information about their private inputs as possible is leaked. Intuitively, what this

means, is that anything which Alice can compute from what shesees during protocol

for computingf (A,B), she could have computed from her input and output alone. More

formally, let viewA and viewB be lists of inputs, outputs, prior knowledge, random

choices, and messages seen by Alice and Bob during the execution of the protocol,

respectively. A simulator, for Alice, say, is a probabilistic polynomial time algorithm

which takes as input a value,a, drawn fromA, the output of Alice (when executing

the protocol with inputa), and creates a view̃viewA which is “similar” to the real

view. By similar we mean that no algorithm with the same capabilities as Alice can

tell the difference between real and simulated views. In theunconditional case, this

means thatno algorithm should be able to tell the difference. In the computational

model (in which we will show a secure scalar product protocol) this means that no

probabilistic polynomial time algorithm can tell the difference (except, possibly, with

negligible probability, and under the condition of a computational assumption, like the

RSA assumption). A protocol for computingf is secure, if such simulators exists for

both Alice and Bob.

4

In a commitment scheme Alice “commits” to a valuea in a way that Bob does

not learna, but such that, at a later time, Alice can prove that it wasa she committed

to. The standard metaphor for commitment schemes is a safetyvault. Alice locks a

document with the text “a” into the vault, and gives the vault to Bob. She keeps the

key, but give the key to Bob when she wants to prove that she committed toa. We will

give a more precise definition in the next section. For now we just have to note that

the semi-honest model is not meaningful for commitment schemes. The whole point

of a commitment is to make sure that Alice will not lie about her choice ofa. If she

was semi-honest, a commitment scheme would not be needed, since she can just tell

Bob abouta whenever needed. Instead we use a “hybrid” adversarial model, where we

assume that Alice is semi-honest during the commitment phase, but that she tries to

change her mind in the opening phase.

We will not study oblivious transfer in detail in this paper,but the strong relation-

ship between commitment schemes, scalar products, and oblivious transfer makes it

useful to have a short look at oblivious transfer. In one-out-of-two oblivious transfer

(OT1
2) Alice (the sender) has two input messagesm0 andm1, and Bob (the receiver)

wants to learnmb. An OT1
2 protocol is such that Bob learns exactlymb, and noth-

ing else, while Alice learns nothing at all (in particular she does not know which

message Bob received). As mentioned in the introduction it can be shown that both

commitment schemes and oblivious transfer can be implemented with scalar products.

This suggests that secure scalar products may be implemented in models where secure

oblivious transfer exists. Even though oblivious transfercannot be unconditionally se-

cure, secure implementations have been demonstrated underseveral assumptions. It is

known that oblivious transfer based on different kinds of noisy channels exist[6, 5, 7].

Rivest showed that oblivious transfer can be implemented with the help of a trusted

initiator — a trusted third party who only participates in a setup phase[22]. In [18] the

authors show how oblivious transfer is possible if the role of the sender is distributed

amongst several parties. And, of course, many oblivious transfer protocols exist in the

computational model [20, 9, 2].

All protocols presented in this paper work with inputs and outputs from a finite field

F, even though the section about commitment schemes is valid for any set. Throughout

5

the paper we use the notationx∈R S to denote thatx is chosen at random from the set

Saccording to the uniform distribution.

2.1. Commitment Schemes

A commitment scheme consists of two protocols: 1) a commitment protocol, and

2) an opening protocol. In the commitment protocol Alice hasan input “string”s from

a finite fieldF, and at the end of the commitment protocol Bob has some outputstate

commit(s). At the end of the opening protocol Bob learnss. We require two things of

a commitment scheme:

Hiding At the end of the commitment protocol Bob knows nothing abouts (that he

did not know in advance).

Binding At the end of the opening protocol Bob learnssexactly.

The hiding and binding properties can be either perfectly, statistically, or computa-

tionally bounded. It is well-known that at least one of the properties has to be com-

putationally secure, but in the following theorem we give a quantitative bound of the

information leaked to an computationally unbounded adversary:

Theorem 1. For all commitment schemes, in all commitments there existsa set S⊆ F

known to both Alice and Bob, such that, after the commitment protocol:

• Bob knows that Alice committed to some s∈ S, and

• Alice can open to any s′ ∈ S,

PROOF. Suppose that Alice has committed to the strings. Let c describe the conversa-

tion between Alice and Bob during the commitment protocol (all messages sent forth

and back), and letviewB describe the view of Bob after the commitment protocol, but

before the open protocol (the random choices made by Bob, hisprivate knowledge, and

the conversationc).

Let VB(s′) be the set of all views Bob can have after a commitment tos′. Define

SB = {s′ ∈ F|viewB ∈ VB(s′)} as the set of all strings which have a commitment that

would give BobviewB. Observe that

6

• If a string s′ ∈ SB, then there would be a commitment tos′ where Bob would

haveviewB. Thus, Bob cannot distinguish if the current commitment is to sor s′.

• If Alice can open to a strings′ 6= s, thens′ ∈ SB.

Now let C(s′) be the set of all possible conversations when committing tos′, and

let SA = {s′ ∈ F|c ∈ C(s′)} be the set of all strings which have a commitment with

conversationc. Observe that

• If s′ ∈ SA, for somes′ 6= s, thenc is a valid conversation for a commitment tos′.

So, when opening, Alice can pretend that she had committed tos′ and can thus

open tos′.

• If Alice can open tos′ 6= s, thenc must be a possible conversation when commit-

ting to s′ (sincec is part ofviewB), sos′ ∈ SA.

We finally show thatS= SA = SB. First assume thats′ ∈ SA, then Alice can open to

s′, but this implies thats′ ∈ SB, soSA ⊆ SB. Now, lets′ ∈ SB, then there is commitment

to s′ which would give BobviewB. But then the conversation which is part ofviewB is

a valid conversation for bothsands′, sos′ ∈ SA, implying thatSB ⊆ SA. �

It follows from the theorem that any unconditionally hidingcommitment scheme

must be such thatS= F (all strings are consistent with what Bob has seen during

the commitment protocol). An unconditional binding commitment scheme, however,

must be such thatS= {s} after committing tos (so that Alice cannot open to another

strings′ 6= s). It is a corollary to this theorem that if a commitment scheme has either

unconditionally hiding or binding, the validity of the other property must rely on an

extra assumption.

3. No Unconditionally Secure Scalar Product

In ascalar product protocolAlice and Bob haved-dimensional input vectorsv,w∈

F
d, respectively. They wish to compute the scalar product

v·w =
d

∑
i=1

viwi , (1)

7

without revealing “too much” about their input vectors1.

Several variants of scalar product protocols can be defined,depending on the out-

puts of the two parties. One approach is to give the scalar product as output to Bob

(trivial SP). Alternatively, we can require that Alice and Bob each gets anadditive

secret shareof the scalar product (secret shared SP or SSSP). In this paper we use a

third approach where we let Alice choose her own part of the additive secret sharing in

SSSP (so that, as output, Bob gets the scalar product minus Alice’s share) — we call

this approach determined SSSP. Figure 1 shows the determined SSSP protocol.

Alice Bob

α
v

-

- �

-

w

β = v·w−αSP

Figure 1: Determined Secret Shared Scalar Product (α +β = v ·w).

It is easily seen that determined SSSP and SSSP are equivalent. We can turn an

implementation of SSSP into a determined SSSP by letting Alice set her own secret

share to a valueα of her choice. She then computesβ ′ = α −α ′, whereα ′ is the secret

share she got from the SSSP, and sendsβ ′ to Bob. Bob sets his own secret share to

be β + β ′. Vice versa, given a determined SSSP, Bob chooses a random numberα ′

and sets his own share toβ −α ′. Bob sendsα ′ to Alice, who sets her share toα + α ′.

The reason that we use determined SSSP in this paper is that itgives more natural and

efficient implementations of scalar products in Sec. 5.

The special case of SSSP over the binary field is the computation of a boolean

and gate. It has long been known that it is impossible to compute and gates with

unconditional security [4], however, in this paper we do notonly show impossibility,

but also a bound in the amount of information leaked by the more general scalar product

protocols.

1Note that scalar products over finite fields are not inner products — they do not have the usual geomet-

rical interpretation. In particular, a vector over a finite field can be “orthogonal” to itself.

8

3.1. Commitment Schemes from Scalar Products

We now show that a commitment scheme can be implemented by onecall to de-

termined SSSP. We reduce a commitment scheme over the fieldG to determined SSSP

overFd, for any dimensiond > 1. The base field of the vector space does not have to

be the same as the field of the commitment scheme.

Let A∈ G be the random variable describing the input of Alice to the commitment

scheme, and letFd be a vector space such that|Fd| is at least as large as the support

of A. Furthermore, letf : F
d → G be an arbitrary surjective function. To commit to a

stringa∈ G, the sender chooses a vectorv∈R f−1(a) at random, and a random value

α ∈ F. The receiver chooses a vectorw∈R Fd at random. Sender and receiver then call

the scalar product protocol with vectorsv andw respectively, and the sender sets his

chosen secret share toα. The output,β , of the scalar product is the commitment.

To open the commitment the sender sends(α,v) to the receiver, who verifies that

α +β = v·w. If the tests passes, he opensa = f (v). An outline of this protocol can be

seen in Fig. 2.

Alice Bob

Commit(a)

w∈R Fd

α ∈R F

v∈R f−1(a)

α
v

-

- �

-

w

β = w ·v−αSP

Open(s)

-

(α,v) If v·w = α + β sets= f (v)

Figure 2: Reducing commitments to scalar products.

Lemma 1. Given a scalar product protocol which is secure against semi-honest ad-

versaries, the commitment scheme in Fig. 2 is perfectly hiding and binding when the

parties are semi-honest in the commitment protocol.

PROOF. Since the two parties are semi-honest in the commitment protocol the only

information that the receiver gets isβ , which is random, so the commitment is hiding.

9

Now assume that the sender can open to botha 6= a′ ∈ F, and let(α,v) and(α ′,v′)

be the two open messages. Since both will be accepted we have thatα + β = v·w and

α ′ + β = v′ ·w. Subtracting the two equations gives us the scalar productα ′ −α =

(v′ − v) ·w. Since f (v) = a 6= a′ = f (v′) the two vectors are different, sov′ − v 6= 0.

This means that the sender knows a non-trivial scalar product with the input vector of

the receiver. This contradicts the security of the scalar product, and thus the sender can

only open to one message. So the protocol is binding. �

Since the reduction does not rely on any assumptions, a secure implementation of

determined SSSP will immediately give a commitment scheme with the same security.

The fact that no unconditionally secure commitment scheme exists implies that no

unconditionally secure SP exists either. We now see that it was no coincidence that all

the scalar product protocols analysed in [10] were insecure. The following theorem,

which is our first main result, shows how, with high probability, at least one of the two

parties in a scalar product will be able to learn non-trivialinformation about the input

vector of the other party.

Since the commitment protocol in Fig. 2 only consists in one call to a scalar product

protocol, the information leakage of the commitment schemecan be directly translated

into information leakage in the scalar product.

Theorem 2. In any scalar product protocol, after each invocation, there exists a natu-

ral number0< n≤ |Fd| and an algorithm E such that Alice learns at least n−1 scalar

products withw andPr[E(viewB) = v] ≥ 1/n.

PROOF. Let a scalar product protocol be given, and letV ∈ Fd be the random variable

describing the input vector of Alice. We implement a commitment scheme where Alice

commits to a value from the same vector space,F
d. Let f be any permutation of

the vectors inFd. Alice’s input to the commitment scheme is described by random

variableA, where Pr[A = a] = Pr[V = f−1(a)], so that the distribution of the vector in

the reduction will be the same as the original input distribution to the scalar product.

From Thm. 1 we know that there exists a setS⊆ F, known to both Alice and Bob,

such that Bob knows thata∈ Sand Alice can open to anya′ ∈ S. Let {(αi ,vi)} be the

set of all opening messages, wherevi = f−1(ai), for ai ∈ S.

10

As in the proof of Lemma 1 above, we see that Alice learns(vi −v j) ·w = αi −α j

for all openings(αi ,vi) and(α j ,v j). Though some of these scalar products may be

identical, by fixingi, and lettingj vary over all other|S|−1 values, we see that Alice

learns at least|S|−1 distinct scalar products.

Let E be the function which takes the view of Bob, computes the setS, and picks

a random elementa′ ∈ S, and returnsf−1(a′). The probability, Pr[E(viewB) = v], that

a′ = a is 1/|S|, sincea∈ S, anda′ is chosen uniformly at random, and independently

of a, from S. Settingn = |S| yields the desired result. �

No matter what the value ofn is in a given invocation of a scalar product protocol,

it can clearly never be unconditionally secure without extra assumptions.

Corollary 1. No unconditionally secure scalar product exists.

4. Application to previous Scalar Product Protocol

In the paper [17] Malek and Miri propose a protocol for scalarproducts and prove

that it is information theoretically secure over small sets. More precisely, they claim

that the probability that computationally unbounded Bob can guess the input vector

of Alice is 1/((p2−1)(p2− p)) and the probability that computationally unbounded

Alice can guess the input vector of Bob is 1/pd−2, where input vectors are from the

field Fqd , q = pn, of characteristicp. However, we show that the probability that Bob

can guess the input vector is 1/p2 > 1/((p2−1)(p2− p)), which coincides with the

bound of Thm. 2.

In the protocol by Malek and Miri vectors fromFd
q are mapped into elements from

Fqd (these two objects are, of course, isomorphic). Abasisof Fqd over Fq is a set

of elements{α1, . . . ,αd} ⊂ Fqd such that any elementu ∈ Fqd can be written as a

unique sumu = u1α1 + · · ·+udαd, for u1, . . . ,ud ∈ Fq. Given a basis{α1, . . . ,αd} we

define the natural mapping from the vector spaceFd
q to the fieldFqd ash{α1,...,αd}(u) =

∑d
i=1 αiui .

Let Fq be a finite field and letFqd be an extension field ofFq. Thetraceof Fqd over

11

Fq is the functionTr : Fqd → Fq,

Tr(u) =
d−1

∑
i=0

uqi
, (2)

The trace function gives rise to the definition ofdual bases, where bases{α1, . . . ,αd}

and{β1, . . . ,βd} are dual ifTr(αiβ j) = δi, j (whereδi, j is Kronecker’s delta). It follows

(see [17] for details) that for two vectorsv,w∈ Fd
q, and for two dual bases{α1, . . . ,αd}

and{β1, . . . ,βd}, the scalar product ofv andw is:

v ·w = Tr(h{α1,...,αd}(v)h{β1,...,βd}(w)). (3)

In the protocol by Malek and Miri the input vectors of Alice and Bob are from the

vector fieldFd
q. The protocol uses (3) to compute the scalar product in the field Fqd .

The protocol proceeds as shown in Fig. 3 (the notation is slightly difference from the

notation in [17]).

Alice Bob

V = h{α1,...,αd}(v) W = h{β1,...,βd}(w)

γ ∈R Fqd

a,b,c,d ∈R Fq such that(ad−bc) 6= 0

-

X = aV+bγ, Y = cV+dγ

�

Tr(XW), Tr(YW)

x ·y = (ad−bc)−1(dTr(XW)−bTr(YW))

Figure 3: Scalar product protocol from [17].

The information leakage of this protocol is almost exactly what is guaranteed by

Thm. 2, except that Alice learns one more scalar product thanguaranteed by the theo-

rem. This shows that our information leakage bound is (almost) tight.

Theorem 3. In the protocol from [17] Alice learns q2 scalar products withw and Bob

can computev with probability1/q2.

PROOF. First, note that

b−1

b−1a−d−1c
X−

d−1

b−1a−d−1c
Y =

b−1aV−d−1cV
b−1a−d−1c

= V,

(4)

12

soV is a linear combination of the two elementsX andY. Sinceh is an isomorphismv

is also a linear combination ofh−1
{α1,...,αd}

(X) andh−1
{α1,...,αd}

(Y).

Next, note that

αTr(XW)+ βTr(YW) = Tr((αX + βY)W)

= (αh−1
{α1,...,αd}

(X)+ βh−1
{α1,...,αd}

(Y)) ·w,
(5)

for all α,β ∈ Fq.

We consider two cases: 1)X 6= Y, where both are non-zero, and 2)X = Y, or either

X or Y is 0.

If X 6= Y are non-zero, then (4) is a linear combination of two non-zero elements,

and Bob has to guess the two coefficients to findv. By choosing two coefficients at

random, Bob will get the right ones with probability 1/q2. Alice can use (5) to compute

q2 distinct scalar products withw.

If X =Y, or if eitherX orY is 0, then (4) only has one unknown coefficient, so Bob

can guessw with probability 1/q. Similarly (5) only allows Alice to computeq scalar

products. �

The nature of the information leakage in this protocol depends on the scalar field.

In small scalar fields considerable information is leaked toBob, while Alice only gains

limited information. Vice versa, over large scalar fields, the probability that Bob can

guess the input vector of Alice is small, while Alice a large number of scalar products.

5. Efficient and Secure Scalar Products under Various Assumptions

5.1. Encryption Based

A computationally secure implementation of the scalar product was given by Goethals

et al. in [10]. Their protocol can be based on any semantically secure additively ho-

momorphic public-key encryption scheme (E(x)E(y) = E(x+ y)). Let (G,E,D) be

such an encryption scheme and assume that both Alice and Bob know the public key

of Bob, but only Bob knows the corresponding secret key. If Alice and Bob have vec-

torsv = (v1, . . . ,vd) andw = (w1, . . . ,wd), respectively, the scalar product proceeds as

shown in Fig. 4.

13

A B

E(w1), . . . ,E(wd)
�

α ∈R F
c = E(−α)∏d

i=1E(wi)
vi

-

Figure 4: Computationally secure scalar product protocol.Settingβ = D(c) givesα +β = v·w.

A good candidate for the homomorphicencryption is the Paillier encryption scheme[19],

which takes plaintexts fromZn and gives ciphertexts inZn2 wheren is an RSA prime.

Goethalset al. use the Paillier scheme in their paper.

One of the primary arguments against using schemes based on homomorphic en-

cryptions is the blowup in the message size. If we use Paillier encryption to perform

scalar products over binary vectors, each bit is encrypted in 2048 bits, which is unac-

ceptable when working with massive data sets. To overcome the large communication

overhead, we need an alternative homomorphic encryption which has less overhead

when computing scalar products over small fields. To this endwe propose to use

a modified version of the ElGamal encryption scheme[8] over elliptic curves which

encrypts a 160-bit message to a 640-bit ciphertext for the same level of security as

1024-bit RSA.

The encryption of a messagex in the elliptic curve ElGamal cryptosystem is de-

fined as(rP, rQ + xG) whereP andG are two generators in the elliptic curve group,

r ∈R Zn is a random integer, andn is the order of the elliptic curve group. The elliptic

curve pointQ = sP is the public key of Alice whiles is her private key. Therefore,

the encryption of(w1, . . . ,wd) by Bob will result in(r iP, r iQ+wiG) for i ∈ {1, . . . ,d},

which are sent to Alice. Upon receiving these elliptic curvepoint pairs, Alice performs

elliptic curve point multiplication and obtains(vir iP,vi(r iQ+wiG)) for i ∈ {1, . . . ,d}.

She then computes the encryption of her secret shareα ∈R F: (rP, rQ+ αG), and per-

forms elliptic curve additions to obtain((r + ∑vir i)P,(r + ∑vir i)Q+(α + ∑viwi)G).

Decryption of this ciphertext by Bob will result in(∑viwi)G from which the scalar

product is calculated by using brute-force. Brute-force isnecessary since discrete log-

arithm is difficult compute in this elliptic curve. If the messages are chosen over a small

field, the brute-force does not pose a problem as shown in the timing results below.

14

We conducted tests to see how practical it is to use the ElGamal encryption scheme

as a building block for scalar products. We used the MIRACL library[16] to implement

the secure scalar product protocol on an Intel Dual-Core Centrino PC with 2MB cache,

2GB RAM and 1.83 GHz clock speed. We used vectors of lengthd = 10 over fields

with different bit lengths. The timing results are listed inTab. 1. The tests shows that

for vector spaces with entries of up to 8 bits it is possible touse the ElGamal encryption

scheme.

Table 1: Time consumption of scalar product based on ElGamal.

Bitsize Alice Bob Brute Force

1 63 ms negligible negligible

2 46 ms negligible negligible

3 47 ms negligible 62 ms

4 62 ms 16 ms 406 ms

5 62 ms 16 ms 1125 ms

6 31 ms negligible 11875 ms

7 31 ms negligible 24094 ms

8 62 ms 16 ms 92859 ms

We implemented the Paillier scheme using the same experimental setting and found

that Alice and Bob spends about 500 ms and 50 ms, respectively, in the secure scalar

product computation, independent of the bit lengths of the vector entries (up to the

maximum of 160 bits).

When the ElGamal scheme is used for scalar products of binaryvectors, the over-

head is a factor of 640. When using the Paillier scheme for vectors of 4-bit element,

the overhead is 2048/4= 512. A hybrid scheme, which uses ElGamal for vectors over

small fields, and Paillier for large fields, we can thus guarantee a worst case overhead

of a factor of 640. Compared to the overhead of the suggested efficient protocol of [1]

which has a communication overhead of approximately 160 when computing scalar

products inZ80
1024 (and is insecure), we see that scalar products based on encryption

are not as inefficient as some might fear. By using a trick for “batch” computation

15

of scalar products suggested by Goethalset al., the communication overhead can be

further reduced.

5.2. Trusted Third Party

In this section we present a new secure scalar product protocol which uses a se-

cure arithmetic circuit evaluation to compute field multiplication inF2n. Under normal

circumstances secure arithmetic circuit evaluation protocols are too inefficient to be of

practical use. However, our protocol relies on three ideas which makes it efficient:

1. Use an arithmetic circuit evaluation protocol over shares inspired by the boolean

circuit evaluation of [11, Section 7.1.3.3.]. The circuit evaluation protocol is se-

cure for semi-honest players and relies on oblivious transfer to multiply bits as

described below.

2. Use the Karatsuba multiplication algorithm[14] to reduce the number of and-

gates.

3. Use the oblivious transfer by Rivest[22] which is considerably more efficient than

other oblivious transfer protocols, but assumes the presence of a “trusted initial-

izer” (this is the extra assumption we use to make a secure protocol possible).

The boolean circuit evaluation protocol of [11, Section 7.1.3.3.] is easily gener-

alised to an arithmetic circuit evaluation protocol. An arithmetic circuit over a field

F is an acyclic, directed graph where nodes arearithmetic gates(e.g. multiplication

or addition) orinput/output gatesand edges arewires. Arithmetic gates have one or

two input wiresand multipleoutput wires. Input gates only have output wires, and an

output gate only has a single input wire. Thevalueof an arithmetic gate is the result

of performing the arithmetic operation associated with that gate on the values of the

source gates of the two input wires. To make it easier to referto gate inputs we write

value of a wireas shorthand for value of the source gate of a wire. To preventanyone

from seeing the values of non-output gates, the value of eacharithmetic gate is addi-

tively secret shared between the two players. This means that after evaluating a gateg

Alice and Bob get valuesg0 andg1, respectively, such that the (secret) value of gateg is

g0 +g1. Before starting the circuit evaluation we say that all wires areinactive. When

16

a gate has been evaluated its output wires are said to beactive. When all input wires of

a gate are active, the gate can be evaluated, and in turn it’s output wires become active.

At the beginning of the circuit evaluation (when all wires are inactive) the input gates

(which have no input wires) are evaluated to activate their output wires. The value of

an input gate is the secret input value of either Alice or Bob.To evaluate an input gate

g the value of which belongs to Alice, say, Alice chooses a random field elementg1

and sends it to Bob. Alice keepsg0 = a−g1, wherea ∈ F is her secret input. Input

gates that belong to Bob are teated in the same fashion.

For the purpose of this paper we distinguish between 4 kinds of arithmetic gates:

addition of two secret field elements, multiplication between two secret field elements,

multiplication of a secret field element from a subfieldG ⊆ F and a bit known to one

party (bit-multiplication for short), and multiplicationof a secret field element with a

known constant. To evaluate an addition gate, each party simply adds his shares of the

values of the input wires. To evaluate a gate which multiplies a known constant with

a secret field element, each party multiplies his share of thevalue of the input wire

with the known constant. To multiply two secret field elements, we use the Karatsuba

multiplication algorithm explained below to replace the multiplication gate with a sub-

circuit consisting of addition, multiplication by constants, and bit-multiplication gates.

To multiply a secret field element fromG ⊆ F with a bit known to one party we

use one invocation of an oblivious transfer protocol. Suppose that Bob has an input bit

b∈ {0,1}, which we have to multiply with secret valuea = a0 +a1 ∈ G, where Alice

knowsa0 and Bob knowsa1. Sinceab= a0b+a1b, Bob can computea1b by himself,

and all we have to do is to compute new valuesz0+z′ = a0b, such that Alice only knows

z0 and Bob only knowsz′, and then set the secret sharing of the bit-multiplication gate

to z0 andz1 = z′ +a1b for Alice and Bob, respectively. To this end we call a 1-out-of-2

oblivious transfer where Alice is the sender and Bob is the receiver. Alice first chooses

a random field elementz0 ∈ G, and computes messagesmi = ia0 − z0, for i = 0,1.

Alice uses inputsm0,m1 to the oblivious transfer, and Bob uses inputb. As a result,

Bob getsz′ = mb = ba0 − z0, and setsz1 = z′ + ba1. Now Alice and Bob have the

required additive secret sharingz0 +z1 = z0 +z′+ba1 = ab.

17

A multiplication gate of arbitrary field elements can be reduced to a sub-circuit

consisting of addition, multiplication by constant, and bit-multiplication gates. Since

each bit-multiplication requires one call to oblivious transfer, while the other gates

require no interaction, we need a sub-circuit which requires as few bit-multiplications

as possible. To this end we use a modified version of the Karatsuba multiplication

algorithm which uses an expected number ofnlog2(3) bit multiplications to multiply two

elements fromF2n. To multiply x,y∈ F2n we fix a basis{a,1} for F2n overF2n/2 (for

simplicity we assume thatn is a power of 2), we can then splitx andy into smaller parts,

xh,xl ,yh,yl ∈ F2n/2, such thatx = axh + xl andy = ayh + yl , and recursively compute

the three multiplicationsA = xhyh, B = xl yl , andC = (xh +xl)(yh +yl). The product is

xy= a2A+a(C−A−B)+B, which can be computed with addition and multiplication

with constant when the secret valuesA, B, andC have been computed. At the bottom

of the recursion, the multiplication of two 1-bit integers is simply a bit-multiplication

as described above.

While most implementations of oblivious transfers are too inefficient for our pur-

pose, the oblivious transfer proposed by Rivest in [22] gives a very efficient scalar

product protocol. The oblivious transfer by Rivest relies on a trusted initializer— a

third party who only participates in the protocol in an initialization phase, and does not

collude with any of the other players. In the oblivious transfer by Rivest, the trusted ini-

tializer generates two random stringsx0,x1 ∈ G, and a random bitb∈ {0,1}. He sends

(x0,x1) to the sender, and(b,xb) to the receiver. The sender and receiver now have a

“random instance” of an oblivious transfer. To realize a real oblivious transfer of mes-

sagesm0,m1 ∈G the receiver sends the bitc′ = c⊕b to the sender, wherec is the index

of the message he wants to learn. The sender replies with the message(m′
0,m

′
1), where

m′
i = mi +xc′⊕i , for i = 0,1. The receiver can now recovermc = m′

c−xc′⊕c = m′
c−xb.

For proof of security and other details see [22].

Putting together the peaces above, we can compute the scalarproduct of two vectors

v= (v1, . . . ,vd) andw= (w1, . . . ,wd) known to Alice and Bob, respectively. The scalar

product of the two vectors is done by the arithmetic expression

v·w =
d

∑
i=1

viwi , (6)

18

which is easily converted into an arithmetic circuit. The circuit has 2d input gates, one

for each entry in each of the two vectors. For eachi ∈ {1, . . . ,d} we have a multiplica-

tion gate where the input wires are the output wires of input gatesvi andwi . Internally

the d multiplication gates are translated into Karatsuba multiplication circuits as de-

scribed above. The output wires of thed multiplication gates are connected to a binary

tree of addition gates. The output of the root of the additiontree is connected to the

final output gate of the circuit.

5.2.1. Security

The only interaction which takes place in our scalar productprotocol is the initial

additive secret sharing of the inputs, and during the oblivious transfer. If Alice and

Bob are semi-honest, and the oblivious transfer protocol issecure, then their outputs

from each oblivious transfer are additive secret sharings of bit-multiplications. Clearly

this does not reveal any information about the input at all (since Alice chose her share

uniformly at random). The security of the protocol thus relies on the security of the

oblivious transfer protocol used (Rivest oblivious transfer in our case).

5.2.2. Efficiency

To multiply two elements from the fieldF2n, Karatsuba needs approximatelynlog2(3)

bit-multiplications. Each bit-multiplication requires one Rivest bit-oblivious transfers,

which requires 7 bits of communication (two bits from the third party to each of Alice

and Bob, one bit from Bob to Alice, and two bits from Alice to Bob). In the scalar

product protocol we first have to share the 2d field elements, and then performd mul-

tiplications, so we expect to send approximately 2dn+ 7nlog2(3)d bits to compute the

scalar product of two vectors overF
d
2n. As an example, it will take 1765d bits of com-

munication to perform scalar products between vectors inFd
232.

Since the oblivious transfers only depend on the inputs of Alice and Bob, they can

all be done in parallel, so we only need one round of communication.

The computational cost of the algorithm is minimal, since nocryptographic opera-

tions are involved — only simple field arithmetic.

19

6. Conclusion

We show that no unconditionally secure protocol for scalar product exists for two

semi-honest parties without extra assumptions. It followsfrom this result that some

of the scalar product protocols suggested in the literatureare not secure. In particular,

we show that in any attempt to implement a scalar product protocol without any extra

assumptions, either Alice learnsn−1 scalar products with Bob’s input vector, or Bob

learns the input vector of Alice with probability 1/n.

On the other hand, we demonstrated two efficient scalar product protocols which

are secure in alternative models. The first scalar product protocol is an improvement

of the computationally secure protocol previously presented in [10]. The other scalar

product protocol is a novel protocol which is very efficient compared to excising pro-

tocols, and whose security relies on a “trusted initializer”.

References

[1] Mikhail J. Atallah and Wenliang Du. Privacy-preservingcooperative statistical

analysis. InProceedings of the 17th Annual Computer Security Applications Con-

ference, 2001. ACSAC 2001, pages 102–110, 2001.

[2] Mihir Bellare and Silvio Micali. Non-interactive oblivious transfer and applica-

tions. InAdvances in Cryptology — CRYPTO ’89, A Conference on the Theory

and Applications of Cryptographic Techniques, volume 435 ofLecture Notes in

Computer Science, pages 547–557. Springer-Verlag, 1990.

[3] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems

for non-cryptographic fault-tolerant distributed computation. InProceedings of

the nineteenth annual ACM conference on Theory of computing(STOC), pages

1–10. ACM Press, 1988.

[4] Benny Chor and Eyal Kushilevitz. A zero-one law for boolean privacy. InSTOC

’89: Proceedings of the twenty-first annual ACM symposium onTheory of com-

puting, Lecture Notes in Computer Science, pages 62–72. ACM, 1989.

20

[5] Claude Crépeau. Efficient cryptographic protocols based on noisy channels. In

Advances in Cryptology — EUROCRYPT ’97: International Conference on the

Theory and Application of Cryptographic Techniques, volume 1233 ofLecture

Notes in Computer Science, pages 306–317. Springer-Verlag, 1997.

[6] Claude Crépeau and Joe Kilian. Achieving oblivious transfer using weakened

security assumptions. InProceedings of the 29th annual IEEE Symposium on

Foundations of Computer Science, pages 42–52. IEEE Computer Society, 1988.

[7] Ivan Damgård, Joe Kilian, and Louis Salvail. On the (im)possibility of basing

oblivious transfer and bit commitment on weakened securityassumptions. Tech-

nical Report RS-98-37, BRICS, University of Aarhus, 1998.

[8] Taher ElGamal. A public key cryptosystem and a signaturescheme based on

discrete logarithms. InAdvances in Cryptology: Proceedings of CRYPTO 84,

volume 196 ofLecture Notes in Computer Science. Springer-Verlag, 1985.

[9] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol

for signing contracts.Communications of the ACM, 28(6):637–647, June 1985.

[10] Bart Goethals, Sven Laur, Helger Lipmaa, and Taneli Mielikäinen. On private

scalar product computation for privacy-preserving data mining. In Information

Security and Cryptology — ICISC 2004, volume 3506 ofLecture Notes in Com-

puter Science, pages 104–120. Springer-Verlag, 2005.

[11] Oded Goldreich.The Foundations of Cryptography — Volume 2, Basic Applica-

tions. Cambridge University Press, May 2004.

[12] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental

game. InProceedings of the nineteenth annual ACM conference on Theory of

computing (STOC), pages 218–229. ACM Press, 1987.

[13] Ioannis Ioannidis, Ananth Grama, and Mikhail J. Atallah. A secure protocol for

computing dot-products in clustered and distributed environments. InProceed-

ings of the International Conference on Parallel Processing (ICPP’02), pages

379–384, December 2002.

21

[14] A. Karatsuba and Yu Ofman. Multiplication of many-digital numbers by au-

tomatic computers.Nauk SSSR, 145:293–294, 1962. Translation in Physics-

Doklady, 7 (1963), pages 595-596.

[15] Joe Kilian. Founding cryptography on oblivious transfer. In Proceedings of the

nineteenth annual ACM conference on Theory of computing (STOC), pages 20—

-31. ACM Press, 1988.

[16] Shamus Software LTD. Miracl. http://www.shamus.ie, 2005.

[17] Behzad Malek and Ali Miri. Secure dot-product protocolusing trace functions. In

Proceedings of the 2006 IEEE International Symposium on Information Theory,

pages 927–931, July 2006.

[18] Moni Naor and Benny Pinkas. Distributed oblivious transfer. In Advances in

Cryptology — ASIACRYPT 2000: 6th International Conferenceon the Theory

and Application of Cryptology and Information Security, volume 1976 ofLecture

Notes in Computer Science. Springer-Verlag, 2000.

[19] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity

classes. InAdvances in Cryptology — EUROCRYPT ’99. International Confer-

ence on the Theory and Application of Cryptographic Techniques, Lecture Notes

in Computer Science, pages 223–238. Springer-Verlag, May 1999.

[20] Michael O. Rabin. How to exchange secrets by oblivious transfer. Technical

Report TR-81, Aiken Computation Laboratory, Harvard University, 1981.

[21] Pradeep Ravikumar, William W. Cohen, and Stephen E. Fienberg. A secure pro-

tocol for computing string distance metrics. InWorkshop on Privacy and Security

Aspects of Data Mining, pages 40–46, 2004.

[22] Ronald L. Rivest. Unconditionally secure commitment and oblivious trans-

fer schemes using private channels and a trusted initializer. Available at

http://people.csail.mit.edu/rivest/publications.html, August 1999.

22

[23] Jaideep Vaidya and Chris Clifton. Privacy preserving association rule mining in

vertically partitioned data. InProceedings of the eighth ACM SIGKDD inter-

national conference on Knowledge discovery and data mining, pages 639–644,

2002.

[24] Rebecca Wright and Zhiqiang Yang. Privacy-preservingbayesian network struc-

ture computation on distributed heterogeneous data. InKDD ’04: Proceedings of

the tenth ACM SIGKDD international conference on Knowledgediscovery and

data mining, pages 713–718, New York, NY, USA, 2004. ACM.

[25] Andrew C. Yao. Protocols for secure computations (extended abstract). In23rd

Annual Symposium on Foundations of Computer Science, pages 160–164. IEEE,

1982.

23

